
U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 1

Annals of Operations Research 115, 51–72, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Combining the Scalability of Local Search with the
Pruning Techniques of Systematic Search

STEVEN PRESTWICH s.prestwich@cs.ucc.ie
Cork Constraint Computation Centre, Department of Computer Science, University College, Cork, Ireland

Abstract. Systematic backtracking is used in many constraint solvers and combinatorial optimisation al-
gorithms. It is complete and can be combined with powerful search pruning techniques such as branch-
and-bound, constraint propagation and dynamic variable ordering. However, it often scales poorly to large
problems. Local search is incomplete, and has the additional drawback that it cannot exploit pruning tech-
niques, making it uncompetitive on some problems. Nevertheless its scalability makes it superior for many
large applications. This paper describes a hybrid approach called Incomplete Dynamic Backtracking, a
very flexible form of backtracking that sacrifices completeness to achieve the scalability of local search. It
is combined with forward checking and dynamic variable ordering, and evaluated on three combinatorial
problems: on the n-queens problem it out-performs the best local search algorithms; it finds large optimal
Golomb rulers much more quickly than a constraint-based backtracker, and better rulers than a genetic al-
gorithm; and on benchmark graphs it finds larger cliques than almost all other tested algorithms. We argue
that this form of backtracking is actually local search in a space of consistent partial assignments, offering
a generic way of combining standard pruning techniques with local search.

Keywords: hybrid search, maximum cliques, Golomb rulers, n-queens

1. Introduction

Systematic backtracking has been applied to combinatorial problems for several decades.
Backtracking algorithms have the considerable advantage of completeness: if there is a
solution then they will find it; they can be used to enumerate all solutions; and if there
is no solution then they are able to report the fact. For optimisation problems they are
guaranteed to find optimal solutions, and can prove them optimal by failing to find better
solutions. A further advantage of backtracking is that it can be combined with power-
ful search tree pruning techniques such as branch-and-bound, constraint propagation
and dynamic variable ordering. A drawback of backtracking is that it sometimes scales
poorly to large problem instances: a choice made high in the search tree may lead to a
dead-end, from which the algorithm may take a very long time to recover. A great deal
of research has been devoted to improving the scalability of backtrackers, resulting in
what are sometimes called intelligent backtracking algorithms. Most of these are related
to standard chronological backtracking, but are able to jump back to higher nodes in
the tree, thus eliminating entire subtrees while preserving completeness. A particularly
interesting example is Dynamic Backtracking (DB) [15], which is able to backtrack to
a variable without removing the intervening assignments, effectively reorganising the

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 2

52 PRESTWICH

search tree dynamically. However, though often successful, intelligent backtracking has
its own dangers. For example DB is no better than chronological backtracking on the
n-queens problem, only sometimes better on graph colouring problems [26] and much
worse on random 3-SAT (though a modified version is no worse) [3].

A significant discovery of the 1990s was that some hard combinatorial problems
can be solved much more quickly by local search than by backtracking. Backtrackers
are able to solve n-queens problems with not much more than 100 queens, and random
3-SAT problems with a few hundred variables; in contrast, local search can efficiently
solve problems with millions of queens, and random 3-SAT problems with thousands
of variables. Unlike backtrackers, local search algorithms typically assign values to all
variables, then attempt to remove constraint violations by changing assignments (either
randomly or by focusing on those causing violations), a technique sometimes called
repair. Early examples are the Min-Conflicts [30] and Breakout [32] algorithms for
constraint satisfaction problems, and the GSAT [43] and other [20] algorithms for satis-
fiability problems. Local search is usually incomplete, but very useful for applications in
which we simply wish to find a solution quickly. It is a special case of the more general
class of stochastic search algorithms, which includes genetic algorithms, simulated an-
nealing and neural networks. Unfortunately, most local search algorithms have a draw-
back besides that of incompleteness: they do not exploit the powerful pruning techniques
available to backtrackers. Min-conflicts was found to perform poorly on crossword puz-
zles and some graph colouring problems [26], while GSAT and other more recent local
search algorithms for SAT are easily beaten by backtrackers on problems such as quasi-
group existence [50]. This makes local search unsuitable for certain problems, typically
(though not always) those with a great deal of structure and few solutions.

Hence neither backtracking nor local search is ideal for problems that are both
large and highly structured. This situation has motivated research into the design of
hybrid algorithms combining features of both types of algorithm. One such hybrid is
Partial Order Dynamic Backtracking (PDB) [16], which aims to improve the scalability
of DB without sacrificing completeness. Based on the intuition that poor scalability
is caused by inflexibility in the choice of backtracking variable, PDB allows greater
flexibility than DB. Another hybrid approach is to use a systematic backtracker in a
non-systematic way. Iterative Sampling [28] restarts a constructive search every time a
dead-end is reached, using randomised heuristics. Variations on this approach have been
shown to out-perform both local search and backtracking on certain problems [10,18],
but on others it does not achieve the scalability of local search. For further discussion on
hybrids see section 6.

This paper describes a new approach called Incomplete Dynamic Backtracking
(IDB). Inspired by DB and PDB, it is a backtracker that is able to jump back to an
earlier variable without removing the assignments to intervening variables. However, it
allows total flexibility in the choice of backtracking variable, which may be chosen ei-
ther randomly or using any desired heuristic. It records no information about which parts
of the search space have been visited, thus sacrificing completeness. The aim is (i) to
maximise scalability at the expense of completeness, (ii) to exploit powerful pruning

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 3

COMBINING THE SCALABILITY OF LOCAL SEARCH 53

techniques and heuristics available to backtrackers, and (iii) to avoid memory-intensive
learning methods. It is hoped that the focus on pruning techniques and scalability will
pay off on large structured problems that are challenging for both backtracking and local
search.

Section 2 describes IDB and its integration with pruning techniques and heuristics.
Section 3 evaluates it on the n-queens problem, and shows that it performs like a local
search algorithm. n-queens is not intrinsically hard and was chosen partly for illustra-
tive purposes, but in section 4 IDB is applied to a challenging optimisation problem: the
construction of Golomb rulers. We take an existing constraint-based backtracking algo-
rithm for Golomb rulers and replace its chronological backtracking by IDB. This greatly
improves its scalability, and the new algorithm also out-performs a genetic algorithm.
Section 5 describes an IDB algorithm for another hard optimisation problem: the con-
struction of maximum cliques. The new algorithm is compared with a wide variety of
others on standard benchmarks, and is beaten by only one. Finally, section 6 discusses
relationships between IDB and other hybrid approaches.

2. Incomplete dynamic backtracking

In a constraint satisfaction problem (CSP) we are given a set of variables {v1, . . . , vn}
each with a domain of values Di = {V i

1 , . . . , V i
m}, and constraints C on subsets of

the variables defining their permitted combinations of values. The CSP is to find an
assignment {v1 = V 1

s1
, . . . , vn = V n

sn
} that violates none of the constraints. We first

describe the basic IDB schema for the CSP, then elaborate it and describe how to apply
it to optimisation problems.

2.1. The basic algorithm

The basic IDB schema is shown in figure 1. A is the current set of assignments, ini-
tialised to {}. V is the current set of unassigned variables, initialised to the full set of
variables {v1, . . . , vn}. The integer b � 1 is a parameter. The algorithm proceeds by
selecting random unassigned variables, and assigning values to them using a value or-
dering heuristic VH (discussed below). On reaching a dead-end (in which each domain
value for the selected variable is inconsistent with a current assignment in A under a
constraint in C) it backtracks by randomly removing b assignments from A (or fewer if
|A| < b). Termination is not guaranteed but occurs if all variables are assigned (V = {}),
in which case the set of assignments A is a solution. This algorithm is correct because
no assignment is made unless it is consistent with all previous assignments. We now
describe how it can be enhanced by the use of both standard and novel heuristics.

2.2. Forward checking and dynamic variable ordering

A simple and commonly-used form of constraint propagation is forward checking. On
assigning a value to a variable, some values in the domains of currently unassigned

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 4

54 PRESTWICH

function IDB(b)
A = {}, V = {v1, . . . , vn}
while V �= {}

vi = random-member(V)

d = VH(Di) such that vi = d is consistent with A under C

if (d = null) [not found]
do min(b, |A|) times

(vj = d ′) = random-member(A)

A = A − {vj = d ′}, V = V ∪ {vj }
else

A = A ∪ {vi = d}, V = V − {vi}
return A

Figure 1. Basic incomplete dynamic backtracking (IDB).

variables are removed. These are the values that would cause constraint violations if
assigned. If the domain of an unassigned variable becomes empty then backtracking
occurs. Domain sizes are useful for guiding the selection of variables for assignment, a
common heuristic being to select a variable with minimum domain size.

To combine IDB with these techniques we must be able to unassign variables in
any order, leaving the state of the unassigned variables as if forward checking had been
applied to the currently assigned variables. To do this we need a new implementation
trick. Instead of simply removing values from unassigned variable domains, a conflict
count cij is maintained for each value j in the domain Di of each variable vi (assigned or
not). The integer cij denotes how many constraints would be violated if the assignment
vi = V i

j were added. When cij �= 0 the value V i
j is treated as though it has been

deleted from domain Di , and it cannot be used in an assignment. Note that these are also
maintained in the domains of assigned variables: for such a variable cij denotes how
many constraints would be violated if the variable were reassigned to vi = V i

j . Now the
state of any variable domain is independent of assignment order, and we can unassign
variables in an arbitrary order.

The IDB schema for forward checking is shown in figure 2. Variables are selected
using the minimum-domain heuristic (MD). All conflict counts are initialised to zero.
The number of values in a domain with zero conflict count plays the role of domain
size for MD. Values are again selected using some heuristic denoted by VH, but values
are only allowed for assignment if their conflict count is zero and if propagating the
assignment causes no domain wipe-out. If there is no such value then b variables are
unassigned, as in the basic schema. Variables may be selected for unassignment using
any heuristic BH.

Conflict counts are updated incrementally: to propagate a new assignment va =
V a

k , increment any cij such that the assignment vi = V i
j is inconsistent with the new

assignment under a constraint in C. Only constraints involving the newly assigned vari-
able need be checked. On unassigning a variable the process is reversed. This form of

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 5

COMBINING THE SCALABILITY OF LOCAL SEARCH 55

function IDB(b)
A = {}, cij = 0, V = {v1, . . . , vn}
while V �= {}

vi = MD(V)

d = VH(Di) such that cid = 0 and propagate(vi = d) = true
if (d = null) [not found]

do min(b, |A|) times
(vj = d ′) = BH(A), A = A − {vj = d ′}, V = V ∪ {vj }
unpropagate(vj = d ′)

else
A = A ∪ {vi = d}, V = V − {vi}

return A

function propagate(vi = d)
OK = true
for all vj ∈ {v1, . . . , vi−1, vi+1, . . . , vn}

for all d ′ ∈ Dj

increment cjd ′ if (vj = d ′) is inconsistent with vi = d under C

if (for all d ′ ∈ Dj (cjd ′ = 0)) then OK = false
if (OK = false) unpropagate(vi = d)
return OK

function unpropagate(vi = d)
for all vj ∈ {v1, . . . , vi−1, vi+1, . . . , vn}

for all d ′ ∈ Dj

decrement cjd ′ if (vj = d ′) is inconsistent with vj = d under C

Figure 2. IDB with forward checking.

propagation is more expensive than standard forward checking, which only examines
the domains of unassigned variables, but the memory requirement is the same: for n

variables and m values in each domain, mn conflict counts are required. The extension
of the conflict count technique to arc consistency is discussed in section 6.1.

To prove correctness we first show that any state (partial assignment) can be
reached by IDB with conflict counts if and only if it can be reached by FC (standard
forward checking). First, consider a state reachable by IDB. The domain of any vari-
able (unassigned or assigned) must be non-empty, therefore all unassigned variables
have non-empty domains, therefore the state is FC-reachable. Second, consider a state
that is FC-reachable. No combination of its variable assignments must violate a binary
constraint, therefore IDB can make the assignments without incrementing the conflict
counts for the assigned values, so cij = 0 for each assignment vi = V i

j in the state.
Therefore domain wipe-out will not occur for any of the assigned variables. Moreover,
FC-reachability implies that none of the unassigned variables has an empty domain. In

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 6

56 PRESTWICH

other words, the state can be recreated by IDB without emptying the domain of any
variable, so it is IDB-reachable.

A solution is an example of a partial assignment, so the same set of solutions are
reachable by IDB and FC. The correctness of FC is not in question so this establishes the
correctness of IDB. It also supports the claim that forward checking is fully integrated
with IDB: the set of partial assignments to be explored is the same (though for any given
problem the set of partial assignments encountered are unlikely to be identical).

2.3. New heuristics

In the basic schema we randomly selected variables for unassignment. Given conflict
counts an obvious BH heuristic is the complement of the minimum-domain heuristic:
unassign the variable with the largest current domain, breaking ties randomly (recall
that assigned variables can also be assigned a domain size using conflict counts). This
heuristic sometimes improves performance.

Another technique sometimes used with backtracking is value ordering: for a given
variable, values are selected for assignment in an order determined by a heuristic. The
intent is to choose the value most likely to lead to a solution, an idea that can in principle
be applied to IDB. We have found that a different type of value ordering heuristic denoted
by VH often enhances performance. Instead of finding the best value, it assigns each
variable to its last assigned value where possible, with random initial values. This speeds
the rediscovery of consistent assignments to subsets of the variables. However, IDB
attempts to use a different (randomly-chosen) value for one variable each time a dead-
end occurs; this appears to help by introducing a little variety.

2.4. Application to optimisation problems

Given an objective function on CSP solutions we may wish to find a solution with min-
imum value under this function. Backtracking algorithms can be applied to these prob-
lems by applying them iteratively, restarting after each solution with the added constraint
that any solution must be better (under the objective function). Alternatively, the search
can simply continue without restarting, but with the new constraint added. These ideas
have been used with systematic backtracking in Constraint Programming implementa-
tions of branch-and-bound, and they can also be applied to IDB. We restart the search
after each solution, and until reaching the first dead-end we reuse assignments from the
previous solution where possible.

3. Application to n-queens

We have described how to combine IDB with several standard techniques from system-
atic backtracking, allowing us to replace chronological backtracking by IDB in powerful
algorithms. It remains to be seen whether this has any beneficial effect that justifies
loss of completeness and introduction of the parameter b. We first evaluate IDB on

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 7

COMBINING THE SCALABILITY OF LOCAL SEARCH 57

the well-known n-queens problem. Though fashionable several years ago n-queens is
no longer considered a challenging problem. However, large instances still defeat most
backtrackers and it is therefore of interest.

The problem is as follows. Consider a generalised chess board, which is a square
divided into n × n smaller squares. Place n queens on it in such a way that no queen
attacks any other. A queen attacks another if it is on the same row, column or diagonal
(in which case both attack each other). We can model this problem using n variables
each with domain Di = {1, . . . , n}. A variable vi corresponds to a queen on row i (there
is one queen per row), and the assignment vi = j denotes that the queen on row i is
placed in column j , where j ∈ Di . The constraints are vi �= vj and |vi − vj | �= |i − j |
where 1 � i < j � n. We must assign a domain value to each variable without violating
any constraint.

3.1. Experimental results

Minton et al. [30] compared the performance of backtracking and local search on
n-queens problems up to n = 106. They executed each algorithm 100 times for var-
ious values of n, with an upper bound of 100n on the number of steps (backtracks or
repairs) and reported the mean number of steps and the success rate as a percentage.
We reproduce the experiment up to n = 1000, citing their results for the Min-Conflicts
local search algorithm (denoted by LS+MC) and a backtracker augmented with the Min-
Conflicts heuristic (denoted by CB+MC). We compute results for chronological back-
tracking with random variable ordering (CB), CB with forward checking (CB+FC) and
CB+FC with dynamic variable ordering based on minimum domain size (CB+FC+MD).
We also obtain results for these three algorithms with CB replaced by IDB, and for two
further IDB algorithms using the BH and VH heuristics described in section 2.3. The
IDB parameter b is set to 1 for n = 100 and n = 1000, and 2 for n = 10 (these values
gave the best results).

The results in table 1 show that replacing CB by IDB greatly boosts performance
in three cases: the simple backtracking algorithm, backtracking with forward checking,
and forward checking with dynamic variable ordering. Even the basic IDB algorithm
scales better than all the CB algorithms (other than CB+MC, discussed below) and
IDB+FC+MD performs like LS+MC. The new backtracking (BH) and value ordering
(VH) heuristics further boost performance, making IDB the best reported algorithm in
terms of backtracks; it also beats another hybrid called Weak Commitment Search [49]
which requires approximately 35 steps for large n [34]. However, in terms of CPU time
IDB scales more poorly than CB+FC. The time per backtrack for both scales roughly
linearly with n, but we found that IDB+FC+MD takes approximately 3.6n µs per back-
track, while CB+FC+MD takes 0.16n µs (measured by performing a linear regression
on mean times over 1000 runs for n = 10–100 in steps of 10). This clearly shows the
increased expense of forward checking in IDB, but this is outweighed by its improved
scalability. IDB+FC+MD and LS+MC both take a roughly constant number of steps as
n increases, hence a linear time in n. We were unable to fully compare LS+MC and the

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 8

58 PRESTWICH

Table 1
Chronological backtracking, IDB and min-conflicts on n-queens.

Algorithm n = 10 n = 100 n = 1000

CB 81.0 (100%) 9929 (1%) —
CB+FC 25.4 (100%) 7128 (39%) 98097 (3%)
CB+FC+MD 14.7 (100%) 1268 (92%) 77060 (24%)

IDB 112 (100%) 711 (100%) 1213 (100%)
IDB+FC 33.0 (100%) 141 (100%) 211 (100%)
IDB+FC+MD 23.8 (100%) 46.3 (100%) 41.2 (100%)
IDB+FC+MD+BH 13.0 (100%) 8.7 (100%) 13.3 (100%)
IDB+FC+MD+BH+VH 12.7 (100%) 8.0 (100%) 12.3 (100%)

LS+MC 57.0 (100%) 55.6 (100%) 48.8 (100%)
CB+MC 46.8 (100%) 25.0 (100%) 30.7 (100%)

best IDB by taking n up to 1 million because IDB requires n2 conflict counts, whereas
LS+MC requires only linear memory in n. However, the results hold up to n = 4000.

It should be noted that IDB is not the only backtracker to perform like local search
on n-queens. Similar results were obtained by Minton et al.’s CB+MC algorithm (see
table 1), as well as others. Such algorithms rely on good value ordering heuristics. In
CB+MC an initial total assignment I is generated by the MC heuristic and used to guide
CB in two ways. Firstly, variables are selected for assignment on the basis of how many
violations they cause in I . Secondly, values are tried in ascending order of number of
violations with currently unassigned variables, an example of a value ordering heuris-
tic. This informed backtracking algorithm performs almost identically to LS+MC on
n-queens. However, CB+MC is still prone to the same drawback as most backtrack-
ers: a poor choice of assignment high in the search tree will still take a very long time
to recover from. IDB is able to modify earlier choices, as long as the b parameter is
set sufficiently high, so it can recover from poor early decisions. This difference is not
apparent on the n-queens problem, but will be on problems for which no good value
ordering heuristic is available.

If these results extend to truly challenging combinatorial problems, then IDB is a
promising generic approach: given a structured problem that is unsuitable for standard
local search, yet too large to solve by systematic backtracking, IDB may be the best
option. In the next two sections we evaluate IDB on hard optimisation problems.

4. Application to Golomb rulers

The Golomb Ruler Problem (GRP) has been studied for several decades. Possibly the
first reference to it was in connection with radio communications [2]. Since then it
has found applications in X-ray crystallography, coding theory, linear arrays of sensors
and antennae, and pulse phase modulation communication [39]. A Golomb ruler is an
ordered sequence of integers 0 = x1 < x1 < · · · < xm such that the m(m − 1)/2
differences xj − xi (j > i) are distinct. The ruler is said to contain m marks and have

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 9

COMBINING THE SCALABILITY OF LOCAL SEARCH 59

length xm. An optimal Golomb ruler has minimum length. The aim may be to find an
optimal ruler and verify its optimality, or simply to find a near-optimal ruler.

The GRP has several advantages as a benchmark problem for search algorithms: it
is easily stated, well-studied, derived from real applications, has very few optimal solu-
tions, and its difficulty grows rapidly with the number of marks. The 1953 paper listed
optimal rulers with up to 8 marks, and subsequent papers have presented increasingly
large optimal rulers. At the time of writing the largest optimal ruler found and verified
has 21 marks, found by distributed processing over the internet and taking 2,467 weeks
of CPU time and almost 1015 search tree nodes.1 Specialised algorithms based on the
theory of difference sets (for example [1]) can be used to find large, high-quality rulers
(currently up to 150 marks) and most such rulers are conjectured to be optimal.

The GRP is very challenging for backtracking algorithms, and it is problem num-
ber 6 in the CSPLib benchmark library2 (a web-based collection of constraint prob-
lems). Smith et al. [47] treated the GRP as an exercise in constraint modelling, using
ILOG Solver (a commercial constraint solver) to implement and compare 15 backtrack-
ing algorithms. In experiments with up to 11 marks they found considerable variation
in performance between the best and worst algorithms, demonstrating the importance of
careful modelling.

Because the GRP rapidly becomes harder with problem size, stochastic search
seems a promising approach. Surprisingly little work seems to have been done in this
area, possibly because its optimal solutions are so sparse, but [45] used a genetic algo-
rithm to find near-optimal rulers with up to 16 marks. When applying stochastic search
to combinatorial problems, a major design decision is how constraints are to be handled.
A popular method uses variations on the idea of a penalty function. Here the search space
is the total variable assignments and the objective function is a composite of (i) a measure
of distance from feasibility (for example the number of constraint violations) and (ii) the
objective function specified in the original problem. This is the approach taken by Sol-
iday et al. for their GRP genetic algorithm. Their objective function is the inverse of a
polynomial in two variables: the ruler length and the number of duplicated differences.

4.1. The algorithm

The GRP presents an interesting challenge for our approach: if we take a good GRP
backtracking algorithm and replace its chronological backtracking by IDB, as we did
with n-queens, will its scalability improve? To test this we use Smith et al.’s backtracking
algorithm based on a ternary and binary constraint CSP model, which gave good results.
(Their best model used an all-different constraint, which we have not yet combined with
IDB.) This model uses m variables x1, . . . , xm each with domain {0, . . . , �} where � is
the permitted ruler length, and is the function to be minimised. m(m − 1)/2 auxiliary
variables dij are defined for 1 � i < j � m. Ternary constraints dij = |xi − xj | and
binary constraints di �= dj (i < j) are imposed. We simplify the model slightly: the xi

1 http://members.aol.com/golomb20/.
2 http://www.csplib.org.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 10

60 PRESTWICH

are not constrained to be ordered, nor is the symmetry-breaking constraint d12 < dm−1,m

imposed. The model is therefore highly symmetrical, but this is unimportant because
IDB is incomplete (see section 6 for a discussion on symmetry). A solution in standard
form can easily be derived by sorting the xi into ascending order then subtracting x1

from each; xm then gives the actual length of the ruler.
Smith et al. tried branching on the xi or the dij or both, and experimented with

variable orderings based either on the smallest domain or on the lexicographic ordering.
Perhaps surprisingly, the lexicographic ordering gave the best results using either the xi

or dij ; we use the lexicographic ordering on the xi . To find optimal or near-optimal rulers
we use the approach described in section 2.4: on finding a solution of length � constraints
xi < � (i = 1, . . . , m) are added and the search restarted. We also use conflict counts to
perform forward checking, a random BH heuristic, and the VH value ordering heuristic
described in section 2.3.

4.2. Experimental results

IDB is compared with two backtracking algorithms implemented in ILOG Solver, and
with a genetic algorithm. It was executed on a 300 MHz DEC Alphaserver 1000A 5/300
under Unix, Solver on a Silicon Graphics O2, and the genetic algorithm (denoted by
GA) on a 60 MHz Pentium under Linux. All IDB results used a parameter value b = 2,
were given a large initial length (5 times greater than the known optimal length) and are
medians over 100 runs. IDB execution times do not include initialisation.

Figure 3 compares IDB with two Solver algorithms: Solver(1) denotes the ternary
and binary constraint algorithm on which IDB is based, and Solver(2) denotes the best
of the 15 Solver algorithms, the latter using an all-different constraint on the dij instead
of disequalities, order constraints and improved bounds on the dij . All three algorithms
were executed until finding an optimal ruler.

Table 2
Comparison of the genetic algorithm and IDB on (near-)optimal rulers.

GA IDB
Marks Length Sec Length Sec

5 11 0.05 11 <0.01
6 17 0.15 17 <0.01
7 25 0.17 25 <0.01
8 35 13 34 0.08
9 44 82 44 0.47

10 62 103 55 1.87
11 79 39 72 8.16
12 103 18 95 2.37
13 124 243 113 36.0
14 168 1.298 139 29.2
15 206 874 167 42.2
16 238 1.589 200 37.8

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 11

COMBINING THE SCALABILITY OF LOCAL SEARCH 61

Figure 3. Comparison of ILOG Solver and IDB on optimal rulers.

The first graph shows steps (branches for Solver, backtracks for IDB) and the sec-
ond CPU time in seconds. The time for Solver(2) on 12 marks is approximate and re-
constructed from remarks in [47]. The times for rulers with few marks are incomparable
because of Solver’s initialisation times, and the algorithms were executed on different
machines, but scalabilities can be compared. IDB generally makes more backtracks, but
after 9 marks it shows a clear improvement, the gap in performance widening with each
increase in size.]

Table 2 compares IDB with the genetic algorithm. Apart from four cases where
both algorithms find optimal rulers, IDB consistently finds rulers that are closer to op-
timal3 than the GA, in comparable or shorter times even when IDB’s faster platform is

3 The optimal ruler lengths for 12–16 marks are 85, 106, 127, 151, 177.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 12

62 PRESTWICH

taken into account. An advantage of IDB over a GA is that it is incremental: backtracks
are cheap, whereas a GA must calculate the fitness of each organism from scratch. But
this does not seem sufficient to account for the large difference in performance, and a
more likely explanation is IDB’s use of pruning techniques as opposed to the genetic
algorithm’s use of penalty functions.

The main result is that IDB greatly improves the scalability of a powerful back-
tracking algorithm on a hard optimisation problem. However, this IDB algorithm cannot
compete with specialised GRP algorithms. Applying it to even larger rulers we found
a 25-mark ruler of length 641, a 30-mark ruler of length 1,021 and a 35-mark ruler of
length 1,620. These results are poor compared to the rulers of respective lengths 480,
680 and 987 found by algorithms based on projective and affine plane construction [1],
and other specialised algorithms are also faster than IDB. Nevertheless, this does not
invalidate our main result.

5. Application to maximum cliques

The Maximum Clique Problem (MCP) has been the subject of four decades of research.
It was one of the first problems shown to be NP-complete, and theoretical results indi-
cate that even near-optimal solutions are hard to find. Its applications include computer
vision, coding theory, tiling, fault diagnosis and the analysis of biological and archaeo-
logical data, and it provides a lower bound for the chromatic number of a graph. It was
one of the three problems proposed in a DIMACS workshop [25] as a way of comparing
algorithms, the other two being satisfiability and graph colouring. Many algorithms have
been applied to the MCP on a common benchmark set, and its history, applicability and
rich set of available results make the MCP ideal for evaluating new approaches. A recent
survey of its applications, algorithms and complexity results is given in [7].

The MCP is defined as follows. A graph G = (V ,E) consists of a set V of vertices
and a set E of edges between vertices. Two vertices connected by an edge are said to be
adjacent. A clique is a subset of V whose vertices are pairwise adjacent. A maximum
clique is a clique of maximum cardinality. Given a graph G the problem is to find a
maximum clique, or a good approximation to one.

5.1. The algorithm

We were unable to find reported results for an MCP backtracking algorithm, so we de-
sign an IDB algorithm directly. To model the problem of finding a clique of size k we
define k variables {v1, . . . , vk}, each representing a vertex in the clique. Each variable
has domain {1, . . . , n} whose values correspond to vertices in G. The constraints are
(vi �= p ∨ vj �= q) for each pair of non-adjacent vertices p and q in G and each pair
of variables vi �= vj . No vertex is adjacent to itself so constraints with p = q are al-
lowed. A further constraint is imposed as follows. A set of integers A = {a1, . . . , an}
is maintained during search, each ai denoting how many vertices in the current clique
are non-adjacent to vertex i. The integer a = |{ai ∈ A: ai = 0}| is also maintained

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 13

COMBINING THE SCALABILITY OF LOCAL SEARCH 63

and the additional constraint is a � k. This is a necessary (but not sufficient) condition
for the existence of sufficient unused vertices to build a clique of size k, and helps to
prune the search space. Note that this model is highly symmetrical because values can
be permuted among the k variables. See section 6 for a discussion of symmetry.

IDB can be used to solve this problem using the techniques described in section 2
as follows. Forward checking is applied using conflict counts. The dynamic variable
ordering heuristic randomly selects an unassigned variable, and the assigned variable for
backtracking is also selected at random. The value ordering heuristic VH is used. The
parameter b is manually tuned to each graph. To obtain increasingly large cliques the
algorithm increases k on finding each solution, and restarts the search as described in
section 2.4.

5.2. Experimental results

IDB is compared with several algorithms, most results being taken from the DIMACS
workshop proceedings [25]. CLIQMERGE [4] uses bipartite matching to generate large
cliques from small ones. MIPO [5] uses integer programming with several lift-and-
project procedures. ST (Single list Tabu) [46] is a Tabu search method. SQUEEZE [8]
is an algorithm for minimising general quadratic 0–1 functions, which are used to model
the problems. GSD(0) (Greedy Steepest Descent) [24] and AtA (Adaptive t-Annealing)
[19] are based on neural networks. The algorithm in [23] combines simulated annealing
with a greedy heuristic, denoted by SA+G below. CBH (Continuous Based Heuris-
tic) [14] uses a continuous variable formulation and a heuristic based on rounding.
RB-clique [17] uses a restricted backtracking scheme that is a trade-off between clique
quality and search completeness. Fleurent and Ferland [12] apply a hybrid of Tabu
search and a genetic algorithm, denoted by GA+ST below. To these DIMACS results
are added two more recent algorithms. Marchiori [29] combines a genetic algorithm
with a heuristic algorithm to give a hybrid called HGA. Battiti and Protasi [6] use a new
local search algorithm called Reactive Local Search (RLS).

The standard set of 37 benchmark graphs proposed by the DIMACS organisers
are used. The largest of these has thousands of vertices and millions of edges. Ran-
dom graphs Cn.p and DSJCn.p have n vertices, an edge being placed between any two
vertices with a fixed probability p/10. Mann graphs are clique formulations of the set
covering formulation of the Steiner Triple Problem. Brockington graphs contain hidden
cliques; a graph brockn_m contains n vertices. Gen graphs genn_p_m have n vertices
and known hidden cliques of size m. Hamming graphs hammingn_m have a vertex for
each n-bit word, and an edge between two vertices if and only if their words are at least a
Hamming distance m apart. Keller graphs are based on Keller’s conjecture on tilings us-
ing hypercubes. P-hat graphs are random graphs, modified to have wider vertex degree
spread and larger clique sizes; a graph p_hatn-m has n vertices.

Again IDB is implemented in C and executed on a 300 MHz DEC Alphaserver
1000A 5/300 under Unix. Following DIMACS methodology all times (except those
for HGA) are normalised to this machine using the dfmax r500.5 benchmarking pro-

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 14

64 PRESTWICH

Table 3
Results on DIMACS clique benchmarks (part 1 of 3).

MIPO CLIQMERGE SQUEEZE RB-clique CBH
Problem Size Time Size Time Size Time Size Time Size Time

C125.9 34 257 34 4.8 34 75.2 34 8.2 34 0.16
C250.9 44 65.1 44 47.3 41 0.8
C500.9 57 256 55 143 52 5.0

C1000.9 67 1135 65 189 60 41.4
C2000.9 75 8889 74 342 66 99.6
C2000.5 16 353 16 230 15 340
C4000.5 17 1334 18 1289

DSJC500.5 13 47.5 13 12.9 13 1.5
DSJC1000.5 15 211 15 116 14 22.8
MANN_a27 126 527 126 2554 126 2.8 121 1.9
MANN_a45 344 8611 344 14974 336 33.0
MANN_a81 1098 >10000 1097 76.1
brock200_2 12 2994 11 3.5 12 209 12 0.07 12 0.3
brock200_4 16 6.4 17 1452 17 2.1 16 0.2
brock400_2 25 35.2 25 2.9 24 3.4
brock400_4 25 37.5 33 249 24 1.8
brock800_2 25 108 21 220 19 10.1
brock800_4 21 111 21 213 19 10.2

gen200_p0.9_44 44 71.6 42 9.5 44 7750 42 91.7 44 0.42
gen200_p0.9_55 55 1.1 55 7.7 55 2052 55 37.9 55 0.23
gen400_p0.9_55 53 63 52 593 39 4.0
gen400_p0.9_65 65 48.2 60 622 39 3.9
gen400_p0.9_75 75 50.9 74 758 45 2.2

hamming8-4 16 160 16 4.8 16 4467 16 108 10 0.29
hamming10-4 40 476 40 24.6 35 4.7

keller4 11 652 11 3.7 11 820 11 0.16 11 0.19
keller5 27 208 27 97.3 21 4.5
keller6 56 4377 54 2258

p_hat300-1 8 5240 8 5.7 8 283 8 0.35 8 0.77
p_hat300-2 25 22.9 25 605 25 0.9 25 0.68
p_hat300-3 36 47.2 36 13742 35 46.8 36 1.3
p_hat700-1 11 28.6 11 3.3 11 10.2
p_hat700-2 44 307 44 116 44 7.0
p_hat700-3 62 398 62 1000 60 8.9

p_hat1500-1 11 128 12 56.1 11 76.5
p_hat1500-2 65 2027 64 237 63 36.0
p_hat1500-3 94 2325 93 808 94 135

gram, which takes 46.2 seconds to execute on our machine. The value of the parameter b,
an upper bound on clique size, and a limit on execution time were set after a few experi-
mental runs, as was done for several other algorithms. The clique sizes and times shown
are means over 10 runs, IDB terminating on reaching the upper bound on either clique
size or execution time (the time taken to read in the graph is not included). This is fairly

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 15

COMBINING THE SCALABILITY OF LOCAL SEARCH 65

Table 4
Results on DIMACS clique benchmarks (part 2 of 3).

AtA SA+G GSD(0) ST GA+T
Problem Size Time Size Time Size Time Size Time Size Time

C125.9 32.4 0.004 33.4 0.012 32.3 0.0035 34 0.092 34 0.23
C250.9 38.4 0.02 41.7 0.024 39.9 0.014 44 6.1 43 3.0
C500.9 47.6 0.09 53.4 0.18 50.2 0.057 56 6.4 56 9.4

C1000.9 56.3 0.48 62.6 0.37 58.6 0.23 65 88.6 64 14.4
C2000.9 62.8 2.6 70.6 0.76 66.5 0.9 72 62.2 72.6 41.2
C2000.5 12.4 2.6 13.7 0.15 12.4 0.92 16 66.7 16 6.2
C4000.5 13.1 12.1 14.8 0.29 17 104 17 24.9

DSJC500.5 10.8 0.1 11.4 0.035 11 0.057 13 0.75 13 2.9
DSJC1000.5 11.5 0.53 12.5 0.07 12.8 0.23 14 0.23 15 4.4
MANN_a27 120.3 0.1 126 0.012 125 0.032 125 0.65 125.6 1.3
MANN_a45 332.7 0.26 343 0.094 341 0.25 342 6.1 339 195
MANN_a81 1086 8.4 1092 1 1096 213 1080 9.0
brock200_2 9.1 0.012 9.3 0.006 8.8 0.009 11 0.18 12 25.4
brock200_4 13.4 0.012 14 0.006 13.5 0.009 16 0.084 17 68.2
brock400_2 21.3 0.06 22.3 0.041 22.1 0.035 24 1.1 25 1.13
brock400_4 21.3 0.06 22.4 0.041 21.6 0.035 25 6.3 27 27.8
brock800_2 16.9 0.31 18.3 0.076 17.9 0.14 20 2.2 21 3.7
brock800_4 16.5 0.31 18.2 0.076 17.5 0.14 20 0.92 21 7.4

gen200_p0.9_44 33.6 0.02 39.2 0.024 36.8 0.008 44 2.6 44 7.0
gen200_p0.9_55 39.2 0.02 46.5 0.024 38.4 0.008 55 1.1 55 0.62
gen400_p0.9_55 40.6 0.08 49.8 0.1 46.5 0.035 52 2.5 54 11.3
gen400_p0.9_65 37.3 0.09 57.4 0.18 44.7 0.035 65 6.3 65 10.0
gen400_p0.9_75 39.2 0.1 71.1 0.28 45.8 0.035 75 2.3 75 23.2

hamming8-4 16 0.02 16 0.018 16 0.014 16 0.025 16 0.0
hamming10-4 32 0.43 38.1 0.34 35 0.24 36 0.47 40 38.0

keller4 8.4 0.01 10.8 0.012 10.2 0.006 11 0.017 11 0.0
keller5 18.5 0.18 24.3 0.29 23.1 0.14 27 6.8 27 126
keller6 37.3 3 59 1269 56 162 55.33 290

p_hat300-1 7 0.04 7 0.012 7 0.02 8 0.05 8 0.16
p_hat300-2 22.8 0.045 24.1 0.018 24.2 0.02 25 0.034 25 0.26
p_hat300-3 33.1 0.034 33.6 0.018 33.1 0.02 36 1.8 36 7.8
p_hat700-1 8.4 0.21 8.7 0.047 8 0.11 11 0.81 11 1.8
p_hat700-2 42 0.19 43.4 0.065 42.6 0.11 44 3.1 44 7.3
p_hat700-3 58.4 0.26 61.1 0.076 58.5 0.11 62 6.2 62 168

p_hat1500-1 9.4 0.91 9.8 0.11 9.9 0.53 11 0.34 11.9 14.0
p_hat1500-2 61 1 63.9 0.16 60.9 0.53 65 2.1 65 7.6
p_hat1500-3 86.2 0.89 92.2 0.19 86.2 0.52 93 5.2 93.33 48.4

typical of the experimental approaches used for the other algorithms, though there are
several methodologies.

Tables 3–5 show the results split into three tables. Unavailable results are denoted
by empty boxes. To compare the algorithms we count the number of graphs for which the
mean clique size found by each algorithm was largest. This seems fairer than comparing
the greatest clique sizes found, because it helps to eliminate the effects of lucky finds.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 16

66 PRESTWICH

Table 5
Results on DIMACS clique benchmarks (part 3 of 3).

HGA RLS IDB
Problem Size Time* Size Time Size Time Noise

C125.9 34 0.3 34 0.072 34 0.08 3
C250.9 42.6 3.6 44 0.097 44 0.66 6
C500.9 52.9 17.3 57 1.76 57 110 5

C1000.9 58 93.3 68 53.3 67 231 4
C2000.9 67.1 330 77.6 198 75.3 1352 4
C2000.5 14.4 61.8 16 7.92 15.5 203 2
C4000.5 15.4 307 18 524 17 401 2

DSJC500.5 12.3 3.2 13 0.115 13 1.41 2
DSJC1000.5 13.7 24.9 15 3.12 15 388 3
MANN_a27 125 3.0 126 2.17 125 2.09 1
MANN_a45 342 144 343.6 95.8 342 3.3 1
MANN_a81 1096 1149 1098 571 1095.2 1476 1
brock200_2 11.6 1.4 12 1.5 12 0.52 4
brock200_4 15.6 1.1 17 4.68 17 5.2 5
brock400_2 23.5 3.3 26.1 10.1 25 18.2 4
brock400_4 24.1 4.5 32.4 26.2 33 310 4
brock800_2 18.8 15.5 21 4.01 21 168 3
brock800_4 18.7 23.8 21 3.50 21 187 3

gen200_p0.9_44 40.7 3.0 44 0.097 44 0.26 6
gen200_p0.9_55 55 0.7 55 0.072 55 0.05 12
gen400_p0.9_55 49 13.3 55 0.459 55 50.0 4
gen400_p0.9_65 55.8 13.8 65 0.121 65 0.7 5
gen400_p0.9_75 65 7.6 75 0.145 75 0.40 5

hamming8-4 16 0.08 16 0.072 16 0.0045 1
hamming10-4 37.8 34.8 40 0.362 40 4.75 3

keller4 11 0.05 11 0.072 11 0.0059 1
keller5 26.3 10.4 27 0.362 27 19.1 4
keller6 51.4 370 59 111 57 1083 3

p_hat300-1 8 1.3 8 0.072 8 0.054 2
p_hat300-2 25 1.7 25 0.072 25 0.048 5
p_hat300-3 35.2 3.6 36 0.097 36 0.43 5
p_hat700-1 10.3 12.8 11 0.241 11 1.80 2
p_hat700-2 43.9 5.7 44 0.193 44 0.27 6
p_hat700-3 61.2 12.6 62 0.217 62 0.83 7

p_hat1500-1 10.4 30.2 12 12.2 12 893 3
p_hat1500-2 64.7 44 65 0.749 65 1.62 8
p_hat1500-3 91.4 98.4 94 0.773 94 5.85 9

* Un-normalised.

Under this measure RLS ranks first with a score of 34 out of 37, followed by IDB with
28, CLIQMERGE with 26 and RB-clique with 24. The rest receive significantly lower
scores, the best being CBH with 12.

Besides sometimes generating larger cliques RLS has generally lower execution
times than IDB, making it a superior MCP algorithm. It also tunes its parameters auto-

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 17

COMBINING THE SCALABILITY OF LOCAL SEARCH 67

matically, whereas IDB requires the user to tune its b parameter. However, RLS does
have several parameters, and though fixed values of these were sufficient for all the MCP
graphs, different values may be needed for other problems. Moreover, the aims of IDB
and RLS are quite different: IDB is less an algorithm than a generic architecture for
combining certain techniques, while RLS is a sophisticated local search algorithm. Fur-
ther experimental comparisons between the two approaches would be interesting, but the
MCP is the only problem to which both have been applied.

6. Discussion

Though IDB is an incomplete version of Dynamic Backtracking it performs like a lo-
cal search algorithm on the n-queens problem, whereas Dynamic Backtracking itself
performs like chronological backtracking [26]. On maximum cliques IDB gave results
second only to those of a sophisticated local search algorithm, beating a wide variety
of other algorithms including integer programming, continuous methods, genetic algo-
rithms, neural networks, simulated annealing and another modified backtracker. On
Golomb rulers it greatly improved the scaling of a constraint-based algorithm and found
better solutions than a genetic algorithm. Good results have also been found on other
problems. In [37] an IDB algorithm for satisfiability was shown to scale almost exactly
like a well-known local search algorithm (Walksat) on hard random 3-SAT problems.
It is also able to solve SAT problems that are hard for local search [38]. In [37] IDB
improved the scaling of a branch-and-bound algorithm for another hard optimisation
problem (low-autocorrelation binary sequences) and is the first incomplete search algo-
rithm to find optimal solutions. In [35] IDB with the Brélaz heuristic found improved
colourings for some geometric graphs.

These results show that IDB algorithms can equal local search in scalability, and
it is relevant to ask why. A possible explanation is that IDB is a local search algorithm,
and in fact this is what we claim. It is hard to prove this claim because there is no
available theory to distinguish local from other forms of search. However, consider an
alternative description of the basic IDB algorithm for n-queens: place queens on rows
until encountering a row on which all squares are currently under attack; remove one (or
more) randomly-chosen queen; repeat until all queens are placed. This clearly qualifies
as local search, and is the kind of local search algorithm that might occur to a com-
puter scientist unused to thinking in terms of constraint violations. The more complex
IDB algorithms simply add further techniques. If we view IDB as local search then the
main difference between IDB and (say) the Min-Conflicts local search algorithm is the
search space, the objective function to be minimised, and what constitutes a local move.
Min-conflicts explores a space of total assignments, attempting to minimise the number
of constraint violations by performing repairs; IDB explores a space of partial assign-
ments that are consistent under forward checking, attempting to minimise the number of
unassigned variables by performing variable assignments and unassignments. IDB is a
hybrid algorithm in the sense that it performs local search in the space usually explored
by backtracking, and in previous papers [37,38] algorithms based on IDB have been

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 18

68 PRESTWICH

called Constrained Local Search. The parameter b plays the role of a noise parame-
ter, enabling it to escape local minima by making a controlled number of local moves
(backtracks) that increase the value of the objective function.

As with most local search algorithms, noise must be tuned to a problem or problem
class. In experiments on these and other problems we have found that the sensitivity of
IDB’s performance to the value of b depends strongly on the problem. We have found
no short cut for the tuning process, but one pattern that seems to emerge from other
experiments is that higher noise is required for more structured problems. This is in
contrast to standard local search in which low noise usually works better.

The relationship between backtracking and local search, or more generally between
systematic and non-systematic search, is an area of active research. In a panel discus-
sion on systematic versus stochastic constraint satisfaction [13] it was debated which are
the important properties of each class of algorithm for solving satisfiable problems, and
whether properties from both classes can profitably be combined. Our results contribute
to this debate by supporting the view of [16]: that the poor scaling of systematic back-
tracking is caused by its inflexible choice of backtracking variable. By allowing a totally
flexible choice we achieve a local search standard of scalability. Our results also show
that local search can profitably be combined with pruning techniques.

Other researchers have designed algorithms using backtracking techniques but with
improved scalability. A hybrid of the GSAT local search algorithm and Dynamic Back-
tracking [16] increases the flexibility in choice of backtracking variable. However, the
authors note that to achieve total flexibility while preserving completeness would require
exponential memory, and they recommend a less flexible version using only polynomial
memory. Local Changes [48] is a complete backtracking algorithm that uses conflict
analysis to unassign variables leading to constraint violation, and a heuristic similar
to VH that restores assignments after backtracking. Iterative Sampling [28] restarts a
constructive search every time a dead-end is reached. Weak Commitment Search [49]
builds consistent partial assignments, using the min-conflict heuristic to guide value se-
lection. On reaching a dead-end it restarts and uses learning to avoid redundant search.
Learn-SAT [40] is based on Weak Commitment Search. Bounded Backtrack Search [21]
is a hybrid of Iterative Sampling and chronological backtracking, alternating a limited
amount of chronological backtracking with random restarts. Gomes et al. [18] period-
ically restart chronological or intelligent backtracking with slightly randomised heuris-
tics. Limited Discrepancy Search [21,22] searches the neighbourhood of a consistent
partial assignment, trying neighbours in increasing order of distance from the partial
assignment. It is shown theoretically, and experimentally on job shop scheduling prob-
lems, to be superior to Iterative Sampling and chronological backtracking.

There is a wide variety of other hybrid approaches. Schaerf [42] describes an
algorithm that searches the space of all partial assignments, which is larger than the
space searched by IDB (the consistent partial assignments). The objective function to
be minimised includes a measure of constraint violation, whereas IDB never violates a
constraint. The Path-Repair Algorithm [27] is a generalisation of Schaerf’s approach
that includes learning, allowing complete versions to be devised. The two-phase algo-

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 19

COMBINING THE SCALABILITY OF LOCAL SEARCH 69

rithm of [51] searches a space of partial assignments, alternating backtracking search
with local search. It can be tuned to different problems by spending more time in either
phase. De Backer et al. [11] generate partial assignments to key variables by local search,
then pass them to a constraint solver that checks consistency. Pesant and Gendreau [33]
use branch-and-bound to efficiently explore local search neighbourhoods. Large Neigh-
bourhood Search [44] performs local search and uses backtracking to test the legality of
moves. Crawford [9] uses local search within a complete SAT solver to select the best
branching variable.

It is impractical to compare IDB directly with all other hybrids, but some of its
advantages can be stated. Firstly, it is incremental: it makes small, cheap moves in the
search space. The same is true of any backtracker or standard local search algorithm,
but not of all hybrids (for example Iterative Sampling). Secondly, it tightly integrates
standard pruning techniques with local search, whereas some hybrids only allow a degree
of cooperation between local search and constraint handling. Thirdly, it is constructive,
never violating a constraint. We expect this to be an advantage when solving highly
structured problems.

Finally, a note on symmetry. The problems in this paper all have symmetries which
we made no effort to remove. The reason is that the use of symmetry breaking does not
necessarily help local search. In fact in a recent study of the maximum clique and two
other problems [36] it was shown to greatly slow down IDB and another local search al-
gorithm. We believe that local search benefits from having as many variable assignments
as possible classed as solutions. However, this should not be interpreted as evidence that
IDB cannot solve problems with few solutions: on a hard optimisation problem with very
few solutions, it performed better than both systematic and standard local search [37].

6.1. Future work

This paper dealt only with binary constraint networks and in future work the use of
IDB with other types of constraint will be explored. It has already been combined with
non-binary constraints by applying it to a SAT backtracker [37,38] but there are other
interesting possibilities such as interval constraints. Another technique worth exploring
is the use of clause learning to escape from local minima and reduce redundant search.

The paper was also restricted to one type of constraint propagation: forward check-
ing. This is the cheapest and sometimes the most efficient form of constraint propaga-
tion: spending more time on constraint propagation may be more expensive than extra
backtracking. However, maintaining arc consistency (MAC) during backtrack search is
more efficient on many problems [41]. In MAC arc revision and variable assignment
are alternated, with the details of arc revision prescribed by an underlying consistency
algorithm. On assigning a value to a variable, the other values in its domain are removed
and any resulting lack of support is propagated among the unassigned variables. If this
results in an empty domain then backtracking occurs and support is restored. The com-
bination of IDB and MAC is worth exploring. Here we outline a MAC-IDB algorithm
but leave its proof of correctness and evaluation for future work.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 20

70 PRESTWICH

On [un]assigning a variable, MAC-IDB deletes [restores] other values in its do-
main. It recursively propagates any changes in support to values (deleted or not) in the
domains of all connected variables (assigned or not) using data structures from the AC-4
algorithm [31]: for each pair of variables (vi, vj) connected by a constraint, and each
value V i

k ∈ Di , a count is defined whose value is the number of values in Dj that support
V i

k . Deletion and restoration of domain values is implemented by another type of count:
the number of constraints for which a domain value is currently unsupported. A value
is currently in its domain if and only if this count is zero. Using these data structures
MAC-IDB can maintain arc consistency while unassigning any variable. However, the
cost of maintaining arc consistency in MAC-IDB will be considerably more expensive
than in MAC based on AC-4, and it remains to be seen for which problems, if any, it is
worthwhile.

Acknowledgments

The Cork Constraint Computation Centre is supported by Science Foundation Ireland.

References

[1] M.D. Atkinson, N. Santoro and J. Urrutia, Integer sets with distinct sums and differences and carrier
frequency assignments for nonlinear repeaters, IEEE Transactions on Communications 34 (1986)
614–617.

[2] W.C. Babcock, Intermodulation interference in radio systems, Bell Systems Technical Journal (Janu-
ary 1953) 63–73.

[3] A.B. Baker, The hazards of fancy backtracking, in: Proceedings of the Twelfth National Conference
on Artificial Intelligence, Vol. 1 (AAAI Press, 1994) pp. 288–293.

[4] E. Balas and W. Niehaus, Finding large cliques in arbitrary graphs by bipartite matching, in: [25,
pp. 29–52].

[5] E. Balas, S. Ceria, G. Cornuejols and G. Pataki, Polyhedral methods for the Maximum Clique Prob-
lem, in: [25, pp 11–28].

[6] R. Battiti and M. Protasi, Reactive local search for the Maximum Clique Problem, Algorithmica 29(4)
(2001) 610–637.

[7] I.M. Bomze, M. Budinich, P.M. Pardalos and M. Pelillo, The Maximum Clique Problem, in: Hand-
book of Combinatorial Optimization, Vol. 4, eds. D.-Z. Du and P.M. Pardalos (Kluwer Academic,
Boston, MA, 1999).

[8] J.-M. Bourjolly, P. Gill, G. Laporte and H. Mercure, An exact quadratic 0–1 algorithm for the stable
set problem, in: [25, pp. 53–74].

[9] J.M. Crawford, Solving satisfiability problems using a combination of systematic and local search, in:
Second DIMACS Challenge: Cliques, Coloring, and Satisfiability, Rutgers University, NJ (October
1993).

[10] J.M. Crawford and A.B. Baker, Experimental results on the application of satisfiability algorithms to
scheduling problems, in: Proceedings of the Twelfth National Conference on Artificial Intelligence,
Vol. 2 (AAAI Press, 1994) pp. 1092–1097.

[11] B. De Backer, V. Furnon, P. Kilby, P. Prosser and P. Shaw, Local search in constraint programming:
Application to the Vehicle Routing Problem, in: Constraint Programming 97, Proceedings of Work-
shop on Industrial Constraint-Directed Scheduling (1997).

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 21

COMBINING THE SCALABILITY OF LOCAL SEARCH 71

[12] C. Fleurent and J.A. Ferland, Object-oriented implementation of heuristic search methods for Graph
Coloring, Maximum Clique and Satisfiability, in: [25, pp. 619–652].

[13] E.C. Freuder, R. Dechter, M.L. Ginsberg, B. Selman and E. Tsang, Systematic versus stochastic
constraint satisfaction, in: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (Morgan Kaufmann, San Mateo, CA, 1995) pp. 2027–2032.

[14] L.E. Gibbons, D.W. Hearn and P.M. Pardalos, A continuous based heuristic for the Maximum Clique
Problem, in: [25, pp. 103–124].

[15] M.L. Ginsberg, Dynamic backtracking, Journal of Artificial Intelligence Research 1 (1993) 25–46.
[16] M.L. Ginsberg and D.A. McAllester, GSAT and dynamic backtracking, in: Proceedings of the Fourth

International Conference on Principles of Knowledge Representation and Reasoning (Morgan Kauf-
mann, San Mateo, CA, 1994) pp. 226–237.

[17] M.K. Goldberg and R.D. Rivenburgh, Constructing cliques using restricted backtracking, in: [25,
pp. 89–102].

[18] C. Gomes, B. Selman and H. Kautz, Boosting combinatorial search through randomization, in: Pro-
ceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Appli-
cations of Artificial Intelligence Conference (AAAI Press/The MIT Press, 1998) pp. 431–437.

[19] T. Grossman, Applying the INN model to the Maximum Clique Problem, in: [25, pp. 125–146].
[20] J. Gu, Efficient local search for very large-scale satisfiability problems, SIGART Bulletin 3(1) (1992)

8–12.
[21] W.D. Harvey, Nonsystematic backtracking search, Ph.D. Thesis, Stanford University (1995).
[22] W.D. Harvey and M.L. Ginsberg, Limited discrepancy search, in: Proceedings of the Fourteenth

International Joint Conference on Artificial Intelligence (Morgan Kaufmann, San Mateo, CA, 1995)
pp. 607–615.

[23] S. Homer and M. Peinado, Experiments with polynomial-time CLIQUE approximation algorithms on
very large graphs, in: [25, pp. 147–168].

[24] A. Jagota, L. Sanchis and R. Ganesan, Approximately solving Maximum Clique using neural network
and related heuristics, in [25, pp. 169–204].

[25] D.S. Johnson and M.A. Trick (eds.), Cliques, Coloring and Satisfiability: Second DIMACS Imple-
mentation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol. 26 (Amer. Math. Soc., Providence, RI, 1996).

[26] A.K. Jonsson and M.L. Ginsberg, Experimenting with new systematic and nonsystematic search tech-
niques, in: Proceedings of the AAAI Spring Symposium on AI and NP-Hard Problems, Stanford, CA
(1993).

[27] N. Jussienc and O. Lhomme, The path-repair algorithm, in: Proceedings of the Workshop on Large
Scale Combinatorial Optimization and Constraints, Electronic Notes in Discrete Mathematics, Vol. 4
(1999).

[28] P. Langley, Systematic and nonsystematic search strategies, in: Artificial Intelligence Planning Sys-
tems: Proceedings of the First International Conference (1992).

[29] E. Marchiori, A simple heuristic based genetic algorithm for the Maximum Clique Problem, in: Pro-
ceedings of the ACM Symposium on Applied Computing (1998) pp. 366–373.

[30] S. Minton, M.D. Johnston, A.B. Philips and P. Laird, Minimizing conflicts: A heuristic repair method
for Constraint Satisfaction and Scheduling Problems, Artificial Intelligence 58(1–3) (1992) 160–205.

[31] R. Mohr and T.C. Henderson, Arc and path consistency revisited, Artificial Intelligence 28 (1986)
225–233.

[32] P. Morris, The breakout method for escaping from local minima, in: Proceedings of the 11th National
Conference on Artificial Intelligence (AAAI Press, 1993) pp. 40–45.

[33] G. Pesant and M. Gendreau, A view of local search in constraint programming, in: Principles and
Practice of Constraint Programming, Proceedings of the Second International Conference, Lecture
Notes in Computer Science, Vol. 1118 (Springer, Berlin, 1996) pp. 353–366.

[34] D.G. Pothos and E.B. Richards, An empirical study of min-conflict hill climbing and weak commit-

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX(GIT) PIPS No:5101082 artty:res (Kluwer BO v.2002/10/03)

a5101082.tex; 14/10/2002; 12:48; p. 22

72 PRESTWICH

ment search, in: Proceedings of the CP-95 Workshop on Studying and Solving Really Hard Problems
(Cassis, 1995) pp. 140–146.

[35] S.D. Prestwich, Coloration neighbourhood search with forward checking, Annals of Mathematics and
Artificial Intelligence 34(4) (2002) 327–340.

[36] S.D. Prestwich, First-solution search with symmetry breaking and implied constraints, in: Pro-
ceedings of the CP-2001 Workshop on Modelling and Problem Formulation (2001). (Available at
http://www.dcs.gla.ac.uk/˜pat/cp2001/papers/.)

[37] S.D. Prestwich, A hybrid search architecture applied to hard random 3-SAT and low-autocorrelation
binary sequences, in: Proceedings of the 6th International Conference on Principles and Practice
of Constraint Programming, Lecture Notes in Computer Science, Vol. 1894 (Springer, Berlin, 2000)
pp. 337–352.

[38] S.D. Prestwich, Stochastic local search in constrained spaces, in: Proceedings of Practical Applica-
tions of Constraint Technology and Logic Programming (2000) pp. 27–39.

[39] W.T. Rankin, Optimal Golomb rulers: An exhaustive parallel search implementation, Master’s Thesis,
Duke University (1993).

[40] E.T. Richards and B. Richards, Non-systematic search and learning: An empirical study, in: Princi-
ples and Practice of Constraint Programming, Proceedings of the Fourth International Conference,
Lecture Notes in Computer Science, Vol. 1520 (Springer, Berlin, 1998) pp. 370–384.

[41] D. Sabin and G. Freuder, Understanding and improving the MAC algorithm, in: Principles and Prac-
tice of Constraint Programming, Proceedings of the Third International Conference, Lecture Notes in
Computer Science, Vol. 1330 (Springer, Berlin, 1999) pp. 167–181.

[42] A. Schaerf, Combining local search and look-ahead for Scheduling and Constraint Satisfaction prob-
lems, in: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (Mor-
gan Kaufmann, San Mateo, CA, 1997) pp. 1254–1259.

[43] B. Selman, H. Levesque and D. Mitchell, A new method for solving hard satisfiability problems, in:
Proceedings of the 10th National Conference on Artificial Intelligence (MIT Press, 1992) pp. 440–
446.

[44] P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems,
in: Principles and Practice of Constraint Programming, Proceedings of the Fourth International
Conference, Lecture Notes in Computer Science, Vol. 1520 (Springer, Berlin, 1998) pp. 417–431.

[45] S.W. Soliday, A. Homaifar and G.L. Libby, Genetic algorithm approach to the search for Golomb
rulers, in: Proceedings of the Sixth International Conference on Genetic Algorithms, Vol. 1 (Morgan
Kaufmann, San Mateo, CA, 1995) pp. 528–535.

[46] P. Soriano and M. Gendreau, Tabu search algorithms for the Maximum Clique Problem, in: [25,
pp. 221–244].

[47] B. Smith, K. Stergiou and T. Walsh, Modelling the Golomb Ruler problem, Research Report 1999.12,
University of Leeds, England (June 1999). Presented at the IJCAI’99 Workshop on Non-Binary Con-
straints.

[48] G. Verfaillie and T. Schiex, Solution reuse in dynamic constraint satisfaction problems, in: Proceed-
ings of the Twelfth National Conference on Artificial Intelligence (AAAI Press, 1994) pp. 307–312.

[49] M. Yokoo, Weak-commitment search for solving constraint satisfaction problems, in: Proceedings of
the Twelfth National Conference on Artificial Intelligence (AAAI Press, 1994) pp. 313–318.

[50] H. Zhang and M.E. Stickel, Implementing the Davis–Putnam method, Journal of Automated Reason-
ing 24(1–2) (2000) 77–296.

[51] J. Zhang and H. Zhang, Combining local search and backtracking techniques for constraint satis-
faction, in: Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Conference on Innovative Applications of Artificial Intelligence (AAAI Press/The MIT Press, 1996)
pp. 369–374.

