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7 Conclusions

Limited discrepancy search is an effective algorithm for problems where only
part of a tree has to be searched to find a solution, or the problem size pro-
hibits an exhaustive search. We presented an improved version of the algo-
rithm that reduces its time complexity from O(CH'TQZd) to O(2%) for searching
a complete binary tree of uniform depth d. In practice, however, the improve-
ment is much less due to pruning of the tree, and we measured a factor of
six improvement on trees of depth 35. While our improved algorithm always
generates fewer nodes than the original, when only a very small fraction of
the tree is searched, it is not significantly better than the original. We also
showed that the overhead of the improved algorithm compared to depth-first
search is a factor of b/(b—1), for a complete search of a b-ary tree. In practice,
again due to pruning, this overhead is significantly greater, and we measured
a value of 3.5 on our binary trees. Finally, we compared the performance of
these algorithms on the NP-Complete problem of number partitioning, as a
function of problem difficulty. While depth-first search is the best algorithm
for the hardest problem instances, limited discrepancy search is significantly
more efficient on easier problems where an exact solution exists.
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The performance of the original OLDS algorithm is even worse in this
region, due to its redundant generation of all paths in previous iterations.
The node generation ratio between OLDS and ILDS increases with increasing
problem size, and peaks at about six in this experiment, for problems of size
35. Our analysis in Section 3 predicts a ratio of (d 4+ 2)/2, or 18.5 in this
case, but again we assumed that all leaf nodes occur at the maximum search
depth. Pruning, however, makes ILDS relatively less efficient compared to
OLDS, decreasing the performance gap between them.

To the right of the peak, where perfect partitions exist, the situation
is very different. As expected, the linear discrepancy searches outperform
depth-first search. By searching the leaf nodes in non-decreasing order of the
number of “good” moves in their paths from the root, perfect partitions are
found sooner on average, and this more than compensates for the additional
overhead of these algorithms. This overhead itself is significantly reduced,
since only a small fraction of the tree is searched, corresponding to only a few
iterations. As the problem size increases, the number of iterations decreases,
and hence the gap between ILDS and OLDS quickly becomes insignificant.
It is for problems in this region that OLDS was designed.

We have run these experiments on problems of up to 300 numbers. For
problems larger than 200, depth-first search begins to outperform LDS again.
The reason is that in this region, a perfect partition is found within the first
two iterations, and the overhead of starting the second iteration from the
root of the tree, as described in Section 5, becomes significant. Replacing
ILDS with the RBFS version of the algorithm would remove this effect.

Note that Figure 5 shows the relative performance of these algorithms as
a function of problem difficulty. To the left of the peak, there are no perfect
partitions, and the entire tree must be searched. Depth-first search is the
best algorithm in this case. To the right of the peak, once a perfect partition
is found, the search can be terminated, and limited discrepancy search is
a better choice. ILDS is never less efficient than OLDS, and is more more
efficient when a significant fraction of the tree must be searched, and hence
should be chosen over OLDS. Finally, for the hardest problems, occurring
near the peak in Figure 5, depth-first search is the algorithm of choice.
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Figure 5: Nodes Generated to Optimally Partition 10-Digit Integers

The relative performance of the algorithms is different in different parts
of the graph. To the left of the peak, perfect partitions don’t exist, and the
entire tree must be searched. As expected, depth-first search is the most
efficient algorithm in this region, since it generates each node only once.

Our improved ILDS algorithm is the next best choice in this region, but
is less efficient than depth-first search, since it must generate interior nodes
multiple times. The measured node generation ratio between these two al-
gorithms is roughly a constant factor of 3.5. While our analysis in Section
4 predicts a factor of two overhead, it assumes that all leaf nodes are at the
maximum search depth. Pruning increases the overhead of ILDS relative to
DFS, since leaf nodes of the pruned tree occur at shallower depths, and hence
are generated multiple times by ILDS, as if they were interior nodes.
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Whenever we reach a node in which the largest number is greater than
or equal to the sum of all the other numbers, the optimal thing to do is to
place the largest number in one subset and all the others in the other subset.
Thus, we prune the tree below any such node. Finally, if a perfect partition
is found, the entire search is terminated at that point. The actual partition
is easily recovered by some additional bookkeeping.

(81776!5’4)

T

(6,5,4,1) (15,6,5,4)
/\ 0
(4,1,1) (11,4,1)
2 6

Figure 4: Tree Generated to Optimally Partition (4,5,6,7,8)

For our experiments, we chose random integers uniformly distributed from
zero to 10 billion, which have 10 digits of precision. We varied the number
of numbers being partitioned from 5 to 100, in increments of 5, and for
each data point we averaged 100 different trials. Figure 5 shows our results.
The horizontal axis represents the number of numbers being partitioned,
or the problem size, and the vertical axis represents the number of nodes
generated to optimally solve problems of the given size, on a logarithmic scale.
The three different lines correspond to depth-first search (DFS), the original
limited discrepancy search (OLDS), and our improved version (ILDS).

The first thing to notice about this graph is that for all three algorithms,
the difficulty of the problem initially increases with increasing problem size,
reaches a peak, and then decreases. For problem sizes to the left of the peak,
perfect partitions don’t exist. Thus, to find an optimal partition, the entire
tree must be searched. The larger the problem size, the larger the tree, and
the more nodes that are generated.

To the right of the peak, perfect partitions do exist, and as soon as one
is found, the search is terminated. As the problem size increases, the density
of perfect partitions increases as well, making them easier to find, and hence
reducing the total number of nodes generated. The peak in problem difficulty
occurs where the probability that a perfect partition exists is one-half.
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algorithm, as we will see in the experiments below.

6 Experiments on Number Partitioning

To evaluate the performance of LDS in a new domain, and to compare the
relative performance of OLDS, ILDS, and DFS, we implemented all three
algorithms for the problem of number partitioning. Given a set of integers,
the two-way partitioning problem is to divide them into two subsets, so that
the sums of the numbers in each subset are as nearly equal as possible. For
example, given the numbers (4,5,6,7,8), if we divide them into the subsets
(4,5,6) and (7,8), the sum of the numbers in each subset is 15, and the
difference between the subset sums is zero. In addition to being optimal, this
is also a perfect partition. If the sum of all the numbers is odd, a perfect
partition has a difference of one. Number partitioning is NP-Complete[l].

The algorithm we implemented to find an optimal partition is described
in detail in [6], and is based on a polynomial-time heuristic due to Karmarkar
and Karp[3]. First we sort the numbers in decreasing order. Then, we search
a binary tree, where each node represents a set of numbers to be partitioned,
with the root corresponding to the original numbers. Figure 4 shows the tree
that results from partitioning the numbers (4,5,6,7,8). The numbers below
the leaf nodes represent the differences of the final subset sums.

The right branch of each node represents a decision to keep the two largest
numbers together in the same subset. This is done by replacing them with
their sum. For example, the right branch from the root in Figure 4 replaces
8 and 7 by their sum of 15. The sum is then treated like any other number.

The left branch of each node represents a decision to separate the two
largest numbers in different subsets. This is done by replacing them by their
difference in the sorted order. For example, if the 8 and 7 are in different
subsets, this is equivalent to assigning their difference of 1 to the subset that
contains the 8. This is because we can subtract 7 from both subsets without
effecting the final subset difference. Thus, we remove the 7 and 8, and replace
them with 1, which is inserted in the sorted order, and henceforth treated like
any other number. In general, replacing the two largest numbers by their
difference is better than replacing them with their sum, since differencing
reduces the size of the remaining numbers, making it easier to minimize the
resulting subset difference.



For example, for a binary tree, this is only a factor of two, and the ratio
decreases with increasing branching factor.

Our analysis is for a tree of uniform depth d, and is optimistic. With
any pruning, the overhead of ILDS increases. For example, if all the nodes
are pruned one level above the maximum depth, then in a binary tree ILDS
generates 4 - 2¢ — 2¢ = 3. 29 nodes, while DFS generates only 2-2¢ — 24 = 24
nodes, for an overhead factor of three instead of two. We will see this effect
in our experiments in Section 6.

5 A Small Additional Improvement

Consider a deep tree where a solution is found on the second leaf node from
the left. Depth-first search will find this node after generating d + 1 nodes,
where d is the depth of the tree. ILDS, however, will have to generate 2d
nodes, since it starts each iteration from the root of the tree. Thus, ILDS
generates almost twice as many nodes as depth-first search in this case. The
solution to this problem is instead of starting from the root each time, start
each iteration from the last path of the previous iteration.

To see how this is done, think of LDS as a best-first search, where the
cost of a node is the number of discrepancies in its path from the root. A
standard best-first search with this cost function would execute LDS without
generating any node more than once, but would require exponential space.
Recursive best-first search (RBFS), however, executes a best-first search,
with an arbitrary cost function, using space that is only linear in the search
depth, at the cost of generating some nodes more than once[5]. RBFS saves
only the current search path, and the cost of all siblings of the nodes on this
path. Using the discrepancy cost function, after generating the leftmost path,
the leaf node is assigned a value of infinity. All the siblings of this path will
have one discrepancy, and RBFS will start exploring these paths in order of
their distance from the leftmost leaf. After completing the second iteration,
it will begin the third iteration starting with the last path of the second
iteration. The reader is referred to [5] for full details on this algorithm.

This implementation of LDS saves the work of generating the initial path
from the root to a leaf in each iteration, a savings of roughly d* nodes in
a tree of depth d. While this savings is quite small, it could be important
in cases where a solution is found very early in the second iteration of the



Now consider a node at depth d — 1, one level above the leaves, and
assume that its path from the root has k discrepancies. Its left child also
has k discrepancies, but its right child has & + 1 discrepancies. Therefore,
its children are generated on two different iterations of ILDS, and the parent
must be generated twice. There b%~! such nodes.

Next consider a node at depth d — 2, two levels above the leaves, again
with k discrepancies in its path from the root. Its leftmost grandchild has &
discrepancies as well, its rightmost grandchild has £+ 2 discrepancies, and its
two remaining grandchildren each have k£ +1 discrepancies. Thus, the parent
must be generated three times, once during each of these different iterations,

b%=2 such nodes.

and there are
In general, a node at depth d — n is generated n + 1 times, and there are
b4~ such nodes. Thus, the total number of nodes generated by ILDS in a

complete b-ary tree of depth d, ILDS(b,d), is
TLDS(b,d) = b* 4+ 26" 43692 .. 4 (d — 1)b* + db

Interestingly, this is the same as the number of nodes generated by a
depth-first iterative-deepening search, which is a series of depth-first search
iterations starting at depth one and increasing to depth d[4]. In other words,

ILDS(b,d) = DFS(b,1) + DFS(b,2) + - + DI S(b, d)

b b
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The ratio of the total number of nodes generated by ILDS to the total
number of nodes generated by depth-first search is
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Since the sum of the binomial coefficients is 2¢, the number of leaf nodes,

d+2
2

20 = (d+ 2)2d or 24

which is the asymptotic time complexity of OLDS, since the interior node
generations don’t affect the asymptotic complexity. Since the complexity of
ILDS is only O(2¢), the performance of OLDS could be as much as a factor
of (d + 2)/2 worse than that of ILDS on a binary tree. For example, on a
binary tree of uniform depth 30, which contains about a billion leaves, OLDS
would generate 16 times as many leaf nodes as ILDS.

This is a worst-case scenario, however, for two reasons. The first is that
OLDS was designed for very large trees, in which case only the first few
iterations could be performed, dramatically reducing the relative inefficiency
of the original algorithm. Secondly, in most applications, such as constraint-
satisfaction problems or branch-and-bound, there is a great deal of pruning,
meaning that most branches terminate before the maximum depth is reached.
Terminal nodes above the maximum depth are generated multiple times by
ILDS, and hence the relative inefficiency of OLDS compared to ILDS is also
reduced. This will be seen in the empirical results presented in Section 6.

4 Interior Node Overhead of ILDS

While ILDS generates each leaf node at the maximum search depth exactly
once, it 1is still less efficient than depth-first search, because it generates
interior nodes multiple times. Here we analyze this overhead. Assume a
complete search to a uniform depth d, on a tree with branching factor b.

First, consider the number of nodes generated by depth-first search, DFS(b, d),
which is just the total number of nodes in the tree. Since the number of nodes
at depth d is b?, the total number of nodes is

bd+1 -1 bd+1 . b

DFS(b.d)=1+b+b+-- - +b* = ~ —b
Shid)=14+b+b"+-+ R S E

For limited discrepancy search in a b-ary tree, we assume that any branch
that is not the leftmost is a discrepancy. The leaf nodes at depth d are each
generated exactly once by ILDS, in the iteration corresponding to the number
of right branches in their path from the root, and there are b? such nodes.



do this by counting the number of leaf nodes generated by the two algorithms.
Assume we are searching a complete binary tree of uniform depth d. Since
each iteration of ILDS generates those paths with exactly k discrepancies,
each leaf node is generated exactly once, by the iteration in which k is equal
to the number of right branches in its path from the root. Since a complete
binary tree to depth d has 29 leaf nodes, ILDS generates 2¢ leaf nodes. This is
also the asymptotic time complexity of the algorithm, since the interior node
generations don’t affect the asymptotic complexity, as we’ll see in Section 4.

The number of leaves generated by the original LDS algorithm is more
complex. To count them, we need to count the number of paths with &
discrepancies. There is one path with zero discrepancies, the leftmost one.
There are d paths with one discrepancy, since the single right branch could
occur at any level in the tree. In general, the number of different paths with
k discrepancies is (Z), the number of ways of choosing k right branches out
of a total of d branches.

A total of d + 1 iterations of LDS are needed to completely search a tree
of depth d, since the number of discrepancies can range from 0 to d. The
single path in the zeroth iteration is generated d + 1 times, once in every
iteration. The d paths in the first iteration are each generated d times, once
in each iteration except the first. In general, if x is the number of paths, or
leaf nodes, generated by OLDS in a complete search to depth d, then,

$=<d+1>(§) +d® “d‘”@ —I'"'—I_Q(dil) “(Z)

Writing the same terms in reverse order,

le(;l)+2(df1)+3(df2)+...+d(f)+<d+1>(§)

Since (Z) = (dik) for any k, adding the two equations together gives
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Factoring out (d 4 2) gives

zx=<d+2>((§)+(f)+(g)+”'+(dil)+(3))



LDS (NODE, K, DEPTH)
If NODE is a leaf, return
If (DEPTH > K)
LDS (left-child(NODE), DEPTH-1, K)
If (K> 0)
LDS (right-child(NODE), DEPTH-1, K-1)

Figure 3: Pseudo-code for a Single Iteration of Improved LDS

2 Improved Limited Discrepancy Search

The main drawback of the original formulation of LLDS, OLDS, is that it
generates some leaf nodes more than once. In particular, an iteration with k
discrepancies generates all those paths with k& or less right branches. Thus,
each iteration repeats all the work of all previous iterations. For example,
OLDS generates a total of 19 different paths for a depth-three binary tree,
only 8 of which are unique[2]. As an extreme example, while the rightmost
path is the only new path in the last iteration, OLDS regenerates the entire
tree on this iteration. This is unnecessary.

Given a maximum search depth, the algorithm can be modified so that
each iteration generates only those paths with exactly k discrepancies. This
is done by keeping track of the remaining depth to be searched, and if it
is less than or equal to the number of discrepancies, only right branches
are explored. The modified pseudo code is shown in Figure 3. The depth
parameter is the remaining depth to be searched below the current node. It
is set to the maximum depth of the tree in the call on the root node. Every
leaf node at the maximum depth is generated exactly once by this improved
version of LDS, ILDS. Leaf nodes above the maximum depth, however, as
well as interior nodes, are generated more than once.

3 Analytic Comparison of the Algorithms

We now compare the performance of these two versions of LDS analytically,
to determine how much is saved by the improved version of the algorithm. We



discrepancies in a binary tree of depth three. Figure 2 gives a pseudo-code
description of a single iteration of LDS on a binary tree. Its arguments are
a node, and the number of discrepancies k for that iteration. This function
is called once for each iteration, with k ranging from zero to the maximum
tree depth, terminating if a goal is found.

n

Figure 1: Paths with 0, 1, 2, and 3 Discrepancies in a Depth 3 Binary Tree

LDS can be applied to any tree-search problem where one branch from
each node is preferred to that of its siblings. The simplest extension to a non-
binary tree is to treat any branch except the leftmost as a single discrepancy.
In Harvey and Ginsberg’s analysis of the algorithm[2], they consider the left
branch to have a higher probability of containing a solution in its subtree
than the right branch, and show that limited discrepancy search has a higher
probability of finding a solution than depth-first search, for a given number
of node generations. They also show experimentally that it outperforms
depth-first search in a constraint-satisfaction scheduling task.

LDS (NODE, K)
If NODE is a leaf, return
LDS (left-child(NODE), K)
If (K > 0) LDS (right-child(NODE), K-1)

Figure 2: Pseudo-code for a Single Iteration of Original LDS



is not feasible. In that case, we would like to search as much of the tree
as possible in the time available, and then return the best solution found.
Depth-first search is not necessarily the best choice in this case.

For example, consider the following tree-search problem. There are costs
associated with the edges of a binary tree, and the cost of a node is the sum
of the edge costs from the root to that node. We want to find a leaf node of
lowest cost. The best algorithm to exactly solve this problem is depth-first
branch-and-bound, with node ordering. The idea of node ordering is that
at each node, we search the lower-cost child first. If the tree is too large to
search exhaustively, we would like to search those leaves that are most likely
to have the lowest costs first.

Assume that the edge costs are independent random variables uniformly
distributed from zero to one. The expected value of the minimum of two such
variables is 1/3, and the expected value of the maximum is 2/3. Thus, if we
reorder the tree, the expected value of a left branch is 1/3, and the expected
value of a right branch is 2/3. The leaf node with the lowest expected total
cost is the leftmost. If d is the depth of the tree, its expected cost is d/3.
This is also the first leaf node visited by depth-first search. The second leaf
node from the left has d — 1 left branches, and one right branch in its path
from the root, and hence an expected cost of (d—1)/3+2/3. This is also true
of the third leaf node from the left. The fourth leaf from the left, however,
has an expected cost of (d — 2)/3 4+ 4/3, since it has two right branches in
its path from the root. In general, the leaf nodes with the second-lowest
expected value, after the leftmost leaf, are those with all left branches except
for one right branch, in their path from the root. This includes, for example,
the path that goes right from the root, and then left thereafter. The leaf
nodes with the next lowest cost are those with all left branches except for
two right branches. Thus, depth-first search does not search the leaf nodes
in non-decreasing order of total expected cost.

Limited discrepancy search (LDS), invented by Harvey and Ginsberg[2],
does search the leaf nodes in non-decreasing order of cost. A discrepancy
corresponds to a right branch in an ordered tree. The first path generated
by LDS is the leftmost path. Next, it generates those paths with at most
one right branch from the root to the leaf. The next set of paths generated
by LDS are those with at most two right branches, etc. This continues
until every path in the tree has been generated, with the rightmost path
being generated last. Figure 1 shows the sets of paths with 0, 1, 2, and 3
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Abstract

We present an improvement to Harvey and Ginsberg’s limited dis-
crepancy search algorithm. Our version eliminates much of the redun-
dancy in the original algorithm, generating each search path from the
root to the maximum search depth only once. For a uniform-depth
binary tree of depth d, this reduces the asymptotic complexity from
O(%£22) to O(2). The savings is much less in a partial tree search,
or in a heavily pruned tree. We also show that the overhead of the
improved algorithm on a uniform-depth b-ary tree is only a factor of
b/(b—1) compared to depth-first search. This constant factor is greater
on a heavily pruned tree. Finally, we present empirical results show-
ing the utility of limited discrepancy search, as a function of problem
difficulty, on the NP-Complete problem of number partitioning.

1 Introduction: Limited Discrepancy Search

The best-known tree-search algorithms are breadth-first and depth-first search.
Breadth-first search is rarely used in practice, because it requires space that
is exponential in the search depth. Depth-first search, however, uses only
linear space, and hence is often the algorithm of choice for trees that are to
be searched exhaustively. For a very large tree, however, exhaustive search



