## Finding local lessons in software engineering



Tim Menzies, WVU, USA, tim@menzies.us

GrammaTech, Dec'09

#### Sound bites

- An observation:
  - Surprisingly few general SE results.
- A requirement:
  - Need simple methods for finding local lessons.
- Take home lesson:
  - Finding useful local lessons is remarkably simple
  - E.g. using "W" or "NOVA"



- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions





## Have we lived up to our PROMISE?

#### Few general results

- PROMISE 2005 ... 2009 : 64 presentations
- 48 papers
  - tried a new analysis on old data
  - Or reported a new method that worked once for one project.
- 4 papers
  - argued against model generality
- 9 papers
  - questioned validity of prior results
- E.g. Menzies et al. Promise 2006
  - 100 times
    - Select 90% of the training data
    - Find<a,b> in effort = x.a.LOC b



## Have we lived up to our PROMISE?

#### Only 11% of papers proposed general models

- E.g. Ostrand, Weyuker, Bell '08, '09
  - Same functional form
  - Predicts defects for generations of AT&T software
- E.g. Turhan, Menzies, Bener '08, '09
  - 10 projects
    - Learn on 9
    - Apply to the 10th
  - Defect models learned from NASA projects work for Turkish whitegoods software
    - Caveat: need to filter irrelevant training examples

### Less Promising Results

#### Lessons learned are very localized

FSE'09: Zimmerman et al.

 Defect models not generalizable

> Learn "there", apply "here" only works in 4% of their 600+ experiments

Opposite to Turhan'09 results

?add relevancy filter



- ASE'09: Green, Menzies et al.
  - Al search for better software project options
  - Conclusions highly dependent on local business value proposition
- And others
  - TSE'06: Menzies, Greenwald
  - Menzies et al. in ISSE 2007
  - Zannier et al ICSE'06

#### Overall

#### The gods are (a little) angry



- Fenton at PROMISE' 07
  - "... much of the current software metrics research is inherently irrelevant to the industrial mix ..."
  - "... any software metrics program that depends on some extensive metrics collection is doomed to failure ..."
- Budgen & Kitchenham:
  - "Is Evidence Based Software Engineering mature enough for Practice & Policy?"
  - Need for better reporting: more reviews.
  - Empirical SE results too immature for making policy.
- Basili : still far to go
  - But we should celebrate the progress made over the last 30 years.
  - And we are turning the corner

### **Experience Factories**

#### Methods to find local lessons



- Basili'09 (pers. comm.):
  - "All my papers have the same form."
  - "For the project being studied, we find that changing X improved Y."
- Translation (mine):
  - Even if we can't find general models (which seem to be quite rare)....
  - ... we can still research general methods for finding local lessons learned

# The rest of this talk: contrast set learning and "W"

#### W= a local lessons finder

- Bayesian case-based contrast-set learner
  - uses greedy search
  - illustrates the "local lessons" effect
  - offers functionality missing in the effort-estimation literature
- Fast generator of baseline results
  - There are too few baseline results
  - And baseline results can be very interesting (humbling).
- A very (very) simple algorithm
  - Should add it to your toolkit
  - At least, as the "one to beat"



#### Holte'85

- C4: builds decision trees "N" deep
- 1R: builds decision trees "1" deep
- For datasets with 2 classes, 1R ≈ C4

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

### Problem

#### Too much information



### Tree Pruning

Can you see the big picture?

- Good branches go to good goals
- Bad branches go to bad goals
- Select decisions that select for
  - Most good
  - Least bad
- TARZAN:
  - swings through the trees
  - Post-processor to C4.5



### Tree Pruning

Can you see the big picture?

- Good branches go to good goals
- Bad branches go to bad goals
- Select decisions that select for
  - Most good
  - Least bad
- TARZAN:
  - swings through the trees
  - Post-processor to C4.5



### Tree Pruning

Can you see the big picture?

- Good branches go to good goals
- Bad branches go to bad goals
- Select decisions that select for
  - Most good
  - Least bad
- TARZAN:
  - swings through the trees
  - Post-processor to C4.5



#### Comment

#### Less is best

 Higher decisions prune more branches

 #nodes at level I much smaller than level I+1.

 So tree pruning often yields very small sets of recommendations



### Don't bury me in data

Don't show me "what is"; just tell what "to do"





- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

### "W"= Simple (Bayesian) Contrast Set Learning (in linear time)

#### Mozina: KDD'04

- "best" = target class (e.g. "survive")
- "rest" = other classes
- x = any range (e.g. "sex=female")
- f(x|c) = frequency of x in class c
- b = f(x | best) / F(best)
- r = f(x | rest) / F(rest)
- LOR= log(odds ratio) = log(b/r)
  - ? normalize 0 to max = 1 to 100
- s = sum of LORs
  - e = 2.7183...
  - p = F(B) / (F(B) + F(R))
  - $P(B) = 1 / (1 + e^{(-1)(p/(1 p)) s})$



### "W":Simpler (Bayesian) Contrast Set Learning (in linear time)

#### Mozina: KDD'04

- "best" = target class
- "rest" = other classes
- x = any range (e.g. sex = female)
- f(x|c) = frequency of x in class c
- b = f(x | best) / F(best)
- r = f(x | rest) / F(rest)
- LOR= log(odds ratio) = log(b/r)
  - ? normalize 0 to max = 1 to 100
- s = sum of LORs
  - e = 2.7183 ...
  - p = F(B) / (F(B) + F(R))
  - $P(B) = 1 / (1 + e^{(-1)(p/(1 p)) s})$





"W":

- 1) Discretize data and outcomes
- 2) Count frequencies of ranges in classes
- 3) Sort ranges by LOR
- 4) Greedy search on top ranked ranges

#### "W" + CBR

#### **Preliminaries**

- "Query"
  - What kind of project you want to analyze; e.g.
    - · Analysts not so clever,
    - High reliability system
    - Small KLOC
- "Cases"
  - Historical records, with their development effort
- Output:
  - A recommendation on how to change our projects in order to reduce development effort















- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

# Results (distribution of development efforts in q<sub>i</sub>\*)

#### Using cases from http://promisedata.org

|        |          | X = 8  | as is  | Υ=     | to be  | (X-Y) / X |        |  |  |
|--------|----------|--------|--------|--------|--------|-----------|--------|--|--|
| cases  | query    | median | spread | median | spread | median    | spread |  |  |
| coc81  | allSmall | 70     | 920    | 79     | 73     | -13%      | 92%    |  |  |
| coc81  | flight   | 87     | 281    | 70     | 0      | 20%       | 100%   |  |  |
| nasa93 | osp2     | 409    | 653    | 300    | 376    | 27%       | 42%    |  |  |
| coc81  | osp2     | 87     | 483    | 60     | 138    | 31%       | 71%    |  |  |
| nasa93 | osp      | 409    | 781    | 210    | 125    | 49%       | 84%    |  |  |
| nasa93 | allSmall | 409    | 588    | 162    | 120    | 60%       | 80%    |  |  |
| coc81  | allLarge | 50     | 158    | 18     | 32     | 64%       | 80%    |  |  |
| nasa93 | allLarge | 300    | 660    | 90     | 150    | 70%       | 77%    |  |  |
| nasa93 | ground   | 360    | 481    | 82     | 100    | 77%       | 79%    |  |  |
| coc81  | osp      | 88     | 483    | 7      | 446    | 92%       | 8%     |  |  |
| coc81  | ground   | 156    | 478    | 6      | 1      | 96%       | 100%   |  |  |
| nasa93 | flight   | 360    | 474    |        |        |           |        |  |  |



Cases from promisedata.org/data

Median = 50% percentile Spread = 75% - 25% percentile

Improvement = (X - Y) / X

- X = as is
- Y = to be
- more is better

#### Usually:

- spread ≥ 75% improvement
- median ≥ 60% improvement

### Not-so-good news

#### Local lessons are very localized

|        |          | асар | аехр |   | cplx | data |   | modp | рсар | S | sced |   |   | sto | r | time | tool | turn | vexp |   |   |    |
|--------|----------|------|------|---|------|------|---|------|------|---|------|---|---|-----|---|------|------|------|------|---|---|----|
| cases  | query    | 3    | 1    | 2 | 4    | 5    | 3 | 2    | 3    | 3 | 4    | 1 | 2 | 3   | 3 | 4    | 5    | 3    | 3    | 2 | 3 |    |
| coc81  | allSmall |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | 1  |
| coc81  | flight   |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | 4  |
| nasa93 | osp2     |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | ]  |
| coc81  | osp2     |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | 2  |
| nasa93 | osp      |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | ]; |
| nasa93 | allSmall |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | (  |
| coc81  | allLarge |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | (  |
| nasa93 | allLarge |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | 2  |
| nasa93 | ground   |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | 1  |
| coc81  | osp      |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | •  |
| coc81  | ground   |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | (  |
| nasa93 | flight   |      |      |   |      |      |   |      |      |   |      |   |   |     |   |      |      |      |      |   |   | (  |
|        | M        | 2    | 1    | 1 | 2    |      | 1 | 2    | 1    | 2 | 1    | 1 | 1 | 2   | 2 | 1    | 1    | 1    | 2    | 1 | 1 |    |

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions





#### A greedy linear time search?

- Need to use much better search algorithms
- Simulated annealing, Beam, Astar, ISSAMP, MaxWalkSat
- SEESAW (home brew)





























# Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

# More models

## USC Cocomo suite (Boehm 1981, 2000)

#### COCOMO

- Time to build it (calendar months)
- Effort to build it (total staff months)

#### **COQUALMO**

defects per 1000 lines of code

Estimate = model( p, t)

- P = project options
- T = tuning options
- Normal practice: Adjust "t" using local data
- NOVA: Stagger randomly all tunings even seen before

$$rg \max_{x} \left( \overbrace{r_{x} \subseteq p}^{AI \; search}, \underbrace{t \subseteq T, value(model(r_{x}, t))}_{Monte \; Carlo} \right)$$

# More goals

## B = BFC

#### Goal #1:

better, faster, cheaper

## Try to minimize:

- Development time <u>and</u>
- Development effort and
- # defects

## X = XPOS

#### Goal #2

minimize risk exposure

## Rushing to beat the competition

- Get to market, soon as you can
- Without too many defects

# More search engines

# Not greedy search

Simulated Annealling

**ISSAMP** 

**ASTAR** 

**BEAM** 

MaxWalkSat

SEESAW : MaxWalkSat + boundary mutation

- Local favorite
- Does best at reduction defects or effort or time

# More tests

# Four data sets, repeat N=20 times

|                                                  | ranges  |     |      | fixed settings |         |
|--------------------------------------------------|---------|-----|------|----------------|---------|
|                                                  | feature | low | high | feature        | setting |
|                                                  | prec    | 1   | 2    | data           | 3       |
|                                                  | flex    | 2   | 5    | pvol           | 2       |
|                                                  | resl    | 1   | 3    | rely           | 5       |
|                                                  | team    | 2   | 3    | pcap           | 3       |
|                                                  | pmat    | 1   | 4    | plex ·         | 3       |
|                                                  | stor    | 3   | 5    | site           | 3       |
|                                                  | ruse    | 2   | 4    |                |         |
|                                                  | docu    | 2   | 4    |                |         |
| Data sets                                        | acap    | 2   | 3    |                |         |
|                                                  | pcon    | 2   | 3    |                |         |
| <ul> <li>OSP= orbital space plane GNC</li> </ul> | apex    | 2   | 3    |                |         |
| <ul> <li>OSP2 = second generation GNC</li> </ul> | ltex    | 2   | 4    |                |         |
|                                                  | tool    | 2   | 3    |                |         |
| <ul> <li>Flight = JPL flight systems</li> </ul>  | sced    | 1   | 3    |                |         |
| <ul> <li>Ground = JPL ground systems</li> </ul>  | cplx    | 5   | 6    |                |         |
| Greatia of E greatia dyctorile                   | KSLOC   | 75  | 125  |                |         |

#### For each data set

- Search N= 20 times (with SEESAW)
- Record how often decisions are found

# Frequency% of range in 20 repeats

(ignore all ranges found < 50%)



Mostly: if selected by one, rejected by the other

(business context) changes everything

# And what of defect removal techniques?

Aa = automated analysis Etat= execution testing and tools Pr= peer review

Minimize risk exposure Better, faster, cheaper (rushing to market) valueB=BFC X=XPOS Data Range ground rely = 4aa = 6resl = 6etat = 1aexp = 5pr = 1aa = 1data = 2rely = 1flight rely = 5flex = 6docu = 1site = 6res1 = 6pr = 1pvol = 2data = 2cplx = 3rely = 3OSP pmat = 4resl = 3ruse = 2docu = 2OSP2 sced = 2sced = 4

Stopping defect introduction is better than defect removal.

# Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

# Certainly, we should always strive for generality

## But don't be alarmed if you can't find it

- The experience to date is that,
  - with rare exceptions,
  - W and NOVA do not lead to general theories
- But that's ok
  - Very few others have found general models (in SE)
  - E.g. Turhan, Menzies, Ayse'09
- Anyway
  - If there are few general results, there may be general methods to find local results

# Btw, constantly (re)building local models is a general model

## **Case-based reasoning**

 Kolodner's theory of reconstructive memory

- The Yale group
  - Shank & Riesbeck et al.
  - Memory, not models
  - Don't "think", remember



# See you at PROMISE'10?





# Supplemental slides

# Contact details



## We know where you live.



tim@menzies.us



http://menzies.us



http://twitter.com/timmenzies



http://www.facebook.com/tim.menzies

# Questions? Comments?





"You want proof? I'll give you proof!"

Monte Carlo + Decision

Tree Learning

## Menzies: ASE'00

- Process models
  - Input: project details
  - Output: (effort, risk)
- Increase #simulations
  - till error minimizes
- Learn decision trees
- Repeat 10 times



# The "keys" effect: usually, a few variables set the rest

# 65/46

# **SAILing** is easy

- So the complexity of the whole depends on just a small part
- Empirical evidence:
  - Feature subset selection: Kohavi'97
  - Few pathways: Bieman'92, Harrold'98
  - Mutation testing & rapid saturation: Budd'80, Wong'95, Michael'97
  - Surprisingly few internal states: Drezdel'94, Colomb'00, Menzies'99
  - Success of stochastic theorem provers: Crawford'94, Williams & Selman'03
- Theoretical evidence:
  - Menzies & Singh '03
- Easy to find these keys
  - Score the outputs
  - Look for ranges more frequent in "best" than "rest"
  - A useful short-cut to data mining, model-based reasoning



# Treatment learning: 9 years later

# Gay, Menzies et al.' 09

- TARZAN is no longer a post-processor
  - Branch queries performed directly on discretized data
    - thanks David Poole
  - Stochastic sampling for rule generation
- Benchmarked against state-of-the-art numerical optimizers for GNC control



| Metric         | Project 1 |         |      |           |      |     |  |  |
|----------------|-----------|---------|------|-----------|------|-----|--|--|
| Runtime        |           | ]       | Rank | Program   | 50%  |     |  |  |
|                |           |         |      | TAR4.1    | 0.13 |     |  |  |
|                |           | 2       |      | TAR3      | 0.31 |     |  |  |
|                |           |         | 3    | QN        | 6    |     |  |  |
|                |           | 4       | 1    | SA-T4     | 15   |     |  |  |
|                |           | 4       |      | SA-T3     | 16   |     |  |  |
|                | Rank      | Program | 50%  | Quartiles |      |     |  |  |
| Recall         |           |         |      |           | 1    | 1   |  |  |
|                | 1         | TAR4.1  | 59   |           | •    |     |  |  |
|                | 1         | QN      | 36   |           | •    |     |  |  |
|                | 2         | SA-T4   | 25   |           | •——  |     |  |  |
|                | 3         | TAR3    | 22   |           | •    |     |  |  |
|                | 4         | SA-T3   | 20   |           | •    |     |  |  |
|                |           |         |      | 0         | 50   | 100 |  |  |
|                | Rank      | Program | 50%  | Quartiles | }    |     |  |  |
| P(False Alarm) |           |         |      |           | 1    |     |  |  |
|                | 1         | TAR3    | 1    | •         |      |     |  |  |
|                | 2         | SA-T3   | 9    |           | •    |     |  |  |
|                | 3         | TAR4.1  | 25   |           | •    |     |  |  |
|                | 4         | QN      | 34   |           | •    |     |  |  |
|                | 4         | SA-T4   | 71   |           |      | •   |  |  |
|                |           |         |      | 0         | 50   | 100 |  |  |

66/

146

Still generating tiny rules (very easy to read, explain, audit, implement)