
Tim Menzies, WVU, USA, tim@menzies.us

GrammaTech, Dec’09

Finding local lessons
in software engineering

Sound bites
•  An observation:

–  Surprisingly few general SE results.

•  A requirement:
–  Need simple methods for finding local lessons.

•  Take home lesson:
–  Finding useful local lessons is remarkably simple
–  E.g. using “W” or “NOVA”

Roadmap

•  Motivation: generality in SE
•  A little primer: DM for SE
•  “W”: finding contrast sets
•  “W”: case studies
•  “W”: drawbacks
•  “NOVA”: a better “W”
•  Conclusions

Roadmap

•  Motivation: generality in SE
•  A little primer: DM for SE
•  “W”: finding contrast sets
•  “W”: case studies
•  “W”: drawbacks
•  “NOVA”: a better “W”
•  Conclusions

Have we lived up
to our PROMISE?

Few general results

•  PROMISE 2005 … 2009 : 64 presentations
•  48 papers

–  tried a new analysis on old data
–  Or reported a new method that worked once for one project.

•  4 papers
–  argued against model generality

•  9 papers
–  questioned validity of prior results

•  E.g. Menzies et al. Promise 2006
–  100 times

•  Select 90% of the training data
•  Find<a,b> in effort = x.a.LOC b

Only 11% of papers proposed general models

Have we lived up
to our PROMISE?

•  E.g. Ostrand, Weyuker, Bell ‘08, ‘09
–  Same functional form
–  Predicts defects for generations of AT&T software

•  E.g. Turhan, Menzies, Bener ’08, ‘09
–  10 projects

•  Learn on 9
•  Apply to the 10th

–  Defect models learned from NASA projects work for Turkish
whitegoods software

•  Caveat: need to filter irrelevant training examples

Lessons learned are very localized

Less Promising Results

•  FSE’09: Zimmerman et al.
–  Defect models

not generalizable
•  Learn “there”, apply

“here” only works in 4%
 of their 600+ experiments

–  Opposite to Turhan’09 results
•  ?add relevancy filter

•  ASE’09: Green, Menzies et al.
–  AI search for better software project options
–  Conclusions highly dependent on

local business value proposition

•  And others
–  TSE’06: Menzies, Greenwald
–  Menzies et al. in ISSE 2007
–  Zannier et al ICSE’06

The gods are (a little) angry

Overall

•  Fenton at PROMISE’ 07
–  "... much of the current software metrics research is

inherently irrelevant to the industrial mix ...”
–  "... any software metrics program that depends on some

extensive metrics collection is doomed to failure ...”

•  Budgen & Kitchenham:
–  “Is Evidence Based Software Engineering mature

enough for Practice & Policy? ”
–  Need for better reporting: more reviews.
–  Empirical SE results too immature for making

policy.

•  Basili : still far to go
–  But we should celebrate the progress made over

the last 30 years.
–  And we are turning the corner

Experience Factories

•  Basili’09 (pers. comm.):
–  “All my papers have the same form.
–  “For the project being studied, we find that changing X improved Y.”

•  Translation (mine):
–  Even if we can’t find general models (which seem to be quite rare)….
–  … we can still research general methods for finding local lessons

learned

Methods to find local lessons

The rest of this talk: contrast
set learning and “W”

•  Bayesian case-based
contrast-set learner

–  uses greedy search
–  illustrates the “local lessons” effect
–  offers functionality missing in

the effort-estimation literature

•  Fast generator of baseline results
–  There are too few baseline results
–  And baseline results can be very

interesting (humbling).

•  A very (very) simple algorithm
–  Should add it to your toolkit
–  At least, as the “one to beat”

W= a local lessons finder

Holte’85
• C4: builds decision trees “N” deep
• 1R: builds decision trees “1” deep
• For datasets with 2 classes, 1R ≈ C4

accuracy

Roadmap

•  Motivation: generality in SE
•  A little primer: DM for SE
•  “W”: finding contrast sets
•  “W”: case studies
•  “W”: drawbacks
•  “NOVA”: a better “W”
•  Conclusions

Too much information
Problem

14/
46

Can you see the big picture?
Tree Pruning good

ok

worst

worse

•  Good branches go to
good goals

•  Bad branches go to bad
goals

•  Select decisions that
select for
–  Most good
–  Least bad

•  TARZAN:
–  swings through the trees
–  Post-processor to C4.5

15/
46

Can you see the big picture?
Tree Pruning good

ok

worst

worse

•  Good branches go to
good goals

•  Bad branches go to bad
goals

•  Select decisions that
select for
–  Most good
–  Least bad

•  TARZAN:
–  swings through the trees
–  Post-processor to C4.5

16/
46

Can you see the big picture?
Tree Pruning

•  Good branches go to
good goals

•  Bad branches go to bad
goals

•  Select decisions that
select for
–  Most good
–  Least bad

•  TARZAN:
–  swings through the trees
–  Post-processor to C4.5

good

ok

worst

worse

17/
46

Less is best
Comment

•  Higher decisions prune more
branches

•  #nodes at level I much
smaller than level I+1.

•  So tree pruning often yields
very small sets of
recommendations

good

ok

worst

worse

Don’t show me “what is”; just tell what “to do”
Don’t bury me in data

Roadmap

•  Motivation: generality in SE
•  A little primer: DM for SE
•  “W”: finding contrast sets
•  “W”: case studies
•  “W”: drawbacks
•  “NOVA”: a better “W”
•  Conclusions

“W”= Simple (Bayesian) Contrast
Set Learning (in linear time)

•  “best” = target class (e.g. “survive”)
•  “rest” = other classes
•  x = any range (e.g. “sex=female”)
•  f(x|c) = frequency of x in class c

•  b = f(x | best) / F(best)
•  r = f(x | rest) / F(rest)

•  LOR= log(odds ratio) = log(b/r)
–  ? normalize 0 to max = 1 to 100

•  s = sum of LORs
–  e = 2.7183 …
–  p = F(B) / (F(B) + F(R))

–  P(B) = 1 / (1 + e^(-1*ln(p/(1 - p)) - s))

Mozina: KDD’04

 “W”:Simpler (Bayesian) Contrast
Set Learning (in linear time)

•  “best” = target class
•  “rest” = other classes
•  x = any range (e.g. sex = female)
•  f(x|c) = frequency of x in class c

•  b = f(x | best) / F(best)
•  r = f(x | rest) / F(rest)

•  LOR= log(odds ratio) = log(b/r)
–  ? normalize 0 to max = 1 to 100

•  s = sum of LORs
–  e = 2.7183 …
–  p = F(B) / (F(B) + F(R))
–  P(B) = 1 / (1 + e^(-1*ln(p/(1 - p)) - s))

Mozina: KDD’04

“W”:
1)  Discretize data and outcomes
2)  Count frequencies of ranges in classes
3)  Sort ranges by LOR
4) Greedy search on top ranked ranges

Preliminaries

“W” + CBR

•  “Query”
–  What kind of project you want to analyze; e.g.

•  Analysts not so clever,
•  High reliability system
•  Small KLOC

•  “Cases”
–  Historical records, with their development effort

•  Output:
–  A recommendation on how to change our projects

in order to reduce development effort

Cases

train test

Cases map features F to a utility
F= Controllables + others

Cases

train test

Cases map features F to a utility
F= Controllables + others

 (query ⊆ ranges)

relevant

k-NN

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

k-NN

Cases map features F to a utility
F= Controllables + others

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

k-NN

Cases map features F to a utility
F= Controllables + others

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

utility

spread

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Roadmap

•  Motivation: generality in SE
•  A little primer: DM for SE
•  “W”: finding contrast sets
•  “W”: case studies
•  “W”: drawbacks
•  “NOVA”: a better “W”
•  Conclusions

Results (distribution of
development efforts in qi*)

Cases from promisedata.org/data

Median = 50% percentile
Spread = 75% - 25% percentile

Improvement = (X - Y) / X
•  X = as is
•  Y = to be
•  more is better

Usually:
•  spread ≥ 75% improvement
•  median ≥ 60% improvement

0%

50%

100%

150%

-50% 0% 50% 100% 150%

median improvement

s
p
re

a
d
 i
m

p
ro

v
e
m

e
n
t

Using cases from http://promisedata.org

Not-so-good news
Local lessons are very localized

Roadmap

•  Motivation: generality in SE
•  A little primer: DM for SE
•  “W”: finding contrast sets
•  “W”: case studies
•  “W”: drawbacks
•  “NOVA”: a better “W”
•  Conclusions

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

 A greedy linear time search?

 • Need to use much better search algorithms
 • Simulated annealing, Beam, Astar, ISSAMP, MaxWalkSat
 • SEESAW (home brew)

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median
 Just trying to reduce effort?

 • What about development time?
 • What about number of defects?
 • What about different business contexts?
 e.g. “racing to market” vs “mission-critical” apps

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

 Is nearest neighbor causing
 conclusion instability?

 • Q: How to smooth the bumps between
 between the samples ?
 • A: Don’t apply constraints to the data
 • Apply it as model inputs instead

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

 Just one test?

 • What about looking for
 stability in “N” repeats?

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

 More tests 1

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

 More tests 1

 More models

2

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

 More tests 1

 More models

2

 More goals 3

Cases

train test

 (query ⊆ ranges)

relevant

Best
utilities

rest

x

x

S = all x sorted descending by score

queryi* =
query + ∪iSi

treatedi

k-NN

k-NN
i

q0* qi*

As is To be

Cases map features F to a utility
F= Controllables + others

if controllable(x) &&
 b > r &&
 b > min
then score(x) = log(b/r)
else score(x) = 0
fi

treatment

b = F(x | best) / F(best)

r = F(x | rest) / F(rest)

i

utility

spread

median

 More tests 1

 More models

2

 More goals 3

 More search 4

Roadmap

•  Motivation: generality in SE
•  A little primer: DM for SE
•  “W”: finding contrast sets
•  “W”: case studies
•  “W”: drawbacks
•  “NOVA”: a better “W”
•  Conclusions

COCOMO
•  Time to build it (calendar months)
•  Effort to build it (total staff months)

COQUALMO
•  defects per 1000 lines of code

Estimate = model(p, t)
•  P = project options
•  T = tuning options
•  Normal practice: Adjust “t” using local data
•  NOVA: Stagger randomly all tunings even seen before

USC Cocomo suite (Boehm 1981, 2000)

More models

?

B = BFC

Goal #1:
•  better, faster, cheaper

Try to minimize:
•  Development time and
•  Development effort and
•  # defects

Goal #2
•  minimize risk exposure

Rushing to beat the competition
•  Get to market, soon as you can
•  Without too many defects

More goals

X = XPOS

Simulated Annealling

ISSAMP

ASTAR

BEAM

MaxWalkSat

SEESAW : MaxWalkSat + boundary mutation
•  Local favorite
•  Does best at reduction defects or effort or time

Not greedy search

More search engines

Data sets
•  OSP= orbital space plane GNC
•  OSP2 = second generation GNC
•  Flight = JPL flight systems
•  Ground = JPL ground systems

For each data set
•  Search N= 20 times (with SEESAW)
•  Record how often decisions are found

Four data sets, repeat N=20 times

More tests

Frequency%
of range in
20 repeats

If high, then
more in BFC

If low, then
usually in XPOS

Better, faster, cheaper Minimize risk exposure
(rushing to market)

(ignore all ranges
found < 50%)

If 50% then same
In BFC and XPOS

Mostly: if selected by one, rejected by the other
“Value”
 (business context)
changes everything

And what of
defect removal
techniques?

Better, faster, cheaper Minimize risk exposure
(rushing to market)

Aa = automated analysis
Etat= execution testing and tools
Pr= peer review

Stopping defect introduction is better than defect removal.

Roadmap

•  Motivation: generality in SE
•  A little primer: DM for SE
•  “W”: finding contrast sets
•  “W”: case studies
•  “W”: drawbacks
•  “NOVA”: a better “W”
•  Conclusions

Certainly, we should always
strive for generality

But don’t be alarmed if you can’t find it

•  The experience to date is that,
–  with rare exceptions,
–  W and NOVA do not lead to general theories

•  But that’s ok
–  Very few others have found general models (in SE)
–  E.g. Turhan, Menzies, Ayse’09

•  Anyway
–  If there are few general results, there may be general methods to find

local results

Case-based reasoning

Btw, constantly (re)building local
models is a general model

•  Kolodner’s theory of
reconstructive memory

•  The Yale group
–  Shank & Riesbeck et al.
–  Memory, not models
–  Don’t “think”, remember

 See you at PROMISE’10?

Supplemental slides

•  tim@menzies.us

•  http://menzies.us

•  http://twitter.com/timmenzies

•  http://www.facebook.com/tim.menzies

We know where you live.

Contact details

63/
46 Questions?

Comments?

“You want proof? I’ll give you proof!”

64/
46

Menzies: ASE’00

Monte Carlo + Decision
Tree Learning

•  Process models
–  Input: project details
–  Output: (effort, risk)

•  Increase #simulations
–  till error minimizes

•  Learn decision trees
•  Repeat 10 times

65/
46

SAILing is easy

The “keys” effect:
usually, a few variables set the rest

•  So the complexity of the whole depends on just a small part

•  Empirical evidence:
–  Feature subset selection: Kohavi’97
–  Few pathways: Bieman’92, Harrold’98
–  Mutation testing & rapid saturation: Budd’80, Wong’95, Michael’97
–  Surprisingly few internal states: Drezdel’94, Colomb’00, Menzies’99
–  Success of stochastic theorem provers: Crawford’94, Williams & Selman’03

•  Theoretical evidence:
–  Menzies & Singh ‘03

•  Easy to find these keys
–  Score the outputs
–  Look for ranges more frequent in “best” than “rest”
–  A useful short-cut to data mining, model-based reasoning

66/
46

Gay, Menzies et al.’ 09

Treatment learning:
9 years later

•  TARZAN is no longer a post-processor
•  Branch queries performed directly
 on discretized data

•  thanks David Poole
•  Stochastic sampling
 for rule generation

•  Benchmarked against state-of-the-art
 numerical optimizers for GNC control

Still generating tiny rules
(very easy to read, explain, audit, implement)

