Printed by timm

Jan 11, 10 16:31 toe.otl Page 1/3

TOE
TOE = Timm'’s theory of everything
It aims to simplify knowledge—-level modeling with a little
data mining.

KNOWLEDGE-LEVEL PROBLEM SOLVING METHODS
note

the following text references certain terms that aren’t
explained till below. So just relax and go with the flow.

© 00 N o g B~ W NP

P
P o

anomaly detector (hmmm... that's odd)
— walk through data in "eras" of, say, 100 instances
- report if median "likelihood(1)" of era i < era[i—1]/2

I
a > w N

verification (do | trust what is going on now?)
— alert if any app runs on an "era" with anomalies

PR e
© N o

classification (give me the executive summary)
- "likelihood(n)"

NN P
= O ©

mode identification (what is happening now?)
— classification using labels of previous eras
— if classification is anomalous, declare a new label

NN NN
a B W N

prediction (what will happen now?)
— classification of this era, then return in the current
era are the expected values

W N NN
O © 0 N O

planning (how to get there?)
- find a "contrast set" between a current and goal era.

w W W
w N P

control (how to sail upwards)
- find a "contrast set" between a current era and all
eras with a higher weight.

W W W
[S2 N IS

monitor (are we currently smiling?)
- classification over the utility labels

W W W
© 0

explanation
— contrast set between two eras

A B B b
w N B O

diagnosis (how did we go bad?)
- explanation, from an eras with a lower to
a higher utility

I~
o o A

repair (how can we go good?)
- diagnosis, but flip the weights.
— also "contrast set" between bad and good,
- favoring attributes that have the highest frequency
difference and are cheapest to control

g o a b b b
N B O © 0 N

insert your own here

o g
A W

Monday January 11, 2010 1/3



Printed by timm

Jan 11, 10 16:31 toe.otl

Page 2/3

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

FUNCTIONS

supervised
count

- build a frequency table for all
attribute/range/class values f[Attr,Range,Class].;

- e.g. fl[sex,male,pregnant] =0

- Note that f[class,label,class] is the
frequency of class label "Range"”, which we’ll
denote f[class] (and "F" is
the sum of all "f").

likelihood(1)
— every instance is labeled "seen"
— compute likelihood that you have seen this before.
- prod(f[a,r,"seen"))/f("seen")*(f("seen")/f) = 1)

likelihood(N)
— every instance is labeled L
- compute likelihood that new instance has label L
- report label with highest likelihood

contrast
- given two populations
- find ranges more frequent in one than the other
— for top ranked ranges, try with rule generation

unsupervised
discretization
- N bin, equal Fred

bore (best or rest)
— discretization on a numeric utility score
- label top score "best" and the others "rest"

distance
- reports distance between two rows

median

- propose a node halfway between two others (for discrete

attributes, move half to the other value, at random)

GAC
- builds a tree of nearest pairs
— if too slow, use sub/micro sampling as a pre—cursor

sampling
randomizer
- randomly re—order rows of the data

eras
— spits our data, X instances at a time

utility
— add a label to each row based on a scoring function
- note: simplest one is to just apply the class symbol

sub-sampling
- report all rows of the minority class
— use same number of every other class (at random)

over—sampling
- report all rows of the majority class

— use same number of every other class (repeat at random)

micro—sampling
- pick N instances (at random) of all classes

2/3

Monday January 11, 2010



Printed by timm

Jan 11, 10 16:31 toe.otl

Page 3/3

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

EXPERIMENT

hypothesis
- once the above is working, the building a whole
range of knowledge-level tasks is a trivial process

tools
- we’ll need a generator of data to test this all out

generator
sampler(L,P)
— ascend levels L in the GAC
- find the average distance of things at level L
returns random instances within D*L .

alienator
- take classified data
— generates eras of the same class frequency
as the original data set
- atinterval |, injects a different frequency
classes at probability P

Monday January 11, 2010

3/3



