
1 TOE
2 TOE = Timm’s theory of everything
3 It aims to simplify knowledge−level modeling with a little
4 data mining.
5

6 KNOWLEDGE−LEVEL PROBLEM SOLVING METHODS
7

8 note
9 the following text references certain terms that aren’t
10 explained till below. So just relax and go with the flow.
11

12 anomaly detector (hmmm... that’s odd)
13 − walk through data in "eras" of, say, 100 instances
14 − report if median "likelihood(1)" of era i < era[i−1]/2
15

16 verification (do I trust what is going on now?)
17 − alert if any app runs on an "era" with anomalies
18

19 classification (give me the executive summary)
20 − "likelihood(n)"
21

22 mode identification (what is happening now?)
23 − classification using labels of previous eras
24 − if classification is anomalous, declare a new label
25

26 prediction (what will happen now?)
27 − classification of this era, then return in the current
28 era are the expected values
29

30 planning (how to get there?)
31 − find a "contrast set" between a current and goal era.
32

33 control (how to sail upwards)
34 − find a "contrast set" between a current era and all
35 eras with a higher weight.
36

37 monitor (are we currently smiling?)
38 − classification over the utility labels
39

40 explanation
41 − contrast set between two eras
42

43 diagnosis (how did we go bad?)
44 − explanation, from an eras with a lower to
45 a higher utility
46

47 repair (how can we go good?)
48 − diagnosis, but flip the weights.
49 − also "contrast set" between bad and good,
50 − favoring attributes that have the highest frequency
51 difference and are cheapest to control
52

53 insert your own here
54

Jan 11, 10 16:31 Page 1/3toe.otl
Printed by timm

Monday January 11, 2010 1/3

55 FUNCTIONS
56

57 supervised
58 count
59 − build a frequency table for all
60 attribute/range/class values f[Attr,Range,Class].;
61 − e.g. f[sex,male,pregnant] = 0
62 − Note that f[class,label,class] is the
63 frequency of class label "Range", which we’ll
64 denote f[class] (and "F" is
65 the sum of all "f").
66

67 likelihood(1)
68 − every instance is labeled "seen"
69 − compute likelihood that you have seen this before.
70 − prod(f[a,r,"seen"])/f("seen")*(f("seen")/f) = 1)
71

72 likelihood(N)
73 − every instance is labeled L
74 − compute likelihood that new instance has label L
75 − report label with highest likelihood
76

77 contrast
78 − given two populations
79 − find ranges more frequent in one than the other
80 − for top ranked ranges, try with rule generation
81

82 unsupervised
83 discretization
84 − N bin, equal Fred
85

86 bore (best or rest)
87 − discretization on a numeric utility score
88 − label top score "best" and the others "rest"
89

90 distance
91 − reports distance between two rows
92

93 median
94 − propose a node halfway between two others (for discrete
95 attributes, move half to the other value, at random)
96

97 GAC
98 − builds a tree of nearest pairs
99 − if too slow, use sub/micro sampling as a pre−cursor
100

101 sampling
102 randomizer
103 − randomly re−order rows of the data
104

105 eras
106 − spits our data, X instances at a time
107

108 utility
109 − add a label to each row based on a scoring function
110 − note: simplest one is to just apply the class symbol
111

112 sub−sampling
113 − report all rows of the minority class
114 − use same number of every other class (at random)
115

116 over−sampling
117 − report all rows of the majority class
118 − use same number of every other class (repeat at random)
119

120 micro−sampling
121 − pick N instances (at random) of all classes
122

Jan 11, 10 16:31 Page 2/3toe.otl
Printed by timm

2/3 Monday January 11, 2010

123 EXPERIMENT
124

125 hypothesis
126 − once the above is working, the building a whole
127 range of knowledge−level tasks is a trivial process
128

129 tools
130 − we’ll need a generator of data to test this all out
131

132 generator
133 sampler(L,P)
134 − ascend levels L in the GAC
135 − find the average distance of things at level L
136 returns random instances within D*L .
137

138 alienator
139 − take classified data
140 − generates eras of the same class frequency
141 as the original data set
142 − at interval I, injects a different frequency
143 classes at probability P

Jan 11, 10 16:31 Page 3/3toe.otl
Printed by timm

Monday January 11, 2010 3/3

