Business Goals Gount,
[] [) [)
Not Organization Size

Larry Lumsden, Ciram Software

Software
development

is part of a
business and serves
business goals—
no matter the
organization’s size.

uestion: Given the different char-
acteristics of small and large orga-
nizations, can they apply the same
software engineering techniques?
My answer is yes. Sales, profits,
and success are the goals of any
business, large or small. Many factors can
influence success, but when software devel-
opment is an important business con-
stituent, the relationship between the soft-
ware product’s characteristics and business
goals is strong. We don’t always recognize
this, of course, because most of us became
engineers for nobler reasons than serving a
business—the intellectual challenge, the free
T-shirts, the 2 a.m. beer and pizza to cele-
brate unit tests that are finally passing. But
ultimately we must allow the choices we
make in software development to be influ-
enced by business goals, or else risk business
failure.

Few software engineers would deny the
critical influence of development processes
on products and time to market. Yes, there
are good and bad software processes, though
the truly bad don’t usually survive long (once
the initial consultancy wave subsides). The
key issue is that many processes aim to solve
particular problems, so they prioritize some
product development characteristics over
others. (I’'m focusing here on business-related
characteristics, although there are many
other types as well.) To make the right

54 IEEE SOFTWARE Published by the IEEE Computer Society

choice, we must understand our business’s
most important characteristics and know
which processes best support them.

Clarifying choices

Organizations of greatly differing sizes
might be developing software products to
serve similar business goals, and vice versa.
These organizations, large or small, might
successfully use the same software processes
when they require products with similar
characteristics in order to succeed. Let me
illustrate this choice with an example.

Consider two very different business areas:

m producing a solution for a single cus-
tomer according to a fixed-price con-
tract, and

m producing a software tool for a world-
wide market.

If we’re developing software according to a
fixed-price contract, then the predictability
of schedule, effort, and functional content
will be critical to success. However, if we’re
producing a new shrink-wrapped product
for a large market, then absorbing feedback
from early releases is critical—far more im-
portant than predictability. The develop-
ment process we select must reflect these
priorities, no matter the organization’s size.

Continued on page 56

0740-7459/07/$20.00 © 2007 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on March 3, 2009 at 22:29 from IEEE Xplore. Restrictions apply.

- GONNIErpoint

In Software Processes,
[] [] []
Organization Size Matters

Wolfgang Strigel, 0A Labs

o the question of whether small and
large organizations can apply the
same software engineering tech-
niques, my answer is “I don’t think
so.”

The gist of the question lies in the
definition of “software engineering tech-
niques.” I agree that small and large organi-
zations have the same overall objective
when developing software: both want to
produce quality software that satisfies cus-
tomers’ needs. Why then would they not
both apply industry best practices to achieve
that goal? Well, philosophically speaking,
they should. But practically, the path to op-
timal development results can vary signifi-
cantly between small and large teams.

To illustrate the point, I'd like to consider
two organizations at the extreme opposites
of the size spectrum. One is a large aero-
space company, which I’ll call Mega. Its core
engineering team is located in the corporate
headquarters at the Mega industrial park,
but other developers are located in offshore
teams in India. Mega typically develops sys-
tems with teams of 100 members or more.
The other company is called Tiny and con-
sists of one lonely developer located in the
famous Tiny basement.

I can’t see any reason why both organi-
zations wouldn’t use the same development
methodology or the same techniques for
testing. Of course, I could discuss differences

0740-7459/07/$20.00 © 2007 IEEE

such as the cost of development tools, test
automation tools, and so on, but I think the
different options here are obvious and don’t
address a more fundamental issue.

The fundamental difference in my mind is
communication. Coordinating and synchro-
nizing people is one of the biggest challenges
in our profession (as it is for most multicom-
ponent systems). Without the need for con-
trolled communication to meet this chal-
lenge, the project management profession
wouldn’t exist. We can compare a project
manager to an orchestra conductor. Solo mu-
sicians don’t need a conductor; they can fo-
cus on the score and their personal flavor for
delivering the performance without concern
for other musicians. Members of a full or-
chestra don’t have this flexibility.

Software development is a team sport (ex-
cept in the case of Tiny), and coordinating
communication among team members is
critical to success. For example, controlled
communication is essential in requirements
management. [submit that even Tiny should
use documentation in this area. Documented
requirements, whether in traditional or agile
environments, represent a major difference
between chaotic, ad hoc development and
disciplined approaches. However, Mega

Continued on page 56

January/February 2007

Apart from

mission criticality,
organization size

is the most
important factor

for determining
software engineering
techniques.

IEEE SOFTWARE 55

Authorized licensed use limited to: West Virginia University. Downloaded on March 3, 2009 at 22:29 from IEEE Xplore. Restrictions apply.

..0.0.....O....O................Q.........O.....O>

Predictability
A

Low adaptability

High predictability

High adaptability
High predictability

e Please email
your suggestions!

e lterative with big
upfront design

Adaptability
High adaptability
Low predictability

Low adaptability
Low predictability

e Traditional
waterfall

e Agile techniques
(for example, XP)

Figure 1. Process choices for two
product development characteristics:
schedule predictability and
requirements adaptability.

The “magic quadrant” is a simple
way of representing these process
choices. For example, figure 1 catego-
rizes two general business-related char-
acteristics: schedule predictability and
requirements adaptability.

It’s possible to plot all software engi-
neering techniques in this quadrant, re-
flecting how well they support these two
characteristics. If schedule predictability
is critical, then processes toward the top
of the graph are the ones to use, whereas
the processes on the right favor adapt-
ability. (Processes on the top right might
exist, but they might also involve a

trade-off with another characteristic that
the business must consider.)

It’s common to view agile techniques
as suitable for small companies and “It-
erative with big upfront design”
processes as the right choice for large
mature organizations. But the business
characteristics might well determine
that exactly the opposite is the case.

Undoubtedly, large organizations do
confront some particularly difficult
problems. Communication is an obvious
challenge. However, many large compa-
nies retain a small company’s attributes
by keeping their development teams
small, colocating the business and tech-
nical people, flattening the organization
hierarchy, and so on. These are ways of
creating the dynamics of a small organi-
zation in a large one. It means that teams
within a large organization can imple-
ment low-overhead, agile processes on
projects that need the adaptability they
facilitate.

Two further examples from my own
experience illustrate the priority of busi-
ness characteristics in choosing processes:

m Company A was an early and very
successful adopter of agile tech-
niques, but as the company grew (by
acquiring other companies), its orga-
nization was distributed over three

4..............O.........O.........Q

must manage the interaction of many
team members who might contribute
to the requirements specification and
are often physically separated. Tiny, on
the other hand, communicates require-
ments only with the customer.

We also need to consider team moti-
vation. Even after Tiny grows to 10 or
20 team members, it still will be easy to

56 IEEE SOFTWARE www.computer.org/software

sit around a table, explain the impor-
tance of process, and build enthusiasm.
Everybody on the team can be ad-
dressed directly to make sure the whole
team is on the same page regarding the
need for good software engineering
practices and their commitment to ap-
ply them. Techniques can be adjusted as
required and this can be a consensus de-

continents. It then became important
to be able to transfer projects be-
tween development sites without also
transferring all the engineers. This
led A to adopt a process with more
residue (in the form of documenta-
tion) than pure agile processes.

m Company Y produced software for
the telecommunications industry, so
it had to select a process that could
show compliance with international
standards, immediately limiting the
choice.

For both A and Y, an aspect of the
business itself—not merely the organi-
zation’s size—was key in selecting the
development process.

he right process is largely a function

of the business characteristics that

drive a software product’s develop-
ment. When large and small organiza-
tions have the same business goals for
a development project, they will both
benefit from the processes that support
those goals. @

Larry Lumsden i vice president of engineering at
Ciram Software in Dublin, Ireland, responsible for application
development, tools and architecture, and quality assurance. Con-
tact him at llumsden@curamsoftware.com.

cision. At Mega, the mandate to apply
defined processes may come from the
Chairman of the corporation, but each
project team has its own dynamics and
own challenges. Communicating enthu-
siasm and ensuring commitment is a lot
more difficult. Deviations from the de-
fined process may need formal ap-
proval. The commitment to apply the

Authorized licensed use limited to: West Virginia University. Downloaded on March 3, 2009 at 22:29 from IEEE Xplore. Restrictions apply.

defined techniques must be reflected in
everybody’s personal objectives.

Similarly, change control and code
management (or configuration manage-
ment) are significantly more complex at
Mega in comparison with Tiny. In-
creased complexity calls for different
techniques to establish control methods
and mechanisms. The management con-
trols provided by project managers and
team leaders increase in direct relation
to the organization’s size. External con-
trol mechanisms such as quality assur-
ance also become more meaningful in
large team situations.

The process-improvement commu-
nity is well aware of the different tech-

niques required for large as opposed to
small organizations. The community
has developed many CMM assessment-
method derivatives to address the differ-
ent needs of medium-sized and small
companies. These custom-tailored as-
sessment methods not only reduce the
scope of the assessed software engineer-
ing techniques but also drop certain dis-
ciplines altogether (for example, sub-
contract management, organizational
process, and intergroup coordination).

ega and Tiny give an extreme ex-
ample of the differences in software
engineering techniques required for
large and small organizations. As Tiny
grows, it must gradually introduce more
sophisticated and robust software engi-

neering techniques. Small companies get
easily overwhelmed and sidetracked by
too much process. Techniques as well as
processes must be tailored to an organi-
zation’s needs. Apart from an applica-
tion’s mission criticality, which deter-
mines the degree of required risk
management, organization size is the
most important factor for determining
the most suitable software engineering
techniques. @

Wolfgang Strigel is general manager of QA Labs, a US
Technology Inc. company. His special area of interest is software
engineering process and, more recently, software fesfing in the
context of pragmatic business needs. Contact him at strigel@
qalabs.com.

Larry Responds Wolfgang Responds

The fulcrum of this debate is whether we’re open to the
idea that organizations have much to gain from a careful
consideration of all characteristics of the software engineer-
ing techniques that are available to them. It's a commonly
held view that there are large company processes and smalll
company processes. But many developers in large compa-
nies also feel bogged down by administration and bureau-
cracy, whereas developers in smaller organizations are
confounded by chaos and lack of structure. Small and large
organizations can learn a lot about processes and tech-
niques from each other.

Small companies and teams were the first champions of
agile techniques. Their subsequent widespread adoption
has been fuelled, in part, by developers’ enthusiasm and
willingness to use them, but also by the absolute focus on
user needs that they foster. Large companies have now
adopted agile techniques and gained many of these bene-
fits, a clear example of techniques that both small and large
organizations can use.

If you’re in the innovation business, your processes had
better help you be innovative, regardless of your size. This
means facilitating the emergence of new requirements and
feedback. If your products must perform exactly as speci-
fied, you'd better have process support for that—even if
you're a single developer working in a basement. There's
much more to choosing a process than how many develop-
ers you've got. Consider your business goals, and choose
wisely.

Larry is right that software development is a business, no
matter the business'’s size. But let's face it: Wal-Mart and a
corner store are both in the consumer-goods business and
both have the business goals of making a profit and avoid-
ing undue risk. However, because of Wal-Mart's size, the lo-
gistics of just-in-time delivery and related shelf life are criti-
cal to its profitability, while the corner store only needs to
worry about the shelf life of vegetables. Wal-Mart needs to
maximize shelf-space allocation and exposure. The corner
store has a limited number of shelves and doesn’t need a
process to reallocate space. Surely, they require different
processes.

| strongly disagree with the proposition that large com-
panies tend to retain small-company attributes. This is the
stuff of textbooks. It would be nice if the real world took
heed, but anybody who's consulted with large IT shops
knows that reality is quite different. Granted, product com-
panies tend to be more aware of the benefits of a flat orga-
nization, but even they rarely implement the small-team at-
mosphere successfully.

Of course, the business objective matters for both smaill
and large companies. But it’s also self selective. Tiny wouldn't
develop mission-critical software for aircraft control, and
Mega wouldn’t bother developing a stand-alone application
for a one-time use. So, the companies can and should use
different processes, even if they’re both in the business of
software development. Hence, size does matter.

January/February 2007 1EEE SOFTWARE 57

Authorized licensed use limited to: West Virginia University. Downloaded on March 3, 2009 at 22:29 from IEEE Xplore. Restrictions apply.

