
The type of evidence produced by empirical software
engineers

Judith Segal
Department of Computing

Faculty of Maths and Computing
The Open University

Walton Hall
Milton Keynes

MK7 6AA
UK

+44 (0)1908 659793
j.a.segal@open.ac.uk

Antony Grinyer
CSW Group Ltd
4240 Nash Court

Oxford Business Park South
Oxford

OX4 2RU
ENGLAND

+44 (0) 1865 337400
antony.grinyer@csw.co.uk

Helen Sharp
Department of Computing

Faculty of Maths and Computing
The Open University

Walton Hall
Milton Keynes

MK7 6AA
UK

+44 (0)1908 653638
h.c.sharp@open.ac.uk

ABSTRACT
This paper reports on the research published between the years
1997 and 2003 inclusive in the journal of Empirical Software
Engineering, drawing on the taxonomy developed by Glass et al.
in [3]. We found that the research was somewhat narrow in topic
with about half the papers focusing on measurement/metrics,
review and inspection; that researchers were almost as interested
in formulating as in evaluating; that hypothesis testing and
laboratory experiments dominated evaluations; that research was
not very likely to focus on people and extremely unlikely to refer
to other disciplines. We discuss our findings in the context of
making empirical software engineering more relevant to
practitioners.

Categories and Subject Descriptors
D.2. [Software Engineering]: Empirical software engineering,
evidence.

General Terms
Experimentation

Keywords
Empirical software engineering; research taxonomy; evidence;
field studies.

1. INTRODUCTION
In [6], we argued that the gap between empirical software
engineering and software engineering practice might be lessened
if more recognition were afforded to the following two points:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
REBSE’05, May 17, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-121-X/05/0005…$5.00

• Evidence from case or field studies of actual software
engineering practice is essential in order to understand
and inform that practice.

• The nature of evidence should fit the purpose to which
the evidence is going to be put. For example,
quantitative evidence might be necessary to convince a
manager to introduce some change in working
practices; a rich case study might persuade developers
to accept such a change.

In this paper, we investigate the nature of the evidence published
over a period of 7 years in the academic journal, Empirical
Software Engineering (see http://journals.kluweronline.com/).
Our investigation was inspired in part by questions arising from
the argument above – what is the prevalence of case and field
studies of software engineering practice? Is there a wide variety
in the types of evidence reported in the field of empirical software
engineering? – and in part by the work of Glass, Vessey and
Ramesh, as reported in [3]. These latter sought to describe the
current state of software engineering research by scrutinizing 369
papers representing a sample of those papers published in 6 top
software engineering journals over a period of 5 years. The
papers were classified along the following dimensions:

• The topic covered (for example, algorithms, data
structures; organisational issues);

• The research approach. This was divided into the
following categories: descriptive; formulative (for
example, of guidelines, methods, algorithms, models,
etcetera) and evaluative. This latter included the
subcategories of positivist and interpretivist. Positivist
research assumes the existence of an objective
measurable reality and the independence of the
researcher and object of research. It frequently takes
the form of hypothesis testing, referred to as ‘Evaluative
deductive’ in this paper. Interpretivist research, on the
other hand, argues that our understanding of reality
depends on how we interpret our perceptions in the light
of our experience: that is, the object of research and the
researcher are not separate. A field study in which our
understanding of reality emerges through social
interactions is a typical interpretivist study.

1

• The research methods. These included positivist
methods such as laboratory experiments and
interpretivist methods such as field studies.

• The reference discipline. Just as civil engineering (say)
is an applied science informed by the pure sciences
(reference disciplines) of mathematics, geology,
chemistry, physics etcetera, so software engineering is
an applied science potentially informed by pure
sciences such as mathematics, psychology, sociology,
etcetera.

• Units of analysis. These included categories such as the
profession; the group; individuals; computer system,
computer element such as program.

Glass et al. found that

• The spread of topics was broad (though a closer look at
their results shows that less than 3% of the papers were
on organisational and societal topics. It appears that
the term ‘broad’ refers only to technical topics).

• As to research approach, over half the papers were
formulative; a further 28% were descriptive and only
14% evaluative (4% evaluative deductive; less than 1%
interpretative). This is consistent with the results of
Tichy et al. [8], who commented on the lack of
experimental evaluation in Computer Science
publications in the early 1990s.

• Research methods were dominated by conceptual
analysis, proof-of-concept and mathematical analysis,
which together accounted for nearly three quarters of all
the papers.

• In 98% of the papers surveyed, reference disciplines
were not mentioned.

• Most of the units of analysis were on abstract concepts:
only 11% of the papers surveyed focused on people.

Glass et al.’s study did not include the journal Empirical Software
Engineering, which we assumed had published a good portion of
empirical software engineering research since its inception in the
middle 1990s. We thus determined to carry out a classification on
papers published by this journal, similar to the one carried out by
Glass et al.

Given our argument in [6] and described above, we hoped to find
many field studies of software engineering practice, and a variety
of different types of evidence to fit the variety of purposes to
which such evidence could be put. As we shall see, our hopes
were not realized.

2. METHODOLOGY

2.1 The material
We classified all those 119 papers which appeared in Empirical
Software Engineering between 1997 and 2003 inclusive,
excluding only those that were pure polemic. Our classification
scheme was based on that of Glass et al. with some amendments
to fit our own purposes. These amendments are as follows:

• In ‘units of analysis’, where people were involved, we
determined whether they were practitioners or students;
what the nature of their activity was, and whether they
were interacting with real-world or artificial systems. It
was important for our purposes to differentiate between
papers where the focus was on students and ‘toy’
systems, and those where the focus was on practitioners
developing, testing or maintaining systems in the real
world.

• We included another category to record whether the
authors of a particular paper were academics,
practitioners or both. We based our decision on the
email addresses provided. We shall comment in section
3 on the inherent ambiguity in this.

2.2 The method
Two coders classified all the 1997 papers and then came together
to discuss their individual classifications, thus coming to a shared
understanding of the classification scheme. Papers from the years
1998 – 2003 were then coded independently, though the two
coders continued to discuss how the coding scheme might be
interpreted and extended as issues arose. For each paper, we
hoped to gain sufficient information to complete the coding by
reading its abstract and conclusions; if this did not suffice, we
speed read the paper to determine (for example) whether there
was mention of a hypothesis or of statistical testing (both
indicative of an evaluative deductive research method), or
whether the participants (if any) were students or practitioners.
Only if the required information was still not forthcoming did we
carefully peruse the paper.

We accept that the resulting coding cannot be completely
objective, not least because of the inherent ambiguity of the
classification scheme. For example, if a paper describes the use
of some metric in order to distinguish between two testing
schemes, it is difficult to know if the authors’ intention was to
focus on the metric or on testing. Nevertheless, the two
independently coded sets of papers showed a high measure of
agreement, averaging 83% across the classification categories.
The papers were then handed to a third coder (who had not been
party to the earlier discussions), who recoded those papers on
which the first two coders disagreed, according to the agreed
classification scheme.

3. RESULTS
Here, we report our findings.

3.1 Research topic
5 topics (at the level of granularity provided in [3]) covered over
three quarters of the papers, as shown below.

Table 1. Topic
Software life-cycle/engineering (incl.
requirements, design, coding, testing,
maintenance)

33%

Measurement/metrics (development and use) 19%

Process management 10%

Tools (incl. compilers, debuggers) 8%

2

Computing Research (that is, meta-level issues,
such as discussions about methodologies) 8%

No other topic was covered in more than 4% of the papers.
Analysing the most common topic (software life-
cycle/engineering) in more detail, almost half of the papers
covering this topic were concerned with maintenance and a
further third with review and inspection. Perhaps this bias is a
reflection of the workshops held and journal special issues
published during the period under consideration.

3.2 Research approach
The research approaches seen in the papers we scrutinised are
recorded in Table 2 below.

Table 2. Research Approach

Evaluative deductive 46%

Descriptive 13%

Formulative (process, method, algorithm) 10%

Formulative (model) 8%

Formulative (guidelines/standards) 5%

Evaluative – other 5%

Review of literature 5%

Evaluative – interpretive 2%

No other research approach was seen in more than a single paper.
Given that we are considering empirical software engineering, we
were surprised that only just over a half of the papers featured
evaluation (though mindful that this was about four times the
number noted in the general software engineering literature by
Glass et al.). Of these, evaluative deductive – testing hypotheses
in a very positivist tradition – dominated.

3.3 Research method
Table 3 records the research methods used.

Table 3. Research Method

Laboratory experiment (human subjects) 29%

Data analysis 15%

Case study 13%

Descriptive/exploratory survey 12%

Laboratory experiment (software) 7%

Concept implementation (proof of concept) 7%

Meta-analysis 6%

Literature review/analysis 6%

No other research method was seen in more than 2 of the papers.
The dominance of laboratory experiments (in 36% of the papers)
reflects the dominance of the evaluative deductive, hypothesis
testing, research approach.

3.4 Reference discipline
The next table indicates that empirical software engineers, like
software engineers in general as noted in [3], tend to be insular
and take little cognisance of research in other disciplines.

Table 4. Reference Discipline

None 85%

Psychology 6%

Statistics/mathematics/computational science 5%

Social Science 4%

3.5 Units of analysis
In table 5, we consider units of analysis, that is, the entities which
were the focus of the papers.

Table 5. Units of Analysis

Real-life computer system/data/project 36%

Profession 24%

Individual students 18%

Individual practitioners 7%

Teams of students 4%
Artificial laboratory computer
system/data/project 3%

Team of practitioners 2%

Other 6%

Here, we see that only 31% of the papers had people at their focus
(and given the results of Table 3, presumably the vast majority of
these concerned laboratory experiments, that is, people in an
artificial setting). On the other hand, over a third of the papers
focussed on real-world systems.

3.6 Who wrote the papers?
Finally, we consider authorship of papers in Table 6.

Table 6. Paper author(s)

Academic authors alone 73%

Mixture of academic and practitioner authors 16%

Practitioners alone 11%

We noted in 2.1, that we determined whether an author was an
academic or practitioner simply on the basis of his/her email
address. We recognise that this does not take account of
practitioners being seconded to academic institutions and vice
versa, nor the fact that the distinction between an academic
department and a research department in an industrial setting may
not be clear-cut. Nonetheless, academic authors clearly
predominate.

3

4. DISCUSSION
Our results reveal that, based on an analysis of 119 papers,
comprising nearly all the output of the journal Empirical Software
Engineering between the years 1997 and 2003 inclusive,
empirical software engineers are

1. Somewhat narrow in topic, with measurement/metrics,
maintenance, and review and inspection accounting for
about half the papers;

2. Almost as interested in formulating (processes; models;
guidelines), describing and reviewing, as in evaluation;

3. Far more likely to evaluate using hypothesis testing
than any other method;

4. Likely to do laboratory experiments (described in over a
third of the papers);

5. Very unlikely to refer to any other scientific discipline;
6. Not very likely to focus on people.

This last point is, we think, unfortunate, in that software engineers
are in general agreement as to the importance of people factors in
the successful practice of software engineering ([5], [1], [2]).
Given this importance, we feel that software engineers might take
more cognizance of reference disciplines in the social sciences
such as psychology and sociology (cf. point 5 above).
With respect to point 4 above: cognizant of the fact that software
engineering takes place within a context – a particular team of
people are involved; a particular application environment; a
particular development environment; a particular organisational,
social, market environment – we would encourage empirical
software engineers to consider using research methods which take
account of the complexity of context, such as field studies, rather
than methods which factor out the effect of context, such as
laboratory studies. Such studies can make use of natural controls
to confirm/disconfirm a hypothesis ([4]), cf. point 3.
An argument often made against field studies is that they cannot
be replicated – but neither can a software engineering activity in
the real world (one cannot dip one’s toes into the same river
twice!). Validation of such studies can be based not on
replication of the study but on replication of the interpretation: the
question to ask is, would other researchers from the same
scientific cultural tradition as the original researcher(s) and given
the same data, come to the same conclusions?
We recognize the practical difficulties of involving practitioners
in research and performing field studies ([7]). It is clearly easier
to involve students in a laboratory experiment, and as Tichy says
in [9], graduate students in computer science can be more
technically adept and up to date than practitioners. However,
graduate students are not practitioners: they do not work in the
same organisational and professional context; they are not subject
to the same pressures. It is plausible that there are circumstances
where laboratory experiments with students might yield results
which can inform practice (for example, experiments concerned
with individual cognition such as one designed to test whether
this representation is easier to comprehend (in some sense) than
that). Nevertheless, we urge researchers to scrutinize the external

validity of their laboratory experiments – do the results of their
research really have the potential to inform the richly
contextualized practice of software engineering?
In the above, we have argued for the importance of field studies in
empirical software engineering within the positivist tradition of
hypothesis deduction and testing. In [6], we argued for their
importance in constructing within the interpretivist tradition an
understanding of the actual practice of software engineering. We
argued that such an understanding on the part of empirical
software engineers may have an important role to play in bridging
the gap between them and practitioners.
Although we are disappointed by the lack of field studies and
especially interpretive field studies, we are pleased by two facets
of current empirical software engineering research. Firstly, we
applaud the efforts of many of the researchers surveyed to
consider real-life systems, data and projects (see Table 5).
Secondly, our analysis presents evidence that empirical software
engineers are ‘reflective practitioners’; they reflect upon their
discipline and how it might be improved (witness the fact that a
quarter of the papers surveyed focused on the profession, as
recorded in Table 5). It remains to be seen whether this reflection
will influence empirical software engineering practice.

5. REFERENCES
[1] Boehm, B., Turner, R.. Balancing Agility and Discipline.

Addison-Wesley, 2004.
[2] Cockburn, A. Agile Software Development. Addison

Wesley, 2002.
[3] Glass, R.L., Vessey, I., Ramesh, V. Research in software

engineering: an analysis of the literature. Information and
Software Technology, 44, 491-506, 2002.

[4] Lee, A.S. A scientific methodology for MIS case studies.
MISQ, 33-50, 1989.

[5] Seaman, C. Methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering,
25(4), 557-572, 1999.

[6] Segal, J. The nature of evidence in empirical software
engineering. Proc. Intl. Workshop on Software Technology
and Engineering Practice (STEP 2003), IEEE Computer
Society Press, 40-47, 2003.

[7] Sim, S.E., Singer, J. and Storey, M-A. Beg, Borrow or Steal:
Using Multidisciplinary Approaches in Empirical Software
Engineering Research. Empirical Software Engineering, 6,
85-93, 2001.

[8] Tichy, W., Lukowicz, P., Prechelt L., and Heinz, E.
Experimental Evaluation in Computer Science: A
Quantitative Study. J.Systems Software, 28, 9-18, 1995.

[9] Tichy, W. Hints for reviewing empirical work in software
engineering. Empirical Software Engineering, 5, 309-312,
2000

4

