Printed by timm Page 1/3

```
toe.otl
Jan 11, 10 16:31
    TOE
1
       TOE = Timm's theory of everything
2
       It aims to simplify knowledge-level modeling with a little
3
4
       data mining.
5
   KNOWLEDGE-LEVEL PROBLEM SOLVING METHODS
6
7
       note
8
          the following text references certain terms that aren't
9
          explained till below. So just relax and go with the flow.
10
11
       anomaly detector (hmmm... that's odd)
12
          - walk through data in "eras" of, say, 100 instances
13
          - report if median "likelihood(1)" of era i < era[i-1]/2
14
15
16
       verification (do I trust what is going on now?)
          - alert if any app runs on an "era" with anomalies
17
18
       classification (give me the executive summary)
19
          - "likelihood(n)"
20
21
       mode identification (what is happening now?)
22
          - classification using labels of previous eras
23
          - if classification is anomalous, declare a new label
24
25
       prediction (what will happen now?)
26
          - classification of this era, then return in the current
27
            era are the expected values
28
29
       planning (how to get there?)
30
31
          - find a "contrast set" between a current and goal era.
32
       control (how to sail upwards)
33
          - find a "contrast set" between a current era and all
34
             eras with a higher weight.
35
36
37
       monitor (are we currently smiling?)
          - classification over the utility labels
38
39
40
       explanation
          - contrast set between two eras
41
42
       diagnosis (how did we go bad?)
43
          - explanation, from an eras with a lower to
44
            a higher utility
45
46
       repair (how can we go good?)
47
          - diagnosis, but flip the weights.
48
          - also "contrast set" between bad and good,
49
          - favoring attributes that have the highest frequency
50
            difference and are cheapest to control
51
52
53
       insert your own here
54
```

Printed by timm

Jan 11, 10 16:31

toe.otl

Page 2/3

Jar	n 11, 10 16:31	toe.oti
55	FUNCTIONS	
56		
57	supervis	ed
58	count	
59		build a frequency table for all
60		<pre>attribute/range/class values f[Attr,Range,Class].; e.g. f[sex,male,pregnant] = 0</pre>
61 62		e.g. f[sex,male,pregnant] = 0 Note that f[class,label,class] is the
63		frequency of class label "Range", which we'll
64		denote f[class] (and "F" is
65		the sum of all "f").
66		
67		lihood(1)
68		every instance is labeled "seen"
69		compute likelihood that you have seen this before.
70 71	-	prod(f[a,r,"seen"])/f("seen")*(f("seen")/f) = 1)
72	likel	lihood(N)
73		every instance is labeled L
74		compute likelihood that new instance has label L
75	-	report label with highest likelihood
76		
77	contr	
78		given two populations find ranges more frequent in one than the other
79 80		for top ranked ranges, try with rule generation
81		for top ranked ranges, try with rate generation
82	unsuperv	rised
83	discr	retization
84	-	N bin, equal Fred
85	,	
86		(best or rest)
87		discretization on a numeric utility score label top score "best" and the others "rest"
88 89		Taber cop score best and the others rest
90	dista	ance
91	-	reports distance between two rows
92		
93	media	
94		propose a node halfway between two others (for discrete
95 06		attributes, move half to the other value, at random)
96 97	GAC	
98		builds a tree of nearest pairs
99	-	if too slow, use sub/micro sampling as a pre-cursor
100		
101	sampling	
102		omizer
103	-	randomly re-order rows of the data
104 105	eras	
105		spits our data, X instances at a time
107		
108	utili	ty
109		add a label to each row based on a scoring function
110	-	note: simplest one is to just apply the class symbol
111		line
112		sampling report all rows of the minority class
113 114		use same number of every other class (at random)
115		
116	over-	-sampling
117	-	report all rows of the majority class
118	-	use same number of every other class (repeat at random)
119		annling
120		o-sampling nick N instances (at random) of all classes
121 122	-	pick N instances (at random) of all classes
122		

Printed by timm Page 3/3

Jan	11, 10 16:31	toe.otl
123	EXPERIMENT	
124		
125	hypothesis	3
126	- once	the above is working, the building a whole
127	range	e of knowledge-level tasks is a trivial process
128		
129	tools	
130	- we'll	l need a generator of data to test this all out
131		
132	generator	
133	sampler	
134		scend levels L in the GAC
135		ind the average distance of things at level L
136	re	eturns random instances within D*L .
137		
138	alienat	
139		ake classified data
140	5	enerates eras of the same class frequency
141		s the original data set
142		interval I, injects a different frequency
143	cl	lasses at probability P