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2. PROJECT DESCRIPTION: A strange feature of the 21
st
 century is that while there is much we can 

learn from each other, there is little we dare to share.  How can we enable more effective data sharing? 

The Internet lets anyone in the world transmit gigabytes of data from anywhere to anywhere else. 

Data miners can use that data to uncover significant patterns, even for large data sets [LDM09].  The 

same data mining tools can detect when new data is somehow strange and should be investigated or 

ignored [Wong05]. Otherwise, the models learned in this way can be incrementally improved as new data 

arrives [DL10].  Nevertheless, inter-organizational information sharing is inhibited by (a) privacy statutes; 

(b) regulations that limit the distribution of non-public personal information (NPPI); and (c) by 

organizational fears of disclosing confidential, sensitive, or proprietary information. For example, in the 

field of medicine: the Real-Time Outbreak Detection System (at U. Pitt.) seeks out-break patterns in  data 

from healthcare providers. While that data is de-identified in accordance with HIPAA safe-harbor rules 

(removing 19 kinds of identifiers), privacy concerns make some participants hide information vital to 

tracking disease patterns; e.g. number of visits by ZIP code [Cli04]. For another example, in the field of 

software engineering: planning for software development efforts can be facilitated using patterns found in 

all projects.  Boehm reports that the longer an error is left in software, the more expensive it is to remove 

[Boe76]. The size of these effects is still unclear: software developers usually do not publish their (e.g.) 

defect rates just in case this gives their competitors an unfair advantage in a competitive bidding situation. 

Rather than cajole organizations to work against their own self-interest and expose their data, we 

need to refine data mining techniques that can work in the real world, by allowing data to stay protected 

while building common knowledge.   

Our proposed work is very different to other research on privacy & data mining. Most of that research 

proposes exposing all data after anonymoization by (e.g.) adding random noise [Bec80,Agr00, Vai04]; or 

generalizing specific data [Swe02a, Mas07].  Sadly, that research suffers from very limited verification. 

Fung et al. report that one data set (the 48,842 records of ADULT; see http://goo.gl/jvxb) “is the de facto 

benchmark for testing anonymization algorithms” and list 13 papers that use it as the only test case for 

their algorithms [Fun08]. This limited verification is troubling.  Brickell and Shmatikov report experiments 

where to achieve privacy using standard methods like k-anonymity and !-diversity “requires almost 

complete destruction of the data-mining utility” [Bri08]. Their conclusions, based on just one data set 
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(again, the ADULT data set) may not be externally valid. However, such disturbing results clearly demand  

more verification of privacy methods, ideally on more data sets from more sources.  

Our approach, is based on three principles: 

• NO DATA EXPOSURE: Based on decades of work in data mining and data sharing [Men03a,Men06, 

Men07a,Men09a,Mor09,Mor10,Shu99,Shu00a,Shu00b,Shu07], we assert that it is very unlikely that 

organizations will expose their data. However, some communities might form trusted enclaves of data 

providers which, under strictly controlled conditions, will grant limited access to other enclave 

members. For example, in our approach, if a data miner is dispatched from a sender to a receiver 

then before that data miner returns to sender, the receiver imposes their privacy restrictions to 

expunge conclusions they wish to keep private. 

• EXTENSIVE VERIFICATION: To be convincing, privacy methods need to be assessed on records 

from multiple sources. Hence, we test our approach using (a) numerous data sets from the medical 

and software engineering domain; and (b) the privacy restrictions associated with those data sets.    

• DETERMINING THE PRICE OF PRIVACY: We will selectively increase the privacy restrictions on our 

test data until our data miners stop working. In this way we will report the price of privacy; i.e. how 

much can we protect out data before losing the ability to make useful conclusions. 

We argue that this proposal is very timely since, in the very near future, there will be much 

restructuring of federal privacy regulations. Already, there is much debate on the value (or otherwise) of 

the 1996 HIPA regulations [Ness07,Ness09]. Also, responses to electronic terrorism will require granting 

controlled government access to more data sets (see http://goo.gl/gvpr).  In order to best redesign privacy 

legislation, we need a better understanding of the cost-benefit trade offs associated with privacy and data 

mining efficacy. Hence, this proposal. 

Note that our emphasis on extensive verification using data collected from multiple organizations will 

be resource intensive and required collaboration from multiple sites. Hence, we propose this work as a 

LARGE project under the category of Trustworthy Computing. 

2.1a Research goals and anticipated results: The goal of our research is to better understand the cost-

benefit trade-offs between increasing privacy constraints and decreasing data mining efficacy. We 
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specifically address three areas of important economic and social benefit: software cost estimation, 

software inspection control, and disease patterns in communities. These tasks are exemplars of a wide 

class of activities where groups are engaged in similar activities but cannot share data due to institutional 

or legislative or social considerations.  

In order to achieve these goals we will address the following research tasks:  

1. Implement a privacy-based data mining without exposing private data.  

2. Improve the state of the art in software cost estimation, quality inspection control and 

recognizing patterns in chronic disease management. 

a) Software cost models require calibration. Rarely does an organization have enough data to 

calibrate their own models.  The best models are built after sharing data from many sites. 

b) Quality inspections can be too expensive to conduct on all parts of an engineering product. 

Given sufficient experience, it is possible to prioritize what to inspect first, second, etc. 

However, rarely is there enough experience without one organization to learn the best 

prioritization. 

c) Chronic disease management is often complicated by conditions that are infrequent at one 

site, but may occur at repeated sites. If health organizations can share data from enough 

sites, then it may be possible to gain enough information to learn effective treatments. 

We expect that our work will cover these three specific areas, will result in their improvement, and it will 

accelerate the broader adoption of our distributed data mining methods.  

2.1b Intellectual Merit: Two unique features of the 21
st
 century are the increasing use of electronic 

records and an increasing awareness of the security and privacy concerns about that data.  Learning in 

such an environment is a complex task.  While we seek models that work on as large a population as 

possible, we also need to recognize when locally learned lessons give different, and better, results than 

general conclusions. Hence, we need better ways to apply and compare the results of data mining from 

numerous results. Such comparisons are impossible unless some degree of access is permitted. 

However, such access is often blocked by security or privacy considerations.  
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The PIs have more than two decades of combined research experience in applying data   mining 

techniques to solve real world problems, such as: defect prediction, effort and cost prediction,  controlling 

the inspection process, defect location,  optimization of non-linear models, etc [Gay10, Koc10, Men00, 

Men03a, Men03b, Men06, Men07a, Men07b, Men09a,Mor09,Mor10,Shu99,Shu00a, Shu00b, Shu07]. A 

repeated issue in all that work was obtaining access to data. For example,  since 2006, we have tried to 

obtain permission to apply PI Menzies’ data mining methods to PI Shull’s software inspection data. The 

reply from our business partners has always been the same:  

• The data cannot be leave the firewalls to travel to Menzies’ group at WVU;  

• But if the data miners could inside the local firewalls, and if the local business users could audit and 

censor the results before they are distributed, then that would be permissible.   

Formally, these business partners are requesting (i) a distributed data mining solution where (ii) the 

learned models from the data miners are in some human-readable (and hence, human-auditable) format.  

Clearly, one major issue with such an architecture is that if business users can censor the data mining 

results, will we lose data mining efficacy? This research proposal was designed to address this question.  

 If we can show it is possible to build privacy-aware distributed data miners, and that the 

conclusions of those data miners are not unduly damaged by privacy restrictions, then this would usher in 

a new age of trust where data owners understand they can retain control of their data while still 

coordinating and sharing with other groups.   

2.2 TEST DOMAINS: This research will impose increasingly onerous levels of privacy restrictions on a 

distributed data miner executing in two domains: (1) hospitals; (2) software engineering companies. At 

first glance, these domains may appear different. However, in terms of data sharing, they are very similar: 

• Both need to share data while at the same time, retaining privacy. 

• Both can be modeled as a nested trusted enclave; i.e. a tree of information sources in which parents 

can only see their children; and where all nodes strive to retain privacy. 

The rest of this section describes these test domains. 

2.2.a Sharing, Privacy and Learning in Software Engineering:  Software is everywhere. Software has 

become a critical enabling technology for realization of functions central to our society. For example, most 
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new cars are executing tens of millions of lines of software code, controlling everything from your brakes, 

to the intensity of the headlights, to the volume of the radio [Cha09]. Our energy generation, distribution 

systems; and even the pacemakers that control the beat of our hearts are relying on software. Hence, 

software failures can damage vital infrastructure. For example: 

• In 2005, more than a decade after the opening of the Denver International  Airport in 1995, and after 

spending $230 million on the troubled computerized baggage-handling, United Air Lines Inc. gave up 

on the failed project The troubled computerized baggage-handling system never work as designed 

and was responsible for a delay in opening the airport in  the first place (see http://goo.gl/qUmW). 

• The FBI uses software to investigate terrorism. A new Virtual Case File system was commissioned  in 

2001, but  delivered until  December 2004  Finally, in 2005 the FBI scraped the troubled $170 million  

computer initiative completely (see http://goo.gl/7u3A). 

Clearly, software engineering (SE) as a discipline lags behind in terms of its ability to provide 

engineering processes which deliver artifacts of predictable quality within the required time frame. One 

approach to this problem is empirical software engineering which strives to find the patterns of success 

and the patterns of failures seen in real-world data from software projects. Advanced AI techniques such 

as data mining can find patterns in project data that predict for some quality variable such as number 

and/or location of bugs, development time, etc. Recent results from this work includes the following 

empirical patterns discoveries which find patterns: 

• That reduce the effort of inspecting code by 71% [Tosun10];  

• That reduce development effort, without incurring the penalty of greater defects [Men09b];  

• To predict defect locations that are 1.5 to 3 times better than industrial practice [Men10b]. 

Sometimes, these empirical patterns apply only to a particular suite of software or an organization [Kit10]. 

However, recent results   suggest that some of these empirical patterns might even apply to multiple 

software suites or organizations [Tur09,Koc10]. That is, if software organizations dared to share data, 

then could use each other’s data to (e.g.) manage new kinds of projects that had not been attempted 

locally, but which had been tried elsewhere. 
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There is a problem, however, with such data sharing.  Extracting project data from organizations is 

very difficult due to the business sensitivity associated with the data. Recently, open source code 

repositories have become a rich source of software product data. However, software process data (e.g. 

what analyst capabilities lead to what development effort) is still very hard to obtain: 

• Boehm (personnel communication) was able to collect 161 project records relating to development 

effort despite 30 year of work with many companies in the USA and China  

• In our own work after two years we were only ever able to add 7 records to our NASA wide software 

cost metrics repository [Gre09b].    

We diagnosis the problem as a lack of trust. Software organizations do not trust each other to share data, 

lest it gets used against them in (say) during competitive bidding. The goal of our distributed mining is to 

enable a consortium of companies to share data, without any of them revealing critical information. 

2.2.b Sharing, Privacy and Learning in Hospital Medicine:  This medical domain is  concerned with the 

quality of patient care which is strongly related to  the availability and quality of data. It is a domain that is 

ripe for data mining technology.  The trend  to consolidation in the healthcare industry with individual 

standalone community based facilities  being acquired and integrated into regional healthcare systems 

provides an opportunity for  localized data mining within the system. Administrators can look for patterns 

of best practices  and errors across the individual departments, facilities, and practice groups.  For 

example,  at the Kimball Medical Center (an affiliate of the Saint Barnabas Healthcare System in New  

Jersey), they have devised a data mining process that found “golden nuggets” of clinical quality  data that 

helped to improve patient care while providing best-practice information to  physicians. [Vel08]   

The ability to effectively share information, process it, and use the results in clinical decision support, 

while respecting patient privacy and ethical regulations in the entire process, can have  significant impact 

on the quality of care offered. [Xia09].  Mining of existing records related to chronic conditions such as 

diabetes, obesity, and cardiovascular disease is expected to lead to  more effective treatment and 

prevention [Rak10].  Diseases develop and evolve over time so modeling the treatment sequentially is 

also expected to be beneficial [Rak10].   
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It  may not be sufficient to make public health conclusions based on data from a single site. Data 

pertaining to  patient safety is collected not only by physicians but also by the government and by 

insurers.   Mishaps, however, are still investigated episode by episode rather than through collective 

efforts. Such widespread collective efforts can yield significant resuts. In 1973, Wennberg and Gittlesohn 

[Wen73] reported significant variations in the rates of common surgical procedures across small 

geographic areas of Vermont that were not  attributable to differences in the patient populations.  The 

results have been confirmed across the US in subsequent studies (“the Dartmouth studies”).  Further, 

these studies found that increased  use of medical services has not been associated with improved 

outcomes, suggesting unwarranted  costs. [Sut09].  Critics of the studies note the lack of sufficient data 

regarding other conditions  and severity of illness [Zuc10]. For instance, additional testing may identify 

more diagnosed  conditions for the same underlying illness [Son10].  According to Epstein [Eps10], the  

unexplained variations in care are really indicative of the lack of knowledge of best practices.   Clearly, 

such regional variations motivate the wider sharing of information. 

Although the necessity of collaborative sharing and learning has been recognized, there is little 

systematic  knowledge sharing of clinical intervention outcomes [Xia09] [Gre06]. Privacy concerns are a  

mitigating factor impeding the sharing of data between entities. Competent health care depends  on 

accurate and complete information. The collection and use of information relies on trust  between the 

provider and the recipient and the belief by the provider that his privacy will not be  compromised.  The 

costs when the provider feels a lack of privacy include misdiagnosis or errors in care in the medical 

arena, false imprisonment or missed opportunities and severe monetary  penalties in the private sector.  

The cost of a data breach for companies has risen to $202 per lost  record, up from $197 in 2007. For the 

47 companies audited in the study, those costs added up to  $6.6 million per incident [Gre09].  

Recent legislation has required hospitals to express their records in a uniform manner. The Health 

Information Technology for Economic and Clinical Health (HITECH) Act is  intended to spur the electronic 

exchange of health information to improve quality and  improvement of care and reduce errors and 

unnecessary procedures while strengthening privacy  and security of identifiable health information.  (see 

http://bit.ly/gk3BO). A key outcome of this initiative is the mandated move to the use of International 

Classification of Diseases v.10 (ICD-10) coding  scheme which provides finer granularity of coding.   
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This uniform data structure means that distributed data mining might be successfully applied in 

hospitals.  Once  the ontology of that site is known (e.g. if it uses ICD-10), then designing that agent to 

interface with the data it might find becomes a simpler engineering task.  Formally, this means that   data 

miners can reason about horizontally partitioned data (same tables, with rows stored at different sites). 

Further, in  our discussions with hospital administrators, it has become clear that if we give those 

administrators the same audit-and-censor functionality requested by the software engineering managers, 

then  that would increase the willingness for receiver sites to accept and execute someone else’s data 

miner (since they could audit and censor any out-going results, before anyone else sees them).  

2.2c Trusted Nested Enclaves: Our thesis is that hospitals and software engineering companies can 

both be modeled as a nested trusted enclave; i.e. a tree of information sources in which parents can only 

see their children; and where all nodes strive to retain privacy. Such enclaves form are acyclic  network 

where data miners of some parent  node (at level N) can only access the data of their child nodes (at 

level N+1). Each child node also  contains data miners that reflect on grandchild nodes (recursively). 

It is simple enough to demonstrate the nested structure of information sources in hospitals and 

software engineering organizations.  Figure 1 details a possible recursive refinement into several levels 

for the Software Engineering and medical domains. In general, such refinement levels will help align 

implementing our enclave learners with any hierarchically structure in other organizations and domain, 

such as finances, intelligent services, or even universities. 

Formally, we say that enclaves are sets of semi-honest adversaries collaborating to try and learn from 

each  other, without revealing too much about themselves (a semi-honest party follows the rules of the  

protocol using its correct input, but is free to later use what it sees during execution of the  protocol to 

compromise security).  In our work, we explore data sharing in trusted enclaves (e.g.,  see [Mor09, 

Mor10]).  A trusted enclave runs agents that offer Continuous Compliance  Assurance (CCA), where 

“compliance” is assessed with respect to some query describing the  kinds of information that must not be 

revealed from the enclave.   

 

Enclave level Software Engineering Domain Medical Domain 
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1 Research network (e.g., International Software 

Engineering Research Network – ISERN 

Empirical Software Engineering group – ESE, 

ISERN: http://isern.iese.de) 

State (e.g., WV, MD, DC) 

2 Research group (e.g. , FC-MD, SEI, IESE: 

http://www.iese.fraunhofer.de/index.jsp.) 

Hospital Groups 

3 Application Context   

(e.g., aerospace, education, financial)  

Single hospital / unit 

4 Projects/Programs  

(e.g., NASA, Keymind, DoD) 

Departments (e.g., ICU, 

pediatrics, radiology,…) 

5 Sub-groups (e.g., according to location, code 

packages, application context) 

Private practice / remote clinics 

/ physician specialties 

Figure 1: Refinement example of research enclaves for the Software Engineering and medical domains.  

 

Based on our work with government institutions, we assume the following ontology for our compliance 

restrictions: they are combinations of “and, or, not” around attribute range queries; e.g., Age<21 or 

organization=”nsf”.  For example, the xpath query of Figure 2 shows compliance restrictions in that 

ontology. A DOD secrecy rule is shown that demands that the weight of its consignment cannot be 

revealed (heavy DOD consignments may be nuclear materials with heavy shielding). Note that our 

ontology assumption it is hardly controversial: we can find in the literature similar assumptions about 

privacy restrictions [Agr03].  However, as discussed below, it is an important assumption since when we 

come to selecting data mining technology.  

// U.S. Privacy Act of 1974 

not(boolean(//RAAR/CrewDiscrepancies/Cre

wDiscrepancy/CrewPersons/CrewPerson 

[CitizenshipCode = "US" and 

(boolean(SID) or boolean(DateOfBirth) or 

boolean(PlaceOfBirth)or 

boolean(Height)or boolean(Weight) or 

boolean(HairColor) or boolean(EyeColor) 

or boolean(DistinguishingMarks) or 

boolean(Sex) or boolean(VesselName)or 
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We say that each node is owned and operated 

by the local administrators.  One  way to perform 

privacy preserving data mining in an enclave is via 

a data miner passed around a ring of enclave nodes. At the end of the ring, the data miner returns to 

where it started from to report its final conclusions.  As it passes over nodes in the ring, the locals can 

restrain the data mining: 

• HIDING THE DATA:  The locals can run their own local version of the data miner to identify which 

parts of the data lead to rules they do not wish to disclose. These data sections can be hidden from 

the data mining being passed around the enclave.   

 

• PRUNING THE RULES: Before a data miner leaves a node, the locals can prune any parts of the 

learned rules that overlap with the compliance assurance (e.g. Figure2).  

Techniques for data pruning and rule pruning are discussed later in this proposal.  

2.3 ALTERNATIVES TO ENCLAVES: Before going any further, we need to explain our preference for 

enclave-based data mining. Accordingly, this section discusses (a) alternative approaches to privacy and 

data mining that do not use enclaves; and (b) why we elect not to use them. 

Data mining is the process of finding patterns in data. In terms of privacy, the core problem with data 

miners is that, traditionally, they assume access to a global database of all the information. This is 

worrisome if the data miner includes in their learned model some pattern that should remain confidential. 

Fung et. al. [Fun10] distinguish two classes of research in this area:  

• privacy-preserving data publishing (PPDP) and  

• enclave methods that offer query control on multilevel secure databases.  

The difference between PPDP and enclaves is as follows:  

• With enclaves, the data remains private and but the enclaves publish their queries
"
.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"!Brickell and Shmatikov discuss an extension of enclaves, which we do not explore, where all nodes can access a  
global data dictionary, but not the attributes used in a query [Bri09].  Such an extension is not appropriate for our  
purposes since our users want to browse ranges to check that they  do not violated compliance assurances. 

Figure 2: Top: a privacy restriction. Bottom: a 

secrecy requirement. 
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• With PPDP, the data is published and any inference on that data remains private.  

Research in statistical databases implements PPDP by allowing statistical information (sum,  count, 

average, maximum, minimum, th-percentile, etc) to be accessible, without revealing  sensitive individual 

information.  PPDP techniques include, query restriction, data perturbation,  and anonymization.  The 

query restriction methods includes restricting the size of query results  [Den79], controlling overlap in 

successive queries [Dob79], keeping audit trails of answered  queries (to check for possible 

compromises) [Chi82], avoiding data cells of small size [Cox80],  and clustering entities into mutually 

exclusive atomic populations [Yu77].  

As to data perturbation, techniques include swapping values between records [Den82],  replacing the 

original database by a sample from the same distribution [Rei84], sampling the  result of a query [Den82], 

and adding noise to the values in the database [War65] or the results of  a query [Bec80]. The 

effectiveness of perturbation is an open issue. Adding  noise hides the details of individuals, but can 

confuse learners that (say) try to find the best place  to discretize numeric data [Vai04]. Agrawal and 

Srikant [Agr00] offer one solution where Bayes’  rules is used to reconstruct the original distributions 

using knowledge of the distributions used to  add the noise. The problem with this technique is that the 

reconstruction gives us information  about the original data values, thus violating privacy [Zhang07].  

Regarding anonymization, a naïve approach is trivial sanitization; i.e., the removal of all  identifying 

information from the data release. The problem with sanitization is that  pinpointing exactly what 

constitutes identification information is difficult. Repeated patterns in  databases allows for the simple 

identification of individuals, even after sanitization. For example,  Sweeney notes that 87% of the 

population of the United States can be identified by  linking the following attributes: gender, date of birth, 

and 5-digit zip code. In one dramatic  example of this, recently the medical records of the Governor of 

Massachusetts was recognized,  even in supposedly anonymous sanitized data set [Swe02b].  

One widely-used anonymization technology is k-anonymity [Swe02a], which is based on the  notion of 

a Quasi Identifier (qid) is a set of attributes that could potentially identify record owners.  Under the k-

anonymity requirement if one record in the table has some value qid, at least k"1  other records also have 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
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the value qid.  A data set can be made k-anonymous by (say) generalizing  the attributes; e.g., replacing 

all day/month/year records with just month/year.  K-anonymity does  not ensure privacy in the case of 

attackers using background knowledge on the groups returned  by a query. For example, suppose the qid 

is <profession,gender,age> and it is found that 80% of  female dancers aged 30 are HIV positive.  If an 

attacker knows that that this data comes from a  dance company, and that Emily (who is aged 30) dances 

there, they the attacker could infer with  80% probability that Emily is HIV positive.  

Improvements to k-anonymity include Machanavajjhala et al.’s principle of !-diversity  [Mas07].  !-

diversity requires every qid group to contain at least ! “well-represented” sensitive values (at least ! 

distinct values for the sensitive attribute in each qid group).  !-diversity has the limitation of implicitly 

assuming that each sensitive attribute takes values uniformly over its domain; i.e., that the frequencies of 

the various values of a confidential attribute are similar.  When this is not the case, achieving !-diversity 

may cause a large data utility loss.  

The efficacy of all these methods is open to question. Brickell and Shmatikov [Bri08] report  simplistic 

trivial sanitization provides equivalent utility and better privacy results than supposedly  better method 

such as k-anonymity or !-diversity.  As discussed above, their results are hardly conclusive (since they 

are based on a single data set). However, given all the problems discussed above with PPDP, we agree 

with Vaidya and Clifton [Vai04] that rather that struggle to secure a public data set, it might be better not 

to build that data set in the first place. Hence, for the rest of this proposal, we discuss distributed data 

mining methods over trusted enclaves.  

2.4 DISTRIBUTED DATA MINING OVER TRUSTED ENCLAVES:  In our enclaves, parents can see their 

children but not their grandchildren. How can a parent gain insight into grandchild nodes? To address this 

problem of recursive insight, we distinguish between data mining and rule fusion.   

TOP-DOWN DATA MINING: Parents collect statistics from their children, while maintaining the privacy of 

each child. One way to achieve this is secure multipart computation (SMC). As described by [Vai04], 

SMC is a conversation between N parties, none of which want to display their data to another.  For a 

simple example of SMC,  consider the “no collusion” case where a parent node in an enclave wants to 

sum some value k  across its N children. A random number R is passed to any child at random. That child 

adds its  local k value, passes it to another child, selected at random. When all children are visited, the  
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parent receives back the sum, removes R, thus accessing the actual sum. Note that no child can  infer 

what are the actual values of k in the other children since those values are masked by R.  Two open 

issues with SMC are collusion and the runtime cost: 

• Collusion between children can make SMC computation insecure. If children z-1 and z+1 compare 

the values of the running sum, they can compute the exact value for k in child z.  Assuming more than 

three children, we can fix this problem by passing the sum around in random order amongst the 

children (so child z+1 never knows who was child z- 1).   

• As to runtime cost, Vaidya and Clifton [Vai04] report that SMC can be remarkably slow. In one test 

case using SMC on a multi-node network that required some joins between different  tables, it took 29 

hours to build a 408-node decision tree from 1,728 examples. Clearly, SMC is not a recommended 

when nodes in a network must engaged in high bandwidth communication to achieve some results.  

Clearly, private top-down data mining  support collusion avoidance and resolve the runtime cost. 

BOTTOM-UP RULE FUSION: After a parent data mines their children, they broadcast the rules upward 

(after first deleting any rules that violate compliance). Grandparent nodes collect and fuse the rules from 

the parents. In this way, insights gained deep in the enclave can bubble upwards (but only if they are 

supported by multiple children).  Once  a parent builds a rule using fusion of child rules, then this new 

rules needs to be checked across the children. A rule’s value can be determined by testing the rule on the 

children. If a rule’s true negative, false negative, false positive, and true positive rates are a,b,c,d then 

that rule’s precision= d/(c+d); accuracy=(a+d)/(a+b+c+d); recall=d/(b+d); false alarm rate = c/(a+c) and  

“f” measure= 2*prec*pd/(pd+pf).  If a parent collects these a,b,c,d values  by passing a rule over its 

children using SMC, then the value of a fused rule can be computed without violating privacy. 

From the above, we can deduce seven essential aspects of the design of our distributed learners: 

1) RULE FUSION: There must be some way to combine rules from multiple sources. 

2) COLLUSION AVOIDANCE: In order to avoid collusion during SMC, each enclave must include a 

transaction manager whose task is to pass a computation around a ring of nodes in a random order.    
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3) SMC OPTIMIZATION: In order to support SMC, when a data miner is initialized at the start of a 

query, its internal frequency counts are distorted by a random amount known only to the creator  of 

the miner. 

4) BATCH PROCESSING: To avoid the computational overhead of unconstrained SMC, our  data 

miners must be not dispatch thousands of queries across an enclave. Rather, they should be one-

pass learners that can make their conclusion after a single round-robin traversal of a set of nodes.   

5) AUDITABILITY: In order to let the locals recognize a compliance violation, then the output of the 

learner should match the ontology for our compliance described above. Hence, whatever learner we 

use, it should user high-level rules and not some arcane incomprehensible internal format. 

6) RULE PRUNING: In order to let the locals censor rules that violate compliance, then the learner’s 

model should contain parts, any one of which can be deleted.  

7) DATA HIDING: If the locals are to remove the data that lead to rules that violate compliance, it must 

be possible to track backwards from any rule to the data that generated it. This data should then be 

hidden from any incoming SMC requests.  

Of the above criteria, items (3) and (5) lets us quickly rule out many data mining technologies. Those 

technologies include (a) discrete learners that find either  association rules that report frequent patterns of 

attribute ranges that occur together [Agr91], or  classification rules/decision trees that find frequent 

patterns between independent attributes and one dependent “class” attribute [Bri84,Qui92]; or (b) 

probabilistic methods such as fuzzy learners or Bayes classifiers [Wit05] or the EM clustering algorithm 

[Dem77] that represent different classes as distributions; or (c) methods that use probability distribution 

propagation over a directed graph like Bayes nets, neural nets [Hin92], distributed Kalman filters [Olf07], 

or non-parametric belief propagation (NBP) [Tse04]; or (d) instance-based learners that reason about 

examples nearest some test instance [Aha91].In order to support AUDITABILITY, the  ontology of the 

learnt model must match the compliance restriction. Hence,  instance-based learners, which generate no 

model, are inappropriate for our work. 

The discrete learners seem most suited to our task since the and-or-not nature of discrete rule 

conditions are closest to the ontology of our compliance restrictions. However, many discrete learners are 
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not suitable. Decision tree learners like C4.5 [Qui92] recursively divide the data set and call themselves 

on each subset of the data. This means repeated inspection of subsections of the data- which fails the 

SMC OPTIMIZATION criteria. Recall  from the above that using SMC took 29 hours to build a 408-node 

decision tree.  Similar issues exist with association rule learners like APRORI [Arg91]. This algorithm finds 

frequent item sets of increasing size and, for each such larger set, it conducts a repeated  search of the 

data to count the occurrences of that set.   

 At first glance, the probabilistic models are inappropriate since our users require categorical rejection 

rather than some partial probabilistic pruning.  

This is unfortunate since probabilistic methods 

such as Bayes classifiers have some of the 

properties that we desire such as one-pass 

incremental learning. However, such 

classifiers build a single model of the data 

expressed in a format that is quite alien to the 

compliance ontology (distribution information 

on each attribute, in isolation from all other 

attributes, divided into one distribution for 

each class).       

Recently, we have had success with rule 

generation from Bayes classifiers 

[Cla05,Gay10,Mil08]. TAR5 grows sets of 

interesting ranges (given discretized data, 

there exists one range for every 

attribute=value pair). The ranges are sorted on 

Round0 Round1 

Top of stack 

78 if sex=female   

71 if class=1st   

68 if age= child   

65 if class=2nd   

Top of stack 

78 if sex=female  

74 if class=1st and  sex=female  

71 if class=2nd and  sex=female  

72 if class=1st  

68 if age=child and  class=1st  

68 if age=child  

68 if age=child and  sex=female  

65 if class=2nd  

Figure 3: Rules found by TAR5. Left-hand-side 

numbers are accuracies predicting for survival from the 

Titanic. TAR5 sorting ranges from the last round, 

combining the better ones (selected stochastically, 

favoring those nearer top of stack), then scoring and 

sorting the new combinations into a new stack. 
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to a stack according to how well they selected for a preferred class (see Figure 3
2
). TAR5 combines 

ranges at random to form rules (favoring ranges that appeared higher in the stack). TAR5 runs one stack 

per classification. Each stack finds a rule set that selects for classification, and avoids the others.  

The stack is initialized by passing all ranges through the scoring scheme of Figure 4. TAR5 

repeatedly selects R=2 items from stack (favoring items with higher scores). Each selection is combined 

into a conjunction, scored, and sorted back into the stack. If it scores worse than existing items, it  sorts 

lower on the stack (becoming less likely to be used in future). Otherwise, the new item moves up the 

stack, making it available for future selects. As TAR5 runs, items can grow in size as more useful 

conjunctions are discovered and combined (Figure 4 shows TAR5’s rule growth using data on who 

survived the loss of the Titanic). TAR5 terminates when the score of the rule on top-of-stack stabilizes, at 

which point, TAR5 returns the top item as the best selector for some class.   

When applied to the task of defect prediction for software modules, TAR5 out-performed standard 

learners such as Naive Bayes or decision-tree learners [Mil08]. It has been used at NASA to tune the 

settings of complex guidance, navigation and control flight systems [Gundy08, Gundy09]. In comparisons 

with state-of-the-art optimizers (a Quasi-Newton method that incremental updates a Hessian 

approximation), our method ran 40 times faster, and found better solutions [Gay10]. 

TAR5 was an experiment with one-pass learning. 80% of the algorithm’s runtime arise from the 

repeated checking of the rules against examples of data. The algorithm removes that runtime by 

replacing that check with Bayesian evaluation heuristic.  After one pass of the data, the algorithm 

computes just enough information to allow for the fast ranking of different rules without needing to pass 

again through the examples.  In practice, the algorithm ran two orders of magnitude faster than earlier 

versions, and used an order of magnitude less memory [Cla05].  Further, as described in Figure 4, this  

Bayesian heuristic has proven to be remarkably accurate. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

#
!Since we cannot show real data from the confidential databases of our clients, we must resort to examples based 

on publically available information.!Hence, the example of Figure 3 is based on survival data from the S.S. Titanic.!

TAR5 sorts all ranges into its stack as follows. A table of observations containing N observations has 

labels  appearing in    examples (so ). For any label , we say Rest is all 

the other labels (i.e.,   ! ). If a range  appears at frequency  in all examples, and 

 in the rows labeled , then  appears outside of the  rows at frequency 

. The likelihood of  being in label , or in , is   or  

, respectively. According to Bayes’ theorem, the probability  that  
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2.5. PROPOSED APPROACH: While a promising start, TAR5 is unsuitable for data mining in trusted 

nested enclaves. A full solution to our distributed data mining problem must address the challenges of: 

1) DATA COLLECTION; 

2) TECHNOLOGY DEVELOPMENT:   

a. rule fusion,  

b. collusion avoidance,  

c. SMC support,  

d. batch processing,  

e. auditability,  

f. rule pruning,  

g. data hiding  

3) ASSESSMENT:   

a. efficacy of the data mining,  

b. anomaly detection,  

c. model revision,  

d. and finally, assessing of the price of privacy 

In this work, we propose extending TAR5 to address these challenges. The new system, called TAR6, will 

be tested on data and compliance requirements collected from hospitals and software engineering 

companies. Using that information, we will observe the effects of increasing or decreasing those 

compliance requirements on the efficacy of TAR6’s rules (this last study will be used to better understand 

the trade-offs between data mining and privacy).  

The first challenge is to collect the data required for this work: 

Challenge 1: From multiple sites, collect real world data & their compliance requirements. 

Figure 4: TAR5’s Bayesian scoring method.  
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The introduction of this proposal lamented the poor state of the art in verification of privacy 

algorithms. Many papers assess their work on theoretical grounds or using a single data set. Clearly, this 

is not an ideal verification method. Real world data is notoriously quirky (what is true in one data set may 

be irrelevant in another [Men06, Men07d]. Privacy tool needs to be tested on dozens of real-world 

examples, ideally from multiple organizations. 

The next few challenges relate to technology development. 

 Challenge 2: Add rule fusion to our learner. 

Fusion means combining ranges from different rules from different sources, then evaluating the 

result. In the context of TAR6,   a grandparent node in the  enclave can fuse rules as follows.  If P parents 

offer  N rules (learned from their children), then there are N*P rules to fuse. Each rule, in isolation, will 

have some score (from Figure 4). The grandparent could sort the rules on that score and try stochastic 

combinations of those N*P rules, favoring those with higher scores. This is almost the TAR5 rule growth 

procedure described above, with one small variation. When a combined rule is scored, the grandparent 

sends the new rule back to each parent and asks them to score it from their children. Any combined rule 

that scores well will float to the top of the grandparent stack. Similarly, rules that worked well at one 

parent, but not on all, will float to the bottom.   

 Note that this fusion strategy is analogous to gossip networks [Dim06] where nodes compute some 

joint value using randomly sampled neighbors. However, where as gossip networks assume continuous 

distributions, TAR6 assumes that the knowledge to be combined is discrete rules. Also, note that TAR6’s 

fusion strategy is much simpler than standard fusion methods. Much research has explored fusing the 

results from multiple learners [Toh04]. In the basic ensemble method (BEM), learners are run on various 

subsets of the available data. These learners use some features   to predict for classes   to find a function 

that returns the probability of the target classes. BEM returns the mean probability of items in the 

ensemble while the linear generalized ensemble method (GEM) returns a weighted sum  of the 

conclusions of each learner in the ensemble (so, with GEM,  the ensemble item that perform worst, 

contributes least to the overall conclusions).  For some data sets, the combination rule is non-linear and 

complex. For example, Toh et.al. [Toh04]’s variant of GEM uses a Jacobian matrix for with different 

coefficients for each feature  and target class. These coefficients are learned via multivariate polynomial 
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regression.  In our experiments, when we tried to scale fusion methods to hundreds of learners, 

computing GEM was too slow and the results little better than noise. Based on those experiments, we 

elect instead to explore  rule fusion in the context of TAR6.  

 Rule fusion enables combining rules learned in multiple parents. This, in turn, requires that some 

rules exist in the first place. In order to use SMC to sample child data to build parent rules, we must: 

 Challenge3: add collusion avoidance   

This is a systems engineering task.  Some special node in the enclave will be declared “the 

manager”. If some client node wants to poll N others, then it sends that list of nodes to the transaction 

manager. This manager orchestrates the SMC queries across that set of nodes such that no visited node 

knows who was visited before or after. Finally, the manager returns the results of the SMC computation. 

The client knows that the results come from certain other nodes, but not which particular nodes offered 

which particular data items. 

The high cost of SMC was noted above. Our computations must avoid too many low-level queries.  

 Challenge 4: SMC optimization   

Recalling Figure 4, we already have much support for believing that our learning can be done in one-

pass of the enclave members. Hence, in theory, we can avoid the  high computational cost of  standard 

SMC. Of course, such theoretical beliefs must be tested on real-world data. 

The  next challenge addresses two concerns. First, in order to detect rules that violate privacy 

concerns, the ontology of the compliance regulation must match the generated model. Second, if some 

rule violates compliance, it should be possible to delete it without harming the rest of the learned model: 

Challenge 5: auditability and rule pruning 

In this respect, the current implementation of TAR5 would suffice. Recalling Figue 3, our rules already 

match the ontology of Figure 2. Secondly, our TAR algorithms contain a stack of separate rules, all 

struggling to extend themselves in order to float towards top of stack. Extracting one rule from this stack 

will not harm the processing of the remaining rules. 

 Challenge 6:  data pruning; 
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Recall from the above that data pruning is the process of hiding data from an incoming SMC request 

such that it is difficult/impossible for that request to learn a pattern that the locals wish to keep private.  

To meet this challenge, TAR6 will augment TAR5’s rule 

generation process with a dependency graph of what rules 

lead to other rules, Before the locals at any enclave accept any 

SMC requests,  they could run TAR6 to generate, e.g. the 

graph of Figure 5. Using this graph, the locals can rapidly 

select what data to hide from any incoming SMC requests. 

Suppose the locals wanted to hide some patterns or boast about others. For example, suppose the 

owners of the Titanic might want to (a) hide the information that second-class women receive nearly the 

same preferential treatment as first-class women; while (b) advertise that all female children have a 

better-than-most chance of survival.  Queries to the dependency graph can select rows that lead to some 

observations, but not others: 

• Take each row of the data and present it to the left-hand-side of the dependency graph.  

• If any range in the row is found in the root of the graph, then mark that row as suspect. 

• Move the suspects right across the dependency graph, awarding points to suspects that match to 

preferred rules and subtracting points to rows that match to undesired rules.  

• Hide the rows with H% lowest points. 

Note that this algorithm is tunable: increasing H hides more detail while setting H=0 exposes all data to 

any incoming data miner.  

Once the above challenges are meet, we would have a working distributed data miner over nested 

enclaves. With that in hand, we turn to the remaining challenges. 

Challenge 7:  efficacy of the data mining 

These whole proposal assumes that our data miners can find interesting patterns in data from 

software engineering and medical companies. Using historical data of known past patterns, this 

assumption should be tested. 

Challenge 8:  anomaly detection 

 

Figure 5: connections of smaller rules 

to larger rules from Figure 4. 
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Once we have a working data miner, it would be possible for local administrators to test if rules 

learned elsewhere are working as expected at their local site. For example, in the medical domain, the 

locals would suspect an anomaly if a rule predicting for low post-operative infections (that is published by 

many other nodes) does not work well at this local site. Such anomalies could be an early warning sign 

for some previously undetected change in local conditions. 

Challenge 9:  model revision 

       In all the domains we study here, it is unlikely that once a model is learned, that it will remain 

constant for all time there after. For example: 

• In software engineering domains, new technologies are constantly appearing. 

• In medicine, health patterns change along with the seasons or as new drugs /diseases appear. 

Hence, just as important as learning an effective model is knowing when to change an existing model. 

Our proposed model revision operator for TAR6 is as follows. 

 Recall that TAR5 executes by selecting and combining R = 2 items from its internal stack. TAR6 

modifies this selection policy as follows: select R  " 1 items from the stack. There are two interesting 

cases for  this selection policy:   

• If R > 1 then TAR6 is trying to combine existing items on the stack into larger conjunctions. That is, 

when R > 1, TAR6 is building bigger rules.   

• Also, if R = 1, TAR6 is selecting one existing item from the stack, and restoring it. That is, when  R=1, 

TAR6 is reviewing old rules (and possibly discarding them).   

During this second case (review of old rule), it is possible to  update TAR6’s rules if changes to the 

observations have changed.  If the Figure 4 scoring for a rule has altered, then TAR6 can  demote (or 

promote) a rule according to its effectiveness on the   latest observations. 

Challenge 10: assessing the price of privacy 

With all the above machinery in place, we will be able to  perform distributed data miner where the 

results of that mining are   audited and censored by compliance assurance requirements. The major 

question of this research can now be addressed: how much does compliance assurance hinder data 

mining? To test this, we will apply domain modeling to our software engineering and medical domains to 
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determine appropriate ways to strengthen and/or weaken the compliance assurance requirements. The 

effects on the efficacy of  the data mining will be noted and we will offer conclusions about how much 

privacy requirements effect data mining efficacy. 

2.6. RESEARCH PLAN: 

2.7. EVALUATION CRITERIA. 

2.8. EDUCATION/ BROADER IMPACT:  

Benefits to society at large: Our specific research goals focus on issues of tremendous economic or 

social importance (better control of software projects; better understanding of disease patterns in society). 

More generally, if we can show it is possible to build privacy-aware distributed data miners, and that the 

conclusions of those data miners are not unduly damaged by privacy restrictions, then this would usher in 

a new age of trust where data owners understand they can retain control of their data while still 

coordinating and sharing with other groups.   

How will individuals at underserved institutions benefit from this grant? By funding this work at 

WVU, NSF will be promoting higher education in a region which, currently, lags far behind the rest of the 

country in terms of its population starting, or completing, a University degree. Appalachia, which includes 

West Virginia, remains one of the most economically depressed regions in the United States. This 

economic condition greatly impacts the number of young people choosing to attend college. In the 1990’s, 

the gap between Appalachia and the rest of the U.S. in the percent of the adult population who are 

college graduates increased from only 6.1% to 6.6% [55]. In addition, the number of students seeking 

science and engineering degrees lags national averages: West Virginia and the rest of Appalachia are in 

the bottom quartile in the percent of science and engineering degrees awarded [161]. 

Also, by funding this work at Fraunhofer Institute at the University of Maryland, NSF will be promoting 

higher female involvement in engineering. The Fraunhofer has a strong track record of including women 

in software engineering research projects. 40% of the Fraunhofer technical staff are women, far above 

the latest numbers for women’s representation in U.S. computer science degree programs [37]. 

Fraunhofer’s support of women in science is particularly important since, at this time, the rates of increase 

in computer science by men is far greater than in women [37]. 
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How well qualified is the proposer (individual or team) to conduct the project? The PIs on this 

project have the necessary experience to succeed on this project. We have extensive experience with 

empirical software engineering [6, 16, 17, 22, 44, 107, 108, 109, 110, 112, 114, 144, 145, 146, 147] 

including running large collaborative experiments [109, 147] and organizing repositories of software 

engineering data (Menzies has developed an open-source toolkit for the analysis of software engineering 

data [5, 48].  We are uniquely placed to (a) understand the most that can be learned from this data and 

(b) detect when learning is damaged by increased privacy restrictions. We have worked extensively on 

real work applications on data mining for software engineering [Men03a, Men06, Men07a, Men09a, 

Shu99, Shu00a, Shu00b, Shu07] and with data sharing amongst public hospitals and other government 

institutions [Mor09,Mor10]. That is, we are knowledgeable in the baseline results available from this data 

(when no secrecy restrictions are applied).  With our contacts, we can find industrial and government 

data, plus their associated security and privacy restrictions. 

How will this research be integrated into teaching ? Much of the research in this project will also be 

integrated into a classroom environment. PI Menzies teaches graduate data mining and all the   tools will 

be used in that subject. PI Menzies also places all of his teaching materials on the web which means that 

any other data mining lecturer will be able to access tutorials, assignments, and lectures. 

Dissemination of knowledge: We will  make the developed tools and underlying technology for setting 

up enclaves freely available as open source system. Also, the PIs on this grant frequently publish in 

numerous research forums (IEEE TSE, IEEE Computer, IEEE Software, ASE, ICSE, etc). We hence 

anticipate numerous publications from this work.  

     Also, we have a goal of making some data from this work freely available for other researchers. The 

authors have an exemplary reputation of placing their data on-line (Shull ran the CeBASE repository [16] 

while Menzies is the webmaster of the PROMISE repositories: http://promisedata.org). However, with  

regard to the data studied in this work, the practicality of this goal will be assessed with respect to the 

business or federal government restrictions on the data.  

 

2.9 RESULTS FROM PRIOR NSF WORK 
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Dr. Forrest Shull was a co-PI of: NSF Science of Design collaborative grant CCF0438933 and 

CCF0438923, $1M from 2/1/05 to 1/31/09 “Collaborative Research: Flexible High Quality Design for 

Software”. This project applied an empirical approach to investigate effective indicators for assessing the 

flexibility of software architecture, as well as assessments of V&V techniques which aim at improving 

flexibility under various conditions. The work produced a number of laboratory packages used to replicate 

studies and analyses at various collaborating sites. This support provided support for 9 graduate students 

over its existence. It produced 7 journal publications [15, 19, 53, 95, 96, 148, 167] 19 conference 

publications [2, 3, 4, 18, 29, 53, 60, 75, 83, 84, 125, 127, 128, 137, 139, 141, 168, 173] 2 Master theses. 

Dr. Menzies was awarded in July 2008 an NSF grant (CCF-0810879, $350,000, end date June 30 

2011) on “Automatic Quality Assessment: Exploiting Knowledge of the Business Case”, together with Dr. 

Bojan Cukic (Co-PI) from WVU. The task of this research is to explore the inner loop of software data 

miners improves the learning of defect predictors. Prior attempts at improving defect predictors have 

produced very little improvement, despite years of effort. This work produced a number of tools including 

the OURMINE package that is the basis for this work. This project has only just entered its third year but 

already has produced 3 journal papers [67, 120, 159] and 12 conference papers [35, 48, 52, 66, 67, 68, 

72, 73, 105, 109, 129, 171]. Also, it has fully supported to completion one female Ph.D., one female 

masters and four others masters students to completion. It is also currently supporting one Ph.D. and one 

female masters student. 

On August 15, 2010, Menzies starts a new NSF grant, CCF-1017330: “Better Comprehension of 

Software Engineering Data” ($500,000; a new grant with Andrian Marcus at Wayne State). 
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Research, first year: 

To study the impact of protocol rules on the findings in an enclave, we will conduct a series of case-

studies. For the case-studies we will use data-sets in the Software Engineering domain. Initially, we will 

use data-sets from real industry projects in the aerospace context to which FC-MD has access. If needed, 

additional data-sets from other application contexts, such as research environments or other industrial 

contexts, in the Software Engineering domain, may be added later on. For all case-studies, the trusted 

enclave will be defined as the FC-MD environment with different nodes depending o the case study. One 

such set-up, could, for instance, be the different (aerospace) projects which initially serve as a natural 

discrimination into different leave nodes of the enclave. 

But before we start such a multiple project study, we will start with some smaller case studies 

focusing on data of single projects. These studies will repeat some analysis we already conducted on the 

data sets, so we know the possible results and can compare how privacy rules could affect them. The 

NASA inspection data which we already analyzed regarding influencing factors of the efficiently of 

inspections [Sea08] will serve for one of these initial studies. We will use the inspection data collected in 

different NASA Centers as a basis. The participation into nodes / PIBs for this enclave set-up will follow 

the Center structure of NASA. This discrimination makes sense, since each Center collects its own data 

and is usually only reporting to headquarters but not sharing with other Centers. All Centers are very strict 

about how data is published and used outside a Center environment. One privacy rule, for instance, 

requires that it is not possible to identify from which Center the data was derived. Other privacy rules will 

focus on the protection of the developers who submitted the data, the people who conducted the 

inspections, as well as details about the projects for which the inspection was conducted. 

Possible research questions for case studies with PIBs, as well as privacy restrictions for the enclave 

which can be studied are listed in Table 2. A short description why the data is sensitive and which 

different nodes are in the enclave is included as well. 

 

PIB research questions and nodes Enclave privacy restrictions  

What is a typical effort distribution over People (i.e., names) involved in developing 
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development phases? 

How much effort does it take to correct a 

major / minor error?  

Nodes will be the different classes of a 

concrete NASA project. The enclave 

refinement for this case study is similar to 

levels 4+5 described in Table 4. 

the class 

Owner of the class 

Center (i.e., name) developing the class 

Program or mission the class is/was 

developed for  

Used programming language  

! All restrictions focusing on the protection 

of specific people on the development team so 

they continue to share their data without having 

to fear that this will be held against them at any 

later point in time. Additional restrictions 

focusing on the protection of the integrity of a 

concrete Center or program 

How are defects distributed over different 

project phases? 

What kind of defects are typically for each 

development phase? 

As nodes we will use the different NASA 

Centers. The enclave refinement for this case 

study is similar to levels 4+5 described in Table 

4. 

Program or mission the class is/was 

developed for 

Center (i.e., name) reporting 

Size of development team (i.e., # of 

people) 

Period of code development  

Used programming language 

! Restrictions focusing on the protection 

of the integrity of a concrete Center or 

program. Using team size and/or development 

year could allow to indirectly identifying the 

program/mission.  

How does reuse of code influence the Size of developed code (e.g., LoC)  
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defect density of a program? 

As nodes we will use the different 

(aerospace) projects. The enclave refinement 

for this case study is similar to levels 3-5 

described in Table 4. 

Size of project team (i.e., # of people) 

Program(s) (i.e., names) from which code 

was reused 

Current project phase (e.g., requirements, 

testing, finished/in use) 

Used programming language 

! All restrictions focusing on the protection 

of the integrity of a concrete program. Using 

the different information could indirectly allow 

3rd parties to identify the original source of the 

data. 

Table 2: Possible research questions vs. privacy restrictions for the software engineering domain in 

context of aerospace applications 

Research, second year: 

After we formalized and consolidated our knowledge on the impact of protocol rules on possible 

findings in an enclave, we will broaden our view. Therefore, we add new dimensions by applying our 

findings in: 

 A different domain, namely the medical domain in context of the WV hospitals, and  

By refining our knowledge about the use of sub-enclaves. (i.e., using our recursive definition of 

enclaves) 

Thereby, the focus of our studies is also placed on proofing the domain independent applicability of 

our enclave-based research approach. Data-sets for the case studies will be provided by WVU hospitals. 

In Table 3 we list possible research questions for the PIBs in the medical domain, as well as privacy 

restrictions for such an enclave. The table uses the same structure as for the software engineering 

domain above. 

PIB research questions and nodes Enclave privacy restrictions 
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How do treatments for a particular 

diagnosis vary across locations? 

What is the typical treatment for a 

particular diagnosis? 

Nodes will be community health clinics. 

The enclave refinement for this case study is 

similar to levels 2-5 described in Table 4. 

? 

! Restrictions focusing on the protection 

of Healthcare providers, including both the 

specific clinic as well as the physicians and 

other healthcare workers. 

Restrictions on all patient identifiers in 

compliance with HIPAA including the general 

geographic location of the patient’s home. 

How does the presence of chronic 

conditions affect the choice of treatment? 

What are the characteristics of patients for 

whom standard treatment did not work? 

(chronic conditions such as diabetes, obesity, 

cardiovascular disease) 

Nodes will be patient sub categories based 

on chronic conditions. The enclave refinement 

for this case study is similar to levels 3-5 

described in Table 4. 

? 

! Restrictions focusing on the protection 

of patient data, physician identity, hospital unit 

providing the service and patient identifiers. 

How is the treatment of a patient referred 

for specialized care affected by the source and 

timing of referrals? 

What impact does the stage of progression 

of the disease 

As nodes we would look at referring 

physician groups, and specialists to whom 

patients were referred. The enclave refinement 

? 

! Restrictions on the identity of the 

referring the patient, all patient identifying 

information, including the geographic location 

of the referred patient. 
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for this case study is similar to levels 4-5 

described in Table 4. 

Table 3 Possible research questions vs. privacy restrictions for the medical domain in context of WVU 

hospitals 

 

Research, third year: 

Generalize our knowledge and develop open source enclave tool kit for different domains. Provide 

detailed application guidance for external users from academia, government, and industry.  

 

Research, fourth year: 

Repeat studies with third party user(s) in other domain(s) 

 

Figure 1 summarizes the time-line for the proposed activities.  

 

GANT CHART <<TO BE DONE>> 

Figure 1: Project plan. 
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