
Tim Menzies,  WVU, USA, tim@menzies.us 

Tsinghua University, China, Nov’09 

Finding local lessons  

in software engineering 



Sound bites 

•! An observation: 
–! Surprisingly few general SE results. 

•! A requirement: 
–! Need simple methods for finding local lessons. 

•! Take home lesson: 
–! Finding useful local lessons is remarkably simple 

–! E.g. using “W” or “NOVA”  



Roadmap 

•! Motivation: generality in SE 

•! A little primer: DM for SE 

•! “W”: finding contrast sets 

•! “W”: case studies 

•! “W”: drawbacks 

•! “NOVA”: a better “W” 

•! Conclusions 



Roadmap 

•! Motivation: generality in SE 

•! A little primer: DM for SE 

•! “W”: finding contrast sets 

•! “W”: case studies 

•! “W”: drawbacks 

•! “NOVA”: a better “W” 

•! Conclusions 



5/4

4 



Have we lived up  

to our PROMISE? 
Few general results 

•! PROMISE 2005 … 2009 : 64 presentations 

•! 48 papers 

–! tried a new analysis on old data  

–! Or reported a new method that  worked once for one project. 

•! 4 papers   

–! argued against model generality 

•! 9 papers 

–!  questioned validity of prior results  

•! E.g. Menzies et al. Promise 2006 

–! 100 times 

•! Select 90% of the training data 

•! Find<a,b> in effort = x.a.LOC b 



Only 11% of papers proposed general models 

Have we lived up  

to our PROMISE? 

•! E.g. Ostrand, Weyuker, Bell ‘08, ‘09  

–! Same functional form  

–! Predicts defects for generations of AT&T software 

•! E.g. Turhan, Menzies, Bener ’08, ‘09 

–! 10 projects 
•! Learn on 9 

•! Apply to the 10th 

–! Defect models learned from NASA projects  work for Turkish 
whitegoods software 

•! Caveat: need to filter irrelevant training examples 



Lessons learned are very localized 

Less Promising Results 

•! FSE’09: Zimmerman  et al. 

–! Defect models  

not generalizable 

•! Learn “there”, apply  

“here” only works in 4% 

 of their 600+ experiments 

–! Opposite to Turhan’09 results 

•! ?add relevancy filter 

•! ASE’09: Green, Menzies et al. 

–! AI search for better software project options 

–! Conclusions highly dependent on  

local business value proposition 

•! And others 

–! TSE’06: Menzies, Greenwald 

–! Menzies et al.  in ISSE 2007 

–! Zannier et al ICSE’06 



The gods are (a little) angry 

Overall 

•! Fenton at PROMISE’ 07 

–! "... much of the current software metrics research is 

inherently irrelevant to the industrial mix ...” 

–! "... any software metrics program that depends on some 

extensive metrics collection is doomed to failure ...”  

•! Budgen & Kitchenham: 

–! “Is Evidence Based Software Engineering mature 

enough for Practice & Policy? ” 

–! Need for better reporting: more reviews.  

–! Empirical SE  results too immature for making 

policy.  

•! Basili : still far to go 

–! But we should celebrate the progress made over 

the  last 30 years.  

–! And we are turning the corner 



Experience Factories 

•! Basili’09 (pers. comm.): 

–! “All my papers  have the same form. 

–! “For the project being studied, we find that changing X improved Y.” 

•! Translation (mine): 

–! Even if we can’t find general models (which seem to be quite rare)…. 

–! … we can still research general methods for finding local lessons 

learned 

Methods to find local lessons 



The rest of this  talk: contrast  
set learning and “W” 

•! Bayesian case-based  

contrast-set learner  

–! uses greedy search 

–! illustrates the “local lessons” effect 

–! offers functionality missing in  

the effort-estimation literature 

•! Fast generator of baseline results 

–! There are too few baseline results 

–! And baseline results can be very 

interesting (humbling). 

•! A very (very)  simple algorithm  

–! Should add it to your toolkit 

–! At least, as the “one to beat” 

W= a local lessons finder 

Holte’85 

• C4: builds decision trees “N” deep 

• 1R: builds decision trees “1” deep 
• For datasets with 2 classes, 1R ! C4  

accuracy 



Roadmap 

•! Motivation: generality in SE 

•! A little primer: DM for SE 

•! “W”: finding contrast sets 

•! “W”: case studies 

•! “W”: drawbacks 

•! “NOVA”: a better “W” 

•! Conclusions 



Too much information 

Problem  



14/

46  

Can you see the big picture? 
Tree Pruning 

good 

ok 

worst 

worse 

•! Good branches go to 
good goals 

•! Bad branches go to bad 
goals 

•! Select decisions that 
select for 
–! Most good 

–! Least bad 

•! TARZAN:  
–! swings through the trees 

–! Post-processor to C4.5 



15/

46  

Can you see the big picture? 
Tree Pruning 

good 

ok 

worst 

worse 

•! Good branches go to 
good goals 

•! Bad branches go to bad 
goals 

•! Select decisions that 
select for 
–! Most good 

–! Least bad 

•! TARZAN:  
–! swings through the trees 

–! Post-processor to C4.5 



16/

46  

Can you see the big picture? 
Tree Pruning 

•! Good branches go to 
good goals 

•! Bad branches go to bad 
goals 

•! Select decisions that 
select for 
–! Most good 

–! Least bad 

•! TARZAN:  
–! swings through the trees 

–! Post-processor to C4.5 

good 

ok 

worst 

worse 



17/

46  

Less is best 
Comment 

•! Higher decisions prune more 

branches 

•! #nodes at level I much  

smaller than level I+1. 

•! So tree pruning often yields 

very small sets of 
recommendations 

good 

ok 

worst 

worse 



Don’t show me “what is”; just tell what “to do” 

Don’t bury me in data 



Roadmap 

•! Motivation: generality in SE 

•! A little primer: DM for SE 

•! “W”: finding contrast sets 

•! “W”: case studies 

•! “W”: drawbacks 

•! “NOVA”: a better “W” 

•! Conclusions 



“W”= Simple (Bayesian) Contrast 

Set Learning (in linear time)  

•! “best” = target class (e.g. “survive”) 

•! “rest” = other classes 

•! x = any range  (e.g. “sex=female”) 

•! f(x|c) = frequency of x  in class c 

•! b = f( x | best ) / F(best) 

•! r  = f( x | rest )  / F(rest) 

•! LOR= log(odds ratio) = log(b/r) 

–! ? normalize 0 to max = 1 to 100 

•! s = sum of LORs   

–! e      =  2.7183 … 
–! p      = F(B) / (F(B) + F(R)) 

–! P(B) = 1 / (1 + e^(-1*ln(p/(1 - p)) - s ))   

Mozina: KDD’04 



 “W”:Simpler (Bayesian) Contrast 

Set Learning (in linear time)  

•! “best” = target class  

•! “rest” = other classes 

•! x = any range  (e.g. sex = female) 

•! f(x|c) = frequency of x  in class c 

•! b = f( x | best ) / F(best) 

•! r  = f( x | rest )  / F(rest) 

•! LOR= log(odds ratio) = log(b/r) 

–! ? normalize 0 to max = 1 to 100 

•! s = sum of LORs   

–! e      =  2.7183 … 
–! p      = F(B) / (F(B) + F(R)) 

–! P(B) = 1 / (1 + e^(-1*ln(p/(1 - p)) - s ))   

Mozina: KDD’04 

“W”: 

1)! Discretize data and outcomes 

2)! Count  frequencies of ranges in classes 
3)! Sort ranges by LOR 

4)      Greedy search on top ranked ranges 



Preliminaries 

“W” + CBR 

•! “Query” 
–! What kind of project you want to analyze; e.g. 

•! Analysts not so clever, 

•! High reliability system 

•! Small KLOC 

•! “Cases” 
–! Historical records, with their development effort 

•! Output: 
–! A recommendation on how to change our projects 

in order to reduce development effort 



Cases 

train test 

Cases map features F to a utility 

F= Controllables + others 



Cases 

train test 

Cases map features F to a utility 

F= Controllables + others 

 (query ! ranges) 

relevant 

k-NN 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

k-NN 

Cases map features F to a utility 

F= Controllables + others 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

k-NN 

Cases map features F to a utility 

F= Controllables + others 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

utility 

spread 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Roadmap 

•! Motivation: generality in SE 

•! A little primer: DM for SE 

•! “W”: finding contrast sets 

•! “W”: case studies 

•! “W”: drawbacks 

•! “NOVA”: a better “W” 

•! Conclusions 



Results (distribution of  

development efforts in qi*) 

Cases from promisedata.org/data 

Median  = 50% percentile 

Spread  = 75% - 25% percentile 

Improvement = (X - Y) / X 

•!  X = as is 

•!  Y = to be 

•!  more is better  

Usually:  

•! spread " 75% improvement 

•! median " 60% improvement 

0%

50%

100%

150%

-50% 0% 50% 100% 150%

median improvement

s
p
re

a
d
 i
m

p
ro

v
e
m

e
n
t

Using cases from http://promisedata.org 



Not-so-good news 
Local lessons are very localized   



Roadmap 

•! Motivation: generality in SE 

•! A little primer: DM for SE 

•! “W”: finding contrast sets 

•! “W”: case studies 

•! “W”: drawbacks 

•! “NOVA”: a better “W” 

•! Conclusions 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 

 A greedy linear time search? 

  • Need to use much better search algorithms 

  • Simulated annealing, Beam, Astar, ISSAMP, MaxWalkSat 

  • SEESAW (home brew) 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 
 Just trying to reduce effort? 

  • What about development time?  

  • What about number of defects? 

  • What about different business contexts? 

    e.g. “racing to market” vs “mission-critical” apps 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 

 Is nearest neighbor causing 
 conclusion instability? 

  •  Q: How to smooth the bumps between  

     between the samples ? 

  •  A: Don’t apply constraints to the data 
      • Apply it as model inputs instead 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 

 Just one test? 

  • What about looking for  

    stability in “N” repeats? 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 

 More tests 1 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 

 More tests 1 

 More models 

2 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 

 More tests 1 

 More models 

2 

 More goals 3 



Cases 

train test 

 (query ! ranges) 

relevant 

Best 

utilities 

rest 

x 

x 

S = all x sorted descending by  score 

queryi* =  

query + "iSi 

treatedi 

k-NN 

k-NN 
i 

q0* qi* 

As is To be 

Cases map features F to a utility 

F= Controllables + others 

if      controllable(x) && 

         b > r  &&   

         b > min 
then score(x) = log(b/r) 

else  score(x) = 0 

fi 

treatment 

b = F(x | best) / F(best) 

r = F(x | rest) / F(rest) 

i 

utility 

spread 

median 

 More tests 1 

 More models 

2 

 More goals 3 

 More search 4 



Roadmap 

•! Motivation: generality in SE 

•! A little primer: DM for SE 

•! “W”: finding contrast sets 

•! “W”: case studies 

•! “W”: drawbacks 

•! “NOVA”: a better “W” 

•! Conclusions 



COCOMO 
•! Time to build it (calendar months) 
•! Effort to build it (total staff months) 

COQUALMO 
•! defects per 1000 lines of code 

Estimate = model(  p,   t ) 
•! P = project options 
•! T = tuning options 
•! Normal practice: Adjust “t”   using local data 
•! NOVA: Stagger randomly all  tunings even seen before 

USC Cocomo suite (Boehm  1981, 2000)!

More models 

? 



B = BFC 

Goal #1:  

•! better, faster, cheaper 

Try to minimize:  

•! Development time and 

•! Development effort and 

•! # defects 

Goal #2 

•! minimize risk exposure 

Rushing to beat the competition 

•! Get to market, soon as you can 

•! Without too many defects 

More goals 

X = XPOS 



Simulated Annealling 

ISSAMP 

ASTAR 

BEAM 

MaxWalkSat 

SEESAW : MaxWalkSat + boundary mutation 
•! Local favorite 
•! Does best at reduction defects or effort or time 

Not greedy search!

More search engines 



Data sets 
•! OSP= orbital space plane GNC 
•! OSP2 = second generation GNC 
•! Flight = JPL flight systems 
•! Ground = JPL ground systems 

For each data set 
•! Search N= 20 times (with SEESAW) 
•! Record how often decisions are found 

Four data sets, repeat N=20 times!

More tests 



Frequency% 

of range in 

20 repeats 
If high, then 

more in BFC 

If low, then 

usually in XPOS 

Better, faster, cheaper Minimize risk exposure 

(rushing to market) 

(ignore all ranges 

found < 50%) 

If 50% then same 

In BFC and XPOS 

Mostly: if selected by one, rejected by the other 

“Value” 

 (business context) 

changes everything 



And what of 

defect removal 

techniques? 

Better, faster, cheaper Minimize risk exposure 

(rushing to market) 

Aa = automated analysis 

Etat= execution testing and tools 

Pr= peer review 

Stopping defect introduction is better than defect removal. 



Roadmap 

•! Motivation: generality in SE 

•! A little primer: DM for SE 

•! “W”: finding contrast sets 

•! “W”: case studies 

•! “W”: drawbacks 

•! “NOVA”: a better “W” 

•! Conclusions 



Certainly, we should always  

strive for generality 

But don’t be alarmed if you can’t find it 

•! The experience to date is that,  

–! with rare exceptions,   

–! W and NOVA do not lead to general theories 

•! But that’s ok 

–! Very few others have found general models (in SE) 

–! E.g. Turhan, Menzies, Ayse’09 

•! Anyway 

–! If there are few general results, there may be general methods to find 

local results 



Case-based reasoning 

Btw, constantly (re)building local 

models is a general model 

•! Kolodner’s theory of  
reconstructive memory 

•! The Yale group 
–! Shank & Riesbeck et al. 

–! Memory, not models  

–! Don’t “think”, remember 



 See you at PROMISE’10? 

http://promisedata.org/2010 


