
Introduction to Kernel Smoothing
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Introduction

Histogram of some p!values

p!values

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

1
2

Stefanie Scheid - Introduction to Kernel Smoothing - January 5, 2004 2



Introduction

– Estimation of functions such as regression functions or probability

density functions.

– Kernel-based methods are most popular non-parametric estimators.

– Can uncover structural features in the data which a parametric

approach might not reveal.
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Univariate kernel density estimator

Given a random sample X1, . . . , Xn with a continuous, univariate

density f . The kernel density estimator is

f̂(x, h) =
1

nh

n∑

i=1

K

(
x−Xi

h

)

with kernel K and bandwidth h. Under mild conditions (h

must decrease with increasing n) the kernel estimate converges in

probability to the true density.
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The kernel K

– Can be a proper pdf. Usually chosen to be unimodal and symmetric

about zero.

⇒ Center of kernel is placed right over each data point.

⇒ Influence of each data point is spread about its neighborhood.

⇒ Contribution from each point is summed to overall estimate.
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The bandwidth h

– Scaling factor.

– Controls how wide the probability mass is spread around a point.

– Controls the smoothness or roughness of a density estimate.

⇒ Bandwidth selection bears danger of under- or oversmoothing.
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From over- to undersmoothing

KDE with b=0.1
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From over- to undersmoothing

KDE with b=0.05
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From over- to undersmoothing

KDE with b=0.02
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From over- to undersmoothing

KDE with b=0.005
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Some kernels
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Some kernels

K(x, p) =
(1− x2)p

22p+1B(p + 1, p + 1)
1{|x|<1}

with B(a, b) = Γ(a)Γ(b)/Γ(a + b).

– p = 0: Uniform kernel.

– p = 1: Epanechnikov kernel.

– p = 2: Biweight kernel.
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Kernel efficiency

– Perfomance of kernel is measured by MISE (mean integrated

squared error) or AMISE (asymptotic MISE).

– Epanechnikov kernel minimizes AMISE and is therefore optimal.

– Kernel efficiency is measured in comparison to Epanechnikov kernel.
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Kernel Efficiency

Epanechnikov 1.000

Biweight 0.994

Triangular 0.986

Normal 0.951

Uniform 0.930

⇒ Choice of kernel is not as important as choice of bandwidth.
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Modified KDEs

– Local KDE: Bandwidth depends on x.

– Variable KDE: Smooth out the influence of points in sparse regions.

– Transformation KDE: If f is difficult to estimate (highly skewed,

high kurtosis), transform data to gain a pdf that is easier to

estimate.
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Bandwidth selection

– Simple versus high-tech selection rules.

– Objective function: MISE/AMISE.

– R-function density offers several selection rules.
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bw.nrd0, bw.nrd

– Normal scale rule.

– Assumes f to be normal and calculates the AMISE-optimal

bandwidth in this setting.

– First guess but oversmoothes if f is multimodal or otherwise not

normal.
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bw.ucv

– Unbiased (or least squares) cross-validation.

– Estimates part of MISE by leave-one-out KDE and minimizes this

estimator with respect to h.

– Problems: Several local minima, high variability.
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bw.bcv

– Biased cross-validation.

– Estimation is based on optimization of AMISE instead of MISE (as

bw.ucv does).

– Lower variance but reasonable bias.
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bw.SJ(method=c("ste", "dpi"))

– The AMISE optimization involves the estimation of density

functionals like integrated squared density derivatives.

– dpi: Direct plug-in rule. Estimates the needed functionals by KDE.

Problem: Choice of pilot bandwidth.

– ste: Solve-the-equation rule. The pilot bandwidth depends on h.
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Comparison of bandwidth selectors

– Simulation results depend on selected true densities.

– Selectors with pilot bandwidths perform quite well but rely on

asymptotics ⇒ less accurate for densities with “sharp features”

(e.g. multiple modes).

– UCV has high variance but does not depend on asymptotics.

– BCV performs bad in several simulations.

– Authors’ recommendation: DPI or STE better than UCV or BCV.
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KDE with Epanechnikov kernel and DPI rule
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