
A Systematic Review of Theory Use
in Software Engineering Experiments
Jo E. Hannay, Dag I.K. Sjøberg, Member, IEEE, and Tore Dybå, Member, IEEE

Abstract—Empirically based theories are generally perceived as foundational to science. However, in many disciplines, the nature,

role and even the necessity of theories remain matters for debate, particularly in young or practical disciplines such as software

engineering. This article reports a systematic review of the explicit use of theory in a comprehensive set of 103 articles reporting

experiments, from of a total of 5,453 articles published in major software engineering journals and conferences in the decade 1993-

2002. Of the 103 articles, 24 use a total of 40 theories in various ways to explain the cause-effect relationship(s) under investigation.

The majority of these use theory in the experimental design to justify research questions and hypotheses, some use theory to provide

post hoc explanations of their results, and a few test or modify theory. A third of the theories are proposed by authors of the reviewed

articles. The interdisciplinary nature of the theories used is greater than that of research in software engineering in general. We found

that theory use and awareness of theoretical issues are present, but that theory-driven research is, as yet, not a major issue in

empirical software engineering. Several articles comment explicitly on the lack of relevant theory. We call for an increased awareness

of the potential benefits of involving theory, when feasible. To support software engineering researchers who wish to use theory, we

show which of the reviewed articles on which topics use which theories for what purposes, as well as details of the theories’

characteristics.

Index Terms—Theory, experiments, research methodology, empirical software engineering.

Ç

1 INTRODUCTION

THERE are many arguments in favor of theory use.

Theories offer common conceptual frameworks that

allow the structuring of knowledge in a concise and precise

manner, thus facilitating the communication of ideas and

knowledge. Their level of abstraction enables the general-

ization of knowledge independently of a specific time and

place [5], [66], [91], [95], [98]. Theory is the means through
which one may generalize analytically [85], [103], thus

enabling generalization from situations in which statistical

generalization is not desirable or possible, such as from case

studies [103], across populations [64], and indeed, often

from experiments, especially those in social and behavioral

sciences [85], with which experiments in empirical software

engineering share essential features.
Such arguments have been voiced in the software

engineering community as well, e.g., [6], [27], [43], [57],

[89]. A theory provides explanations and understanding in

terms of basic concepts and underlying mechanisms, which

constitute an important counterpart to knowledge of

passing trends and their manifestations. When developing

better software engineering technology for long-lived

industrial needs, building theories is a means to go beyond

the mere observation of phenomena and to try to under-
stand why and how these phenomena occur.

Thus, theories are of potential use to both researchers
and practitioners. However, the usefulness of theories for
software engineering is a subject of discussion, and the
actual use of theory in empirical studies of software
engineering is not well known. Decisions and discussions
regarding issues of theory in empirical software engineer-
ing must be founded not only on an understanding of what
a theory is and how it can be useful, but also on knowledge
of the actual use of theories. The main motivation of this
article is to contribute to the latter by reviewing the use of
explanatory theories for software engineering.

An important undertaking in empirical software engineer-
ing is to determine what development technology to deploy
and what developers to use in what situations; in other words,
interest lies in comparing various technologies and skills and
in determining their effects on software development. For
this, the experiment is one choice of research method in that it
may be applied more or less directly to make such
comparisons and to measure such effects.

According to Shadish et al., experiments are suitable for
causal description, that is, “describing the consequences
attributable to deliberately varying a treatment” [85, p. 9],
but do not in themselves provide causal explanation, that is,
“clarifying the mechanisms through which and the condi-
tions under which [the cause-effect relationship] holds” [85,
p. 9]. The desire for causal explanation motivates the
development of theory. Thus, the focus of this review is on
theories that are used to explain, in one way or another, the
cause-effect relationships investigated by experiments.

A challenge facing software engineering researchers who
are considering using theories to support their research, is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007 87

. J.E. Hannay and D.I.K. Sjøberg are with Simula Research Laboratory,
Department of Software Engineering, Pb. 134, NO-1325 Lysaker, Norway.
E-mail: {johannay, dagsj}@simula.no.

. T. Dybå is with Simula Research Laboratory and with SINTEF ICT,
Department of Software Engineering, Safety, and Security, NO-7465
Trondheim, Norway. E-mail: tore.dyba@sintef.no.

Manuscript received 2 June 2006; revised 6 Sept. 2006; accepted 3 Nov. 2006;
published online 28 Dec. 2006.
Recommended for acceptance by D. Rombach.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0124-0606.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

to find theories that are relevant for that research. Theory
that offers causal explanation is hardly a topic in software
engineering textbooks, although a comprehensive compila-
tion of laws and beginnings of theory can be found in [27].
The main contribution of this review is therefore an overview

of which reviewed articles use which theories and the way
they use them, together with characteristics of the theories
found. This overview indicates the state of affairs in the
different areas of research within software engineering and
should provide entry points for those who wish to utilize
theory. Although it may be said that all (scientific) thinking
involves abstraction and implicit theorizing in one way or
another, our focus is on explicit and manifest uses of theory,
to which other researchers may relate.

The analysis leading to our findings is firstly in terms of
theory identity, that is, the determination of something as a
theory and its characteristics. By examining theory identity,
we wish to give a picture of the types of theory used and
from which disciplines theories are taken. Furthermore, we
review theory role, that is, the various positions (design, post

hoc explanation, tested, modified, proposed, basis) theories take
on when used to explain the investigated cause-effect
relationships in software engineering experiments. Theory
and empirical studies must interact if practical knowledge
is to be acquired. Although this may seem obvious, there is
a lack of consensus in many disciplines on how much
weight to place on theory or empirical research [30], [52].
Furthermore, such interactions may take a variety of forms
[22], [46], [50], [54], [75], [98]. By examining the role of
theory, we illustrate the interaction between software
engineering experiments and relevant theory.

Section 2 introduces relevant concepts. The method by
which our analysis was conducted is described in Section 3.
Section 4 reports the findings of the review. Section 5
discusses the implications of our findings. Section 6
summarizes and concludes.

2 BACKGROUND

In more mature sciences, the use of theory tends to be taken
for granted, and discussions tend to focus on how, rather
than whether, to use theory [23], [24], [88], [100]. Never-
theless, contrasting views as to the aptness of theories
abound. For instance, Lindblom [63] argues that less effort
should be expended on the validation of theories and more
effort used on extending commonsense reasoning. By
contrast, Markovsky [66] discusses virtues that theories
have, and that commonsense knowledge lacks. Weick [99]
refers to [34], [42], [63] and argues that theory construction
is “disciplined imagination” for making sense of the world,
rather than for problem solving in the form of theory
validation.

Thus, even assuming agreement as to what theories are,
the question of when and whether, and if so, to what extent,
to use them remains a source of debate in most sciences.
Further, there is neither any uniform terminology, nor any
universally agreed upon definition of what constitutes a
theory. This section presents our approach to coming to
grips with this challenge.

2.1 Theory Identity

It is no trivial task to determine what constitutes a theory,
that is, to give necessary and sufficient conditions that
define what a theory is. The way in which one defines and
uses the concept “theory” rests on fundamental philoso-
phical questions, as well as on practical considerations. For
example, there are ontological questions pertaining to what
kinds of entity and what relationships between them exist,
and the sense in which they exist (e.g., in which sense do
“cognitive processes” for, say, program comprehension
exist [174]). There are also epistemological1 questions that
pertain to the nature and scope of knowledge and beliefs,
and the justification for holding beliefs (e.g., what are the
elements of an explanation of the anchoring effect in
software estimation [53]). Further, we must consider to
which uses we wish knowledge to be put (e.g., to develop
better software engineering methods for industry). All these
issues have a bearing on the nature and components of
prospective theories.

2.1.1 Types of Theory

Gregor [38] has summarized the nature of theory from the
standpoint of information systems research. Her classifica-
tions can be adopted to software engineering, on the
assumption that information systems research focuses on
user-technology relationships, while empirical software
engineering focuses on developer-technology relationships.

Gregor describes five types of theory:

I. Analysis,
II. Explanation,
III. Prediction,
IV. Explanation and prediction, and
V. Design and action.

Type I theories include descriptions and conceptualizations

of “what is.” Also included are taxonomies, classifications,

and ontologies in the sense of Gruber [39]. The lack of

explicit explanation, appeal to causal relationships, and

prediction disqualifies this class as theory for many scholars

[5], [72], [88].

Type II theories explicitly explain why phenomena

occur, but lack predictive power. Some scholars discount

such structures as theories. For example, Homans [45]

claims that Marx’ statement that the economic organization

of society determines its other institutions does not form

part of a theory, because it is not possible to derive any

logical consequences from it, even if the particular mode of

economic organization of a society is specified.

Type III theories predict without providing explanations.

Mathematical and probabilistic models in social science

[48], and predictive models in software engineering such as

COCOMO [9] fall under this category. Many view physical

theories as belonging to this category. For example,

Hawking states that “a physical theory is just a mathema-

tical model and ... it is meaningless to ask whether it

88 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

1. Epistemological statements pertain to explanation, while ontological
statements pertain to existence. There is a difference between saying that
the constructs of one’s explanations do not exist in the real world and
claiming that what one is offering an explanation about does not exist. The
distinction is foundational for issues summarized in Section 2.1.2.

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

corresponds to reality. All that one can ask is that its

predictions should be in agreement with observation”

[40, pp. 3-4], a sentiment also expressed by Feynman [28].
Type IV represents the structures that perhaps most

scholars would agree to as being theories. For example,

Belbin’s model of management teams [114], [115] explains

why certain teams are successful and, additionally, has

instruments for predicting team success as well.
Finally, Type V theories describe “how to do” things and

include design principles. Although there is usually an

implicit prediction that following the design principles will

be beneficial, this type of theory is reluctantly acknowl-

edged by many [38].
A special note on Type V theories: Their implicit

prediction of benefit would seem to be relevant to the

research questions in software engineering experiments. For

example, in a study of the effects of the use of design

patterns, the methodology behind design patterns could be

taken as a Type V theory implicitly predicting the outcome

of the experiment. In our context, however, Type V theories

usually do not constitute structures pretending to explain

the cause-effect relationships under investigation. Instead,

they merely postulate the existence of the relationship, often

not accounting for the human factor, which is an essential

part in software engineering experiments as investigated

here.

2.1.2 Issues of Explanation and Epistemology

Any classification of theories such as the above is subject to

interpretation. For example, the categories rely on an

implicit understanding of what an “explanation” is, but

this is a nontrivial issue. A common view is that an

explanation is an answer to a predefined question of why

something is—or happens (rather than what happens), and

Van Fraassen [93] and others have formalized this in

various ways. Sandborg [83] elaborates further and states

that one must also admit as explanations answers that are

corrective in that they introduce concepts that are more

pertinent than those of the original question, thus, in effect,

answering a different (and better) question. Current views

also suggest that explanations should include notions of

causality and asymmetry (if A explains B, then B should

not also be a viable explanation of A), and that empirical

generalizations produced purely from data through in-

ductive and covering-law approaches do not produce

explanations [38].
However, the explanatory function of a theory depends

also on how the theory interacts with other theories and the

current level of knowledge. A theory can be seen to explain

at one level of abstraction, but not at other levels; the

answer to why may be the what of another level—thus one

may also argue that Type I and Type III theories provide

explanations [32], [83]. For example, if a mathematical

model fits data where no other explanation is available,

then such a model may indeed embody explanation relative

to prior knowledge.
What one is willing to admit as an explanation is also

linked to one’s epistemological stance with respect to realism

and the existence of a plurality of theories—topics discussed
in many disciplines relevant to software engineering.

Very roughly, logical positivism and logical empiricism hold
scientific explanations as meaningless unless their terms in
the last instance relate directly to sensory experience in the

material world. Scientific realism on the other hand, accepts
terms that approximate reality, such as for things that
cannot be directly observed, e.g., gravity, but maintains that

the approximations indeed stand for real things. The
existence of postulated unobservable identities (e.g., cogni-

tive processes and software developer motivation) is seen as
verified by virtue of the resulting theory’s predictive power
for phenomena that are observable (e.g., behavior and

programming performance). Some aspects of antirealism

and instrumentalism hold that scientific explanations and

theories need not describe reality at all. Instead, theories are
intellectual structures for organizing or modeling our
scientific conception of the world. Hawking’s statement

(Section 2.1.1) is instrumentalist. Some of this spirit is
related to that of certain directions in pragmatism. Rorty
states that “the pragmatist drops the notion of truth as

correspondence with reality altogether, and says that
modern science does not enable us to cope because it

corresponds, it just plain enables us to cope” [79]; see [68].
Furthermore, the semantic view sees scientific theories as

sets of models, along with claims about how things in the

world satisfy the model’s constructs [80]. This replaces
“traditional” hypothetico-deductive approaches to theory
[82]. Thus, models are often integral parts of theory, or

constitute theory itself—or the two terms are used
synonymously [26], [50], [80], [101]. Models are more or

less formal structures that allow the building of best
approximations “as substitutes for a complete understand-
ing that science may not be able to attain” [80, p. 70].

Models accommodate the instrumentalist view of scientific
theories being useful devices. Examples are the Bohrean
atom model and rational choice theory in economics.

Although empirical evidence refutes the existence of key
constructs in these models (atoms do not really have

electrons in orbits around them, and software project
managers do not show consistently rational behavior when
making decisions), they remain apt for explanation, predic-

tion, and education in many situations. This independence
from “truth” allows for the coexistence of several models

describing various aspects of the same phenomenon
(theoretical pluralism); see also [16], [74].

There are many debates concerning what is the most
appropriate epistemological stance for modern-day empiri-
cal science [10], [15], [16]. One philosophical stance need not
necessarily exclude another. For example, Cacioppo et al.
[16] argue for a symbiosis of scientific realism and
instrumentalism in the making of psychological theories.
Although realism and instrumentalism in some interpreta-
tions are incompatible, one may take alternate views in the
quest to gain useful knowledge [16], thus counteracting
weaknesses and drawing upon the strengths, of both
approaches. Also, even though observable phenomena
(e.g., those investigated in empirical software engineering)
may be bound to realism, they may be explained or

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 89

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

predicted by theories that speak in terms of entities whose
existence is unresolved (entities, some may argue, such as
the cognitive structures of cognitive psychology, the super-
strings and 26 dimensions of physics, etc.). Causal relation-
ships in such theories may be (instrumentalist) internal
workings, and may be independent of the particular cause-
effect relationships under investigation in an empirical
study. (Causality may be seen as a conceptual rather than
existent entity in many situations.) Correspondence with
observation is then argued through the process of oper-
ationalization (Section 2.1.3 below).

2.1.3 Components of Theories and Experiments

The typology of theory types (I-V) above helps us to come to
terms with the diversity of what theories are. The challenge
is then to describe theories of such diversity in a uniform
schematic way. Gregor provides a schema of structural
components for describing theories in information systems
research: Means of representation, Constructs, Relationships,
and Scope. (In addition, there are components for discrimi-
nating according to theory type (I-V): Causal explanations,
Testable propositions, and Prescriptive statements.) These
components are adequate for describing theories as such,
but here we also need to relate theories to experiments. In
the following, we discuss the three most central structural
components of theory (Constructs, Relationships, and Bound-
ary conditions) in association to experiments.

Conceptual level versus operational level. First, in the
experiment methodology usually adopted in empirical
software engineering, it is useful to divide the domain of
discourse into a conceptual level, where concepts, theorizing,
and theories reside, and an operational level, where observa-
tions, measurements, and experiments are conducted; see
Fig. 1.

Constructs and relationships versus variables and

relations. The basic conceptual components are constructs

and relationships between constructs. Bacharach refers to

Schwab [84] and Kaplan [55] and states that “a construct

may be viewed as a broad mental configuration of a given

phenomenon, while a variable may be viewed as an

operational configuration derived from a construct” [5].

Shadish et al. state that research cannot be done without

using constructs: “Constructs are the central means we have

for connecting the operations used in an experiment to

pertinent theory, and to the language communities that will

use the results to inform practical action” [85, p. 65].
Cronbach et al. [18], [19] and Shadish et al. [85] group the

operational variables of an experiment into units, i.e., the

specific (groups of) subjects of an experiment, treatments,

outcomes, and experimental settings. In addition, since soft-

ware engineering can be said to be a design science concerning

artifacts [86], we include the operational variables of tasks

and materials (Fig. 1). The conceptual counterparts to these

variables are the construct types actor (e.g., “experts,”

“project teams,” or “software developers in general”) for

units; software process activity and software development

technology (e.g., “design using UML” or “validation using

functional testing”) for tasks; and software system (e.g.,

“safety-critical systems” or “object-oriented artifact”) for

materials. Experimental settings should be operationaliza-

tions of the relevant scope (e.g., “the software industry” or

“short time to market strategies”). The conceptual counter-

parts for treatments and outcomes are causes (e.g., “famil-

iarity of design patterns” or “perspective-based reading”)

and effects (e.g., the concepts of “software quality,”

“developer performance,” or “reliability”); both of which

90 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Fig. 1. Components of theories and experiments (adaptation of figures in [5], [90], and [102]). Constructs and relationships are operationalized to
variables and relations. Relevant variables for experiments in empirical software engineering are units, settings, tasks, materials, treatments, and
outcomes. These variables are operationalizations of relevant constructs. The relationships under investigation are cause-effect relationships, which
are translated into hypothesized treatment-outcome relations (covariations) in terms of already-operationalized constructs. Theories play
explanatory roles to the cause-effect relationships. These roles are determined by how theoretical propositions (theoretical statements), and
predictions derived from propositions, associate to the investigated cause-effect relationships, both on the conceptual level and on the operational
level through the translation of predictions into hypotheses. Boundary conditions define the circumstances in which the theoretical statements are
meant to apply and should, to a large part, determine the experimental setting.

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

are composed using relevant constructs of the types just
mentioned.

Cause-effect relationships versus treatment-outcome

relations. What is under investigation in an experiment is
one or several cause-effect relationships (e.g., “expert famil-
iarity of design patterns when designing safety-critical
systems in a short time to market strategy leads to better
reliability”), which are operationalized in tests of treatment-
outcome relations or covariations (e.g., the suite of design
patterns used for designing this flight controller under
induced time pressure by these senior developers who have
used patterns regularly is related to fewer exceptions when
running the resulting piece of code). Whether the operatio-
nalizations actually reflect the constructs and relationships is
the question of construct validity [85].

Theory and experiment. A theory seeking to explain a
cause-effect relationship in an experiment would then relate
to the constructs involved in this relationship and offer
some additional insight into why or how the cause-effect
relationship occurs. For example, a theory explaining the
cause-effect relationship exemplified above might use
elements from learning theory and cognitive psychology
to describe mechanisms for how experts’ familiarity of
design patterns triggers the recognition of previously
encountered abstract problems. How directly a theory
relates to an investigated cause-effect relationship depends,
among other things, on how conceptually close the theory’s
constructs and relationships are to those associated with the
experiment.

Predictions versus hypotheses. A theory and its predic-
tions are conceptual [5], [90], [102]. In experimental terms,
hypotheses are then the operationalizations of a theory’s
predictions.2 Hypotheses state in operational terms exactly
what you think will happen in a particular study [90]. What
role a theory plays in an experiment is determined by the
way in which the theory’s predictions (and the propositions
from which they are derived) relate to the cause-effect
relationships.

Boundary conditions. Boundary conditions delineate the
expanse of a theory’s statements. That a theory is general
means that it is independent of time and place and is
applicable in a potentially infinite number of instances [66],
[98]. In this sense, a general theory is not meant to
encompass all domains. The scope of a theory is the domain
of phenomena to which it applies [11], [66]. Furthermore,
conditionalization adds precision to theoretical claims and
prevents their undiscerning application to phenomena that
may be related but have opposite effects. For example,
“anchoring” predicts that the level of initial judgments will
influence later judgments [3]. However, in software
bidding, empirical research suggests that anchoring is
neutralized or reversed in conditions of high perceived risk
[53]. Thus, a way of refining the theory of anchoring is to
conditionalize it by “perceived risk.” A theory with scope
conditions and conditionalizations remains general [66].

Although structural schemes such as the above help to

systematize a subject that is far from being homogeneous,

views as to what a theory’s components should be are still

diverse, and many authors attempt to set boundaries for

what does and does not belong in a theory [5], [17], [25],
[45], [71], [97], [101]. Sutton and Staw [88] and Bacharach

[5] describe components (data, lists, graphs, predictions,

etc.) that do not, on their own, constitute theory. Weick

[99], [100] on the other hand, paraphrases [70], [81]:

“Theory is more a dimension than a category,” suggesting

that the boundary between theory and more modest acts

of theorizing (producing lists, graphs, predictions, etc.) is

less clear.

2.2 Theory Roles

For the purpose of this review, we developed the (possibly

overlapping) theory role categories described below. These

roles are targeted specifically toward explaining cause-

effect relationships investigated in experiments. Theory

used for other purposes is not included in the review but is

illustrated at the end of this section.
Design. A theory is said to be used in the design of an

experiment if the research questions and hypotheses are

justified or motivated by the theory. The link from the

theory need not be formal, but a clear argumentative link

should be apparent. For example, consider a program
comprehension theory [118], [174], where the comprehen-

sion process is driven by building a hierarchy of so-called

mental hypotheses. Building this hierarchy in a top-down

fashion, rather than bottom-up, is quicker. In an experiment

on design pattern comment lines [78] a particular cause-

effect relationship was postulated, namely that comment

lines describing design pattern usage will increase pro-

grammer performance (when compared with regular

comments). The link from the theory is provided by the

added assumptions that design pattern comments lead to

large-grain mental hypotheses that aid top-down hierarchy
construction, and that increased comprehension leads to

better performance.
Post hoc explanation. A theory is used as a post hoc

explanation if is it used as an explanation of observations

pertaining to the cause-effect relationship(s) after the

experiment has been conducted. An example is a study in

which the authors, after having presented the experiment

analysis, refer to a model of query writing [156] and state

that the results of the experiment (that subjects using the

graphical query language QBE perform better than those

using SQL) supports the assertions of the model (that a

syntactic form requiring fewer transformations from Eng-

lish sentences is easier to learn) [182].
Tested. A theory, or an instance or derivation thereof, is

tested if clear attempts are made to validate any of the
theory’s predictions that are directly related to the
investigated cause-effect relationship(s). This may happen
if predictions of the theory pose directly as research
questions or find operational expression in experiment
hypotheses. As an example, consider a study that investi-
gated the predictions of media effect theory, media richness
theory and social presence theory [123], [146], [162] in a

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 91

2. Several accounts place hypotheses on the conceptual level and
predictions on the operational level. This is mainly a matter of semantics.
For example, Bunge states: “A scientific theory is a system of hypotheses
that is supposed to give a partial and approximate account of a bit of reality
[14, p. 391].

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

specific context: “Most theories claim that group perfor-
mance on negotiation tasks decreases when such leaner
media [computer conferencing] are used because of a
mismatch between the task needs and the medium’s
information richness. In our study, we sought to test these
assumptions in the context of requirements negotiations”
[21]. The theory was therefore tested with respect to a
specific setting. A theory that is said to be tested is used
directly, as opposed to its use in design, where additional
justification is necessary. A theory used for post hoc
explanation may also be tested by reusing data from the
experiment.

Modified. A theory is modified if there is a constructive
effort to enhance, refine, conditionalize, etc., an existing
theory based on results from the experiment.

Proposed. A theory is proposed if the author(s) 1) present

their own theory in the article (for example, based on

existing literature or analytic deliberations) and the theory

pertains to explaining the cause-effect relationship under

investigation in one of the roles above or 2) the theory is
proposed on the basis of the experiment’s treatment-

outcome relations. For example, the purpose of an

explorative experiment may be to propose an initial theory.
Basis. A theory is referred to as constituting a basis if it

transitively entails or provides structural elements for

another theory in the roles above.
In addition, there might be uses of theory in experiments

that do not pertain to explaining the investigated cause-

effect relationship(s) and which are, therefore, not included

in this review. For instance, theory may be used for
definition, that is, in defining operationalizations of the

cause construct to treatment variables or the effect construct

to outcome variables. For example, when testing the impact

of structured versus unstructured function definitions on
programmer performance, the cause construct “structured”

may be operationalized by employing a control flow model

for functional languages [92]. Theory may also be used to

define methods under test (without explaining why the

method is better), an example being the use of a human-
computer interaction model [73], [104] for defining per-

spectives in perspective-based inspection for evaluating

usability [104]. Definitional uses of theory such as these

pertain to construct validity.
Theories may also be used in other validity arguments.

For example, a behavioral theory of group performance

[159] stating that task expertise is the dominant determi-
nant, was used in arguments of external validity (repre-

sentative subjects) [8].
Other subsidiary roles are circumstantial in that theory is

merely mentioned; for example, when a theory of debugging

[4], [94] is mentioned in passing in an experiment designed

to assess the impact of recursive and iterative constructs on

debugging performance [7], but not used elsewhere.
Models can play yet other roles in experiments. For

example, statistical models and formal measures can,

depending on perspective, take on the role of theory.
However, if they are used only for analyzing data, they are

not relevant here. More precisely, if a statistical model is

formulated to fit existing data without the explicit intention

to validate the model on new sets of data, then it is not

theory. This is related to the problem of overfitting models to

particular data. Gigerenzer refers to Feynman [29] and

Hoffrage et al. [44] and states that “the true test of a model is
to fix its parameters on one sample and to test it on a new

sample” [35].
Thus, what passes as theory depends on one’s perspective

and the context of usage. From a Type V-theory perspective,

principles underlying software engineering technology also

constitute part of theory, and for a systems analyst, a UML

diagram models a part of reality and can, in a design situation,

be said to function as part of a Type II theory. Our perspective

in this article, however, is quite clear: The object of

explanation is the cause-effect relationships investigated in
experiments, and only theories that concern this directly, i.e.,

found in the roles design, post hoc explanation, tested, modified,

proposed, or basis, are considered relevant.

3 RESEARCH METHOD

This section describes how we identified articles reporting

experiments, and subsequently, how we extracted theories
from those articles.

3.1 Extraction of Experiments

We assessed all the 103 articles describing experiments (of

a total of 5,453 articles) identified by Sjøberg et al. [87],
published in nine leading software engineering journals

and three conferences from the decade 1993-2002 (Table 1).

These journals and conferences were chosen because they

were considered to be leaders in software engineering in

general and empirical software engineering in particular.
Since the term “experiment” is used in an inconsistent

manner in the software engineering community (often being

used synonymously with “empirical study”), Sjøberg et al.

defined controlled experiment in software engineering as a

study in which individuals or teams (the experimental
units) conduct one or more software engineering tasks for

the purpose of comparing treatments—different popula-

tions, processes, methods, techniques, languages, or tools.

Randomized experiments (random assignment of units to

treatments) and quasi-experiments (nonrandom assignment

of units to treatments) in the sense of [85] were included

alike, because both experiment designs are widely used in
empirical software engineering [61]. In this article, we

consistently use the term “experiment” in the above-

mentioned sense of “controlled experiment.”
Excluded are several types of study that share certain

characteristics with experiments because, while these may

be highly relevant for the field, they do not contain the

deliberate intervention or control essential to experiments.

Thus, excluded are correlation studies, studies that are

solely based on calculations on existing data (e.g., from data

mining), and evaluations of simulated teams based on data

for individuals. Studies that use projects or companies as
treatment groups, in which data is collected at several levels

(treatment defined, but no experimental unit defined) are

also excluded because these are considered to be multiple

case studies [103]. The focus is on articles (not editorials,

92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

prefaces, article summaries, etc.) in which the reporting of

experiments is the principal element.
The article selection process was determined from

predefined criteria as suggested in [56], see [87] for full

details.

3.2 Extraction of Theories

We wish to be as inclusive as possible with regards to the
concepts of theory. In our context, viewing theories through
the categories of Gregor [38] is a good starting point. In
addition, we do not exclude theories on the grounds of their
epistemological mode. An insistence on, say, scientific
realism or correspondences with “reality” would be too
exclusive in the present scientific landscape. We adhere to
the maxim that a theory explains if it answers a question of
why, but we accept that such an answer may be indirect or
may answer a directly related question (Section 2.1.2).

Theories are in the conceptual domain (Section 2.1.3 and
Fig. 1). However, although most researchers probably think
and write in terms of concepts (constructs and relation-
ships), not all concepts form a part of theory, and it is
nontrivial to draw the dividing line between theory and
nontheory. This issue is all the more pertinent here, in that
we are sampling theory not from primary explications of
theory, but from uses of theory in articles reporting a certain
type of empirical study. Therefore, it is necessary to search
for explicit statements regarding theory in these articles’
discussions.

A review should give an operational definition of the
concept it is sampling. However, another consequence of
the fact that we are sampling theory from secondary sources
is that an operational definition of theory is not useful,
because theories are usually not described comprehensively
enough in these sources to match such a definition. Instead,
the judgment that something is a theory has to be based, not
only on explicit renderings of elements of theory identity
(Section 2.1), but also by whether it is, in fact, used in roles
for explaining cause-effect relationships (Section 2.2). Thus,
we give the following two-part inclusion criterion.3

Theory inclusion criterion. A theory is identified by

1. Candidacy for theory:

. the mention of the terms “theory” or “model” or
grammatical derivatives thereof, together with
at least one reference, or, alternatively,

. the identification of constructs and relation-
ships in a body of conceptual argumentation
delineated by diagrams, words, etc., and

2. Explanation of cause-effect relationship:

. the use in the roles of design, post hoc explanation,
tested, modified, proposed, or basis.

Thus, the decision to include something as a theory in our
setting is based on two equally important factors.

First, the detection of explicit terminology or essential
components pertaining to theory gives rise to a theory

candidate. The reason for the “or” clause is that identifying
theories solely on the basis of the authors’ explicit use of the
terms “theory,” “model,” or derivatives thereof, is not
reliable, because these terms, especially “model,” are not
used consistently. A theory may be being presented,
discussed or used even when it is not referred to by
“theory” or “model.” Therefore, the identification of

constructs and relationships, which are essential structural
components of theory (Section 2.1.3), also justify a candi-
dacy for theory, if these occur within a body of conceptual
argumentation. For example, in [155], extensive text and
diagrams in a designated section constitute a body of
conceptual argumentation, in which constructs and rela-
tionships are easily identified (e.g., “short-/buffer-/long-
term memory” and interactions between these). This yields
a candidate for a theory, even though the terms “theory” or
“model” are not used for the body of argumentation itself.
(The argumentation does, however, refer to other “mod-
els.”) Conversely, several articles refer to “theories” and
“models” (“learning theories,” “self-efficiency theory”) in

their discussions but give no literature references nor any
constructs or relationships, rendering the theories too
unspecified for consideration as a theory candidate.

The second factor is the determination that a theory
candidate is used in explaining cause-effect relationships in

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 93

3. This approach would not suffice in disciplines such as management
and sociology, where the use of theory and models in one form or another is
abundant and often implicit. Since our field is less developed in this respect,
we postulate that uses of theory stand out more clearly.

TABLE 1
Distribution of Articles Describing Experiments,

January 1993-December 2002

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

an experiment. Such determination concerns two matters:

First, neither explicit terminology nor the presence of

essential components is sufficient to warrant calling some-

thing a theory; the use of the terms “theory” and “model”

may be used in ways that deviate from our understanding

in this review, and constructs and relationships do not in

themselves constitute theory. For example, the mention of

theory in “the concept of recursion is essential to tree

searching and traversal which in turn are important in areas

such as graph theory, artificial intelligence ...” from a study

of the effect of recursion versus iteration on comprehension,

is clearly not relevant here, nor are mentions of data or

design models, and, although constructs and relationships

are identifiable for the candidate from [155] exemplified

above, these in themselves do not constitute a theory.

Second, even if a candidate clearly is a theory, it should not

be included unless it pertains to explaining cause-effect

relationships in experiments in the reviewed articles.

Determining that a candidate takes on one or several of

the indicated roles establishes that the candidate is a theory

as understood here and that it pertains to explaining cause-

effect relationships. For example, the human-computer-

interaction model used in [104] is clearly a theory according

to our discussion in Section 2.1, but it is used for defining a

treatment, not for explaining the cause-effect relationship of

the experiment, and is therefore not included; the candidate

from [155], exemplified above, remains a candidate until

one is able to determine that it is used, in fact, in the role of

design. Note that role determination is not only a classifica-

tion of an already-included theory; it is also a means to

determine whether something is a theory.
Theory role is, at the outset, independent of theory type,

and theories of all types (I-V) are admissible. However, as

explanation is the focus, it is expected that most of the

extracted theories will be of Type II or IV, but some may be

of Type I or III, since these may arguably offer explanation

(Section 2.1.1). Note, however, that the focus on the

investigated cause-effect relationships is crucial. For

example, software estimation models may be viewed as

Type III theories, but, if an experiment studies the effect

of, say, COCOMO versus other estimation models, then

the type of theory we are sampling is a theory that

explains why one model outperforms another. At this

level of inquiry, COCOMO or other estimation models do

not offer explanation.

3.3 Extraction of Theory Attribute Data

Table 2 gives the attributes that we use for extracting data

about theories from the reviewed articles. The Metadata

and Structural components attributes pertain to the identity

of theories. The structural components are adaptations of

Gregor’s structural components described in Section 2.1.3.

Theory use is classified in the Theory role attribute using

the categories described in Section 2.2. We here describe

the data extraction procedure for all attributes that are not

self-explanatory.

94 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

TABLE 2
Data Extraction Attributes for Theories

a. The name of this category in Gregor’s structural schema is “Scope.”
b. This deviates from Gregor’s formulation of Testable propositions [38] in that we insist that the theory be conceptual (Section 2.1.3). A theory may
predict, but the predictions are only indirectly testable via their operationilizations.

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

Metadata. Theory names and references are compiled
from the reviewed articles, when possible. Otherwise,
theories are given descriptive names by us. Moreover, we
group references according to argumentation in an article:
An article may list several sources of, say, program
comprehension theory, and each source might give a
different theory or theory fragment within the subject. If
all these references are used together as a unit in the
discussion, we treat them as references to one and the same
theory.

Software engineering is recognized as being multi-
disciplinary, and knowledge from the managerial, psycho-
logical, and social sciences is frequently used together with
technological knowledge. The Reference Discipline attribute
records the disciplines of the literary sources to the theory,
given in an article. The discipline categories are those of
Glass et al. [36]. The Topic attribute holds information on the
topic of the article in which a theory is used. All reviewed
articles have been classified according to topic [87]. Topics
are defined according to a classification scheme devised
from the IEEE Keyword Taxonomy [49], which is an
extended version of the ACM Computing Classification
System [1].

Structural components—Generic. Means of representation

signifies how a theory is presented typographically. The
value words indicates descriptions beyond references and
names of theories. Values for the Constructs and relationships

and Boundary conditions attributes are determined based on
the understanding given in Section 2.1.3 regardless of
whether or not they are referred to explicitly as such
components. Only what we perceive to be main constructs
and relationships are recorded. Boundary conditions do not
include obvious boundaries, such as the implicit fact that a
software control model has software development as scope.

Structural components—Contingent on theory-type.

Gregor [38] used these attributes to determine theory type
(I-V). We record the presence of these components based on
our understanding in Section 2.1.1.

Theory role. We categorize theories to roles according to
what we perceive to be the main intent in an article’s
argumentation, and a theory may be seen to belong to
several role categories. A proposed theory is taken to be such
if major parts of it are presented as elaborated by the
author(s) and there are no references to these parts of the
theory in the article. A theory is categorized as a basis

theory if it has this role relative to a theory already assigned
to a role.

As mentioned, the determination of theory role is based
on its argumentative position in an article. For this, but also
for the identity of theories, the cause-effect relationships
under investigation must be identified, as well as possible
predictions, research questions, and (operational) hypoth-
eses. Evaluations of the (logical) links from theory to
research questions and hypotheses help to determine theory
use. However, the details are not reported here.

As suggested by [56], we wished to determine the
extraction process from predefined criteria. The sampling
from nonprimary sources and the lack of clear definitions of
theory precluded this somewhat. We therefore performed

an initial exploratory analysis of the 103 articles and, after
some adjustments, compiled the attributes listed in Table 2.
The final analysis with respect to theory identification and
extraction were done by three reviewers in such a way that
all articles were analyzed by at least two authors, with the
first author analyzing all articles. Conflicts were resolved by
discussion or, in the last instance, by majority vote, and
reasons for inclusion/exclusion were documented. For the
remaining attributes, one reviewer extracted data and two
other reviewers subsequently checked this data, with the
same conflict resolution strategy as above.

4 FINDINGS

This section presents our findings. First, we report on who
uses which theories for what purposes. Then, we report
theory-specific data in order to characterize the kinds of
theories involved.

4.1 Articles and Theories

The 103 articles in this review describe 113 experiments. An
article may describe several experiments, but at our level of
analysis, the use of theory is uniform per article. Using the
theory inclusion criterion, we extracted a total of 40 theories
in 24 articles. Fig. 2 lists the articles, sorted by topic, in
relation to the theories they use and the roles in which they
are used. The theory identifiers (T1-T40) are used in the text
and relate Fig. 2 to Table 4, which gives references to the
theories’ literary sources cited in the article(s). (All extracted
theory references are included in the latter part of the
References section ([105] through [182]).4 The reviewed
articles that propose theories appear among the theory
references. Otherwise, they appear among the regular part
of the References section ([1] through [104].)

Only two of the 40 theories are used in more than one
article: “Probabilistic model of PBR and CBR inspection”
(T1) is used in three articles, [33], [59], [140] authored partly
by the same people, and “Theory of cognitive fit” (T7) is
used in two articles, [2] and [47].

The two topics with the largest amount of articles using
theory are Code inspections and walkthroughs with five articles
using six distinct theories and Object-oriented design methods

with three articles using five distinct theories. Roughly, the
number of articles using theory within each topic varies
proportionally with the total number of articles in each
topic.

As can also be seen from Fig. 2, the article with the most
(four) theories used [105] is classified to topic Productivity.
Three other articles use three theories each, [144] with topic
Design notations and documentation and [119] and [21] with
topic Software psychology. In all, 14 articles use more than
one theory.

There are, in total, 83 citations to 78 literary sources
associated to the 40 theories. The sources are cited in one
article each, except Laitenberger et al. [140], which is cited
in three articles, and Brooks [117], Pennington [153], and
Miller [148], which are cited in two articles. The number of

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 95

4. These references are extracted from the reviewed articles and are not
necessarily complete or up-to-date.

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

96 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Fig. 2. Articles using theory.

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

distinct theory references per article ranges from 1, to 14 in
[155]. Note that a reference may occur in several of the
theories.

Concerning terminology, 15 theories are referred to
explicitly as “theory,” 15 are referred to explicitly as “model,”
one is referred to as “theory” or “model” in different articles,
and nine are not referred to as either. These nine are referred
to as “perspective,” “framework,” “idea,” “concept,” “cause-
effect diagram,” “factors,” “conceptualization,” “process,”
“strategy,” “phenomenon,” and “rationale.” According to
our inclusion criterion, none of these words suffice to qualify
something as a theory. However, constructs and relation-
ships (as well as roles) were identified for all these nine
theories.

4.2 The Theories’ Roles

In accordance with our inclusion criterion, the theories
extracted are used for explaining cause-effect relationships
in the roles of design (17 articles), post hoc explanation

(7 articles), tested (8 articles), modified (1 article), proposed

(12 articles), and basis (7 articles).
Theory as motivation rather than incentive. The most

common use of theory is in the design role. When theory
influences the design of an experiment, one might expect
that the theory would be tested as a matter of course.
However, in the reviewed articles we found that the design

role does not usually imply that the theory is tested. Instead,
these theories and models are used for forming conceptual
frameworks and motivation for research questions and
hypotheses. A pertinent example is [2], where the theory of
cognitive fit (T7) is used in rationalizing the experiment’s
hypotheses. However, since the theory of cognitive fit is
more general and the article does not formulate a subtheory
to describe more specifically the issues investigated, we
found that the intention was to motivate the design rather
than to test.

That a theory is used for design only, rather than for
theory testing, may be due to the theory having low
specificity. It might predict the presence of a relationship
without specifying what exactly that relationship is (often
indicated diagrammatically by a line connecting two boxes,
but leaving the line unspecified). For example, in one article
[182], the authors set up a conceptual model of query
language success (T24) postulating that various constructs
may affect the construct of “query language success.”
Constructs and relationships are present but do not in
themselves entail the more specific hypotheses of the
experiment. Some scholars would hesitate to call anything
with such low specificity an explanation. We hold that this
depends on the present level of knowledge. In our review,
we found that models with low specificity often gave
valuable conceptualizations and explanations at more
exploratory stages.

Ten theories (in eight articles) do get tested, however,
and some of these are contradicted. The three theories on
media richness (T21), media effect (T22) and social presence
(T23) mentioned in [21] are not supported by the empirical
evidence of the experiment. Theory T2 is analytically
refuted on the grounds of calculations and simulations in

a probabilistic model framework in which both Theories T1
and T2 are modeled [140]. Also, one test of theory results in
modification rather than refutation; see below.

Theory generation. With regards to constructive efforts,
12 articles propose theories, three of them (T5, T28, and T34)
on the basis of observations from the experiment.
Theory T28 is a mathematical model based on experimental
data. In [105], the proposed theory (T34) is the result of
deliberations about the nonconformance of observations
with existing theory (T35). The proposed theory is then
tested on data from the experiment. The article also uses
theory in the design role. Also a constructive effort, one
article modifies an existing theory: In [13], an exploratory
experiment with no stated null hypotheses is described. The
observed phenomena, however, allowed the experimenters
to test a model (T12) for configuring constraint environ-
ments for a tools-user response project. The results are in
accordance with the model, but the authors conclude that
the model needs more constructs (in order to account for
HCI-imposed constraints and subject speed and ability).
Theory role is here classified as tested and modified.

Theory structuring. Several articles present theories that
are based on other theories in a hierarchic manner. An
example is [119] where the foundation is a comprehension-
integration model of text comprehension (T20). This forms
the basis of a mental model of procedural program
comprehension (T19), which in the current study is
extended to a mental model for comprehension of object-
oriented programs (T18). This model directs the hypotheses,
and the observations are discussed relative to the proposed
model. Another example [114] is the hierarchical buildup of
the cognitive information processing/information theory
perspective (CIPIT) (T15) from the basis of a mathematical
model of uncertainty (T17) and a psychological model of
uncertainty (T16). One theory is the result of conditioning
other theory. “Conservative anchor dragging” (T34) is
proposed as an explanation of experimental observations
that do not support Hogarth’s predictions on anchoring in
dynamic environments (T35).

Theory in several roles. Thirteen articles use several
theories in different roles (apart from proposed). For
example, in [141], theory plays the roles of design, post hoc
explanation, and tested. The study presents a model (T3) for
predicting defect detection performance in groups. The
experimental hypotheses are directly structured and for-
mulated according to this model. A group decision scheme
(plurality, or majority-rules) (T4) is used afterward to
explain observations, and this yields a deeper level of
explanation. The group decision scheme is then tested by
reusing data from the experiment.

Theory building. Theory building in large demands
collaborative efforts over long periods of time and would,
in practice, involve all of the above roles. The reviewed
articles give no indication that this is taking place to any
great extent. The intention is, nevertheless, present in one
article: “This study is a small step in the direction toward
building a cognitive psychology based theory of software
maintenance effort that not only predicts ‘what’ factors
affect software maintenance effort but also explains ‘why’

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 97

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

and ‘how’ these factors influence software maintenance
effort” [155]. Another article gives at least an indication of
future work involving theory: “Future research should
study the behavior of query construction and processing by
making use of concepts from the theories of information
processing and problem solving” [182].

4.3 The Theories’ Structural Components

The amount of identifiable structural components gives
indications of the explicitness with which theories are
presented. Table 3 shows the number of theories exhibiting
each component. Note, however, that no articles report
constructs and relationships or boundary conditions ex-
plicitly by name. Examples of constructs and relationships
are given in Table 4. (For three theories, constructs or
relationships were not found. These theories were all
denoted by the term “theory” in the articles.)

Means of representation vary from extensive presenta-
tions with words, references, logic, mathematics, diagrams,
and tables, e.g., Theories T1 and T2 as described in [140], to
mere references and name, e.g., Theory T1 as mentioned in
[59] and Theory T14 as mentioned in [139].

Five theories are described with what amount to
boundary conditions. Theories T3, T18, T20, and T38 have
scope conditions. An example is: “Our findings relate to
reviews which conform to the model ... that is where there
is individual defect detection followed by a group
meeting. Since the focus of such meetings is on collection
of defects, it is impossible to predict whether procedural
roles would have a similar effect on Fagan-style inspec-
tions where the focus of the meeting is on defect
detection” [141]. Theory T34 has conditionalization: “We
will label this decision strategy ‘conservative anchor
dragging,’ i.e., continuous anchoring moderated by con-
servatism” [105]. Here, the moderation of continuous
anchoring under uncertainty yields conservative anchor
dragging. In addition, one article makes the point that
conditionalization and scoping are important: “Other
studies, however, have found risk propensity to be a
situationally specific variable, meaning that an indivi-
dual’s risk propensity will not be the same in every
situation ... This suggests, for example, that if one is
interested in predicting decision-making in an IS project
context, then it is necessary to examine risk propensity in
situations concerning IS project decision-making” [135].

Since our samples are not from primary sources of
theory, we did not expect to find sufficient information to
determine theory type (I-V). Nonetheless, we did find

structural components contingent on theory type for 36 of
the 40 theories. The findings suggest that 34 of these
36 theories are Type IV (Explanation and Prediction),
one theory, T24, is Type II (Explanation), and one theory,
T28, is Type III (Prediction). We found no theories that
we could positively classify as Type I (Analysis) because,
unlike in a review from primary sources, the absence of
explanation and prediction (and prescription) does not
imply that a theory is Type I. Also, we found no theories
(matching our inclusion criterion) that we could classify
positively as Type V. This distribution of theories to type
is similar to Gregor’s findings for articles describing
theories in the information systems field [38]: She found
that 33 of 50 articles presented Type IV theories, four
presented Type II theories, and one presented a Type III
theory. In addition, Gregor found three articles presenting
Type I (Analysis) and nine presenting Type V (Design
and action).

4.4 The Theories’ Disciplines

Table 4 shows the disciplines of the referenced literature for
the identified theories. (In order to comply with Glass
et al.’s classification (Section 3.3) four cases of references
belonging to HCI literature have been included in the
software engineering category.) Fifteen of the 40 theories
have references belonging to software engineering literature
alone. Seven theories have references belonging to both
software engineering and various combinations of cognitive
psychology, social and behavioral science, and information
systems. Eighteen theories have no references belonging to
the software engineering literature in the respective articles.

Theories referenced in the software engineering litera-
ture (including theories proposed in the reviewed articles)
may be adaptations of theories from other fields. Examples
of this from our review are Theories T30 and T38; the
former is an instantiation, within a software engineering
context, of an adaptation of a human information proces-
sing model from cognitive psychology and social and
behavioral science, and the latter is a risk perception and
risk propensity model for decision-making in software
engineering, based on a decision-theoretical model of risk
from information systems, cognitive psychology, manage-
ment, social and behavioral science, and economics.

Thus, in total, 22 (55 percent) of the extracted theories
were classified as coming from the discipline of software
engineering, on the basis of the theories’ references. A
similar proportion of the theories are imported from other
disciplines. Glass et al. [36], [37] concluded that on the
whole, software engineering research relies very little on
other disciplines for its thinking, a trait it shares with
research in computer science, whereas information systems
research relies on other disciplines to a much greater extent.
However, the theories in this review show a much higher
degree of interdiscipliniarity than does software engineer-
ing research in general. Table 5 shows the results of Glass
et al. [36] for research in general in computer science (CS),
software engineering (SE), and information systems (IS),
together with our findings for theories in empirical software
engineering.

98 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

TABLE 3
Theory Characteristics—Structural Components

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 99

TABLE 4
Theory Characteristics

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

Relating to bodies of knowledge in other disciplines may

increase explanatory power. Some of the reviewed articles

also make this point: “Therefore we also recognize that

theories of software maintenance effort can be based on

other theoretical perspectives from fields such as sociology

and social psychology” [155]. Another states: “The major

reference theories for examining the efficacy of alternative

systems analysis and design methods come from the

cognitive psychology and human factors literatures” [2].
Conversely, there seems to be potential for empirical

software engineering to contribute theoretically to other

disciplines. For example, in [105], the static and dynamic

anchoring concepts from management, economics, and

psychology are refined to conservative anchor dragging.

Although the theory is derived from an experiment in a

software engineering context, it is not formulated specifi-

cally for this context, and the theory should be relevant in a

context wider than software engineering.

4.5 Calls for Theory

Explicit calls for theory indicates the awareness of theory

among the authors of the reviewed articles. Nine of the

103 articles either comment on the fact that there is a lack

of any relevant theory or express a desire for relevant

theory. In five of these, the authors comment that such a

lack hinders an explanation of the phenomena observed.

For example, “As yet, there exists no coherent theory that

would explain these advantages specifically in the context

of design patterns” [78]. An example from an article that

does not use theory: “This work suggests that there are

general and identifiable mechanisms, driving the costs

and benefits of inspections. However, we lack a compre-

hensive theory bringing these principles together. We are

currently exploring this issue” [76]. Yet another example:

“There is currently no psychological theory that allows

these differences to be predicted based on known

attributes of subjects. This is an interesting area for

long-term basic research” [31]. In one of the articles, the

comment is made that theory is necessary for general-

ization: “Furthermore, without an explicit theory of SW

maintenance, it is difficult to predict what effect other

design patterns (and alternatives) than the five specific

ones used in the experiment may have” [77].
The importance of a solid body of empirical work prior

to building theory is emphasized in two articles: “In mature

scientific disciplines, this is a standard procedure before

any theory will be considered valid. The present work

provides such empirical evidence” [77], and “Multiple

independent studies of the same hypothesis are essential if

software engineering is going to produce empirically

evaluated theories and procedures” [69].

5 DISCUSSION

This section discusses the implications of our findings for

empirical software engineering, and relates our review to

the discussion about theory in general.

5.1 Extent of Theory Use

Our review suggests that most experiments do not relate to

theory. Instead, they are “searches for empirical regula-

rities” in the terminology of [22]. About 23 percent of the

reviewed articles use theory in explanatory roles pertaining

to the investigated cause-effect relationships. It is not a

straightforward matter to assess quantitatively whether or

not this is a lot. To our knowledge, no comparable reviews

exist for other fields, but it seems unlikely that such reviews

exist in any large number.5 Thus, we have no quantifiable

data on theory use with which to compare our field with

others.
However, it is still possible to make qualitative judg-

ments on the extent of theory use. First, the fact that only

two of the extracted theories are used in more than one

article (and only one of these is used in articles by different

authors) indicates that there is little sharing of theories,

even within topics. Theories provide common conceptual

frameworks to which researchers may relate, and this is a

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

5. The status of theory use in other disciplines might be difficult to
quantify because theory use may be more integral and implicit than that
which we experienced in doing our review.

TABLE 5
Reference Discipline (Extension of Table 3 in [36])

The CS, IS, and SE columns show the percentage of literature from various disciplines cited in articles from, respectively, computer science,
information systems, and software engineering and gives an indication of the interdisciplinarity in these three fields. The last column shows the
distribution of theory references to disciplines for the 40 theories extracted in this review. (A theory may have several references, so the percentages
add up to more than 100.) The interdisciplinarity for theories is higher for these theories than for software engineering in general.

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

prerequisite for building larger cumulative bodies of
knowledge. Our findings show that this use of theory is
negligible.

Second, although we found that theories are used in
important explanatory roles, we cannot say overall that
theories are used for providing a theoretical framework or
paradigm within which studies are conducted and inter-
preted. Rather, most of the theories we extracted are used
somewhat locally for supporting and motivating the study,
rather than the study being a result of theory. Only two
articles hint that the experiments are steps in larger efforts
at building theory. Even the theories proposed within the
topics of Code inspections and walkthroughs and Object-

oriented design methods were not tested or further developed
in other experiments.

From these two points of view, our findings constitute
empirical support for prior claims (e.g., [43]) that theory-
driven investigations and theory building are rare in
empirical software engineering.

On a more modest level of expectations, however, this
review suggests that empirical software engineering is in no
way devoid of theory. Although large-scale theory building
may not be present, constructive efforts are being made,
in that theory is proposed in almost 12 percent of the
103 reviewed articles.

5.2 The Usefulness of Theory

Does our review suggest that empirical software engineer-
ing should engage in more theoretical deliberations than is
now the case? Our review reports the use of theories and
does not assess the usefulness of theory. Indeed, given that
an objective attribute-based assessment of usefulness is
even possible, it is probably too early to make any such
claims. However, after working extensively with the
103 reviewed articles, we do, nonetheless, have opinions
on issues related to the usefulness of theory.

Our opinion is that, had theory been omitted from the
articles that do use theory, they would have been less
interesting because the theories used provide a conceptual
framework for explaining observed phenomena. Such
explanations often provide links to other disciplines, in
which a closely related problem may have been researched
extensively. For example, in [155], the human information
processing theory (T30) that is used provides a conceptual
framework in which a number of phenomena may be
explained and predicted. Phenomena that may seem
intuitively obvious, such as that a decrease in program
control flow complexity leads to higher maintainability and
that this difference is greater for large programs than for
small programs, are explained in a framework that links the
underlying mechanisms for this phenomenon to the
mechanisms of other (perhaps less obvious) phenomena.

It is also our opinion that, had theory not been used,
some of the less obvious research questions investigated
would have been harder to rationalize or even come by.
(Davis [23] discusses a suite of ways in which “good”
theories give rise to nonobvious research questions.) For
example, in [67], the theorized propensity in people for
generating normal test cases rather than fault test cases

(T27) is used to predict the relative performance of various
exception coverage strategies according to how well the
strategies address this propensity. Without this, or a similar
theory, it would seem hard to argue that one strategy is
better than the other. In [155], the human information
processing theory (T30) is used again to argue that
increased concentration leads to more efficient mainte-
nance, and more so for novices (who have low semantic
knowledge) than for experts (who have high semantic
knowledge). Without this theory, it would seem difficult to
argue that the impact of concentration should be greater for
novices, rather than the impact being greater for experts.

Finally, in our opinion, several of the theories provide
paths for new research in that they often speak in terms of
underlying mechanisms that have not yet been investigated.
An example is the framework in which the Theories T1 and
T2 are formulated [140]. The framework simulates two
posited mechanisms—subset focus and defect overlap—for
perspective/scenario-based reading. Calculations and
Monte Carlo simulations in the framework demonstrate
that the intuitively posited relationships between subset
focus, defect overlap, and the resulting defect detection rate
do not always hold. Thus, theory may generate deeper
research questions, and corresponding empirical studies
that in turn would provide insights for devising even better
inspection methods.

Based on the fact alone that nine of the surveyed articles
themselves state explicitly that the lack of theory is an
obstacle, we think that efforts should be made to develop
and use theory to a greater extent.

5.3 Obstacles for Using Theory

It is, perhaps, a common conception that a massive body of
empirical evidence must be accumulated prior to building
theory. However, this is just one of many ways to generate
theory. Theory may be generated on only modest empirical
evidence, it may be derived mathematically (and even on
principles of aesthetics), and it may be derived as adapta-
tions of theories from other disciplines. Indeed, this review
shows several examples of theory being generated in these
ways. Additionally, some areas of software engineering
have already accumulated considerable empirical evidence,
and many scholars state quite clearly that “the experimenter
must begin with theory” [98] and not with observation.

Another obstacle to using theory may arise from
difficulties in relating theories to empirical research. This
review should be helpful in this respect, since it sum-
marizes how theory may be used in experiments. There are
also a number of general suggestions as to how theoretical
and empirical research should interact. Based on the nature
of empirical software engineering, Pfleeger suggests an
iterative cycle of “study a little, theorize a little” [75]. Theory
and experimentation can interact in a variety of ways; for
example, Davis and Holt [22] describe various types of
experiment that relate to theory in different ways, Waller
and Zimbelman [96] present a bridging strategy for
generalizing theoretical propositions to field settings via
the laboratory, and Lynham [65] suggests a general method
for theory-building research in applied disciplines that

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 101

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

consists of five iterative phases involving both conceptual

development and application.
Theory is abstract and therefore, one might argue, it is

of no use to the practice of software industry.6 However,

other practical disciplines, such as pedagogy, psychology,

nursing, and management are theory-based, and standard

textbooks in these subjects present relevant theory as a

matter of course. Theory purports to explain underlying

mechanisms of whatever its subject matter is. Whether

this subject matter is austere multidimensional string

theory or practical software engineering, is not in itself

the point. For example, understanding the underlying

mechanisms of software effort estimation in terms of

variants of anchoring (theories T34 and T35) [105] has a

direct impact on how project managers may improve their

estimates. Understanding underlying mechanisms means

understanding more of “what really goes on”—in the

famous words of Kurt Lewin: “There is nothing so practical

as a good theory” [62]. Further, consequences derived from

a sound theory can motivate the revision of practice in the

interests of better performance.

5.4 Explicit Use of Theory

None of the reviewed articles state reasons for using theory

(or reasons for abstaining from using theory). Although it

may not be realistic to expect such reporting, we think that

researchers should decide explicitly whether they wish to

offer conceptual explanations to their observations or not.

For example, Houdek takes an explicit stance in his

framework for conducting laboratory experiments in the

direct interests of industry: “Generalization of results to

other environments [than] the original target environment ...

is not covered by [this] approach at all” [46]. Herein lies an

explicit decision that renders theoretical deliberations less

meaningful.
Explicit theoretical terminology concerning the types of

theory, structural components, roles, and epistemological

issues are all but absent from the reviewed articles. (One

article [154] does explicitly discuss criteria for causality and

explanatory versus predictive traits of model fitting.)

However, as the use of any research method requires the

reporting of how the method’s principles are applied, so

also should the use of theory as an explanatory device be

made explicit—a concern also voiced in other relevant

disciplines [88], [97]. For example, it is important to be

explicit about boundary conditions, because these free the

researcher from false obligations to formulate theories that

are “general” in ways that are not useful, and because

boundary conditions make explicit how theories are

adapted to the context of the study.
Furthermore, in established disciplines, epistemological

issues are often resolved implicitly according to in which

school of thought one is operating. The situation is more

delicate in empirical software engineering because there are

no such established theoretical directions, and when

theories from other disciplines are used for software

engineering, the epistemological context of these theories
may easily be lost. For example, in [139], a scientific-realist
stance would seem evident in that one postulates the actual
presence of object-oriented properties in human cognition,
based on the agreement of observation with predictions of
an object-oriented cognitive model (T13). On the other
hand, Bourne et al. state that the view of the human brain as
an information processing unit, is “an evolving framework
or domain of discourse that permits cognitive psychologists
... to exchange cogent ideas regarding cognitive phenom-
enon” [12, pp. 11-12], which suggests an instrumentalist
perspective. Logical positivism as expressed in some modes
of psychological behaviorism does not admit explanation in
terms of the constructs of cognitive psychology at all; unless
these constructs stand for observable movement in the brain
(localized by disciplines such as cognitive psychophysiology,
e.g., [51]). This pertains to many of the constructs found in
this survey, such as “risk perception” in cost estimation,
“mental stress” during coding, “attitudes” toward tools,
“hierarchy of hypotheses,” “knowledge domains,” and
“beacons.” Also, in [105], notions of anchoring proposed
by various authors are used. Some of these authors may
hold that anchoring is a consequence of cognitive structures
present in the brain, others may hold that “anchoring” is
merely a useful conceptual device, while yet others may use
“anchoring” in a behaviorist way as the name of an
observed effect. It is not obvious that ignoring epistemolo-
gical mode is possible when relating to other disciplines,
when combining explanations, or when asking others to
interpret one’s results.

Finally, it is important to be explicit about how one
proposes to use theory: for explaining the cause-effect
relationship(s) (e.g., design, post hoc explanation, tested,
modified, proposed, or basis), or for subsidiary or other uses.
In the reviewed articles (including some of our own), there
were several references to theory whose uses it was difficult
to determine. We think it will benefit others who wish to
build on a study if uses of theory are described clearly.

5.5 Software Engineering Theory

What is a software engineering-specific theory? From our
results and from our experiences with this review, the
answer to this question is not straightforward. In only a
few instances could we claim by looking at the theory itself
that it was specific to software engineering. By and large,
the theories that we classified to software engineering
incorporate constructs that are endemic to other disci-
plines, and, sometimes, an article’s argumentation was
done entirely in terms of constructs that are not software
engineering specific. (Indeed, in determining the discipline
of theories, we relied on the disciplines of publications
referenced in the reviewed articles, rather than on
characteristics of the theories themselves.) The multi-
disciplinary nature of software engineering and the uses
of interdisciplinary theories uncovered in this review
suggest that it may be difficult to devise theories and
larger theoretical frameworks that are entirely endemic to
software engineering, even when they refer to the peculiar
traits of software development problem solving.

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

6. Lynham [65] discusses further such claims in a general discussion
concerning the relationship between theory and applied disciplines.

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

Other theory-based disciplines have theoretical frame-

works that encompass and define the entire discipline, and

one may criticize software engineering for lacking this.

However, since software engineering is as many-faceted as

it is, it might be likely that smaller units of theory will

evolve, each seeking to explain different aspects of a

phenomenon according to existing theory from other

disciplines. The semantic approach to theories accommo-

dates this, as does theoretical pluralism (Section 2.1.2). The

incentive to build theory might be a refinement of what

characterizes the uses of theory uncovered in this review:

rather than large concerted efforts, local efforts to model

phenomena in different ways that are useful for answering

the various practical questions at hand.

5.6 Limitations

The main limitations of this study are publication selection

bias, inaccuracy in data extraction, and misclassification.

Publication selection bias is addressed in [87].
The extraction of theories from nonprimary sources is a

challenging task. First, there are no uniformly accepted

criteria for identifying theories, which hampers the genera-

tion of predefined selection criteria. Second, the amount of

information given about theories is often sparse. Our

approach was to choose an epistemological stance that is

relatively inclusive and to use the relatively generic

structural components used for theory identification in a

closely related field [38]. The multireviewer examination

resulted in disagreements regarding the inclusion of six

theories, of which four were finally excluded.

5.7 Future Work

Although our findings may be indicative for the field as a

whole, further reviews are needed to establish their status

for other types of empirical study for which theory is highly

relevant, such as case studies, correlation/regression

studies, simulations, etc. We focused on theories used in

explanatory roles pertaining to the cause-effect relation-

ships investigated in experiments. We did not include

theories used in subsidiary and other roles in the results of

this review. However, we did find a substantial amount of

such uses of theory. Although these uses of theory are

secondary when it comes to causal explanation, they are of

great value for other aspects of empirical studies and for the

field as a whole. Research is currently in progress on these

issues.

6 CONCLUSION

This systematic review investigated the use of theories in

software engineering experiments. Our observations reveal

that about a quarter of the surveyed articles involve theory

in explanatory roles pertaining to the cause-effect relation-

ships under investigation. Most of the articles use theory to

justify or motivate experimental research questions. How-

ever, we found no evidence of theory-driven research, in

the sense of empirically based theories that encompass and

define the research questions of empirical software en-

gineering. In particular, the theories that are used do not, to

any extent, function as frameworks in which issues are

discussed across articles by different authors.
Nevertheless, theories are being used, and disciplines

with strong theoretical traditions are being consulted when

seeking explanation in empirical studies for software

engineering. Even among the reviewed articles that do not

use theory, there are explicit calls for such use. We concur

with this view; to advance the body of knowledge, theory

should be an integral part of empirical studies in software

engineering. We hope that the information provided in this

study about theories that are used in software engineering

experiments will contribute to achieving this goal.

ACKNOWLEDGMENTS

The authors are grateful to Bente Anda, Alastair Hannay,

Magne Jørgensen, Vigdis By Kampenes, Amela Karaha-

sanovi�c, Barbara Kitchenham, and Chris Wright for useful

feedback and enlightening discussions. The authors are also

grateful to the anonymous referees for pertinent and

insightful comments. Thanks to Ove Hansen, Nils-Kristian

Liborg, Anette Rekdal, and several of the above for their

work in extracting articles describing experiments, to Jørgen

Busvold and Magnar Martinsen for assistance in compiling

data, and to Chris Wright for proofreading the paper.

REFERENCES

[1] “ACM Computing Classification System,” http://www.acm.org/
class, 2004.

[2] R. Agarwal, P. De, and A.P. Sinha, “Comprehending Object and
Process Models: An Empirical Study,” IEEE Trans. Software Eng.,
vol. 25, no. 4, pp. 541-556, July/Aug. 1999.

[3] Principles of Forecasting: A Handbook for Researchers and Practitioners,
J.S. Armstrong, ed. Kluwer Academic, 2001.

[4] M.E. Atwood and H.R. Ramsey, “Cognitive Structures in the
Comprehension and Memory of Computer Programs: An In-
vestigation of Computer Program Debugging,” Technical Report
TR-78-A21, U.S. Army Research Inst. for the Behavioral and Social
Sciences, 1978.

[5] S.B. Bacharach, “Organizational Theories: Some Criteria for
Evaluation,” Academy of Management Rev., vol. 14, no. 4, pp. 496-
515, 1989.

[6] V.R. Basili, “Editorial,” Empirical Software Eng., vol. 1, no. 2,
pp. 105-108, Jan. 1996.

[7] A.C. Benander, B.A. Benander, and J. Sang, “An Empirical
Analysis of Debugging Performance—Differences between Itera-
tive and Recursive Constructs,” J. Systems and Software, vol. 54,
no. 1, pp. 17-28, Sept. 2000.

[8] A. Bianchi, F. Lanubile, and G. Visaggio, “A Controlled Experi-
ment to Assess the Effectiveness of Inspection Meetings,” Proc.
Seventh Int’l Symp. Software Metrics, pp. 42-50, 2001.

[9] B.W. Boehm and B. Clark, “Cost Models for Future Life Cycle
Processes: COCOMO 2,” Annals Software Eng., vol. 1, pp. 57-94,
1995.

[10] D. Borsboom, G.J. Mellenbergh, and J. Van Heerden, “The
Theoretical Status of Latent Variables,” Psychological Rev.,
vol. 110, no. 2, pp. 203-219, 2003.

[11] T. Boswell and C. Brown, “The Scope of General Theory,”
Sociological Methods & Research, vol. 28, no. 2, pp. 154-185, 1999.

[12] L.F. Bourne, R.L. Dominowski, E.F. Loftus, and A.F. Healy,
Cognitive Processes. Prentice Hall, 1986.

[13] A. Brooks, F. Utbult, C. Mulligan, and R. Jeffery, “Early Lifecycle
Work: Influence of Individual Characteristics, Methodological
Constraints, and Interface Constraints,” Empirical Software Eng.,
vol. 5, no. 3, pp. 269-285, Nov. 2000.

[14] M. Bunge, Scientific Research I: The Search for a System. Springer
Verlag, 1967.

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 103

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

[15] M. Bunge, “Realism and Antirealism in Social Science,” Theory and
Decision, vol. 35, no. 3, pp. 207-235, 1993.

[16] J.T. Cacioppo, G.R. Semin, and G.G. Berntson, “Realism, Instru-
mentalism, and Scientific Symbiosis,” Am. Psychologist, vol. 59,
no. 4, pp. 214-223, 2004.

[17] B. Cohen, Developing Sociological Knowledge: Theory and Method.
Prentice Hall, 1980.

[18] L.J. Cronbach, Designing Evaluations of Social and Educational
Programs. Josey-Bass, 1982.

[19] L.J. Cronbach, S.R. Ambron, S.M. Dornbusch, R.D. Hess, R.C.
Hornik, D.C. Phillips, D.F. Walker, and S.S. Weiner, Toward Reform
of Program Evaluation. Josey-Bass, 1980.

[20] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, “Evaluating
Inheritance Depth on the Maintainability of Object-Oriented
Software,” Empirical Software Eng., vol. 1, no. 2, pp. 109-132, Jan.
1996.

[21] D.E.H. Damian, A. Eberlein, M.L.G. Shaw, and B. Gaines, “Using
Different Communication Media in Requirements Negotiation,”
IEEE Software, vol. 17, no. 3, pp. 28-36, May/June 2000.

[22] D.D. Davis and C.A. Holt, Experimental Economics. Princeton Univ.
Press, 1993.

[23] M.S. Davis, “That’s Interesting! Towards a Phenomenology of
Sociology and a Sociology of Phenomenology,” Philosophy of the
Social Sciences, vol.1, pp. 309-344, 1971.

[24] P.J. Dimaggio, “Comments on ‘What Theory Is Not,” Adminis-
trative Science Quarterly, vol. 40, pp. 391-397, 1995.

[25] R. Dubin, Theory Building. Free Press, 1969.
[26] R. Dubin, Theory Development. Free Press, 1978.
[27] A. Endres and D. Rombach, A Handbook of Software and Systems

Engineering, Fraunhofer IESE Series on Software Eng. Pearson
Education Limited, 2003.

[28] R.P. Feynman, QED—The Strange Theory of Light and Matter.
Penguin Science, 1985.

[29] R.P. Feynman, The Meaning of It All: Thoughts of a Citizen-Scientist.
Perseus Books, 1998.

[30] P. Fonagy and M. Target, Psychoanalytic Theories. Perspectives from
Developmental Psychopathology. Whurr, 2003.

[31] W.B. Frakes and T.P. Pole, “An Empirical Study of Representation
Methods for Reusable Software Components,” IEEE Trans. Soft-
ware Eng., vol. 20, no. 8, pp. 617-630, Aug. 1994.

[32] R. Franck, The Explanatory Power of Models. Kluwer Academic,
2002.

[33] B. Freimut, O. Laitenberger, and S. Biffl, “Investigating the Impact
of Reading Techniques on the Accuracy of Different Defect
Content Estimation Techniques,” Proc. Seventh Int’l Symp. Software
Metrics, pp. 51-62, 2001.

[34] K.J. Gergen, “Correspondence Versus Autonomy in the Language
of Understanding Human Action,” Metatheory in Social Science,
D.W. Fiske and R.A. Schweder, eds. Univ. of Chicago Press,
pp. 136-162, 1986.

[35] G. Gigerenzer, “Mindless Statistics,” J. Socio-Economics, vol. 33,
pp. 587-606, 2004.

[36] R.L. Glass, V. Ramesh, and I. Vessey, “An Analysis of Research in
Computing Disciplines,” Comm. ACM, vol. 47, no. 6, pp. 89-94,
June 2004.

[37] R.L. Glass, I. Vessey, and V. Ramesh, “Research in Software
Engineering: An Analysis of the Literature,” Information and
Software Technology, vol. 44, no. 8, pp. 491-506, 2002.

[38] S. Gregor, “The Nature of Theory in Information Systems,” MIS
Quarterly, vol. 30, no. 3, pp. 491-506, Sept. 2006.

[39] T.R. Gruber, “A Translation Approach to Portable Ontology
Specifications,” Knowledge Acquisition, vol. 5, no. 2, pp. 199-220,
1993.

[40] S. Hawking and R. Penrose, The Nature of Space and Time. Princeton
Univ. Press, 1996.

[41] S.M. Henry and K.T. Stevens, “Using Belbin’s Leadership Role to
Improve Team Effectiveness: An Empirical Investigation,”
J. Systems and Software vol. 44, no. 3, pp. 241-250, Jan. 1999.

[42] R.L. Henschel, “Sociology and Prediction,” Am. Sociologist, vol. 6,
pp. 213-220, 1971.

[43] J.D. Herbsleb and A. Mockus, “Formulation and Preliminary Test
of an Empirical Theory of Coordination in Software Engineering,”
Proc. European Software Eng. Conf./ACM SIGSOFT Symp. Founda-
tions of Software Eng., pp. 112-121, 2003.

[44] U. Hoffrage, R. Hertwig, and G. Gigerenzer, “Hindsight Bias: A
By-Product of Knowledge Updating?” J. Experimental Psychology:
Learning, Memory, and Cognition, vol. 26, pp. 566-581, 2000.

[45] G.C. Homans, “Bringing Men Back In,” The Philosophy of Social
Explanation, A. Ryan, ed., Oxford Univ. Press, pp. 50-64, 1973.

[46] F. Houdek, “External Experiments—A Workable Paradigm for
Collaboration between Industry and Academia,” Lecture Notes on
Empirical Software Eng., vol. 12, N. Juristo and A.M. Moreno, eds.,
chapter 4, World Scientific, vol. 12, 2003.

[47] G.S. Howard, T. Bodnovich, T. Janicki, J. Liegle, S. Klein, P. Albert,
and D. Cannon, “The Efficacy of Matching Information Systems
Development Methodologies with Application Characteristics—
An Empirical Study,” J. Systems and Software, vol. 45, no. 3,
pp. 177-195, Mar. 1999.

[48] P. Humphreys, “Mathematical Modeling in Social Sciences,”
Philosophy of the Social Sciences, S.P. Turner and P.A. Roth, eds.
Blackwell, 2003.

[49] “IEEE Keyword Taxonomy,” http://www.computer.org/mc/
keywords/software.htm, 2004.

[50] R. Jeffery and L.G. Votta, “Guest Editor’s Special Section
Introduction,” IEEE Trans. Software Eng., vol. 25, no. 4, pp. 435-
437, July/Aug. 1999.

[51] Handbook of Cognitive Psychophysiology: Central and Autonomic
Nervous System Approaches, J.R. Jennings and M.G.H. Coles, eds.
Wiley, 1991.

[52] E.E. Jones, “Major Developments in Social Psychology during the
Five Past Decades,” The Handbook of Social Psychology, third ed.,
G. Lindzey and E. Aronsen, eds., chapter 2, pp. 47-107, Random
House, 1985.

[53] M. Jørgensen and G.J. Carelius, “An Empirical Study of Software
Project Bidding,” IEEE Trans. Software Eng., vol. 30, no. 12, pp. 953-
969, Dec. 2004.

[54] N. Juristo and A.M. Moreno, Basics of Software Engineering
Experimentation. Kluwer Academic, 2003.

[55] A. Kaplan, The Conduct of Inquiry, Chandler, 1964.
[56] B.A. Kitchenham, “Procedures for Performing Systematic Re-

views,” Technical Report TR/SE-0401, Keele Univ., and Technical
Report 0400011T.1, NICTA, 2004.

[57] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary Guidelines
for Empirical Research In Software Engineering,” IEEE Trans.
Software Eng., vol. 28, no. 8, pp. 721-734, Aug. 2002.

[58] J. Koskinen, “Experimental Evaluation of Hypertext Access
Structures,” Software Maintenance and Evolution, vol. 14, no. 2,
pp. 83-108, 2002.

[59] O. Laitenberger, C. Atkinson, M. Schlich, and K. El Emam, “An
Experimental Comparison of Reading Techniques for Defect
Detection in UML Design Documents,” J. Systems and Software,
vol. 53, no. 2, pp. 183-204, Aug. 2000.

[60] O. Laitenberger and H.M. Dreyer, “Evaluating the Usefulness and
the Ease of Use of A Web-Based Inspection Data Collection Tool,”
Proc. Fifth Int’l Symp. Software Metrics, pp. 122-132, 1998.

[61] O. Laitenberger and H.D. Rombach, “(Quasi-)Experimental
Studies in Industrial Settings,” Lecture Notes on Empirical Software
Engineering, vol. 12, N. Juristo and A.M. Moreno, eds., chapter 5,
pp. 167-227, World Scientific, 2003.

[62] K. Lewin, “The Research Center for Group Dynamics at
Massachusetts Institute of Technology,” Sociometry, vol. 8,
pp. 126-135, 1945.

[63] C.E. Lindblom, “Alternatives to Validity: Some Thoughts Sug-
gested by Campbell’s Guidelines,” Knowledge Creation, Diffusion,
Utilization, vol. 8, pp. 509-520, 1987.

[64] J.W. Lucas, “Theory-Testing, Generalization, and the Problem of
External Validity,” Sociological Theory, vol. 21, no. 3, pp. 236-253,
2003.

[65] S.A. Lynham, “The General Method of Theory-Building Research
in Applied Disciplines,” Advances in Developing Human Resources,
vol. 4, no. 3, pp. 221-241, Aug. 2002.

[66] B. Markovsky, “The Structure of Theories,” Group Processes,
M. Foschi and E.J. Lawler, eds., pp. 3-24, Nelson-Hall, 1994.

[67] R.A. Maxion and R.T. Olszewski, “Eliminating Exception Hand-
ling Errors With Dependability Cases: A Comparative, Empirical
Study,” IEEE Trans. Software Eng., vol. 26, no. 9, pp. 888-906, Sept.
2000.

[68] E. McMullin, “A Case for Scientific Realism,” Scientific Realism,
J. Leplin, ed., Univ. of California Press, 1984.

[69] J. Miller, M. Wood, and M. Roper, “Further Experiences with
Scenarios and Checklists,” Empirical Software Eng., vol. 3, no. 1,
pp. 37-64, Mar. 1998.

[70] B. Mohr, Explaining Organizational Behavior. Josey Bass, 1982.

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

[71] E. Nagel, The Structure of Science: Problems in the Logic of Scientific
Explanation. Harcourt, Brace and World, 1961.

[72] E. Nagel, The Structure of Science. Hackett, 1979.
[73] D.A. Norman, The Design of Everyday Things. Basic Books, 1988.
[74] D. Papineau, “Philosophy of Science,” The Blackwell Companion to

Philosophy, N. Bunnin and E.P. Tsui-James, eds. Blackwell, 1996.
[75] S.L. Pfleeger, “Albert Einstein and Empirical Software Engineer-

ing,” Computer, vol. 32, no. 10, pp. 32-38, Oct. 1999.
[76] A.A. Porter, H.P. Siy, C.A. Toman, and L.G. Votta, “An

Experiment to Assess the Cost-Benefits of Code Inspections in
Large Scale Software Development,” IEEE Trans. Software Eng.,
vol. 23, no. 6, pp. 329-346, June 1997.

[77] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta, “A
Controlled Experiment in Maintenance: Comparing Design
Patterns to Simpler Solutions,” IEEE Trans. Software Eng., vol. 27,
no. 12, pp. 1134-1144, Dec. 2001.

[78] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W.F. Tichy,
“Two Controlled Experiments Assessing the Usefulness of Design
Pattern Documentation in Program Maintenance,” IEEE Trans.
Software Eng., vol. 28, no. 6, pp. 595-606, June 2002.

[79] R. Rorty, Consequences of Pragmatism. Univ. of Minnesota Press,
1982.

[80] A. Rosenberg, Philosophy of Science, A Contemporary Introduction.
Routledge, 2001.

[81] P.J. Runkel and M. Runkel, A Guide to Usage for Writers and
Students in the Social Sciences. Rowman and Allanheld, 1984.

[82] M. Ruse, “Theory,” The Oxford Companion to Philosophy,
T. Honderich, ed., Oxford Univ. Press, pp. 870-871, 1995.

[83] D. Sandborg, “Mathematical Explanation and the Theory of Why-
Questions,” British J. Philosophy of Science, vol. 49, no. 4, pp. 603-
624, Dec. 1998.

[84] D.P. Schwab, “Construct Validity in Organizational Behavior,”
Research in Organizational Behavior, vol. 2, B.M. Staw and
L.L. Cummings, eds., pp. 3-43, AI Press, 1980.

[85] W.R.Shadish,T.D.Cook,andD.T.Campbell,ExperimentalandQuasi-
Experimental Designs for Generalized Causal Inference. Houghton
Mifflin, 2002.

[86] H.A. Simon, The Sciences of the Artificial, third ed., MIT Press, 1996.
[87] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A.

Karahasanovi�c, N.K. Liborg, and A.C. Rekdal, “A Survey of
Controlled Experiments in Software Engineering,” IEEE Trans.
Software Eng., vol. 31, no. 9, pp. 733-753, Sept. 2005.

[88] R.I. Sutton and B.M. Staw, “What Theory Is Not,” Administrative
Science Quarterly, vol. 40, pp. 371-384, 1995.

[89] W.F. Tichy, “Should Computer Scientist Experiment More?
16 Excuses to Avoid Experimentation,” Computer, vol. 31, no. 5,
pp. 32-40, May 1998.

[90] W.M.K. Trochim, The Research Methods Knowledge Base. Atomic
Dog, 2001.

[91] A.H. Van de Ven, “Nothing Is Quite So Practical as a Good
Theory,” Academy of Management Rev., vol. 14, no. 4, pp. 486-489,
1989.

[92] K.G. van den Berg and P.M. van den Broek, “Programmers’
Performance on Structured versus Nonstructured Function
Definitions,” Information and Software Technology, vol. 38, no. 7,
pp. 477-492, July 1996.

[93] B. Van Fraassen, The Scientific Image. Oxford Univ. Press, 1980.
[94] I. Vessey, “Toward a Theory of Computer Program Bugs: An

Empirical Test,” Int’l J. Man-Machine Studies, vol. 30, no. 1, pp. 23-
46, 1989.

[95] D.G. Wagner, “The Growth of Theories,” Group Processes,
M. Foschi and E.J. Lawler, eds., pp. 25-42, Nelson-Hall, 1994.

[96] W.S. Waller and M.F. Zimbelman, “A Cognitive Footprint in
Archival Data: Generalizing the Dilution Effect from Laboratory to
Field Settings,” Organizational Behavior and Decision Processes,
vol. 91, pp. 254-268, 2003.

[97] R. Weber, “Editor’s Comments,” MIS Quarterly, vol. 27, no. 3,
pp. iii-xii, Sept. 2003.

[98] M. Webster Jr., “Experimental Methods,” Group Processes, M. Foschi
and E.J. Lawler, eds. Nelson-Hall, pp. 43-69, 1994.

[99] K.E. Weick, “Theory Construction as Disciplined Imagination,”
Academy of Management Rev., vol. 14, no. 4, pp. 516-531, 1989.

[100] K.E. Weick, “What Theory Is Not, Theorizing Is,” Administrative
Science Quarterly, vol. 40, pp. 385-390, 1995.

[101] D.A. Whetten, “What Constitutes a Theoretical Contribution,”
Academy Of Management Rev., vol. 14, no. 4, pp. 490-495, 1989.

[102] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering: An Introduction.
Kluwer Academic, 1999.

[103] R.K. Yin, Case Study Research: Design and Methods, third ed.,
Applied Social Research Methods Series, vol. 5. Sage, 2003.

[104] Z. Zhang, V. Basili, and B. Shneiderman, “Perspective-Based
Usability Inspection: An Empirical Validation of Efficacy,”
Empirical Software Eng., vol. 4, no. 1, pp. 43-69, Mar. 1999.

[105] T.K. Abdel-Hamid, K. Sengupta, and D. Ronan, “Software Project
Control: An Experimental Investigation of Judgment with Fallible
Information,” IEEE Trans. Software Eng., vol. 19, no. 6, pp. 603-612,
June 1993.

[106] R. Agarwal, “Cognitive Fit in Requirements Modeling: A Study of
Object and Process Methodologies,” J. Management Information
Systems, vol. 13, no. 2, pp. 137-162, 1996.

[107] R.N. Anthony and J. Dearden, Management Control Systems.
Richard D. Irwin, 1980.

[108] E. Arisholm, D.I.K. Sjøberg, and M. Jørgensen, “Assessing the
Changeability of Two Object-Oriented Design Alternatives—A
Controlled Experiment,” Empirical Software Eng., vol. 6, no. 3,
pp. 231-237, Sept. 2001.

[109] K.J. Arrow, Essays in the Theory of Risk-Bearing. North-Holland,
1970.

[110] R. Atkinson, D. Herrmann, and K. Wescourt, “Search Processes in
Recognition Memory,” Theories in Cognitive Psychology: The Loyola
Symposium, R.L. Solso, ed. Lawrence Earlbaum Assoc., 1974.

[111] R. Atkinson and R. Shiffrin, “Human Memory: A Proposed
System and Its Control Process,” Advances of Psychological Theory
of Learning and Motivation Research and Theory, vol. 2, K.W. Spence
and J.D. Spence, eds., Academic, 1968.

[112] A.O. Awani, Data Processing Project Management, Petrocelli, 1986.
[113] H. Barki, S. Rivard, and J. Talbot, “Toward an Assessment of

Software Development Risk,” J. Management Information Systems,
vol. 10, no. 2, pp. 203-225, 1993.

[114] R.M. Belbin, Management Teams. Wiley, 1981.
[115] R.M. Belbin, Team Roles at Work. Butterworth-Heinemann, 1993.
[116] B.J. Biddle, Role Theory: Expectation, Identities, and Behaviors.

Academic Press, 1979.
[117] R. Brooks, “Towards a Theory of the Comprehension of Computer

Programs,” Int’l J. Man-Machine Studies, vol. 18, no. 6, pp. 543-554,
June 1983.

[118] R. Brooks, “Using a Behavioral Theory of Program Comprehen-
sion in Software Engineering,” Proc. Third Int’l Conf. Software Eng.,
pp. 196-201, 1998.

[119] J.M. Burkhardt, F. Détienne, and S. Wiedenbeck, “Object-Oriented
Program Comprehension: Effect of Expertise, Task and Phase,”
Empirical Software Eng., vol. 7, no. 2, pp. 115-156, June 2002.

[120] W.G. Chase and H.A. Simon, “The Mind’s Eye in Chess,” Visual
Information Processing, W.G. Chase, ed., Academic, 1973.

[121] N. Chomsky, “Aspects of Theory of Syntax,” technical report, MIT
Press, 1965.

[122] A. Collins and E. Loftus, “A Spreading Activation Theory of
Semantic Processing,” Psychology Rev., vol. 82, pp. 407-428, 1975.

[123] R.L. Daft and R.K. Lengel, “Organizational Information Require-
ments, Media Richness and Structural Design,” Management
Science, vol. 32, no. 5, pp. 554-571, 1986.

[124] F.D. Davis, R.P. Bagozzi, and P.R. Warshaw, “User Acceptance of
Computer Technology: A Comparison of Two Theoretical
Models,” Management Science, vol. 35, no. 8, pp. 982-1003, Aug.
1989.

[125] D. Day, M. Ahuja, and L. Scott, “Constraints in Design
Engineering: A Report of Research in Progress,” Proc. Eighth
Australian Conf. Information Systems, pp. 509-516, 1997.

[126] K. Duncker, “On Problem Solving,” Psychology Monograph, vol. 58,
chapter 5, Am. Psychological Assoc., 1945.

[127] J. Dvorak, “Conceptual Entropy and Its Effect on Class Hier-
archies,” IEEE Computer, vol. 27, no. 6, pp. 59-63, June 1994.

[128] W. Edwards, “Conservatism in Human Information Processing,”
Formal Representation of Human Judgment, B. Kleinmuntz, ed.,
Wiley, 1968.

[129] E. Feigenbaum, “Information Processing and Memory,” Models of
Memory, D.A. Norman, ed. Academic, 1970.

[130] J. Greeno, “The Structure of Memory and the Process of Solving
Problems,” Contemporary Issues in Cognitive Psychology: The Loyola
Symposium, R.L. Solso, ed., Wiley, 1973.

[131] D.L. Harnett and L.L. Cummings, Bargaining Behavior: An
International Study. Dame, 1980.

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 105

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

[132] W.E. Hick, “On the Rate of Gain of Information,” Quarterly
J. Experimental Psychology, vol. 4, pp. 11-26, 1952.

[133] R. Hogarth, “Beyond Discrete Biases: Functional and Dysfunc-
tional Aspects of Judgmental Heuristics,” Psychological Bull.,
vol. 90, no. 2, pp. 197-217, 1981.

[134] R. Hyman, “Stimulus Information as a Determinant of Reaction
Time,” J. Experimental Psychology, vol. 45, pp. 188-196, 1953.

[135] M. Keil, L. Wallace, D. Turk, G. Dixon-Randall, and U. Nulden,
“An Investigation of Risk Perception and Risk Propensity on the
Decision to Continue a Software Development Project,” J. Systems
and Software, vol. 53, no. 2, pp. 145-157, Aug. 2000.

[136] J. Klayman and Y.W. Ha, “Confirmation, Disconfirmation, and
Information In Hypothesis Testing,” Psychological Rev., vol. 94,
no. 2, pp. 221-228, 1987.

[137] E.S. Knowles, “From Individuals to Group Members: A Dialectic
for the Social Sciences,” Personality, Roles and Social Behavior,
W. Ickes and E.S. Knowles, eds., Springer, 1982.

[138] N. Kogan and M.A. Wallach, Risk Taking: A Study in Cognition and
Personality. Holt, Rinehart, and Winston, 1964.

[139] R. Krovi and A. Chandra, “User Cognitive Representations: The
Case for an Object-Oriented Model,” J. Systems and Software,
vol. 43, no. 3, pp. 165-176, Nov. 1998.

[140] O. Laitenberger, K. El Emam, and T.G. Harbich, “An Internally
Replicated Quasi-Experimental Comparison of Checklist and
Perspective Based Reading of Code Documents,” IEEE Trans.
Software Eng., vol. 27, no. 5, pp. 387-421, May 2001.

[141] L.P.W. Land, C. Sauer, and R. Jeffery, “The Use of Procedural
Roles in Code Inspections: An Experimental Study,” Empirical
Software Eng., vol. 5, no. 1, pp. 11-34, Mar. 2000.

[142] S. Letovsky, “Cognitive Processes in Program Comprehension,”
Proc. First Workshop Empirical Studies of Programmers, pp. 58-79,
1986.

[143] S. Letovsky and E. Soloway, “Delocalized Plans and Program
Comprehension,” IEEE Software, vol. 3, no. 3, pp. 41-49, May 1986.

[144] K.B. Lloyd and D.J. Jankowski, “A Cognitive Information
Processing and Information Theory Approach to Diagram Clarity:
A Synthesis and Experimental Investigation,” J. Systems and
Software, vol. 45, no. 3, pp. 203-214, Mar. 1999.

[145] I. Lorge, D. Fox, J. Davitz, and M. Brenner, “A Survey of Studies
Contrasting the Quality of Group Performance and Individual
Performance, 1920-1957,” Psychological Bull., vol. 55, no. 6, pp. 337-
371, 1958.

[146] J.E. McGrath and A.B. Hollingshead, Groups Interacting with
Technology: Ideas, Evidence, Issues and an Agenda. Sage, 1994.

[147] B.A. Mellers and S. Chang, “Representations of Risk Judgments,”
Organizational Behavior and Human Decision Processes, vol. 57, no. 2,
pp. 167-184, 1994.

[148] G.A. Miller, “The Magical Number Seven, Plus or Minus Two:
Some Limits on Our Capacity for Processing Information,”
Psychological Rev., vol. 63, pp. 81-97, 1956.

[149] A. Newell and H.A. Simon, Human Problem Solving. Prentice Hall,
1972.

[150] A. Paivio, Imagery and Verbal Processes. Holt, Rinehart, and
Winston, 1971.

[151] R. Palmer and I. Rock, “Rethinking Perceptual Organization: The
Role of Uniform Connectedness,” Psychometric Bull. and Rev.,
vol. 1, no. 1, pp. 29-55, 1994.

[152] N. Pennington, “Comprehension Strategies in Programming,”
Proc. Second Workshop Empirical Studies of Programmers, pp. 100-
113, 1987.

[153] N. Pennington, “Stimulus Structures and Mental Representations
in Expert Comprehension of Computer Programs,” Cognitive
Psychology, vol. 19, pp. 295-341, 1987.

[154] A.A. Porter, H. Siy, A. Mockus, and L. Votta, “Understanding the
Sources of Variation in Software Inspections,” ACM Trans.
Software Eng. Methodology, vol. 7, no. 1, pp. 41-79, 1998.

[155] S. Ramanujan, R.W. Scamell, and J.R. Shah, “An Experimental
Investigation of the Impact of Individual, Program, and Organiza-
tional Characteristics on Software Maintenance Effort,” J. Systems
and Software, vol. 54, no. 2, pp. 137-157, Oct. 2000.

[156] P. Reisner, “Human Factors Studies of Database Query Lan-
guages: A Survey and Assessment,” ACM Computing Surveys,
vol. 13, pp. 13-31, 1981.

[157] E. Rosch, “Principles of Categorization,” Cognition and Categoriza-
tion, Lawrence Erlbaum, 1978.

[158] T.R. Sarbin, “Role Theory,” Handbook of Social Psychology,
G. Lindzey, ed., Addison-Wesley, 1954.

[159] C. Sauer, R. Jeffery, L.P.W. Land, and P. Yetton, “Understanding and
Improving the Effectiveness of Software Development Technical
Reviews: A Behaviourally Motivated Programme of Research,”
IEEE Trans. Software Eng., vol. 26, no. 1, pp. 1-14, Jan. 2000.

[160] C.E. Shannon, “A Mathematical Theory of Communication,” Bell
System Technical J., vol. 27, pp. 379-423, 1948.

[161] B. Shneiderman, “Measuring Computer Program Quality and
Comprehension,” Int’l J. Man-Machine Studies, vol. 9, no. 1,
pp. 465-478, 1977.

[162] L. Short, E. Williams, and B. Christie, The Social Psychology of
Telecommunications. John Wiley & Sons, 1976.

[163] S.B. Sitkin and A.L. Pablo, “Reconceptualizing the Determinants
of Risk Behavior,” Academy of Management Rev., vol. 17, no. 1,
pp. 9-38, 1992.

[164] E.E. Smith, “Concepts and Thought,” The Psychology of Human
Thought, Cambridge Univ. Press, 1988.

[165] E.E. Smith and D.L. Medin, Categories and Concepts. Harvard Univ.
Press, 1981.

[166] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert,
“Designing Documentation to Compensate for Delocalized
Plans,” Comm. ACM, vol. 31, no. 11, pp. 1259-1267, Nov. 1988.

[167] I.D. Steiner, Group Process and Productivity, Academic, 1972.
[168] E. Tulving, “Episodic and Semantic Memory,” Organization and

Memory, E. Tulving and W. Donaldson, eds., Academic, 1972.
[169] A. Tversky and D. Kahneman, “Judgement under Uncertainty:

Heuristics and Biases,” Science, vol. 185, no. 27, pp. 1124-1131,
Sept. 1974.

[170] T.A. van Dijk and W. Kintsch, Strategies of Discourse Comprehension.
Academic, 1983.

[171] I. Vessey, “Cognitive Fit: A Theory-Based Analysis of the Graphs
versus Tables Literature,” Decision Sciences, vol. 22, no. 2, pp. 219-
240, 1991.

[172] I. Vessey and D. Galletta, “Cognitive Fit: An Empirical Study of
Information Acquisition,” Information Systems Research, vol. 2,
pp. 63-84, Mar. 1991.

[173] R. Vinter, M. Loomes, and D. Kornbrot, “Applying Software
Metrics to Formal Specifications: A Cognitive Approach,” Proc.
Fifth Int’l Symp. Software Metrics, pp. 216-223, 1998.

[174] A. von Mayrhauser and S. Lang, “A Coding Scheme to Support
Systematic Analysis of Software Comprehension,” IEEE Trans.
Software Eng., vol. 25, no. 4, pp. 526-540, July/Aug. 1999.

[175] A. von Mayrhauser and A.M. Vans, “Industrial Experience with
an Integrated Code Comprehension Model,” Software Eng. J.,
vol. 10, no. 5, pp. 171-182, Sep. 1995.

[176] A. von Mayrhauser, A.M. Vans, and A.E. Howe, “Program
Understanding Behaviour during Enhancement of Large-Scale
Software,” Software Maintenance: Research and Practice, vol. 9,
pp. 299-327, 1997.

[177] M. Wertheimer, “Untersuchungen Zurlehre von der Gestalt: II,”
Psychologische Forschung, vol. 4, pp. 301-350, 1923.

[178] M. Wertheimer, Productive Thinking. Harper & Row, 1959.
[179] W.A. Wickelgren, How to Solve Problems. Freeman, 1974.
[180] W.A. Wickelgren, Learning and Memory, Personality, Roles and

Social Behavior. Prentice Hall, 1977.
[181] S. Wiedenbeck, “Novice/Expert Differences in Programming

Skills,” Int’l J. Man-Machine Studies, vol. 23, no. 4, pp. 383-390,
1985.

[182] M.Y.M. Yen and R.W. Scamell, “A Human Factors Experimental
Comparison of SQL and QBE,” IEEE Trans. Software Eng., vol. 19,
no. 4, pp. 390-409, Apr. 1993.

Jo E. Hannay received the MSc degree in
computer science from the University of Oslo in
1995 and the PhD degree in specification and
data refinement using type theory and logic from
the University of Edinburgh in 2001. He has two
years of experience as a software developer in
the insurance industry. He is currently a post-
doctoral fellow at Simula Research Laboratory.
His interests include the use and development of
theories in empirical software engineering, the

nature of knowledge useful to software engineering, and logics and
formalisms for describing knowledge.

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

Dag I.K. Sjøberg received the MSc degree in
computer science from the University of Oslo in
1987 and the PhD degree in computing science
from the University of Glasgow in 1993. He has
five years of industry experience as a consultant
and group leader. He is now the research
director of the Department of Software Engi-
neering at Simula Research Laboratory, and a
professor of software engineering in the Depart-
ment of Informatics at the University of Oslo.

Among his research interests are research methods in empirical
software engineering, software processes, software process improve-
ment, software effort estimation, and object-oriented analysis and
design. He is a member of the IEEE and the IEEE Computer Society.

Tore Dybå received the MSc degree in electrical
engineering and computer science from the
Norwegian Institute of Technology in 1986 and
the PhD degree in computer and information
science from the Norwegian University of
Science and Technology in 2001. He is the
chief scientist at SINTEF ICT and a visiting
scientist at the Simula Research Laboratory. Dr.
Dybå worked as a consultant for eight years in
Norway and Saudi Arabia before he joined

SINTEF in 1994. His research interests include empirical and
evidence-based software engineering, software process improvement,
and organizational learning. Dr. Dybå is the author and coauthor of more
than 50 publications appearing in international journals, books, and
conference proceedings in the fields of software engineering and
knowledge management. He is the principal author of the book Process
Improvement in Practice: A Handbook for IT Companies, published as
part of the Kluwer International Series in Software Engineering. He is a
member of the International Software Engineering Research Network,
the IEEE, the IEEE Computer Society, and the editorial board of
Empirical Software Engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HANNAY ET AL.: A SYSTEMATIC REVIEW OF THEORY USE IN SOFTWARE ENGINEERING EXPERIMENTS 107

Authorized licensed use limited to: West Virginia University. Downloaded on September 4, 2009 at 05:46 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

