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when carried out in the world. This implies that case-based systems should
index their cases in ways that allow them to both come up with solutions and
anticipate their potential for success.

Concluding Remarks

What should be taken away from this chapter? Those in the CBR community
should see this as a first attempt at uncovering our tacit knowledge and in
making the implicit explicit. This chapter is only a beginning to articulating
the paradigm, the methodology, and the cognitive model. We need to be
more aware of what our assumptions are, discussing them among ourselves
and articulating them explicitly to the outside world. Case-based reasoning
has the potential to change a lot in the way we look at intelligence and cogni-
tion. That change has already started. In order to reach full potential, we need
to articulate case-based reasoning, its underlying assumptions, its conceptual
foundations, and its implications in ways that the rest of the community will
appreciate. o

I hope those from the outside who are reading this take away two insights,
first, the importance of focusing on representation and knowledge access
both in building systems and in addressing new problems, and second, the
notion that seeing case-based reasoning as a driver of cognition rather than
an add-on allows us to look at important issues (such as chunking and
knowledge access) in new and useful ways.

Notes

1. There’s a difference, by the way, between “easily available” features (described in the
previous paragraph) and “surface” features, but the principle-: relates to bolth: §urface
features make good indexes to the extent that they are predictive of something impor-
tant or useful.

2. There’s a challenge related to this, one I posed at the talk in summer, 1993.: I’d like
to see someone take a case-based approach to what Doug Lenat is doing with CYC.
How would it be different? The major difference is that it would take access of knowl-
edge (indexing) seriously.
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tionaries, has become an increasingly accepted part of the modern
artificial intelligence toolbox. For example, a recent report on the
ARPA/Rome Planning Initiative included several examples of large Al systems
that involved several rule-based and case-based reasoning subsystems interact-
ing to solve complex real-world problems {Fowler et al. 1995)" Most calls for
papers in modern Al conferences include CBR as one of the relevant topics.
Some may view this acceptance and proliferation of systems as success for
CBR. On the other hand, some of us view it as a sign that the revolution has
been co-opted, that the real point of CBR has been lost. Of course, this then
raises the question, “What is the real point of CBR?”
In this chapter, I will argue that the real shift in Al has yet to come, and
that CBR was just the opening act. The argument will proceed by answering
the following questions:

Case—based reasoning, (CBR)once the rallying point for anti-rule revolu-

+ What is the point of case-based reasoning?
« What is (the point of) AI?

+ What's the future of AI?

» What is the role of CBR in that future?

| ¢ What Is the Point of Case-based Reasoning?

The original point of case-based reasoning was that people really don’t think
all that much, they remember, in both senses of the word “remember.” First,
we remember the things we do, including the thinking we do. Second, most
of the time we don’t need to think, we just have to remember what we
thought before (Schank 1982). The first point was an obvious but revolution-
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ary idea when first presented. It was obvious in that of course people remem-
ber what they do, but revolutionary in that virtually no problem solvers and
story understanders did it. The primary exceptions were in planning, where
some planners stored plans under the goals they achieved, usually for
efficiency. Most machine learning programs, interestingly enough, did not re-
member the examples that they saw, only the generalizations that could be in-
ferred from those examples. While they changed their behavior as the result
of their experiences, they didn’t remember those experiences.

At Yale, we found it particularly embarrassing to realize that our story un-
derstanders would do exactly the same thing no matter how many times they
read the same story. They never got bored, they never realized that one story
contradicted another, they were never reminded of Mary’s burnt hot dog
when reading about John’s overcooked hamburger. This was intelligent story
understanding?

The second point was—and remains—more controversial. How often do
we really think and how often do we just re-use? The claim in Riesbeck and
Schank (1989) was that people rarely “think,” in the sense of performing the
logiclike inferencing common to most Al systems, Rather, people respond to
new situations by reusing memories of similar old situations. ’

Real thinking has nothing to do with logic at all. Real thinking means retrieval of

the right information at the right time (Riesbeck and Schank 1989, p. 9).

For example, repeat trips to Burger King® are handled by reusing memories
of previous trips to Burger King®, if any, or by adapting memories of trips to
McDonalds®, if any, or by trying to apply memories of other kinds of restau-
rants, tepairing the expectation failures that result, and remembering those
repairs for future reuse.

Early development of CBR systems focused on this reuse of real memories.
Such systems began with retrieved cases, i.e., memories of past experiences,
and adapted them to fit new situations. For example, Simpson’s Mediator
{Kolodner and Simpson 1989) retrieved and adapted cases of mediations,
Hammond’s Chef (Hammond 1989¢) retrieved and adapted complete
recipes, and Kass, Leake and Owens’ Swale (Schank et al, 1994) retrieved and
adapted old explanations to explain new anomalies. All of these systems used
adaptation processes that replaced inappropriate details in retrieved cases
with details from the current situation. The adaptation process was often
quite complex and rulelike, leading many of the early researchers to propose
case-based methods of doing adaptation and repair.

Old habits die hard, however, and as the use of CBR became more
widespread, it began to take on a more rulelike flavor. Most modern CER sys-
tems do not use episodic cases. It's much more common for them to retrieve
“abstract cases” that are generalizations of real cases. These abstract cases are
retrieved and applied by refinement processes that add details from the cur-
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rent situation, rather than replace details of old situations.

Some researchers have characterized case-based reasoning as “rule-base(
reasoning with very big rules.” This gomment only really applies to this mod-
ern “abstract CBR.” Qld-fashioned “true CBR” has two central processes not
found in rule-based reasoning or abstract CBR:

* Partial matching: in true CBR, you don’t find a matching case, you find the
case that matches best. No case matches exactly in all details. Patterns may
be used to organize and store generalizations about cases, but they are not
themselves considered to be cases.

* Adaptation: in true CBR, you don’t apply a case by filling in the details, you
have to decide which details to throw away, which to replace, and which to
keep.

Partial matching implies adaptation. If you allow the retrieval of cases that
don’t match the input situation exactly, you need adaptation to resolve the
discrepancies. In short, abstract CBR starts with a template for an answer,
and fills it in, while true CBR starts with an old answer, then works its way to-
wards a good answer. This difference will become relevant when we discuss
the role of CBR in the future of AL

To summarize: the original point of CBR—the radical point—was to re-
place reasoning with the recall and adaptation of episodic knowledge.

What is (the Point of ) AI?

Everyone has their own definition of Al and reasons why the other definitions
don’t work. A fair number of them are discussed in Russell and Norvig
(1995), who then provide their own definition, which will be discussed short-
ly. T'd like to motivate my own definition by contrasting it to the following
three very typical definitions:

Artificial intelligence (AI) may be defined as the branch of computer science that

Is concerned with the automation of intelligent behavior (Luger and Stubblefield

1993, p. 1).

Artificial Intelligence: The field of research concerned with making machines do
things that people consider to require intelligence (Minsky 1986, p. 326).

" Artificial intelligence is the study of mental faculties through the use of compu-
tational models (Charniak and McDermott 1987, p. 6).

The first and second definitions focus on the term “intelligent.” The problem
with focusing on intelligence is that many of the most interesting tasks in Al
are those that any jerk can do (walk, talk, nod appropriately during a lecture,
and so on). Furthermore, there are activities, such as equation solving; or
even simply multiplying very large numbers, that are considered to require
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intelligence if done by a human, but which, when performed on a computer,
are not considered to be AL

The third definition, perhaps in an attempt to be sensitive to the apparent
srrelevance of intelligence, generalizes Al to cover any mental activity at all.
But this seems to go too far, making Al a vehicle for any kind of psychology,
and leaving out all the Al programs that bear no connection to modeling
human cognitive processing,

In short, all of these definitions have the same basic problem: they include
many things that are not Al, as it’s conventionally construed, and exclude
many things that are AL

A New Definition of Al

My definition of Al comes at it from another angle, by focusing on what most
people really want:

Artificial intelligence is the search for answers to the eternal question: Why are

computers so stupid?

That is, Al is a repair process. Cognitive science has, among others, the goal
of understanding “what is intelligence?” Al has the goal of understanding
“what is computer stupidity, and how can we get rid of it?”

Al as a repair process immediately explains the following oft-noted phe-
nomenon: If it works, it's not Al any more. This effect occurs because once
computers stop being stupid in that particular way, further work is not re-
pairing the stupidity, but solving some other problem, e.g., making the pro-
cess faster.

Focusing on repairing stupidity also explains why getting computers to do
simple tasks like walking and talking seem more like real AI than tasks requir-

ing great intelligence, for example:

+ Not understanding simple sentences in context is stupid. Ergo, natural lan-
guage understanding research is Al

+ Not being able to solve equations is not stupid. Ergo, numerical analysis is
not Al

« Not recognizing your own hand in front of your own face is stupid. Ergo,
computer vision research is AL

» Not learning from experience is stupid. Ergo, machine learning and case-
based reasoning are Al

There are sotne controversial implications of this definition:

* Notbeing able to play chess well is not stupid. Ergo, computer chess is not AL

*+ Not being able to prove theorems is not stupid. Ergo, theorem proving is
not AL
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+ Not being an expert is not stupid. Ergo, expert systems are not Al, R
I claim however that in fact the definition is right in these conclusions, Thes
areas are Al by historical inertia. Tha} is, the initial research was A1, .blit, m(z
optical character recognition and symbolic equation solving, the AT g
tion has long since been superseded by other goals. In particular: .
* Building the world’s best chess player is ni) more Al than building a videg
game. :

IIi_Citiva-

* Building a powerful theorem prover is no more Al than building an equa-
tion solver.

* Building an “intelligent” job-shop scheduler is no more AI than building a
normal job-shop scheduler '

Saying that these things are not Al has nothing to do with whether they are

worth doing. Being Al is not better or worse than not being AL The goal of

defining Al is not to make value judgments, but to 1) explain to ourselves and

others what the point of Al is; 2) explain what makes the field coherent, i.e.,

~how AI people working on very different problems can actually have some-

thing to say to each other; and 3) provide a vision as to where Al should go
next,

With this definition, the answer to (1) is that as computers become ubiqui-
tous in modern society, so do the effects of computer stupidity. More and
more people are encountering stupidity in word processors, spreadsheets,
payroll programs, Web browsers, educational software, and so on. The costs
and dangers of computer stupidity are increasing daily. The point of Al then,
is to reduce those costs and dangets.

The answer to (2) is that the solutions to the many examples of stupidity
come down to a small number of common basic techniques, such as explicit
knowledge structures and case memory.

The answer to (3) is the topic of the next section,

What'’s the Future of AI?

I have a vision of post-modern AL Obviously, this presumes a definition of
modern Al Fortunately, such a thing exists.

Modern Al: Intelligent Agents

In 1995, Russell and Norvig's Artificial Intelligence: A Modern Approach ap-
peared, with the following statement:
The unifying theme of the book is the concept of an intelligent agent. In this

view, the problem of Al is to describe and build agents that receive percepts from
the environment and perform actions {p. vii, [italics in original]).
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Russell and Norvig use this theme to structure their textbook from beginning
to end. Rather than simply reviewing the standard sequence of to?ms (sea.rch,
knowledge representation, rule-based inference, etc.), everything is described
in terms of how it can help build an autonomous intelligent agent. o

Intelligent agents are indeed what most people, both inside and outside
the field, probably view Al as being about. Robot vehicles, expert syst.er.ns,
chess players, automated text understanders, even software tobots cruising
the ‘net—these all seem to qualify as intelligent agents. There’s still that
tricky bit about “intelligence,” but we could reword the ab?v:e to be,“the
problem of Al is to describe and build agents that arer’t stupid.” So let’s as-
sume that describing and building intelligent agents defines modern Al
What's wrong with that as a unifying goal for a field? Why do we need post-
modern AR

Problems with Intelligent Agents

I claim that there are two primary problems with making the development of

autonomous intelligent agents the primary goal for AL

. Intelligent agents are so far off that the goal doesn’t help decision making
in1 the here and now.

+ Intelligent agents are not even what we want computers to be for a great
many situations,

The goal of autonomous intelligent agents is too distant to drive near-term

research and development. Viewed from the standpoint of this ultimate goal,

all hard Al problems are of equal importance. It provides no guidance, no

roadmap in trying to determine where the next big push should go. As a re-

sult, research decisions are made on the basis of where we are, rather than we

want to be next. Someone with an inference engine will work on making it

faster;-adding new capabilities to it, or finding a new app]ication.for it. Some-

éne with a natural language parser will make similar choices for it. It's hard to

ow what's really the best problem to tackle next, because the ultimate goal -
-—is 50 far off.

The intelligent agent theme is also inappropriate because it ignores a key
difference between computers and people: computer programs rarely act as
independent agents. They are components in larger systems in ways that peo-
ple never are, except metaphorically. A computer in a car or a server on a net-
work is not a free-standing entity. The communication protocols are far more
rigid, and requests for real-time service far more demanding, than anything
people can handle, or that an intelligent autonomous agent should want to
put up with.

But if intelligent agents are both a distant and somewhat unnecessary goal,
what should be the driving goal for AI?
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Post-Modern AL Intelligent Components

Following the textual form of Russell and Norvig, here is my theme for pogt.
modern Al:

The unifying theme of this chapter is the concept of intelligent components, In
this view, the problem of AT is to describe and bujld components that reduce the
stupidity of the systems in which they function.

That is, the goal should not be intelligent systems. The goal should be the im-
provement of how systems function through the development of intelligent
parts to those systems. For example, I dor’t want an automated librarian. 1
want a library search program that isr’t stupid, I want one that knows con-
cepts, not keywords, that won’t find James Cook when I'm researching great
chefs in history, Central problems in post-modern Al are cases of stupidity
that are common and severe across a large class of systems.

Though I've not seen the term “post-modern AI” before, much of this al-
ternative view of AI can be found in other writings. For example, Chan-
drasekaran wrote the following in an editorial for IEEE Expert “Al, Knowl-
edge, and the Quest for Smart Systems:”

The public’s definition of a smart product has nothing to do with ... the AT com-
munity’s long-held goal of developing a general purpose intelligence. The public
does not expect a smart system to do everything that people do. It does expect a
smart product to be flexible, adaptive, and robust (p. 2).

If we differ, it would be on two points. First, I claim that the proper adjec-
tive isn’t “smart” but “not stupid.” For many reasons, some rational, some
not, people don’t want machines to be smart, but neither do they want them
to be stupid. Second, I claim that this is not just a change in how AI should be
applied in the real world, but in how the field of Al should define its ultimate
goals and select strategies for achieving those goals.

Another point that distinguishes post-modern Al from modern Al is what
each area means by “integration.” Consider figure 1, taken from an article on
an expert system for a data acquisition and control system for an electrical
utility (Pfau-Wagenbauer 1993). The original caption said “The expert sys-
tem integrated with Scada” [italics mine]. In the United States, this kind of in-
tegration leads to school bussing, That is, the systems reside in “separate but
equal” areas, but they don’t really have to talk to each other very much. This
is exactly the level of integration that one would expect if the expert system is
an autonomous intelligent agent. Integration for agents means “communi-
cates with.”

In post-modern Al the AI becomes an invisible part of the overall systein.
In this, I am inspired in part by a vision articulated by Allen Newell at a panel,
held at IJCAI-81, celebrating the twenty-fifth anniversary of the 1956 Dart-
mouth Conference. At one point, the participants were asked to predict the fu-
ture of AL, Most gave the standard answer: intelligent thinking computers.
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Figure 1. Integrating intelligent agents into other systems.
(Pfau-Wagenbauer, 1995, p. 13)

Newell had a different view. He envisioned not a single intelligent entity,
but “a cognitive city,” where traffic lights understood the flow of traffic and
street lamps knew when people stood below them. His examples, at least as 1
remember them, are paradigmatic cases for post-modern AL The goal is not
“smart” appliances and cars that talk to us. The goal is street lamps that dom't
waste electricity on totally deserted sidewalks, and traffic lights that don’t
turn green for streets closed for construction. That is, the primary goal is to
develop systems that aren’t stupid, not systems that are intelligent. The intel-
ligence that makes systems not stupid will be as unremarkable in those sys-
tems as it is in people.

Examples of Intelligent Components

1 will now describe a few examples of intelligent components in systerns built
at the Institute for the Learning Sciences, in order to illustrate the differences
between the intelligent agent and intelligent component approach, some of
the different demands intelligent components must deal with, and some of
the techniques that work well for intelligent components. The third item will
bring us to the future of CBR.

The Casper Parsing Component

The Casper system was developed at the Institute for the Learning Sciences
for North West Water, a privatized British water utility, to teach their cus-
tomer service representatives (CSRs) how to diagnose water quality problems
(Kass 1994a). )
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‘Casper was built by first designing a number of scenarios, e.g., a custom
with a water problem cauged_ by rust in a hot water tank, another with a prgte,r
lem caused by the mains (hydrants) being flushed recently, and so on. Ther;
content analysts determined all the relevant questions, both good and bad
that a novice CSR might ask in those scenarios. Finally, actors playing Cus-’
tomers recorded answers to those questions. A scenario usually has severa]
hundred such question-answer pairs.

A student, playing the part of a customer service representative, interacts
with the pre-recorded customers. To ask a question, a student can use a
menu-based “question constructor” This is however somewhat unnatural
and interrupts the flow of the dialog. Alternatively, the student can simply
type what they want to say. Casper then lists the questions it has that best
match the student’s input, and the student either picks one, tries again, or
uses the menus.

The student input is “understood” by an indexed concept parser (Fitzgerald,
1995), an intelligent component that works as follows: 1) The stored ques-

 tions are indexed in advance by the sets of the basic concepts those questions

refer to. 2) The student input text is mapped to a set of index concepts. 3)
The stored questions are sorted by how well their index sets overlap with the
input index set, and the best matches are presented. Full details appear in

Fitzgerald (1995).

The key points for our purposes are as follows.
There’s enough Al to avoid being stupid:
+ Matching is done on concepts, not words
. Ambiguous words and phrases are handled smoothly
v Matching takes into account ISA relationships between index concepts
» The scoring algorithm gives more weight to matches between less com-
monly seen concepts.
There’s only a little Al here:
+ The concepts and stored questions have no internal structure.
The needs and capabilities of the system determine the scope and power of the
parser:
+ The system needs the stored question closest to what the student wanted,
therefore, the job of the parser is to find that question, and no more.

+ The system needs only very simple concept structures and inference rules
to connect student actions to scenario events and tutoring responses,
therefore, the parser must make do with very limited knowledge represen-
tations.

+ The system is a feasible solution only if content analysts, not programiners,
can maintain and add new scenarios easily and quickly, therefore, the pars-
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IF the student makes a diagnosis of the problem

AND there is not enough evidence for it

THEN
, Ask the student to justify his or her diagnosis.
. Ewplain why the diagnosis is premature. .

, Ask the student to retract the diagnosis statement.

bW R

. Help the student with the next problem-solving step.

Figure 2. A critiquing rule example, summarized in English.

er has to be no harder to maintain than the rest of the system.

In short, on the one hand, the job of the parsing component is made hard-
er by the fact that Casper needs reliable and robust handling of real user in-
puts, with serious limitations on how much knowledge is present in the sys-
tem. On the other hand, the job of the parsing component is made simpler by
the fact that the system requires only the selection of stored questions, not the
generation of novel meaning structures.

The Casper Critiquer

There are many kinds of mistakes students can make in Casper. Some are

mistakes in reasoning, such as coming to a conclusion unjustified or even in-

consistent with the existing evidence. Some are mistakes in procedure, such
as asking leading questions like “Is the water tea colored?” or performing
some action before it makes sense.

Responses to classic student mistakes are generated in advance by content
experts. These responses consist of text and video commentary on various ac-
tions, as well as stories of what happened when CSR’s made similar mistakes
in real life,

Mistakes are recognized by the Casper tutoring module, an intelligent
component that selects an appropriate pre-defined response, based on the
type of mistake, and where in the task it occurred. An example of a critiquing
rule, summarized in English, is depicted in figure 2. Full details appear in
Jona (1995),

The key points for our purposes are:

There’s enough Al to avoid being stupid:

+ Causal and diagnostic rules make the obvious connections, e.g., “rusty
pipes cause rust flakes in water which causes brownish water,” and “black
bits in water implies possible flaking lead pipes.”

- Evidence rules catch the obvious mistakes in hypothesis formation, such as
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failing to eliminate all other likely possibilities. or havi " '
dence for a conclusion. . ' aving oty weak evi-

There’s only a little Al here:
* The critiques are basically canned t’é{mplates.

‘T.he needs and capabilities of the system determine the scope and power of the

critiquer:
* The system needs the most relevant of the pre-defined critiques retrieved
.at the right time. Therefore, the critiquer doesn’t have to generate critiques,
but it does have to avoid finding obviously irrelevant ones.
* The critiquing rules must be maintainable by the same people who main-
tain the rest of the system.

In short, on the one hand, the critiquing component has to be reliable and
robust enough to help, rather than annoy. On the other hand, the critiquing
component does not have to do anything more than what Casper needs,
which is to point out mistakes that Casper knows about, and get the student
back on track,

Casper differs from a classic intelligent tutoring system in several ways. First,
Casper is not a model of a tutor, but of an environment. The environment has

- been modified to make learning easier, but the simulated environment remains

the focal point. Second, Casper is not a domain expert, Casper has a crude
causal mode] of the domain and of the diagnostic task. Finally, Casper does not
try to model the student. It has only a simple ontology of actions and mistakes.
In short, the system Casper is not intelligent. It does, however, have some not-
so-stupid components, namely the parser and the critiquer,

The Creanimate Parser

Creanimate {Edelson 1995) is a program developed to get children to under-
stand how the particular features and behaviors of different animals relate to
the kinds of goals those animals have. Creanimate does this by engaging a
child in a dialog about designing a new animal, based on modifying some ex-
isting animal, and showing lots of short, interesting videos about animals and
the things they do.

One component of Creanimate is a DMAP parser (Martin 1993) that maps
short phrases typed by students to internal frame structures, e.g., from “find
female spiders” to find-mate (Fitzgerald 1995). As in Casper, the job of the -
parser isn’t to construct meaning structures, but to find the most relevant ex-
isting concepts in memory. Full details appear in Edelson (1993) and Fitzger-
ald (1995). The key points for our purposes are:

There’s enough Al to avoid being stupid:

» The parser can map the words such as “chase after gazelles” to the underly-
ing concepts for hunting gazelles.
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. Taxonomic relationships link points such as using speed to catch gazelles to
using speed to catch prey in general,
There’s only a little Al here:

. The videos are “black boxes” to the rest of the system. There’s no image
processing or detailed representation of the events in the videos.

s There’s no model of the student,

The needs and capabilities of the system determine the scope and power of the
parser:
+ All “understanding” means here is finding the point stored in Creanimate
closest enough to what the student meant to keep the dialog coherent.

+ The parser must be maintainable by the same people who maintain the rest
of the system,

In short, on the one hand, the parsing component has to be reliable and
robust enough not to interfere with the flow of the dialog. On the other hand,
the parsing component does not have to do any more than get to something
Creanimate can talk about that’s consistent with what the student just said.

Select and Adapt: The Secret of Intelligent Components

On the one hand, life is hard for intelligent component designers. They’re not
_in control of what the component gets, what it has to produce, or how fast it
has to produce it. Even worse, a component can only require a level of engi-
neering and maintenance work commensurate with the value the component
adds to the system as a whole, For example, the lexicon and knowledge repre-
sentation aspects of the parsing components in Casper and Creanimate had
to be relatively easy to engineer and maintain, because parsing was not a
central component of those systems. Creanimate represented knowledge with

a hierarchical frame system that the parser could take advantage of. Casper

did not need such sophisticated representations. Therefore a parsing compo-
nent had to be designed that could make do with less, because the effort and
skills required to create such representations was more than the parsing com-
ponent was worth.

On the other hand, designing an intelligent component can be orders of
magnitude simpler than designing an intelligent agent, because of strong lim-
itations in the needs and capabilities of the rest of the system, Thus, the pars-
ing component in Creanimate didn’t have to understand everything a kid
could type, only those things that referred to concepts that Creanimate knew

about. The parsing component in Casper didn’t have to understand every-

thing a customer service representative might ask, only those questions that
Casper was prepared to handle,

Recognizing and taking advantage of the limits and capabilities of the big-
ger system is the secret of building intelligent components that are robust and
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Figure 3. Integrating intelligent components into other systems.

successful. Artificial intelligence, like linguistics and computer science, has
too long been concerned with being able to generate potentially infinite sets
of responses In fact, many real systems are like Casper and Creanimate. They
have very few things they can do. The problem is getting from a very large
number of situations to the most appropriate response.

The key problem for systems like Casper and Creanimate is selection, not
construction. That is, the job of the parser was not to construct a meaning,
but to help the system select the most appropriate pre-defined response tem-
plate, from a relatively small set. The job of the critiquer was to select the
most appropriate pre-defined critiquing templates.

Figure 3 shows how an intelligent component is integrated, and is intended
to contrast directly with figure 1. In figure 3, the component is an integral part
of the larger system. The job of the component is to help the system choose a
response good enough to meet the syster’s needs in a timely fashion. Figute 3
is, I believe, an accurate abstraction of how the parsers and critiquing compo-
nents discussed earlier are integrated into Casper and Creanimate.

Select and Adapt Versus Generate and Test

There are two arguments for select and adapt rather than the classic Al

paradigm of generate and test for intelligent components.

First, many systems have a finite set of possible response branches that they
can follow, e.g., x, y and z. If a component generates (canstructs) representa-
tional structures, then the rest of the system has to map those structures to
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branch x, y ot z Such mapping is extra run-time work for the system, and
extra build-time work for the system maintainers. The rules or tables that

perform the mapping are one more place where things can break, and one.

more reason not to use “that Al stuff.”

An intelligent component that generates responses, in other words, forces
the rest of the system to become smarter, in order to understand those re-
sponses. A component that selects from the responses built into the system
adds no extra effort to the rest of the systern,

The second problem with generate and test is one of timeliness, It's often hard
to put time-bounds on generative processes. Two general methods of generation
are 1) assembly from parts, and 2) refinement from templates. If you premature-
ly stop either process, you get an incomplete, nonfunctional solution.

A selection processes, on the other hand, can be designed to start with a
default complete answer, The answer may be wrong, but nothing is missing,
Given more time, it can be replaced with better solutions, or the bad parts
modified. At any point in time, there’s an answer available, One might call
this a “shoot first and ask questions later” approach.

Chess playing programs (whether they’re Al or not) have this capability be-
cause they're always selecting moves from the set of possible legal moves. If you
stop a chess program early, there’s some move it can give that's the best choice
so far, You could write a chess program that started with strategic goals (control
center, reduce threat), and refined them into particular moves, but then you
would no longer be able to interrupt it and ask it to move immediately.

In order for select and adapt to avoid the same problems as generate and
test, adaptation has to be carefully limited. Many CBR systems avoid adapta-
tion entirely. They are problem solving assistants that simply retrieve relevant
prior examples for a human user to consider when solving some problem.
The Casper and Creanimate systems also needed no adaptation after retriev-
ing a stored question or concept. The Casper critiquer and the Creanimate
dialog manager only had to instantiate text templates to create bridging intro-
ductions to the canned videos.

Ideally, then, two properties should be true of select and adapt algorithms
used in intelligent components:

+ The selection process should be an “anytime” algorithm (Dean and Boddy

1988) that quickly retrieves a real answer. It can replace that answer later

with a better one, but it’s never at a loss for some answer,

+ The adaptation process, if needed, should be quick and never leave the
adapted answer in an unusable state for very long.
CBR is a Select and Adapt Algorithm

CBR systems inspired by research on human reminding, ie,, the truest of the
trize CBR systems, typically have an “anytime” capability, That is, they find some
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answer almost in?m(?diately, then, givén more time, they adapt it, or replace it
with a better reminding. Examples of such systems include MEpiaTor (Kolod,
and Simpson 1989), Protos (Bareiss 1989a) and Swale (Schank et al. 1994), e

Saving and reusing adapted answers helps to overcome the strong limita-
tions on adaptation just described. Even though any particular adaptation
episode may be limited because of time and resource constraints, over time
better and better answers are constructed, because later adaptations begin
with the results of previous adaptations and repairs.

An early example of this is in CHEF (Hammond 1989c). CHE¥F's adaptation
rules were probably more complex than appropriate for a small intelligent
component, but they were still quite limited. Most plan step interactions were
simply not recognized, such as the fact that stir frying beef and broccoli togeth-
er might lead to soggy broccoli because of the water generated from the cook-
ing beef. However, when those interactions led to execution failures, the re-
paired recipes, e.g., cook beef and broccoli separately, were stored in memory
and made available to later problem solving situations. Thus, even though the
adaptation process in CHEF was too limited to catch such interactions in gener-
al, common interactions were learned and added to the system’s repertoire,

Case-based Intelligent Components

Case-based intelligent components, as illustrated in figure 4, select {and op-
tionally adapt) system responses from an indexed store of response selections

that is dynamically extended as the system runs over time.

I believe that there are some simple ways in which practical case-based
components can be developed right now, but that the role of intelligent com-
ponent also suggests some significant research problems. In the short term, I
see three feasible kinds of case-based intelligent components: First, general-
ized situation-response caches, using surface feature indices to provide simple
caching of answers to apply old answers to new situations that “any moron”
would see are the same. Second, case memories for knowledge-based intelli-
gent systems, including rule-based ones, using the deep feature indices al-
ready present in the larger system. Third, embedded browsable case bases,
using topic indices and inter-case cross-links to support user-driven retrieval.

Situation-Response Caches

Caching responses to commonly asked requests is a well-known technique
that is common in low-level processes, like disk accesses, but under-used in
higher-level software. Caching reduces a major form of stupidity, namely re-
doing the same work every time a problem is solved, no matter how many
times that kind of problem has already been solved.

One reason why caching is not used in systems supporting human problem
solving is that as situations become more complex, the likelihood decreases of
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Figure 4. A case-based intelligent component,

seeing exactly the same situation again. This of course is what partial matching
and adaptation in CBR is supposed to solve. Often the differences between two
situations can be inferred to be irrelevant, using just a little bit of knowledge.

The inferencing needed to do the partial matching (and adaptation, if re-
quired) must be limited, otherwise the development and maintenance costs
of adding a case-based cache will outweigh the benefits, For this reason, I
think that approaches using surface features are currently the most appropri-
ate, Several inductive techniques for case-based learning are discussed in Aha
(1991), and a partial matcher for dealing with noise in DNA sequences is de-
scribed in Shavlik (1991) These and similar approaches allow cases to be
stored and retrieved with very little knowledge engineering effort. They ex-
tend exact-match caching to handle situations that are “obviously” the same.
Such approaches are of course limited to very narrowly scoped case bases, but
this is often exactly the kind of case base a larger system is generating.

Case Bases for Intelligent Systems

Case bases for intelligent systems are feasible because the representational
work has already been done for the rest of the system. Adding the CER com-
ponent does not significantly increase knowledge maintenance needs. An
early example of an adjunct system is Casey (Koton 1988c), where a CBR sys-
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tem ran in conjunction with a model- based diagnostic systern.

_ One potential stupidity in this kind of system i spending more time adapt-
Ing a retrieved case than would have been required to solve it using the ruleg,
Jupce (Riesbeck and Schank 1989) and Propigy (Veloso and Carbonell 19913

. give two very different approaches to Euessing when it isn’t worth using a case,

Browsable Case Bases

Browsable case bases achieve feasibility by paring the notion of CBR to the
bone. ASK systems {Ferguson et al. 1991), for example, are browsable corpo-
rate memories in which there is not only no adaptation, but no retrieval as
welll Instead, there’s a case-base, partially indexed with topics and richly in-
dexed with inter-case links, The end user uses the topics to “zoom” to an ini-
tial case and then follows the links to other cases. The links in ASK systems
are based on conversational coherence principles, but intercase links of some
form are part of many early true CBR systems, such as MEDIATOR (Kolodner
and Simpson 1989) and Protos {Bareiss 1989a),

ASK systems provide some of the “job aid” memory of a case-based re-
triever, in a form that allows systems to be built and maintained by content
analysts, rather than Al programmers or knowledge engineers.

Research Goals for Case-Based Intelligent Components

Looking to the future, I see several research areas for CBR relevant to making
CBR feasible for intelligent components in non-intelligent systems.

Indexing

Indexing in CBR tends to be either a major effort or almost no effort at all,
Systems using surface features, as described above, require little knowledge
engineering, but don’t support cases from multiple domains. Systems like
Swale (Schank et al. 1994) use fairly complex, inferred features as case in-
dices, in order to support retrieval of the most relevant case from very dis-
parate domains. This of course requires significant representational effort.

A research area then is broadening the range of case bases that can be in-
dexed without incurring development and maintenance costs greater than the
value added by the broader range. Such research includes the development of
well-defined indexing methodologies, to lower the costs of developing and
applying indexing vocabularies; libraries of indexing vocabularies, (and here I
believe that many libraries of specific vocabularies will be more useful than a
few libraries of very abstract concepts); and semi-automated indexing assis-
tants, to assist indexers in applying indices to large case bases. One example is
described in Osgood and Bareiss (1993).
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Adaptation

Adaptation has always had a mixed status in CBR. (?n t’l}le one hand, adapta-
tion is the “reasoning” part of “case-based reasoning.” Fu.rtherrnore, most
early CBR work focussed on the development and apphcatlo_n 'of a.daptat.lon
strategies, such as parameterization and abstractionfresp?ec1a11zat1on {Ries-
beck and Schank 1989). On the other hand, adaptation is usuall.y the weak
link in a CBR system. Adaptation techniques are hard to generalize, hard to
implement, and quick to break. Furthermore, adaptation is often unneces-
sary. The originally retrieved case is often as useful to a human as any half-
baked adaptation of it .

For intelligent components, adaptation techniques have to be far more robust
than they currently are, far easier to define and support, and of far greater value
to the systemn as a whole. Furthermore, the techniques have to work incremen-
tally, so that there’s an answer available any time one is asked for. For empie,
an adaptation technique that removes all details specific to the old sxtuatlc?n be-
fore replacing them with details from the new situation would not be suitable,
because the partially empty case would not be a usable intermediate answer.

A research area then is the development of incremental adaptation tech-
niques. As with indexing vocabularies, I personally believe that developing li-
braries of fairly specific techniques is of greatest value. ‘ '

An interesting approach to try is splitting adaptation techniques into quick
fixers that rapidly fix problems in a retrieved case, and optimizers that remove
inefficiencies in the results produced by the quick fixers. For example, when a
recipe that chops vegetable is applied to situation calling for two vegetables,
the quick fixer creates a recipe with two chopping steps. The quick fixer then
calls its associated optimizer to see if the two chopping steps can be mergec.l.
The key point though is that the recipe with two steps is available for use, ff
the rest of the system needs it. The quick fixer makes sur;that tlhe adapter isn't
so “stupid” that it doesn’t even realize it has to chop two ingredients.

Conclusion

The argument above can be summarized as follows:

+ Al should focus on the development of intelligent components rather than
intelligent agents, because 1) we need systems that aren’t s.tup‘id more than
systems that are smart, and 2) we need nearer-term ob]ectw?s than au-
tonomous intelligent agents to focus current Al research strategies.

+ Select and adapt is a better control structure for intelligent agents than
generate and test.

+ CBR’s future is in the development of intelligent components that select
and adapt frue cases from dynamic memories.
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ilie system will retrieve the most adequate behaviors observed from the expert
and will adapt them to the situation at hand. ‘

-As we sald before, one of the main goals of our resesrch is to create Al
technigues that can be used by game manufacturers to reduce the effort required
to develop the Al component of their games. Developing the AI behavior for an
_automa.ted agent that plays a RTS is not an easy task, and requires a large
poding and debugging effort. Using the architecture presented in this paper the
game developers will be able to specify the Al behavior just by demonstration;
Le. instead of having to code the behavior using & programming language, the
behavior can be specified simply by demonsirating it to the system. If the system
shows an incorrect behavior in any particular situation, ingtead of having to find
the bug in the program and fix it, the game developers can simply demonstrate
the correct action in the particular situation. The system will then incorporate
that informatior in its case base and will behave better in the future.

Another contribution of the work presented in this paper is on presenting
an integrated architecture for case-based planning and execution. In our archi-
ecture, plan retrieval, composition, adaptation, and execution are interleaved.
The planner keeps track of all the open goals in the current plan (initially, the
gystem starts with the goal of winning the game), and for each open goal, the
system retrieves the most adequate behavior in the case base depending on the
-‘current game state. This behavior is then added into the current plan. When a
particular behavior has to be executed; it is adapted to match the current game
state and then it is executed. Moreover, each individual action or sub-plan inside
the plan is constantly monitored for success or failure. When a failure occurs,
he system attempts to retrieve a better behavior from the case base. This inter-
eaved process of case based planning and execution allows the system to reuse
he behaviors extracted from the expert and apply them to play the game.

. The rest of the paper is organized as follows. Section 2 presents a summary
f related work. Then, Section 3 introduces the proposed architecture and its
main modules. After that, Section 4 briefly explains the behavior represertation
= language used in our architecture. Section 5 explains the case extraction process.
Then sections 6 and.7 present the planning module and the case based reasoning
~module respectively. Section 8 summarizes our experiments. Finally, the paper
“finishes with the conclusions section.

Santiago Ontafidn, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram

CCL, Cognitive Computing Lab
Georgia Institute of Technology
Atlanta, GA 30332270280
{santi,kinshuk,nsugandh,ashwin}@cc. gatech. edu

Abstract. Artificial Intelligence techniques have been successfully ap-
plied to several computer games. However in some kinds of computer
games, like real-time strategy (RTS) games, traditional artificial inteli-
gence techniques fail to play at a human level because of the vast search
spaces that they entail. In this paper we present a real-time case based
planning and execution approach designed to deal with RTS games. We
propose to extract behavioral knowledge from expert demonstrations in
form of individual cases. This knowledge can be reused via a case based
behavior generator that proposes behaviors to achieve the specific open
goals in the current plan. Specifically, we applied our technique to the -
WARGUS domain with promising results.

Introduction

\rtificial Intelligence {AT) techniques have been successfully applied to several
omputer games. However, in the vast majority of computer games traditional’
\I technigues fail to play at a human level because of the characteristics :
he game. Most current commercial computer games have vast search spacesi
7hich the Al has to make decisions in real-time, thus rendering traditional search
iased techniques inapplicable. For that reason, game developers need to spend
. big effort in hand coding specific strategies that play at a reasonable level for :
ach new game. One of the long term goals of our research is to develop art1ﬁcla1.
ntelligence techniques that can be directly applied to such domains, allevmtmg
he effort required by game developers to include advanced Al in their games: |

Specifically, we are interested in real-time strategy (RTS) games, that hav
)een shown to have huge decision spaces that cannot be dealt with search base
\I techniques [2,3]. In this paper we will present a case-based planning a,rchltec~
ure that integrates planning and execution and is capable of dealing with both:-
he vast decision spaces and the real-time component of RT'S games. Moreover,‘“
pplying case-based planning to RTS games requires a set of cases with which:
o construct plans. To deal with this issue, we propose to. extract behavmzal'.
nowledge from expert demonstrations {i.e. an expert plays the game and ou
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2 Related Work

Concerning the application of case-based reasoning techniques to computer
~games, Aha et al. [2] developed a case-based plan selection technique that learns
~how to select an appropriate strategy for each particular situation in the game of
~WARGUS. In their work, they have a library of previously encoded strategies,
s and the system learns which one of them is better for each game phase. In addi-
‘tion, they perform an interesting analysis on the complexity of real-time strategy
ames (focusing on WARGUS in particular). Another application of case based

raconmninm +a real Flrna ofratacs caeman dn dlad Al Qlocn e b &1 T3 o LT



& 5. Ontafidn eb al.

esent a hybrid case based reinforcement learning approach able to learn whicl
2 the best actions to apply in each situation (from a set of high level actions),
1e main difference between their work and ours is that they learn a case selec
im policy, while our system constructs plans from the individual cases it hay
e case base. Moreover, our architecture automatically extracts the plans fiom
serving a human rather thar having them coded in advance. B
Ponsen et al [14] developed a hybrid evolutionary and reinforcement learniy
-ategy for automatically generating strategies for the game of WARGUS. Iy
eir framework, they construct a set of rules using an evolutionary approé.c_ﬁ
ach rule determines what to do in a set of particular situations). Then they. M6
reinforcement learning technique called dynamic scripling to select a subs
these evolved rules that achieve a good performance when playing the gaxﬁg}:
1ere are several differences between their approach and ours. First, they focus
. automatically generating strategies while we focus on acquiring them from
. expert. Moreover, eack of their individual rules could be compared to one of
r behaviors, but the difference is that their strategies are combined in a pure
active way, while our sirategies are combined using a planning approach. E‘c")_r

1 planner to achieve that, we require each individual behavior to be annotated

th the goal it pursues. S
Hoang et al. [9] propose to use a hierarchical plan representation to encode

‘ategic game AL In their work, they use HTN planning (inside the frameworkof -

sal-Oriented Action Planning [13]). Further, in [11] Mufioz and Aha proposs

way to use case based planning to the same HTN framework to deal with

‘ategy games. Moreover, they point out that case based reasoning provides
way to generate explanations on the decisions (Le. plans) generated by the
stem. The HTN framework is very related to the work presented in this pape'r‘i-‘,
1ere we use the task-method decomposition to represent plans. Moreover, in

eir work they focus on the planing aspects of the problem while in this paper

» focus on the learning aspects of the problem, i.e. how to learn from expeit
monstrations. g
The work presented in this paper is strongly related to existing work in cases
sed planning [8]. Case Based Planning work is based on the idea of planning

- remembering instead of planning from scratch. Thus, a case based planner

tains the plans it generates to reuse them in the future, uses planning failures

opportunities for learning, and tries to retrieve plans in the past that satisfy -

many of the current goals ag possible. Specifically, our work focuses on an

segrated planning and execution architecture, in which there has been little:
ik in the case based planning community. A sample of such work is that®’
Frefmann et al. [6], where they combine CBR with multi-agent systems to':

tomate the configuration and execution of workflows that have to be executed
-multiple agents.
Integrating planning and execution has been studied in the search based plasi-

ng community. For example, CPEF [12] is a framework for continuous planning?
d execution. CPEF shares a common assumption with our work, namely that:
ans are dynamic artifacts that must evolve with the changing environment in
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Fig.1. A screenshot of the WARGUS game

_which they are executing changes. However, the main difference is that in our
. approach we are interested in case based planning processes that are able to deal

with the huge complexity of our application domain.

.3 Case-Based Planning in WARGUS"

WARGUS (Figure 1) is a real-time strategy game where each player’s goal
is to remain alive after destroying the rest of the players. Each player has a
series of troops and buildings and gathers resources {gold, Wood and oil) in
order to produce more troops and buildings. Buildings are required to produce
more advanced troops, and troops are required to attack the enemy. In addition,
players can also build defensive. buildings such as walls and towers. Therefore,
WARGUS involves complex reasoning to determine where, when and which
buildings and troops to build. For example, the map shown in Figure 1 is a
2-player version of the clagsical map “Nowhere to run nowhere to hide”, with
a wall of trees that separates the players. This maps leads to complex strategic
reasoning, such as building long range units (such as catapults or ballistas) to
attack the other player before the wall of trees has been destroyed, or tunneling
early in the game through the wail of trees trying to cateh the enemy by surprise.

 Traditionally, games such as WARGUS use handerafted behaviors for the
buiit-in AL Creating such behaviors requires a lot of effort, and even after that,
the result is that the built-in Al is static and easy to beat (since humans can
easily find holes in the computer strategy). The goal of the work presented in
this paper is to ease the task of the game developers to create behaviors for
these games, and to make them more adaptive. Qur approach involves learning
behaviors from expert demonstrations to reduce the effort of coding the behav-
iors, and use the learned behaviors inside a case-based planning system to reuse
them for new situations. Figure 2 shows an overview of our case-based planning
nrrwnnah Raginally swa divide the nracess in two main shages:
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o , Acx on... L T ExXec ‘the procedural part contains. the executable behavior itself. The declarative
. ; i *f___a bhehavior consists of three parts:

‘A goal, that is a representation of the intended goal of the behavior. For
eIV"er.Y domain, an ontology of possible goals has to be defined. For instance,
ehavior might have the goal of “having & tower”.
set of preconditions that must be satisfled before the behavior can be
wecuted. For instance, a behavior can have as preconditions that a particular
peasant exists and that a desired location is empty.
set of alive conditions that represent the conditions that must be satisfied
during the exccution of the behavior for it to have chances of success. If
at some moment during the execution, the alive conditions are not met,
—~ Behavior acquisition: Durin i the béhavior can be stopped, since it will not achieve its intended goal. .For
WARGUS and the trace ofg tfll;ss st sj:age, an expert plays a BAIE o instance, the peasant in charge of building a building must remain alive; if
game Is stored. Then, the expert anng ‘he is killed, the building will not be built.

Fig. 2. Overview of the proposed case-based planning approach

‘Notice that unlike classical planning approaches, postconditions cannot be
specified for behaviors, since a behavior is not guaranteed to succeed. Thus, we
can only specify what goal a behavior pursues.
: The procedural part of a behavior consists of executable code that can contain

lan ex i : the following constructs: sequence, parallel, action, and subgoal, where an action
I()BG) mgzlfj?l'}isci%;?gugzgugfiggal?lodme and a behavior genera epresents the execution of & basic action in the domain of application (a set of
active goals and subgoals and which behaxgso an exir):u.tlcn tree of the cur asic actions must be defined for each domain), and & subgoal means that _the
each of the goals, Each time there fs ae o s arIe he;ng executed'fuo acl‘ne'n:v' execution engine must find another behavior that has to be executed to sa.tllsfy
module to generate a behavior to solve 11: er%%oaB,é e RTEE queries th that particular subgoal. Specifically, three things need to be defined for using
appropriate behavior k - Lhe .then retrieves the Tmost ur language in a particular domain:

X rom its case base, and sends it to the RTEE. Finall

r}rlheg the RTEE is about to start executing a behavior, it is sent bacl ty
; et G @odule for adaptalt%on. Notice that this delayed adaptation is a key
eature .dlfferent from traditional CBR required for real-time domains where
the environment continuously changes, w :(?r_e

took while playing. Using those annotations, a set of behaviors are extracte
&om the trace and stored as a set of cases. Each case is a triple: s
tion/ gloal/ behavior, representing that the expert used a particulafb. hS N i
o achieve a certain goal in a particular situation. S
— Execution: The execution engine consists of two main modules, a real-

L A set of basic actions that can be used in the domain. For instance, in
* WARGUS we define actions such asmove, attack, or build.

A set of sensors, that are used in the behaviors to obtain information about
the current state of the world, For instance, in WARGUS we might define
sensors such as numberOfTroops, or wnitErists. A sensor might return any
of the standard basic data types, such as boolean or integer.

— A set of goals. Goals can be structured in a specialization hierarchy in order

to specify the relations among them.
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- A goal might have parameters, and for each goal a function generateSuc-
" cessTest must be defined, that is able to generate a condition that is satisfied
* only when the goal is achieved. For instance, HaveUnits(TOWER) is a valid goal

in our gaming domain and it should generate the condition UnitExists(TOWER).
Such condition is called the success test of the goal. Therefore, the goal definition
can be used by the system to reason about the inténded result of a behavior,
while the success test is used by the execution engine to verify whether a par-
ticular behavior succeeds at run time.

Summarizing, our behavior language is strongly inspired by ABL, but ex-
pands it with declarative annotations (expanding the-representation of goals
and defining alive and success conditions) to allow reasoning,.

A Behavior Reasoning Language

this sectiop we will present the Behavior Reasoning Language used in o r
oroach, designed to allow & system to learn behaviors, represent them, and ;1
isonl about the behaviors and their intended and actufal effects. Our h;ngué;, 2
‘s ‘1deas from the STRIPS [5] planning language, and from the ABRL {1%]
1avior language, and further develops them to allow edvanced reasoning and
rning ca.pabﬂities over the behavior language. =
F‘he basllc constituent piece is the behavior. A behavior has two main parts:
ecla@‘a?we lpart and a procedural part. The declarative part has the u? .
roviding information to the system about the intended use of the bgha\?izsre
H
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Table 1. Snippet of a real trace generated after playing WARGUS
Annotated Trace

:le|PIayerE Action | Annotation Cycle | Player | Action | Annstations
i Build(2, “pig-farm” 26,20) . T S L N S
71 0 Build{5, “farm”,4,22) Se‘cupResourceInfrastructure(0',5‘,2)‘ ZZ? 2 z gi' gi
WinWargus(0) 1126] 0 | w= ;, :1
] 1 Train(4,“peon”) - w0 P g4: ol
] L |Build(2,“roll-lumber-mill” 22,20) - - 3571 o 25 3, 5
8 0 Train(3,“peasant”) SetupResourcelnfrastructure(0,5 2) 1351 o a7 gd, gl
WinWargus{0) : 1705 | 0 a8 g5, gl
31 1 Train(4, “pecn”) - 2016 [ 0 a8 g5 gl
31 1 Resource(10,5) - |
7] 0 Resource(5,0) SetupResourcelnfrastructure(0,5,2)
WinWargue(0)

Fig. 3. Extraction of cases from the annotated trace

Behavior Acquisition in WARGUS

— SetupResourceln frastructure(player, peasants, farms): indicates that the
 expert wanted to create a good resource infrastructure for player player, that

igure 2 shows, the first stage of our case-based planning architecture consist at least included peasants number of peasants and farms number of farms.

Juiring & set of hehaviors from an expert demonstratzon Let us present thls‘
+in more detail.
1e of the main goals of this work is to allow a system to learn a behavior
ly observing a human, in opposition to having a human enicoding the behay
some form of programming language. To achieve that goal, the first step’
rocess must be for the expert to provide the demons’cratlon to the system. T
articuldar application domain, WARGUS, an expert snnp’ly plays a game of.
YGUS (against the built-in Al, or against any othet opponent). As a resut
at game, we obtain a game trace, consisting of the set of actions executed
g the game. Table 1 shows a snippet of a real trace from playing a game of
YGUS. Ag the table shows, each trace entry contains the particular cycle i
1 an action was executed, which player executed the action, and the actios
For instance, the first action in the game was executed at cycle 8, wher
r | made his unit number 2 build a “pig-farm” at the (26,20) coordinates
Figure 2 shows, the next step is to annotate the trace. For this process,’
kpert uses a simple annotation tool that allows him to specify which goal
le pursuing for each particular action. To use such an annotation tocl, a se
iilable goals has to be defined for the WARGUS domain. .
our approach, a gool g = name(pi, ..., py) consists of a goal name and a se
rameters. For instance, in WARGUS, these are some of the goal types W‘e
defined:

- The fourth column of Table 1 shows the annotations that the expert specified
for his actions. Since the snippet shown corresponds to the beginning of the
game, the expert specified that he was trying to create a resource infrastructure
and; of course, he was trying to win the game.

Finally, as Figure 2 shows, the annotated trace is processed by the case ex-
tractor module, that encodes the strategy of the expert in this particular trace
in a series of cases. Traditionally, in the CBR literature cases consist of a prob-
lem/solution pair; in our system we extended that represemtation due to the

complexity of the domain of application. Specifically, a case in our system is de-
~ fined as a triple consisting of a game state, a goal and a behavior. See Section 7
for a more detailed explanation of our cass formalism. .

In order to extract cases, the annotated trace is analyzed to determine the
temporal relations among the individual goals appearing in the trace. For in-
stance, if we look at the sample annotated trace in Figure 3, we can see that the
goal g2 was attempted before the goal g3, and that the goal g3 was attempted
in parallel with the goal g4. The kind of analysis required is a simplified version
of the temporal reasoning framework presented by Allen [7], where the 13 basic
different temporal refations among events were identified. In our framework, we
are only interested in knowing if two goals are pursued in sequence, in parallel, or
if one is a subgoal of the other. We assume that if the temporal relation between
a particular goal g and another goal g’ is that g happens during ¢', then g is
a subgoal of ¢'. For instance, in Figure 3, g2, 98, ¢4, and g5 happen during g1;
thus they are considered subgoals of ¢1.

From temporal analysis, procedural descriptions of the behavior of the expert
can be extracted. For instance, from the relations among all the goals in Figure 3,

inWoargus(player): representing that the action had the intention of mak= .
1g the player ployer win the game. :
Tl U ndt{unit): representmg that the action had the intention of killing the
nit unit. -



S. Ontanién et al.

Wargus

actions

Fig. 4. Interleaved plan expansion and execution

wmber 1 (shown in the figure) can be extracted, specifying that to achieve'
11 in the particular game state in which the game was at cycle 137, the
t first tried to achieve goal ¢2, then attempted g3 and g4 in parallel, and:
shat g8 was pursued. Then, for each one of the subgoals a similar analysis is:
'med, leading to four more cases. For example, case 3 states that to achieve
2in that particular game state, basic actions a4 and a6 shouid be executed-
ntially. g

leal-Time Plan Expansion and Execution

P :
g execution time, our system will use the set of cases collected from expert;
' to play a game of WARGUS. In particular two modules are involved
scution: a real-time plan expansion and execution module (RTEE) and’
avior generation module {BG). Both modules collaborate $o maintain,
1t partial plan tree that the system is executing.

artial plan tree (that we will refer to as simply the “plan”) in our framewor
resented as & tree consisting of two types of nodes: goals and behaviors (fo
7 the same idea of the task/method decomposition [4]). Initially, the plan
ts of a single goal: “win the game”. Then, the RTEE asks the BG module
ierate a behavior for that goal. That behavior might have several subgoals;
asich the RTEE will again ask the BG module to generate behaviors, and;
. For instance, on the right hand side of Figure 4 we can see a sample’
where the top goal is to “win”. The behavior assigned to the *win” goak
iree subgoals, namely “build base”, “build army” and “attack”. The “build
goal has already a behavior assigned that has no subgoals, and the rest;
igoals still don’t have an assigned behavior. When a goal still doesn’t have;
igned behavior, we say that the goal iz open. :
ditionally, each behavior in the plan has an associated state. The state of-
avior can be: pending, ewecuting, succeeded or failed. A behavior is pending:
it still has not started execution, and its status is set to failed or succeeded -
its execution ends, depending on whether it has satisfied its goal or not.-
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A goal that has a behavior assigned and where the behavior has failed is also
considered to be open (since & new behavior has to be found for this goal).
Open goals can be either ready or waiting. An open goal is ready when all the
behaviors that had to be executed before this goal have succeeded, otherwise, it
is waiting. For instance, in Figure 4, “behavior 0” is a sequential behavior and
therefore the goal “bulld army” is ready since the “build base” goal has already

- succeeded and thus “build army” can be started. However, the goal “attack” is

waiting, since “attack” has to be executed after “build army” succeeds.

The RTEE is divided into. two separate modules, that operate in parallel
to update the current plan: the plan ezpansion module and the plan erecition
module. The plan expansion module is constantly querying the current plan to
see if there is any ready open goal. When this happens, the open goal is sent to
the BG module to generate a behavior for it. Then, that behavior is inserted in
the current plan, and it is marked as pending.

The plan execution module has two main functionalities: a) check for basic
actions that can be sent directly to the game engine, b) check the status of plans
that are in execution:

— For each pending behavior, the execution module evaluates the precondi-
tions, and as soon as they are met, the behavior starts its execution.

— If any of the execution behaviors have any basic actions, the execution mod-
ule sends those actions to WARGUS to be executed.

— Whenever a basic action succeeds or fails, the execution module updates the
status of the behavior that contained it. When a basic action succeeds, the
executing behavior can continue to the next step. When a basic action fails,
the behavior is marked as failed, and thus its corresponding goal is open
again (thus, the system will have to find another plan for that goal).

— The execution module periodicaily evaluates the alive conditions and success
conditions of each behavior. If the alive conditions of an executing behavior
are not satisfied, the behavior is marked as failed, and its goal is open again.
If the success conditions of a behavior are satisfied, the behavior is marked
as succeeded. , N

— Finally, if a behavior is about to be executed and the current game state has
changed since the time the BG module generated it, the behavior is handed
back to the BG and it will pass again through the adaptation phase (see
Section 7) to make sure that the plan is adequate for the current game state.

Y Behavior Generation

The goal of the BG module is to generate behaviors for specific goals in spec1ﬁc
scenarios. Therefore, the input to the BG module.is a particular scenario (ie.
the current game state in WARGUS) and a particular goal that has to be
achieved {e.g. “Destroy The Enemy’s Cannon Tower”). To achieve that task,
the BG system uses two separate processes: case reirieval and case adaptation
(that correspond to the first two processes of the 4R, CBR. model [1]).
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mapsize = 32x32
waterArea = 0
freeArea = 85
goldmines = 2

Player O Player 1

SetupResourcelnfrastructure{1,2,1)

Build(2,"pig-farm”,28,20)
Train{4,"pson")
Build(2,"troll-lumber-mill”,22,20)
Train(4,"peon”)
Rescurce(10,5}

Resource(12,5)

numTownhalls = 1
numPeasants = 1
numFarms =0
numFighters = 0

numTownhalls = 1
numPeasants = 1
numFarms =9

numFighters = 0

5. Example of a case extracted from an expert trace for the WARGUS game .

ice that to solve a complex planning task, several subproblems have to b
. For instance, in our domain, the system has to solve problems such
) build a proper base, how to gather the necessary resources, or how to de
sach of the units of the enemy. Al those individual problems are dlﬂ'eren\_ i
are, and in our case base we might have several cases that contain differ.
haviors $o solve each one of these problems under different circumstances. -
ore, in our system we will have an heterogeneous case bese. To deal with
sue, we propose to include in each case the particular goal that it tries to! ;
Therefore we represent cases as triples: ¢ = (S, G, B}, where 5 is a partic--
ame state, G is a goal, and B is a behavior; representlng that c.B is a good
ior to apply when we want to pursue goal c.G¢ in a game étate similar to c.S.
are 5 shows an example of a case, where we can see the three elements: &
description, that contains some general features about the map and some
\ation about each of the players in the game; a particular goal (in thl.
suilding the resource infrastructure of player “17); and finally a behavic -
ieve the specified goal in the given map. In particular, we have used a game:,
Jefinition composed of 35 features that try to represent each aspect of thgl'
GUS game. Twelve of them represent the number of troops (number of
s, number of peasants, and so on}, four of them represent the resources:,
he player disposes of {(gold, oil, wood and food), fourteen represent thei
ption of the buildings (number of town halls, number of barracks, and:
) and finally, five features represent the map (size in both dimension
1tage of waber, percentage of trees and number of gold mines).

s case retrieval process uses a standard nearest neighbor algorithm buf.
3 similarity metric that takes into account both the goal and the gam
Specifically, we use the following similarity metric:

d(Cl,Cz) = Oédc:s(cl 5, ea. S) + (1 - Cl!)dg(q G, e G)

i dag is a simple Euclidean distance between the game states of the two‘
(Where all the attributes are normalized between 0 and 1), dg is the distance
» between goals, and o is a factor that controls the importance of the game-
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- state in the retrieval process (in our experiments we used & = 0.5). To measure

distance between two goals g1 = name;(py, ..

»bn) and g2 = namea(q, ...
we use the following distance:

' Gm.)

N
, Bi—gt) —
da{gi,g2) = \/Ez=1...n ( B; ) if name; namez

1 otherwise

where F; is the maximum value that the parameter 4 of a goal might take (we
assume that all the parameters have positive values). Thus, when name, =
names, the two goals will always have the same number of parameters and the
distance can be computed using an Euclidean distance among the parameters.
The distance is maximum (1) otherwise.

The result of the retrieval process is a case that contains a behavior that
achieves a goal similar to the requested one by the RTEE, and that can be applied
to a similar map than the current one {assuming that the case base contains
cases applicable to the current map). The behavior contained in the retrieved
case then needs to go through the adaptation process. However, our system
requires delayed adaptation because adaptation is done according to the current
game state, and the game state changes with time. Thus it is interesting that
adaptation is done with the most up to date game state (ideally with the game
state just before the behavior starts execution). For that reason, the behavior in
the retrieved case is initially directly sent to the RTEE. Then, when the RTEE
is just about to start the execution of a particular behavior, it is sent back to
the BG module for adaptation.

The adaptation process consists of a series of rules that are applied to each
one of the basic operators of a behavior so that it can be applied in the current
game state. Specifically, we have used two adaptation rules in our systermn:

— Unit adaptation: each basic action sends a particular command to a given
unit. For instance the first action in the behavior shown in Figure 5 commands
the unit “2” to build a “pig-farm”. However, when that case is retrieved and
applied to a different map, that particular unit “2” might not correspond to a
peon (the unit that can build farms) or might not even exist (the “2” is just an
identifier). Thus, the unit adaptation rule finds the mos similar unit to the
one used in the case for this particular basic action. To perform that search,
each unit is characterized by a set of b features: owner, type, position (x.¥),
hit-points, and status (that can be idle, moving, attacking, etc.) and then the
most similar unit (according to an Euclidean distance using those 5 features)
in the current map to the one specified in the basic action is used.
Coordinate adaptation: some basic actions make reference to some particular
coordinates in the map (such as the move or build commands). To adapt
the coordinates, the BG module gets (from the case) how the map in the
particular coordinates looks like by retrieving the content of the map in a 5x5
window surrounding the specified coordinates. Then, it looks in the current
map for a spot in the map that is the most similar to that 5x5 window, and
uses those coordinates.
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| 2. Summary of the results of playing against the l‘)ui},t-in Al of WARGUS 1
1 2-player versions of “Nowhere to run nowhere to hide

[ mapl | map? | map8 _]

[ tracel 3 wins 3 wins |1 win, 1 loss, 1&‘
trace2 1 loss, 2 ties|2 wins, 1 ties| 2 1os:s.es, 1 1.',16

tracel & traced 3 wins 3 wins 2 wins 1 tie

Experimental Results

aluate our approach, we used seve;al va;riafl%gn,s: o:; 1? (2};1111?3;: zfegs;;zngt;fxt?ge
« un nowhere to hiae”, .
znlzf;leclin iaf S;\iﬁi‘zie;? :ﬁisr map has the characterist_;icrof hav.ing a wajll_of
"Fhat separates the players and that leads to complex stra’gﬁg;;:fzja:soiizp
fically, we used 3 different variations of the map (tha.t C\;fe w1( or 58
? and maepd), where the initial placement of the buil 1;:Lgstha i, o tf’ées
hall and a peasant in each side) varies Fstrongly, and also ef e m_aPS: r
separates both players is very different in .shape (e.g. in one o
. very thin point that can be tunneled easily).

e recorded expert traces for the first two variants of the map (that we wil

as tracel and trace2). Specifically, tracel was recorded i mapl alrlld fu:,eéi
egy consisting on building a series of ballistas to fire over the wa. (t}h re
trace? was recorded in map2 and tries to build defense towers nei;r- 365‘3 !
from it. Each trace contain:
o that the enemy cannot chop wood

?;erls and about 6 to 8 cases can be extracted from each of t.henzilMoreove%'
s , i d that the expert wing the game, 1

Ir current experiments, we have assume :

sins as future work to’ analyze how much the quality of the expert trac

ts the performance of the SyStBII‘l. .
le tried the effect of playing with di oreat combinatons
ariations of the map. For each com ination, :
ea;ainst the built-in AT three times (since WARGUS has some stochasti¢ .
ents), making a total of 27 games. _
;bie )é shows the obtained results when our system plays only exzrac?iﬁ
s from fracel, then only extracting cases from trace, and finally Ex rgzceﬁ
s from both. The table shows that the system plagés ;/llle game e:l O;mice oo
‘ g i ¢ the 27 games it played. Moreover, .
1, managing to win 17 out o ; e
t traces to draw cases irom, 138 play lews
1 the system uses several exper : s Doy e
i in the table since from the 9 g th
eases greatly. This can be seen in ‘
ermn plagyed using both expert traces, it won 8 of them and never lost a gam
g only onc :
e it was able to win in some maps using & t.race recor :
wnks to the combination of planning, execution, and‘ adaptatlo_n). e
‘inally, we would like to remark the low time required to train our sysis

slay in a particular map (versus the time required to write a handcraft

avior to play the same map). Specifically, to record a trace an expert has to

Q. IVIO cve 3 the 1 O th.a:t t]:le S)‘ tE‘,IIl ShOWS adi—l tl@e bellavio
s p 5,
re T, ILO als
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play a complete game (that takes between 10 and 15 minutes in the maps we
used) and then annotate it (to annotate our traces, the expert required about
25 minutes per trace). Therefore, in 35 to 40 minutes of time it is possible to
train our architecture to play a set of WARGUS maps similar to the one where
the trace was recorded {of the size of the maps we used}. In contrast, one of our
students required several weeks to hand code a strategy to play WARGUS at
the level of play of our system. Moreover, this are preliminary results and we
plan to systematically evaluate this issue in future work, Moreover, as we have
seen our system is able to combine several traces and select cases from one or the
other according to the current situation. Thus, an expert trace for each single
map is not needed.

9 Conclusions

In this paper we have presented a case based planning framework for real-time
strategy games. The main features of our approach are a) the capability to deal
with the vast decision spaces required by RIS games, b) being able to des}
with real-time probletns by interleaving plapning and execution in real-time,
and, ¢} solving the knowledge acquisition problem by automatically extracting
behavioral knowledge from annotated expert demonstrations in form of cases, We
have evaluated our approach by applying it to the real-time strategy WARGUS
with promising results.

The main contributions of this framework are: 1) a case based integrated
real-time execution and planning framework; 2) the introduction of a behavior
representation language that includes declarative knowledge as well as procedu-
ral knowledge to allow both reasoning and execution; 3) the idea of automatic
extraction of behaviors from expert traces as a way to automatically extract do-
main knowledge from an expert; 4) the idea of heterogeneous case bases where
cases that contain solutions for several different problems (characterized as goals
in our framework) coexist and 3) the introduction of deloyed adaptation to deal
with dynamic environments (where adaptation has to be delayed as much ags
possible to adapt the behaviors with the most up to date information).

As future lines of research we plan to experiment with adding a case retention
module in our system that retains automatically all the adapted behaviors thai
kad successful results while playing, and also annotating all the cases in the case
base with their rate of success and failure allowing the system to learn from
experience. Additionally, we would like to Systematically explore the transfer
learning [15] capabilities of our approach by evaluating how the knowledge learnt
{both from expert traces or by experience) in a set of maps can be applied to a

. different set of maps. We also plan to further explore the effect of adding more

expert traces to the system and evaluate if the system is able to properly extract
knowledge from each of them to deal with new scenarios.

Further, we would like to improve our current plenning engine so that, in
addition to sequential and parailel plans, it can also handle conditional plans.
Specifically, one of the main challenges of this approach will be to detect and

properly extract conditional behaviors from expert demonstrations.
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Abstract. SmartC'AT is a Case Authoring Tool that creates knowledge-rich cases
from textoal reports. Knowledge is extracted from the reports and used to learn a
concept hierarchy. The reports are mapped onto domain-specific concepts and the
resulting cases are used to create a hierarchically orpanised case-based system.
Indexing knowledge is acquired antomatically unlike most textual case-based rea-
soning systems. Components of a solution are attached to nodes and relevant parts
of a solution are retrieved and reused at different levels of abstraction. We evalu-
ate SmartCAT on the SmartHouse domain looking at the usefulness of the cases,
the structure of the case-base and the retrieval Strategy in problem-solving, The
system generafed solutions compare well with those of a domain expert.

1 Introduction

Creating a case-based reasoning System can be quite challenging if the problem-solving
experiences are captured as unstructured ar semi-structured text [13]. This is because
the system should be abie to compare new problems with the textual case knowledge,
Although IR-based techniques can be used to retrieve whole documents or snippets
of documents, case comparison in this situation would only take place at word/phrase
level. The features pertaining to the documents would still have to be compared using
some domain/background knowledge or lexical source, in order to arrive at a useful
ranking. Alternatively, a structured case representation can be created and the textual
sources mapped onto it before they are used in reasoning [15]. This is quite difficult and
the costs can be prohibitive if it is manually done by an expert.
It has been observed that humans do not interpret text at word-level but do so at

a much higher level of abstraction where concepts are manipulated [4]. For example,
an occupational therapist that-reads about a wheelchair user immediately thinks about
the person’s mobility. Hierarchical organisation of cases enables effective retrieval at
different levels of problem abstraction [2}. The humans” ability to organise information

into concepts, in order to extract meaning that is beyond the words they read, is.what

we attempt to mimic in our work,

Our Case Authoring Tool SmartCAT creates knowledge-rich cases from textual

SmartHouse reports, Figure 1 shows the expert interacting with SmartCAT to sanction
authored cases. SmartCAT uses the information embedded in text to learn a concept
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