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AbstractÐProblem solving methods (PSMs) describe the reasoning components of knowledge-based systems as patterns of

behavior that can be reused across applications. While the availability of extensive problem solving method libraries and the emerging

consensus on problem solving method specification languages indicate the maturity of the field, a number of important research issues

are still open. In particular, very little progress has been achieved on foundational and methodological issues. Hence, despite the

number of libraries which have been developed, it is still not clear what organization principles should be adopted to construct truly

comprehensive libraries, covering large numbers of applications and encompassing both task-specific and task-independent problem

solving methods. In this paper, we address these ªfundamentalº issues and present a comprehensive and detailed framework for

characterizing problem solving methods and their development process. In particular, we suggest that PSM development consists of

introducing assumptions and commitments along a three-dimensional space defined in terms of problem-solving strategy, task

commitments, and domain (knowledge) assumptions. Individual moves through this space can be formally described by means of

adapters. In the paper, we illustrate our approach and argue that our architecture provides answers to three fundamental problems

related to research in problem solving methods: 1) what is the epistemological structure and what are the modeling primitives of

PSMs? 2) how can we model the PSM development process? and 3) how can we develop and organize truly comprehensive and

manageable libraries of problem solving methods?

Index TermsÐKnowledge modeling, problem-solving methods, ontologies, knowledge engineering, software engineering, formal

languages.

æ

1 INTRODUCTION

P roblem solving methods (PSMs) describe the reasoning

components of knowledge-based systems as patterns of

behavior that can be reused across applications. For

instance, the problem solving method Propose & Revise

([56], [92]) provides a generic reasoning pattern, character-

ized by iterative sequences of model ªextensionº and

ªrevision,º which can be reused when solvingÐfor instan-

ceÐscheduling [81] or design [56] problems. Problem

solving methods define an important technology for

supporting structured development approaches in knowl-

edge engineering: they 1) provide strong model-based

frameworks in which to carry out knowledge acquisition

([55], [87]) and 2) support the rapid development of robust

and maintainable applications through component reuse

([19], [72], [59]). More in general, the study of problem

solving methods can be seen as a way to move beyond the

notion of knowledge engineering as an ªartº [26], to

formulate a task-oriented systematization of the field,

which will make it possible to produce rigorous handbooks

similar to those available for other engineering fields. A

number of papers describing the state of the art in problem-

solving method research can be found in [8].

So far, most of the research effort has focused on
identifying and defining specific classes of problem
solving methods. As a result, several problem solving
method libraries are now available ([11], [55], [19], [71],
[6], [12], [67], [64], [59], [76]) and a number of problem-
solving method specification languages have been pro-
posed, ranging from informal notations (e.g., CML [74]) to
formal modeling languagesÐsee [41] and [28] for com-
prehensive surveys. Some of these libraries provide
executable reasoning components (for example, [59]),
others (e.g., the CommonKADS library [12]) provide only
conceptual models of such components similar to design
patterns [43] in OO-design.

Researchers in this area have also (partially) addressed
ªfoundationalº issues, concerning 1) the nature of
problem solving methods, 2) the relation between
problem solving methods on one side and task and
domain knowledge on the other,1 and 3) the principles
underlying the method development process ([90], [29],
[59], [61], [30]). Nevertheless, a number of fundamental
problems are still open. For instance, while both [90] and
[61] characterize PSM development as a task-centered
process mediated by the selection of a problem solving
strategy, they only provide limited, coarse-grained in-
sights on the type of development steps carried out
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1. Throughout this paper, we will follow the established naming
convention in knowledge engineering and use the term ªtaskº to refer to
the goal that must be achieved by a problem solver [19]. Thus, task
knowledge refers to the knowledge associated with the task specification
which has to be achieved by the problem solver.
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during the process. Moreover, despite the number of
libraries which have been developed, it is still not clear
what organization principles should be adopted to
construct truly comprehensive libraries, covering large
numbers of applications and encompassing both task-
specific and task-independent problem solving methods.

In this paper, we address these ªfundamentalº issues and
present a comprehensive and detailed framework for
characterizing problem solving methods and their develop-
ment process. In particular, we suggest that PSM develop-
ment consists of introducing assumptions and commitments
along a three-dimensional space defined in terms of a
problem-solving strategy, a number of task commitments and
a number of domain knowledge assumptions.

Individual moves through this space can be formally
described by means of adapters ([37], [29]). In the paper, we
illustrate our approach and argue that our architecture
provides answers to three fundamental problems related to
research in problem solving methods: 1) what is the
epistemological structure of PSMs (i.e., what are the generic
building blocks and how are they interrelated)? 2) how can
we model the PSM development process? and 3) how can
we develop and organize truly comprehensive and manage-
able libraries of problem solving methods?

The paper is organized as follows: In Section 2, we
present the research issues we tackle in this paper. In
Section 3, we present a three-dimensional framework for
structuring the problem-solving method development pro-
cess and we illustrate a sample method development
process. In Section 4, we discuss a typology of adapters,
which are the modeling device we use for representing
method development steps. Finally, we discuss related
work and reiterate the main contributions of our approach.

2 FOUNDATIONAL PROBLEMS IN PSM RESEARCH

In what follows, we discuss the three main problems which
we are addressing in the paper: 1) the problem of situating
problem solving methods with respect to domain and task
knowledge; 2) the problem of characterizing and represent-
ing the method development process; and 3) the problem of
constructing practically usable libraries with sufficient

cover. In our view, these problems are foundational, in
the sense that no comprehensive theory and practice of
method development and use can ignore them. In this
section, we will also provide an initial sketch of our
proposed solutions to these problems, which will then be
described in more detail in later sections.

2.1 Problem Solving Methods as Reusable
Reasoning Patterns

Problem-solving methods describe reusable reasoning
patterns. This reusability is achieved by abstracting from
different sources of ªnoiseº: implementation aspects, domain
aspects, and (in the case of task-independent methods) task
aspects. To clarify this fundamental feature of problem
solving methods let's recall a well-known case study carried
out by [20], who analyzed the problem solving behavior of a
set of first generation expert systems. Though these systems
were realized using different representation formalisms
(e.g., production rules, frames, LISP) and were concerned
with different domains and tasks, Clancey's analysis
showed that they all subscribed to a common problem
solving behavior, which could be described by means of a
generic inference pattern called heuristic classification (see
Fig. 1). This inference pattern comprises three basic inference
actionsÐabstract, heuristic match, and refineÐand four knowl-
edge rolesÐobservables, abstract observables, solution abstrac-
tions, and solutions. It is important to emphasize that such a
description is given in a generic way. For instance, a
solution abstraction could be a literary genre in a book
advisory system and a medical disease in a medical
diagnosis system. Thus, it is possible to reuse such a
problem-solving method for different domains (books or
medicine) and tasks (selection or diagnosis).

Unfortunately, an in-depth analysis of the relation
between problem-solving methods on one side and do-
mains and tasks on the other shows that this relation is not
as straightforward as it might look at first impression and
that different trade-offs and modeling approaches are
possible within the resulting space. In particular, two
important issues arise: the interaction problem and the
usability-reusability trade-off. These are discussed in the next
two sections.
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2.1.1 The Interaction Problem: How to Relate PSMs

and Domains

The interaction problem [14] states that domain knowledge
cannot be represented independently of how it will be used
in reasoning. Vice versa, a problem-solving method and its
specific variants cannot be constructed independently of
assumptions about the available domain knowledge. In
other words, developing a reusable problem-solving meth-
od requires the explicit representation of the assumptions
the method introduces about the available domain knowl-
edge. We illustrate this aspect with a simple example taken
from the analysis of Propose & Revise carried out by [28].
During the propose stage, a model of an artifact is extended.
This extension is performed by applying the relevant
domain knowledge. If a method can assume that at each
step of the process there is always at most one applicable
extension operator, then no additional domain knowledge
is required. Otherwise, operator selection knowledge is
needed to discriminate between multiple applicable opera-
tors. Further assumptions on the completeness, correctness,
and utility of the model extension knowledge influence the
competence of the method (see [28] for more details).

To recap, abstracting from the application domain is
necessary for enabling reuse of reasoning patterns. How-
ever, different methods introduce different assumptions
over the available domain knowledge, which are not
necessarily satisfied by all potential application domains,
e.g., consider the single-fault assumption required by some
diagnostic methods. Hence, the application of a problem
solving method to a domain may require an adaptation
process, whose purpose is to bridge the gap between a
method's assumptions and the functionalities provided by
the knowledge base of the application domain in hand. For
this reason, in contrast with existing libraries of problem
solving methods, our approach explicitly integrates sup-
port for the adaptation process in the specification of
problem solving methods.

2.1.2 The Usability-Reusability Trade-Off: How to Relate

PSMs and Tasks

Problem-solving methods were introduced in the literature
as specialized task-specific reasoning mechanisms (cf. [16]).
They were called strong methods by [57] because they make
stronger assumptions on the nature of the available domain
knowledge and the structure of the target task, than those
required by the so-called weak methods, e.g., generic search
algorithms such as depth-first search, breadth-search, etc.,
see [13]. Hence, strong methods arose as a reaction to
uniform approaches to problem solving, in line with a
functional view of intelligent behavior [17].

This view of problem solving methods has in recent
years been criticized by a number of researchers. In
particular, two aspects of the ªstrong methodsº approach
have come under fire: 1) the characterization of problem
solving methods as task-specific reasoning patterns and
2) the dichotomy between strong and weak methods. This
second aspect has been discussed in a number of papers by
Motta and Zdrahal ([60], [93], [61], [59]), who show not only
that it is possible to reformulate strong methods such as
Propose & Revise as specializations of search algorithms,

but also that these reformulations help to clarify the
competence of these problem solving methods. Hence, as
already pointed out in an earlier paper of ours [34], it is not
really the case that there is a dichotomy between weak and
strong methods: On the contrary, the latter can be
constructed by differentiating and specializing the former.
The library developed by Motta and Zdrahal [61], [59]
provides evidence for this thesis by showing that a class of
problem solving methods for parametric design can be
constructed by specializing a task-specific formulation of a
generic search paradigm.

The characterization of problem solving methods as task-
specific reasoning patterns has also been undermined by
much recent research. For example, [53] reports on a simple
assignment task that was used as a common benchmark to
compare and contrast alternative methodologies and tools
for knowledge engineering. It turned out that a variety of
different problem-solving methods could be applied to this
task and, in particular, [44] showed that the problem did not
have to be necessarily tackled by means of constructive (i.e.,
design) methods, but could also be characterized as a
classification problem. Thus, there is clearly a n : m relation-
ship between problem solving methods and tasks (different
methods can be applied to a task and different tasks can be
solved by the same method). However, this reuse across task
boundaries is hampered by the task-specific commitments
embedded in a method specification. Hence, [9] suggested
that problem-solving methods should be specified in a task-
neutral style, to allow reuse across classes of tasks. Unfortu-
nately, following this approach means that the strong
support for knowledge acquisition provided by task-specific
formulations is lost.

This situation is an example of what [51] called the
usability-reusability trade-off of problem-solving methods.
The more task-specific a method, the more support for
developing an application it can provide, the less reusable it
is. Vice versa, the more task-independent a method, the
more it is reusable, the less support it provides for a specific
application. In this paper, we show that this trade-off can be
overcome by grounding problem solving method specifica-
tions on a rich framework, which makes it possible to
separate the different parts of a problem solving method.
Thus, our framework provides three means to solve this
problem:

. Algorithmic schemes that describe the problem-
solving strategy of a problem-solving method: These
schemes are free of task-specific commitments. An
algorithmic schema represents the essential structure
of a certain class of algorithms (cf. [78]).

. Modeling support to allow the refinement of these
schemes according to task and domain-specific
circumstances: We use the term ªexternalizingº to
indicate that we explicitly provide modeling
primitives to support the configuration of library
components (e.g., configuring PSM components for
other tasks or domains). Because the configuration
process is explicitly modeled, it is therefore
available in an external form to the users of the
library. The importance of recording the knowl-
edge engineering experience in a library has been

FENSEL AND MOTTA: STRUCTURED DEVELOPMENT OF PROBLEM SOLVING METHODS 915

Authorized licensed use limited to: West Virginia University. Downloaded on January 28, 2010 at 17:05 from IEEE Xplore.  Restrictions apply. 



recognized for a number of years ([82]; [86]), but
until now researchers have focused on recording
informal experiencesÐsee Section 5 for a detailed
discussion. In our approach, development and
adaptation steps are formally modeled and in-
cluded in the library. Externalization also enables
reuse at different levels of refinement. For instance,
we can allow a task-neutral method to be used for
different tasks, by providing the method plus the
appropriate task-specific adaptors. In addition, the
externalized adaptors can themselves be reused to
specialize different methods. For instance, the
same mechanisms used in [25] to refine chronolo-
gical backtracking can also be used to refine
breadth-first search. In this paper, we will use
adapters [37], [30] to model the external specifica-
tions of refinementsÐsee Section 3 for a detailed
example.

2.2 Developing and Adapting Problem-Solving
Methods

Despite the vast literature on problem-solving methods,

relatively little work has focused on techniques and models

for characterizing and supporting the problem-solving

method development process. Early knowledge engineer-

ing frameworks (e.g., Role-limiting methods [55] and

KADS-1 [11]) only considered complete problem solving

methods and provided little insights on the method

development process. Later approaches [84], [70], [71], [6],

[19], [79], [12], [4] introduced some degree of flexibility, by

organizing libraries of problem solving methods in terms of

task-method structures. In this organization, a problem-

solving method P decomposes a task T into subtasks

T1; . . . ; Tn that are recursively solved by problem-solving

methods P1; . . . ; Pn. While this organization improves over

libraries of monolithic problem solving methods, it is based

on a relatively unstructured principle associating a method

to the task it solves. Hence, it does not address either the

problem of how to develop new components (it only says

where to put them), nor how to adapt components for

different tasks and domains.

The approach taken in the VITAL project [75] is based on

the GDM methodology ([87], [67]) and uses homogeneous

task-subtask trees, in which every node is a task. Therefore, it

can be seen as a simplified form of the before mentioned

task-method approach and the criticisms we have already

made about task-method structures apply here, too. Actu-

ally, the situation is worse in the VITAL-GDM approach,

given that the choice of a method is implicit in the selection of

the subtree, rather than explicit in the decomposition

structure.

A principled approach to method development has been

proposed in the papers by Akkermans et al. [2] and

Wielinga et al. [90], who characterize this process as an

assumption-driven activity. In their approach, a formal

specification of a task is derived from informal require-

ments by introducing assumptions about the problem and

the problem space. This task specification is then refined

into a functional specification of the problem-solving

method by making assumptions about the problem-solving

strategy and the available domain theory.

Our approach builds on these ideas and tries to make

them more rigorous and comprehensive by introducing 1) a

precise definition of the different dimensions of this

process, 2) a typology of the elementary steps required by

the PSM development process, and 3) a notation for

representing them. In particular, in contrast with the rather

generic framework proposed by Akkermans and Wielinga,

our approach stresses the view of problem-solving method

development as adaptation along three dimensions: 1) the

algorithmic scheme or problem-solving strategy a problem-

solving method subscribes to, 2) the (data) structures a

problem-solving method uses to describe its input, inter-

mediate states, and output, and 3) the assumptions on

domain knowledge that influence the definition of its

elementary inferences and competence.

2.3 Managing Libraries of Problem-Solving
Methods with Broad Horizontal Cover

Developing manageable libraries of problem-solving meth-
ods that provide large horizontal cover is still an open issue.
Here, we use the term ªhorizontal coverº to refer to the
range of problems that are covered by a library (i.e., the
classes of applications which can be successfully tackled by
reusing methods from the library). Early libraries of
problem solving methods were very limited. For instance,
the original KADS library had only a 1 : 1 mapping between
methods and problem types (in total there are less than
twenty problem-solving methods listed in [11]). Seven years
later, the CommonKADS library of [12] provides hundreds
of problem-solving methods. However, its coverage is still
very limited with respect to the large range of methods
which exist in the literature and (more importantly) with
respect to the huge number of possible customizations
which are possible. For instance, let's consider the already
mentioned Propose & Revise method and its application to
the configuration of a vertical transportation system
(VT domain, cf. [56], [73]). This domain was chosen as a
test case in the Sisyphus-II benchmarking initiative and a
number of solutions to the problem were published in the
special issue of the International Journal of Human-Computer
Studies reporting on the initiative [73]. One of us [27]
analyzed in detail one of the published solutions to the
VT problem, in order to derive a formal specification of
Propose & Revise. As it turns out, Fensel encountered a
number of difficulties. First of all, Propose & Revise makes a
number of assumptions about the given configuration
problem. Different variants of the method can be identified
according to the precise definition of these assumptions.
These determine the precise definition of the elementary
inferences of the method, as well as its control structure and
overall competenceÐsee also [92]. None of these variants
can be taken to be the ªgold standardº for this class of
methods: Different variants are relevant in different
application domains. Therefore, one cannot choose a
particular variant when building a library: This approach
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leads to nonreusable problem-solving methods.2 But,
adding all possible variants of Propose & Revise into the
library does not look very promising either, given the large
number of different variants. Moreover, Propose & Revise is
only one problem solving method. Applying this strategy to
all problem-solving methods would result in an infinitely
large library.

Hence, there seems to be only one reasonable strategy:
1) Identifying generic patterns from which the numerous
variants can be derived by adaptation and 2) providing
modeling support to facilitate the necessary adaptation
process. Thus, we will able to produce manageable
libraries with broad horizontal cover. In particular, we
believe that externalizing adaptation is the key factor in
component-based development of problem-solving meth-
ods. This can be seen by a simple example. Let's assume
n search strategies and m problem types. Without
adapters n �m components would be necessary to cover
all these combinations. The use of adapters means that
only n�m components are needed. To make this
example more concrete, let's consider local search and
design tasks:

. A local search algorithm has four main parameters
that determine its search character [48]: the selection
of start nodes, the generation of successors nodes,
the selection of ªmore promisingº nodes, and the
definition of the preference relation. Different values
for these parameters distinguish between, e.g., best-
first search, hill-climbing, and beam search. Keeping
the precise definitions of these parameters external
of the core definition of the method makes it possible
to provide a large variety of search methods using
only a small number of components.

. A configuration design task is a design task in which
all components are known at the beginning of the
design process. Hence, the specification of the class
of configuration design tasks can be seen as a
refinement of the class of design tasks. In turn, the
specification of the class of parametric design tasks
(these are tasks in which the skeletal structure of the
target design is given at the beginning of the design
process) can be obtained by specializing the class of
configuration design tasks.

Defining a component for each variation of a search method

and for each possible task-specific (and domain-specific)

refinement is clearly an intractable problem. A tractable and

structured approach for defining usable and reusable

components can only be achieved by separating the

adaption process from the specification of the ªkey generic

components.º
In the rest of the paper, we will illustrate this approach in

detail.

3 THE METHOD-SPECIFICATION SPACE

We have already pointed out that we view problem solving

method development as a process taking place in a three-

dimensional space, defined by problem-solving strategies,

domain assumptions, and task commitments (see Fig. 2).3

These three dimensions are described below.

. Problem-solving strategy. This is a high-level de-
scription which specifies a type of problem solving
rather than an actual algorithm, i.e., we describe a
entire class of algorithm. A problem-solving strategy
fixes some basic data structures, provides an initial
task-subtask decomposition and a generic control
regime. This generic control regime is meant to be
shared by all problem-solving methods which sub-
scribe to the same problem solving strategy. Examples
of problem solving strategies are: Generate & Test, Local
Search, and Problem Reduction ([78]).

. Domain knowledge assumptions. These are as-

sumptions on the domain knowledge that is required

to instantiate a problem-solving method in a parti-

cular application. These assumptions specify the

types and the properties of the knowledge structures

which need to be provided by a domain model, in

addition to those required to fulfil task-specific

commitments. For instance, when solving a design

problem by means of Propose & Revise, a domain

needs to provide the knowledge required to express

procedures and fixes, in addition to the task-related

knowledge needed to formulate the specific design
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2. Not surprisingly, this was the experience encountered by many
developers of problem-solving method shells.

3. Of course, like all analogies, the analogy with 3D space must not be
taken to the extreme. Clearly, not all possible points in the space defined in
Fig. 2 are neccessarily meaningful or reachable. Nevertheless, the figure still
accurately describes the space of possibilities introduced by our framework.

Fig. 2. The three dimensions of PSM description and development.
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problem, e.g., parts and constraints. Domain assump-

tions are necessary to enable efficient problem solving

for complex and intractable problems ([40], [31]).

More in general, the reliance on such domain-specific

knowledge is the defining feature of knowledge-

intensive approaches to problem solving.
. Problem (i.e., task) commitments. These specify

ontological commitments to the type of problem

that is solved by the problem-solving method.

These commitments are expressed by subscribing

to a particular task ontology. For instance, a

parametric design task ontology provides defini-

tions for terms such as design model, parameter,

and constraintÐsee [59] for a detailed specification

of a task ontology. The ontological commitments

introduced by a task can be used to refine the

competence of a problem-solving method, the

structure of its computational state, and the nature

of the state transitions it can execute (cf. [25], [33],

[34]). For instance, a generic search method can

thus be transformed into a specialized method for

model-based diagnosis or parametric design. Such

a task-specific refinement still produces a reusable

method specification given that this is formulated

independently of a particular application domain.

A diagnostic problem solving method may be

formulated in terms which are specific to diag-

nostic problem solving, but it can be reused in

different technical or medical diagnostic applica-

tions. The advantage of refining problem-solving

methods in a task-specific way is that the resulting

model provides much stronger support for knowl-

edge acquisition and application development than

a task-independent one, i.e., the method becomes

more usable.

Fig. 2 visualizes the three dimensions of our problem

solving method space by means of arrows. Although this

representation may be taken to imply that each dimension

is characterized by a total order, this is not actually the case.

Different tasks, such as diagnosis or design, and different

problem solving schemes, such as local search or search by

pruning (e.g., branch and bound), may not be derivable

from each other. However, they can be derived from more

abstract definitions. Hence, each dimension is defined by an

acyclic graph. The graph is defined by the refinement

relationship between the elements of the design space and

reflects the partial order defined by refinements. Having

said so, in this paper, we will focus only on one type of

tasks (design) and one type of problem-solving scheme

(local search) and therefore this graph collapses into a total

ordered one.

A clear identification and separation of problem-

solving strategy, problem commitments, and domain

assumptions enables a principled way to developing a

problem-solving method and structuring libraries of

problem-solving methods. Current approaches usually

merge these different aspects, thus limiting the possibi-

lities for reuse, obscuring the nature of the methods, and

making it difficult to reconstruct the process which led to

a particular specification. In our approach, the develop-

ment and adaptation of problem-solving methods is

characterized as a navigation process in this three-

dimensional space. Moves through the three-dimensional

space are represented by means of adapters. In what

follows, we will present a detailed example illustrating

our view of method development through adapter-

mediated navigation in a three-dimensional space. In

Section 4, we will then generalize from the particular

example shown here and we will provide a generic

typology of adapters.
Specifically, in the next sections, we will illustrate the

following method-development processÐsee Fig. 3.

First, we introduce a definition of a problem solving

strategy. We start with defining a generic search scheme

doing a step into the problem solving strategy dimension

and specialize the generic search scheme to a local search

one (i.e., we refine along the problem solving strategy

dimension).

Second, we introduce a problem (i.e., task definition).

We define a generic optimization problem taking a step into

the problem commitments dimension and we refine our

definition of a generic optimization problem in two steps to

produce a design problem and a parametric design problem

(i.e., we add problem commitments).
Third, we link problem definitions and problem solving

strategies in three steps:

1. First, we refine local search so that it guarantees to
find locally optimal states.

2. Then, we introduce a domain assumption to ensure
that the method is able to find globally optimal states
a). In the discussion, we will illustrate the impor-
tance of introducing domain assumptions by show-
ing that failing to do this results in an incorrect
specification. We also discuss why a transition
without assumptions on domain knowledge b) may
miss the gist of problem-solving methods.

3. We specialize the globally optimal search-based
problem-solving model scheme for optimal para-
metric design problems.

Fourth, we refine the optimal parametric design problem

solver and produce a Propose & Revise problem solving

method, which is configured for parametric design tasks.

This step is carried out by differentiating between alter-

native successor relationships.4

Finally, we show how the proposed method develop-

ment process can be used to perform a ªrational reconstruc-

tionº of a comprehensive library of problem-solving

methods [59], [61].
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3.1 Local Search

Fig. 4 provides a formal definition of a generic search
scheme.5 Our formalization combines pseudocode to
express state transitions with first-order logic to define the
functionality of subcomponents and properties of states.
This is done in the style of dynamic logic (cf. [49])Ðsee [37],
[35] for more details. The generic search scheme consists of
four elementary state transitions, i.e., inferences. Initialize
starts the search process and the sequence of Select Node,
Derive Successor Nodes, and Update Nodes recursively
navigates a search space until a solution has been found.
The signature of the method is based on the notion of object
and includes the definition of three constants,6 Node, Nodes,
and Successor Nodes, and a predicate, Stop criterion. The
latter specifies a halting condition; the constants respec-
tively define the currently selected node (Node), the pool of
currently available nodes (Nodes), and the nodes generated

at each cycle of the search process (Successor Nodes). The
scheme in Fig. 4 defines a parametrized problem solving
template, which can be instantiated in several different ways
to provide a specific search method. The template com-
prises six parameters: the four elementary inferences, the
predicate Stop criterion, and the sort Object.

Alternative search methods can be generated by refining
the inference Update Nodes in the generic search scheme
shown in Fig. 4. For instance, if the output is obtained by
merging Successor Nodes with the original input Nodes, a
variant of best-first search is performed, where all expanded
nodes are available when selecting the next node. This may
be the basis for defining an A* search strategy [66]. If only
the newly generated nodes are returned, then a variant of
hill-climbing is performedÐi.e., we derive a model of a local
search scheme. This is shown in Fig. 5.

3.2 Parametric Design Task

Fig. 6 provides a generic definition of a global optimization
problem. Its goal statement defines a solution as an object
which is optimal with respect to a preference relation. The
latter is required to define a partial order and introduces
assumptions on domain knowledge. A domain must
provide such a preference relation to ensure that the task
is well-defined for it.
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Fig. 3. Illustrative moves in the method specification space.

5. The schema is typical of search strategies which expand the search
space. Other types of search, such as brand & bound, which try to restrict
the search space, would exhibit different schemas.

6. Constants may have different values in different states according to
the multiple-world semantics of our specification appraoch. Hence, they are
not logical constants. They rather correspond to a constant ªaddressº (i.e., a
name) of a storage cell with changing content according to the current state
of computation. For more details, see [37], [35].
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Design can be characterized in generic terms as the
process of constructing artifacts. Usually, an artifact has to
fulfill certain requirements, should not violate certain
constraints, and should follow the principle of economy,
i.e., should have minimal cost, (cf. [58], [18], [60]). Fig. 7
shows a simplified characterization of the class of design
problems, which ignores the distinction between require-
ments and constraints.

The definition in Fig. 7 refines three aspects of task global
optimum. First, a Solution is now required to be valid, as well
as optimal. Second, the generic name Object has been
replaced with the specific name Design Model, in accordance
with the terminology used in design tasks.7 Third, the
preference relation is now defined in terms of the cost
function; that is, optimal designs are those which minimize
the design cost.

The definition of task design given in Fig. 7 can be

specialized for parametric design problems by introducing

the notions of parameters and value ranges, as shown in Fig. 8.

Parametric design problems reduce the complexity of the

design task by assuming the existence of a parametrized

solution template for the target artifact. Hence, as shown in

Fig. 8, a design model is now defined as a partial function

from parameters to value ranges and a solution is defined

as a valid and complete design model. This is a model in

which all parameters are bound and no constraint is

violated. The already mentioned VT elevator design

problem ([56], [73]) provides a well-known example of a

parametric design task. Here, the problem is to configure an

elevator in accordance with the given requirements speci-

fication and the applicable constraints. The parametrized

solution template consists of 199 design parameters which

specify the various structural and functional aspects of an

elevator, e.g., number of doors, speed, load, etc.
The definition given in Fig. 8 provides two main

refinements of our specification of task design: 1) it
introduces the additional requirement that a solution
should be complete and 2) fleshes out the notion of
design model which had been introduced purely as
lexicon in Fig. 7.

3.3 Applying Problem-Solving Methods to Tasks

In this section, we show how the local search method

defined in Section 3.1 can be adapted for the class of

optimization problems defined in Section 3.2. This adaption

will be carried out in three steps. First, we will ensure that

our method finds local optima. That is, we formally

establish a competence for the method. Up to now, we

had only characterized its operational behavior, in terms of

states, elementary inferences, and control flow. Second, we

will show how we can bridge the gap between a method

which can only guarantee local optimality and a task

specification which requires global optimality. In particular,

we will show that this adaption can be carried out

according to two alternative strategies. The final adaptation

to parametric design can be achieved via simple adaptation.

3.3.1 A Locally Optimal Method

The local search method defined in Fig. 5 does not consider

any preference relation. Hence, it cannot reason about
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Fig. 6. The task global optimum.

7. When refining the definition given in Fig. 7 to specify parametric
design tasks, we will substantiate this terminological change by providing
axioms which describe the logical structure of a design model.

Fig. 4. A generic search schema.

Fig. 5. The refinement to local search.
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optimality, let alone guarantee it. Fig. 9 adds the necessary

requirements for such a proof. First, we import the

definition of task global optimum, thus acquiring the

conceptual machinery needed to talk about optimality.

Second, we introduce three requirements (in the form of

axioms): 1) the method stops if and only if none of the

newly generated nodes is better than the currently selected

oneÐi.e., if the current node is locally optimal, 2) Select

always chooses the best node from its input set, and 3) the

quality of the selected node improves monotonically. The

latter requirement is specified by stating that at least one

element of Successor Nodes is better or equal to the best

element in Nodes, where ªbetterº is determined in terms of

the partial order specified by the preference relation.

Having introduced these three axioms, we can then prove

that our search procedure behaves like hill-climbing, i.e., it

monotonically converges to a local optimum.8

3.3.2 Establish the Competence to Find Global Optima

There is still a significant gap between a locally optimal

method and the task requirements for global optimality.

In principle, there are two different strategies that can be

taken to bridge such a gap. We could modify the control

regime of the method, so that it navigates the entire
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Fig. 8. The task parametric design.

Fig. 7. A definition of the generic design task.

8. Of course, such local optimum is not guarenteed to be global because
the hill-climbing process might get stuck into local maxima, Notice also that
Select Node and Update Nodes have to solve a global optimum problem. They
must provide the best node and the best successor. Therefore, the problem
of finding a global optimum reappears as subproblem, however, reduced
for a subset of all nodes. This divide & conquer stragety is common for most
local search strategies. Again, its success depends on further assumptions
on the successor relationship.
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search space. If it is finite, then this approach is
guaranteed to find a global optimum. Such strategy is
represented by arrow 3.2 (b) in Fig. 3. Unfortunately, this
approach is normally unfeasible. AI problems are
typically very complex and not amenable to ªbrute forceº
approaches (cf. [15]).

An alternative strategy is to introduce assumptions on
domain knowledge that make it possible to bridge the gap
between the competence of a method and the goal of the
relevant taskÐsee arrow 3.2 (a) in Fig. 3. That is, parts of the
problem-solving process can be delegated from the method
to the domain knowledge. The problem-solving method
defines a reasoning strategy on top of the domain knowl-
edge to ensure that this knowledge is used in a proper and
efficient way to support problem solving. An assumption
can be introduced either to strengthen the competence of
the combined problem solver method plus domain knowl-
edge, or to weaken the task that can be performed by it. In
the latter case, it describes the restrictions under which
dependable problem solving can be guaranteed (cf. [31]).

For our example, we have to establish a necessary
property of the domain knowledge used by Successor Nodes.
The successor relationship must always provide a better
successor in the case that a node is not already a global
optimum (see Fig. 10). Such an assumption prevents our
local search procedure from getting stuck in local optima.

This kind of assumptions can be verified by means of a

technique called inverse verification, which is described in [38]

and [39].
Of course, the given formulation of the better-successor

assumption is very generic. However, it is easy to see that

concrete refinements of this assumption underlie some well

known methods. For instance,

. the A* search method (cf. [13]) guarantees that it will
find an optimal solution to a problem if the
application domain supports the specification of an
admissible heuristic function. The assumption on the
existence of such a heuristic defines a refined version
of the better-successor assumption.

. Bylander et al. [15] and [23] characterize variants of
assumptions that ensure efficient problem-solving
for diagnostic tasks. The assumptions they use
require that a superset of hypotheses must also
explain a superset of observations. These assump-
tions can be seen as task-specific refinements of the
generic better-successor assumption (cf. [39] for more
details). They define the conditions under which a
local search method is able to find an optimal (i.e.,
parsimonious) diagnosis.

3.3.3 Applying Local but Optimal Search to Design

Tasks

Applying the methods to the design tasks defined in Fig. 7
and Fig. 8 only requires importing the relevant logical
theories. Hence, we can define two simple adapters, as
shown in Fig. 11.

3.4 Refining Local but Optimal Search for
Parametric Design to Propose & Revise

We will now conclude our sample method development
process by showing how our search method can be further
refined to derive a generic specification of a Propose &
Revise problem solving method for parametric design.

Propose & Revise introduces differentiation in the search
procedure by distinguishing between two different beha-
viors of Derive Successor Nodes [92], [60], [61], [59]. If the
current state is incomplete, then a design extension step is
carried out, to extend the current design model. If the
current state is not valid (i.e., some constraint is violated),
then a revision step is carried out, to restore consistency. The
adapter shown in Fig. 12 defines Propose and Revise
inferences in terms of the more generic Derive Successor
Nodes. It is important to note that the specification given in
Fig. 12 is neutral with respect to the sequence of propose
and revise steps and allows for alternative variants of
Propose & Revise to be defined by introducing different
control regimes. For instance, one may apply propose steps
until a model is complete, and then revise. Alternatively,
one may revise a model as soon as an inconsistency arises
(cf. [27], [92]). These two control regimes are formalized in
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Fig. 9. A locally optimal method.

Fig. 10. The assumption for finding global optima.
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Fig. 13. Each control regime is defined by introducing the
relevant axiom and the associated control flow.

3.5 Summary

Fig. 14 summarizes the method development process

described in the previous sections. On the left side, we

refine the problem definition and on the right side we refine

the problem-solving strategy that guides the problem-

solving process. The virtual elements do not require explicit

specifications because these follow from the combination of

an existing specification and an adapter. However, for

convenience, a library may also directly provide these

derived specifications.
The approach described in this paper has been used to

perform a ªrational reconstructionº of the library of
problem solving components described in [59], [61]. This

library provides a comprehensive set of components for
parametric design problem solving and has been used in
several real-world applications, including sliding bearing
design, initial vehicle design, and the design of casting
technology for manufacturing mechanical parts [85].

All the problem solving methods in the library by Motta

and Zdrahal are defined as specializations of a generic

search-based model of parametric design problem solving.

This model specifies a rather complex three step procedure

for carrying out Derive Successor Nodes. First, a design context

is abstracted from the current node, then a design focus is

derived within the context and, finally, a transformation

operator is derived from the design focusÐsee Fig. 15. The

use of the three-step selection process is motivated by the

structure of parametric design problems:
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Fig. 11. Local but optimal search for design and parametric design.

Fig. 12. A generic characterization of Propose & Revise.

Fig. 13. Alternative control regimes for Propose & Revise.
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. The quality information associated with a parametric

design model distinguishes four criteria: violation of

constraints, fulfillment of requirements, complete-

ness of value assignments, and costs. Four different

contexts can be immediately identified according to

these criteria: trying to repair constraint violations,

trying to improve fulfillment, trying to improve

completeness, and trying to reduce costs.9

. Within a context, we can decide about the focus of
the design activity by using the object information,
in this case, the structure of the parametric design
model. Specifically, a parametric design model can
be functionally characterized in terms of the relevant
violated constraints, nonfulfilled requirements, and
unassigned parameters. Thus, choosing a focus
consists of selecting one of these elements, in
accordance with the current contextÐe.g., choosing
the appropriate constraint violation when the cur-
rent context is one of design revision.

. Design is about applying transformations/exten-

sions to a design model. In general, several
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Fig. 14. The development graph of a problem-solving method for parametric design.

9. As the reader may have realized, a more pedantic organization would
have already introduced three of these context decisions when specifying
(generic) design problems, given that these decisions are not specific to
parametriic design. For reasons of simplicity, we have skipped this
intermediate step.
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transformations/extensions may be applicable for a

given context and focus and, therefore, additional

operator selection knowledge may be required.

A synoptic view of the generic model of parametric
design problem solving underlying the library by Motta
and Zdrahal is presented in Fig. 16. This style of
specification, which abstracts from several dozens of
definitions in the original library by Motta and Zdrahal,
results from the approach adopted here, which consists of
choosing an algorithmic scheme and applying several
adapters that refine its state descriptions and state

transitions. Such a specification is of course more abstract
than what is usually called a problem-solving method in
the literature. Its advantage is that it concisely captures a
family of specifications. For instance, a Propose & Revise
method for parametric design can be specified by
distinguishing two contexts when deriving successor
design models (cf. Section 3.4): a propose context, in
which design models are extended, and a revise context,
in which design models are repaired [61], [59]. In other
words, this problem-solving method can be derived from
our framework by simply refining some of its parameters.
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Fig. 16. A survey of parametric design problem solving.

Fig. 15. Refining Derive Successor Nodes.
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4 TRANSITIONS IN THE METHOD SPECIFICATION

SPACE

The integration of preexisting components into larger

systems is an important problem in computer science. This

issue reflects the fact that as systems become larger and

more complex, they are no longer built from scratch, but are

instead configured out of preexisting building blocks. As a

result, there is currently much interest in software mechan-

isms which can be used to interconnect components and

adapt them for specific applications. The adapter pattern is

one of several design patterns in the textbook by [43], which

deals with object-oriented integration. Adapters are also

present in most approaches to software architectures ([77],

[91]), where they are often called connectors. Their main

purpose is to integrate components which exhibit different

interaction styles. Another type of adapters, called wrapper

and mediators, have been proposed to enable sharing and

reuse of heterogeneous and distributed information and

knowledge sources ([88], [89]).
While these mechanisms have been designed in different

subfields of computer science and differ in a number of

details, they all play the same role: they make it possible to

adapt a component to a new context, thus enabling its reuse
and externalizing the adaptation mechanism.

Fensel and Groenboom [37] introduced adapters into
the CommonKADS model of expertise as a generalization
of the mappings between domain and inference layers.
Adapters make it possible to specify tasks, problem-
solving methods, and domain knowledge independently
of each other, thus enabling their reuse (cf. Fig. 17).10

Fensel [29] generalized the use of adapters to stepwise
adaptation of problem-solving methods, tasks, and as-
sumptions via a pile of adapters. In this approach, the
adapter itself becomes reusable, given that it is used to
adapt components which are themselves generic and
reusable (e.g., a generic task). This situation is specific for
adapters used in knowledge engineering and reflect the
fact that only this community has been developing
generic description of problem types ([12], [10]).

Still, our current adapter concept may be too general and a
typology of adapters may significantly facilitate its usability.
So far, we have identified one basic viewpoint for organizing
adapters: in terms of their purpose (teleological aspect). This
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Fig. 17. The four component architectures for knowledge-based systems.

10. Adapters correspond conceptually to the transformation operators
of [86].
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viewpoint indicates whether an adapter is used to refine a

problem type, a domain dependency via assumptions, or a

problem-solving strategy. In the following, we will work out

this idea in more detail and show how we can transform the

development process of problem-solving methods into a

more structured engineering activity.
In Section 3, we introduced a three-dimensional method-

specification space (see Fig. 2) which we navigate by means

of adapters. The dimensions of the space are the problem-

solving strategy, the problem (i.e., task) commitments, and

the domain knowledge assumptions. Here, the idea is to use

these three dimensions as the basis for producing a

typology of adaptors. Specifically, moves in this space can

be distinguished in terms of their orientation:

. A movement may occur within only one of the three
main axes. This can be either a refinement of the
problem-solving strategy, or a refinement of a
domain assumption or a refinement of a problem
commitment.

. A movement may occur along the plane specified by
any two dimensions. That is, a move may refine a
problem-solving strategy by introducing domain
assumptions, may connect a problem-solving strat-
egy to a problem type, or refine a problem type in
terms of domain assumptions.

. A movement may affect all three dimensions. This
move exhibits maximal complexity and, therefore,
we will show that it can be decomposed in terms of
two-dimensional moves.

In the following section, we will briefly sketch the

different adapter types.

4.1 One-Dimensional Moves

In the following sections, we investigate adapters that

provide moves in a one-dimensional subspace; i.e., adapters

which either refine elementary inferences of problem-

solving strategies, or introduce/refine assumptions on

domain knowledge, or introduce/refine goals of problem

definitions (see Fig. 18).

4.1.1 Refining a Problem-Solving Paradigm

Problem-solving methods can be viewed as components

with an active interface. Each inference defines a parameter

that can be further refined externally. Usually, a number of

axioms are added which strengthen the inference. Examples

are provided in Section 3.1. This type of adaptation occurs

within one dimension, i.e., it follows the problem-solving

scheme line. However, this is the case only if the refinement

of inferences is not accompanied by the introduction of new

requirements and assumptions on domain knowledge. In

the latter case, the move in question occurs within a two-

dimensional subspace (cf. Section 4.2.1).

4.1.2 Refining Domain Knowledge

The situation in which domain knowledge is refined

independently of its use for problem-solving schemes and

task definitions does not occur in our framework, where

adaption is driven by problem-solving method develop-

ment and reuse. Nevertheless, these types of refinements

can occur in situations where it is necessary to integrate

different domain ontologies and can be handled by means

of mediator-type approaches [88], [89]. An example for such

a move is the refinement of a generic upper-level ontology

in a certain domain; for example, the domain-specific

instantiation of a generic definition of the part-of relation.

4.1.3 Refining the Goal of a Task

All examples of task refinement shown in Section 3 also

introduce new requirements on domain knowledge. An

optimization task requires a preference function, a design

task requires constraints, a cost function, etc. Hence, these

refinements affect both the domain and the task dimen-

sions. Nevertheless, it is possible to imagine task adaption

moves which only affect this dimension. A simple example

is the case in which we ask for all solutions to a problem,

rather than only one.

4.2 Two-Dimensional Moves

In this section, we discuss adapters that provide moves

within two-dimensional subspaces: refining domain
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Fig. 18. One-dimensional moves in the problem space.
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assumptions of problem-solving strategies or tasks, or
applying problem solving schemes to tasks (see Fig. 19).

4.2.1 Refining Problem-Solving Inferences while

Introducing Domain Assumptions

Section 3.4 discusses the refinement of local search for
parametric design to Propose & Revise for parametric
design. The inference Derive Successor Nodes is specialized
by distinguishing between two types of successor deriva-
tion steps: those which extend completeness (propose) and
those which fix inconsistencies (revise). Hence, the adapter
shown in Fig. 12 provides an example of refining a problem
solving inference. At the same time, because additional
types of knowledge are required by the resulting Propose &
Revise method (knowledge about design extension and
revision and a relative completeness measurement), then
this adapter also denotes a move along the domain
assumption axis. However, no change occurs along the
task dimension: The newly generated method is designed to
solve exactly the same class of problems as the source
method.

4.2.2 Adapting Problem-Solving Strategies to Problem

Types

Sections 3.3.1 and 3.3.3 describe simple adaptations of
problem-solving schemes to different tasks, which do not
introduce new assumptions on domain knowledge.

4.2.3 Refining a Task

A task is refined by strengthening its goal and knowledge
requirements. Section 3.2 provides examples of these
refinements (from a generic optimization problem, through
design, to parametric design). In these steps, we refined the
definition of the goal and introduced new requirements on
domain knowledge. A solution to an optimization problem

is defined in terms of an optimality criterion; a solution to a

design problem must also be valid; a solution to a

parametric design problem must be valid and complete.

Because these refinements introduce new requirements on

domain knowledge, the resulting moves occur in a two-

dimensional subspace.

4.3 Three-Dimensional Moves

Assumptions on domain knowledge are introduced by

problem-solving schemes to improve the competence of the

method without changing their algorithmic strategy. An

example of this approach was shown in Section 3.3.2, where

the competence of a local search method was strengthened

without actually modifying its incomplete search strategy.

This strengthening was achieved by formulating assump-

tions on the structure of the search graph defined by the

domain knowledge. The relevant adapter relates methods

to tasks and closes the gap by introducing assumptions on

domain knowledge. Therefore, it is necessarily a move

affecting all three dimensions of the method specification

space. However, we split the move into two steps. First,

we have a two-dimensional move into the problem-

solving strategy and problem commitment directions.

With Section 3.3.1, we refine our search method to a

method that search for (local) optima. We enrich the

competence of the method with task-specific commit-

ments. Second, we have a two-dimensional move into the

problem-solving strategy and domain knowledge assump-

tions directions. With 3.3.2a we add assumptions on

domain knowledge that enrich the competence of the

PSMs to finding global optima. Breaking down three-

dimensional moves into a sequence of two two-dimensional

moves significantly reduce the complexity of the development

process of PSMs.
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Fig. 19. Two-dimensional moves in the problem space.
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We also mentioned an alternative strategy (3.3.2b), which
tries to close the gap between task requirement and method
competence by modifying the algorithmic scheme (in
particular, by searching a larger part of the search space)
instead of introducing assumptions on domain knowledge.
In this second scenario, we would again perform adaptation
only in the same two-dimensional projection of the entire
problem space as done with 3.3.2. However, as a conse-
quence, we would have an inefficient problem-solver.

. 3.3.1 and 3.3.2a decompose a three-dimensional move
into two two-dimensional ones. Efficiency is achieved
by assuming appropriate domain knowledge.

. 3.3.1 and 3.3.2b are a sequence of two two-dimen-
sional moves in the same directions. They do not
define an ªappropriateº decomposition of a three
dimensional move, given that they lead to a problem
solver that is intractable in most cases. Enforcing
completeness by performing a complete search only
works for very small search spaces.

In the case of knowledge-based systems, it is usually
necessary to delegate parts of the problem solving to the
domain knowledge and to weaken the task specification in
order to enable efficient problem solving. Therefore, three-
dimensional moves are often unavoidable. However, it
turns out that these can always be realized by a sequence of
two-dimensional moves. That is, we can first map a method
to a task and then introduce assumptions on domain
knowledge that close the relevant gaps.

5 RELATED WORK, CONCLUSIONS, AND FUTURE

WORK

The landmark papers of [20] and [16] introduced the
concepts of PSMs and libraries of PSMs into the develop-
ment process of knowledge-based systems. Since then,
many PSMs have been developed but hardly any work
exists, which provides guidance on the development
process. Exceptions are [2] and [90] which have put forward
some general ideas on how such a development process can
be guided by engineering principles. In this paper, we have
presented a systematic approach, which enables the
structured development, adaptation, and reuse of pro-
blem-solving methods. We have shown that problem-
solving methods can be described by means of 1) a
structured set of generic tasks, problem-solving patterns,
and generic domain assumptions and 2) adapters formaliz-
ing the relevant refinement steps. These are explicitly
modeled, thus allowing their reuse for new problem types
and different problem-solving schemes. Adapters introduce
a new modeling element into existing modeling ap-
proaches, which makes the method development process
explicit and external to the model, i.e., separated from
problem solving components. In most other approaches,
adaptation is treated as a side issue while adaptation via
several levels is not considered at all. In our view, the
approach proposed here provides a clear foundation for
both problem-solving method specification and configura-
tion, and enables the development of well-formed, com-
prehensive, and reusable libraries. Making adaptation
external and explicit formally records the design decisions

that have led to the constructed problem solver, thus
providing the key to reusability and maintainability. The
proposed typology of adapters provides both a theoretical
basis and practical guidelines for the method development
process. Our approach supports knowledge engineers who
want to develop maintainable PSM libraries with a large
cover. We provide the means to reduce the number of
components to a manageable size and we define a
structured approach for specifying which can help others
in using the library (i.e., in navigating through the space of
possible component combinations). The explicit character-
ization of moves through the problem-solving method
space is important both to formalize the method develop-
ment process and to ensure that not only problem solving
components but also the process of creating them becomes
part of a library.

The importance of recording the knowledge engineering
experience in a library has been recognized for a number of
years ([82], [86]). However, approaches to capturing design
expertise in knowledge engineering have mostly centered
on recording informal guidelines. For example, while [52]
use hyperlinks expressed in natural language to adapt
model fragments, they do not provide an explicit repre-
sentation of the adaptation component itself. The Com-
monKADS Library [12] has already an embryonic type of
adapters, which are called features. However, these are used
in CommonKADS more as annotations (metacomponents)
than as integral parts of a method specification. In other
words, they are rather ad-hoc and considered as a side
aspect, rather than as a structuring mechanism for a library.

In contrast with these approaches, our proposal makes it
possible to record explicitly and formally the complete
method development process, thus providing the basis for
automatic method configuration. In addition, our approach
is based on a theoretically sound framework, which makes
it possible to tease out the various types of commitments
embedded in a problem solving method, thus clarifying the
nature of specific methods and maximizing the possibilities
for reuse.

The work presented here can be situated in the general
context of program derivation from specifications. How-
ever, the existing approaches rely on specific representation
and specification languages (functional programming lan-
guages [78] or logic-programming [42]) and focus on
algorithmic refinement as means to improve the efficiency
of programs. Therefore, they are rather complementary to
our approach, which relies on a specific architecture for
specifying knowledge-based systems and focuses on intro-
ducing problem commitments and domain knowledge
assumptions to improve efficiency and to economize the
adaptation of reusable components to new applications.
Refining the algorithmic structure of a problem-solving
method can be viewed as a design time activity, needed to
optimize the runtime efficiency of the target system.

The notion of adapters in our context plays a role
similar to that played by mediators in heterogeneous
information systems [89], connectors in software architec-
tures [77], and adapters in design patterns [43]. The idea
underlying all of these approaches is essentially the
same: some kind of ªexternal kitº is required in order to
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allow the interaction of reusable components and their
configuration for different computational scenarios. The
externalization of this adaptation process has the advan-
tage that the original components remain unchanged,
while they become usable in the new situation. Our use
of adapters extends these approaches in three directions:
1) we use adapters as a means to stepwise refine
problem-solving methods according to task and do-
main-specific circumstances, 2) we identify a typology
of adapters based on our three-dimensional method
specification space, and 3) we characterize adapters so
that they can themselves be reused. In particular, an
adapter that refines a method for a generic problem
definition can also be applicable to other methods. For
instance, an adapter that introduces the notion of design
problem can be used to refine a local search method as
well as a global search method for design problem
solving. Thus, having been originally introduced to
enable reuse of other components, adapters become
reusable too. The UPML language ([36]), which has been
developed in the course of the IBROW project,11 Fensel
and Benkamins [32] distinguish two types of adapters:
refiners that correspond to one-dimensional moves and
bridges that correspond to two-dimensional moves.

Description of libraries of PSMs in UPML are used by a
brokering service for semiautomatic selection and config-
uration of distributed reasoning services (cf. [7]).

Finally, we should mention the approach of [83], who
uses metalevel reasoning to automatically configure
problem-solving methods for diagnostic problems. The
problem with this approach is its complexity. Automati-
cally configuring an optimal problem solver may have an
order of magnitude higher complexity than the problem
that is meant to be solved by the problem solver.
Therefore, further heuristic restrictions of her approach
are required to provide reasonable semiautomatic support
as envisaged by the IBROW project. It is clear that
decision procedures for limited-rationality problem-solver
(problem-solving methods are heuristic problem solvers)
can only have themselves limited rationality (cf. [54]).

In conclusion, in this paper, we have presented an
approach to the specification of problem solving methods,
which addresses the fundamental research issues in this
area. In particular, we have characterized problem solving
methods in terms of a three-dimensional space defined in
terms of domain assumptions, problem-solving strategies,
and task commitments. This space provides both a
theoretical foundation, by clarifying the epistemology of
problem solving methods, and an engineering foundation,
by supporting a method development process and a library
organization schema. These 1) subsume both task-indepen-
dent and task-dependent approaches and 2) allow the
development of manageable libraries with broad horizontal
cover.

Of course, this paper is only concerned with specifying
our framework and there is still much work to do in order
to validate this approach in the knowledge engineering
practice. Clearly, the ultimate value of an approach to reuse
is whether it works in practice. In the recently started
IBROW project, we'll try to answer this question. In
particular, we will be looking at nontechnical issues [46]
and at simplified models of competence specification to try
and facilitate both the library development process and the
process of identifying the ªright componentsº in the library.
We will also need to develop the appropriate navigational
support, as well as an infrastructure to allow users and
developers to record informal experiences about the use of
the library. We plan to support navigation in a library of
PSM components by means of a specialized version of the
WebOnto ontology editor/browser [24] and to support
library-centered knowledge sharing by customising our
existing knowledge management infrastructure [63].

Our preliminary application of this framework to struc-
ture multiple libraries of problem solving methods [62] has
produced encouraging results, as it appears not only that the
proposed framework provides an effective organization for
constructing libraries with large horizontal cover, but also
that the resulting libraries exhibit the degree of flexibility
required to support semiautomated method configuration,
i.e. they are not as brittle as traditional, monolithic libraries.
However, more work needs to be carried out to show that the
resulting libraries do indeed provide better reuse support
than current proposals. In the course of the IBROW project,
we are collaborating with some of the main groups involved
in PSM research, including the KADS group in Amsterdam
and the Protege group at Stanford, to further develop and test
the framework proposed in this paper. Our future research
will tell us whether the combination of a clear theoretical basis
and powerful tools can indeed enable widespread reuse of
knowledge engineering technology.
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