
;;;
; ABOUT THIS DOCUMENT

; Here are some notes on using Timm’s lisp code.
5

; In the following definition of a table of data "deftable"
; starts a new table and "!" writes a new row of data into
; that table.

10 (deftable weather forecast temp humidty windy !play)

; in deftable, !xx denotes a class (the dependent variable).
; everything else are the independent variables and are of two
; types: "sym" (for symbol) and "num" (for numeric).

15 ; $xx denotes a "num" attribute. All other attributes are "sym".

(! sunny hot high FALSE no)
(! sunny hot high TRUE no)
(! overcast hot high FALSE yes)

20 (! rainy mild high FALSE yes)
(! rainy cool normal FALSE yes)
(! rainy cool normal TRUE no)
(! overcast cool normal TRUE yes)
(! sunny mild high FALSE no)

25 (! sunny cool normal FALSE yes)
(! rainy mild normal FALSE yes)
(! sunny mild normal TRUE yes)
(! overcast mild high TRUE yes)
(! overcast hot normal FALSE yes)

30 (! rainy mild high TRUE no)

; What data structures are needed to store the above?
; There are two answers to this question.
; For proj1a 1b 1c, the answer is "it does not matter".

35
; But for project2, you need to understand this stuff since
; the following code is a backbone system (on top of which,
; you can build which2).

40 ;;;
; GETTING THIS CODE

; The following code is an assembly of stuff that you can find at
;

45 ; cd $HOME/svns/csx73/lisp101
; svn export http://unbox.org/wisp/var/timm/10/dm/lisp101/ml

; To load this code
; cd $HOME/svns/csx73/lisp101/ml

50 ; emacs boot.lisp
; ; then load boot.lisp into SLIME

; To modify this code
; ; edit boot.lisp

55 ; ; add in your own files

; FILE LIST
; −−−−−−−−−
; abcd.lisp ; util, ignore, for now

60 ; bestof.lisp ; util
; boot.lisp ; list of files
; data.lisp ; routines for deftable and "!"
; structs.lisp ; defines structs and the *W* variable
; which2.lisp ; sample code to get you started with proj2

65

;;
; HIGH−LEVEL STUFF

70 ;When the above is loaded, there is a global *w* storing the result.
;THis global is of type "wme".

;; from structs.lisp

Aug 31, 10 8:54 Page 1/6LISP structs for storing data
(defparameter *w* nil)

75 (defun w0 () (setf *w* (make−wme)))

;; from data.lisp
(defun data (&optional f)
 (w0) ; reset the global *w*

80 (load (or f (thefile))) ; load the file, or the default file
 (funcall (wme−ready *w*)) ; prep
 (funcall (wme−run *w*)) ; learn
 (funcall (wme−report *w*)) ; report
)

85
; For example

> (data "../data/discrete−lisp/weather.lisp")
T

90 > (thetable)

#S(TABLE
 :NAME WEATHER
 :ROWS (#S(ROW

95 :CELLS (SUNNY HOT HIGH TRUE NO)
 :CLASS NO
 :UTILITY 0
 :SORTKEY 0.05486242722621558d0)
 #S(ROW

100 :CELLS (RAINY MILD HIGH TRUE NO)
 :CLASS NO
 :UTILITY 0
 :SORTKEY 0.15162094871921356d0)
 #S(ROW

105 :CELLS (SUNNY MILD HIGH FALSE NO)
 :CLASS NO
 :UTILITY 0
 :SORTKEY 0.16896725912164381d0)
 #S(ROW

110 :CELLS (SUNNY HOT HIGH FALSE NO)
 :CLASS NO
 :UTILITY 0
 :SORTKEY 0.3374376731603196d0)
 #S(ROW

115 :CELLS (RAINY COOL NORMAL TRUE NO)
 :CLASS NO
 :UTILITY 0
 :SORTKEY 0.34725111281542576d0)
 #S(ROW

120 :CELLS (OVERCAST HOT NORMAL FALSE YES)
 :CLASS YES
 :UTILITY 0
 :SORTKEY 1.0762189353172944d0)
 #S(ROW

125 :CELLS (SUNNY MILD NORMAL TRUE YES)
 :CLASS YES
 :UTILITY 0
 :SORTKEY 1.1621534186087104d0)
 #S(ROW

130 :CELLS (RAINY MILD NORMAL FALSE YES)
 :CLASS YES
 :UTILITY 0
 :SORTKEY 1.2642953673986543d0)
 #S(ROW

135 :CELLS (SUNNY COOL NORMAL FALSE YES)
 :CLASS YES
 :UTILITY 0
 :SORTKEY 1.2826687920405857d0)
 #S(ROW

140 :CELLS (OVERCAST COOL NORMAL TRUE YES)
 :CLASS YES
 :UTILITY 0
 :SORTKEY 1.3493395062490854d0)
 #S(ROW

145 :CELLS (OVERCAST HOT HIGH FALSE YES)
 :CLASS YES

Aug 31, 10 8:54 Page 2/6LISP structs for storing data
Printed by timm

Tuesday August 31, 2010 1/6notes.txt

 :UTILITY 0
 :SORTKEY 1.3827964523910197d0)
 #S(ROW

150 :CELLS (RAINY COOL NORMAL FALSE YES)
 :CLASS YES
 :UTILITY 0
 :SORTKEY 1.4209536138992274d0)
 #S(ROW

155 :CELLS (OVERCAST MILD HIGH TRUE YES)
 :CLASS YES
 :UTILITY 0
 :SORTKEY 1.4224535227656765d0)
 #S(ROW

160 :CELLS (RAINY MILD HIGH FALSE YES)
 :CLASS YES
 :UTILITY 0
 :SORTKEY 1.4498501279678888d0))
 :KLASSES (#S(KLASS :NAME NO :N 5) #S(KLASS :NAME YES :N 9))

165 :COLS (#S(SYM :NAME FORECAST :GOALP NIL :COUNTS {hash of 0 items})
 #S(SYM :NAME TEMP :GOALP NIL :COUNTS {hash of 0 items})
 #S(SYM :NAME HUMIDTY :GOALP NIL :COUNTS {hash of 0 items})
 #S(SYM :NAME WINDY :GOALP NIL :COUNTS {hash of 0 items})
 #S(SYM :NAME !PLAY :GOALP #\! :COUNTS {hash of 0 items}))

170 :RESULTS NIL)

; My code has a bunch of accessors to simplify getting to "the" last
; table loaded:

175 (defmacro thetable () ‘(wme−table *w*))
(defmacro thecols (&optional tbl) ‘(table−cols (or ,tbl (wme−table *w*))))
(defmacro thename (&optional tbl) ‘(table−name (or ,tbl (wme−table *w*))))
(defmacro therows (&optional tbl) ‘(table−rows (or ,tbl (wme−table *w*))))
(defmacro theklasses (&optional tbl) ‘(table−klasses (or ,tbl (wme−table *w*))))

180
; But you can’t understand the code unless you look under the hood
; at the structs they came from. So....

;;
185 ; Under the hood

;; from structs.lisp
(defstruct wme
 (goal #\!)

190 (num #\$)
 (unknown #\?)
 (file "../discrete−lisp/weather.lisp")
 (utility−function #’zero)
 (! #’defrow)

195 (ready #’sort−rows)
 (run #’noop)
 (report #’noop)
 table
)

200
#| you won’t get the above unless you know the data structures

STRUCTURES
205 ==========

Wme with
 goal = char ; if col.name has this char, then this is a class
 num = char ; if col.name has this char, then this is a numeric column

210 unknown = char; if any item in row.cells is this char then this value is unk
nown
 file = string; place to load a file
 ! = thing to be called when we see "(! a d c)"
 ready = thing to do to prep the table
 run = thing to do to process the table

215 report = thing to do to report the result
 table = Table

Table with

Aug 31, 10 8:54 Page 3/6LISP structs for storing data
 name = atom

220 rows = list of Row
 klasses = list of Klass ;only one per class in rows
 cols = list of Col
 results = list of Result

225 Row with
 cells = list of atom ; and #cells = #cols
 class = atom
 utility = number
 sortKey = number

230
Klass with
 name = atom ;
 n = number ; stores how many rows with this Klass name in Table

235 Col with
 name isa atom
 goalp isa boolean; true if this is a class attribute

240 Sym isa Col with
 counts = hashtable ; counts of (value in column in class)

Num isa Col with
 n = number

245 sum = number
 sumsq = number
 min = number
 max = number

250 |#

;;;
; How to count the frequencies in the above table?
; Note− if you understand the above structures, this code

255 ; will make sense to you

;; from which2.lisp

(defun train (tbl)
260 (dolist (row (therows tbl))

 (how−manys (thecols tbl) ; get the column headers
(row−cells row) ; get the cells
(row−class row) ; get the class of this row
)))

265
(defun how−manys (cols cells class)
 (labels ((worker (col cell)

 (how−many class
 (col−name col)

270 cell
 (sym−counts col))))

 (mapcar #’worker cols cells))) ; run down cols and cells in parallel

(defun how−many (class what cell hash)
275 (when (knownp cell) ; skip any cell labelled "?"

 (inch ‘(,class ,what ,cell) hash)
 (inch ‘(,*every* ,what ,cell) hash)))

(defun inch (key hash)

280 "increment a hash bucket from zero"
 (incf (gethash key hash 0)))

(defun !how−manys1 ()
 (reset−seed)

285 (data "../data/discrete−lisp/weather.lisp")
 (train (thetable))
 (with−output−to−string (s)
 (dolist (col (thecols))
 (showh (sym−counts col) :stream s))))

290
> (!how−manys1)

Aug 31, 10 8:54 Page 4/6LISP structs for storing data
Printed by timm

Tuesday August 31, 2010 2/6notes.txt

 "(ALLQZJX FORECAST OVERCAST) = 4
(ALLQZJX FORECAST RAINY) = 5
(ALLQZJX FORECAST SUNNY) = 5

295 (NO FORECAST RAINY) = 2
(NO FORECAST SUNNY) = 3
(YES FORECAST OVERCAST) = 4
(YES FORECAST RAINY) = 3
(YES FORECAST SUNNY) = 2

300 (ALLQZJX TEMP COOL) = 4
(ALLQZJX TEMP HOT) = 4
(ALLQZJX TEMP MILD) = 6
(NO TEMP COOL) = 1
(NO TEMP HOT) = 2

305 (NO TEMP MILD) = 2
(YES TEMP COOL) = 3
(YES TEMP HOT) = 2
(YES TEMP MILD) = 4
(ALLQZJX HUMIDTY HIGH) = 7

310 (ALLQZJX HUMIDTY NORMAL) = 7
(NO HUMIDTY HIGH) = 4
(NO HUMIDTY NORMAL) = 1
(YES HUMIDTY HIGH) = 3
(YES HUMIDTY NORMAL) = 6

315 (ALLQZJX WINDY FALSE) = 8
(ALLQZJX WINDY TRUE) = 6
(NO WINDY FALSE) = 2
(NO WINDY TRUE) = 3
(YES WINDY FALSE) = 6

320 (YES WINDY TRUE) = 3
(ALLQZJX !PLAY NO) = 5
(ALLQZJX !PLAY YES) = 9
(NO !PLAY NO) = 5
(YES !PLAY YES) = 9"

325

; What’s this "ALLQZKK" nonsense? Well, sometimes it is useful
; to count column range frequencies in EVERY class. So we make
; up a class name (something using the rarest letters− as defined

330 ; by the point scores in SCRABBLE QZJX) and count all (column range)
; pairs in that majic EVERY class.

;;
; Using the above, lets sort all the ranges according

335 ; to their ability to distinquish one class from all the others.

; In the following code, if there are N classes in the system,
; then we make each one the "target". Our goal then is to
; divide the data into

340 ; a) "target1, rest1" (where "rest1" is everything but "target1")
; b) "target2, rest2" (where "rest2" is everything but "target2")
; etc

(defun learn (tbl report)
345 (dolist (target (theklasses tbl))

 (learn1 target tbl report)
))

(defun learn1 (target tbl report)
350 (let ((which (round0 target tbl)))

 (rounds target which tbl report)))

(defun round0 (target tbl)
 "returns a sorted list of triples (score col value)

355 where SCORE is higher if (col value) is more common
 in the BEST target class rather than the REST"
 (let (out

(n (length (therows tbl)))) ; the total number of rows is "n"
 (labels

360 ((worker (hash want m ; the number of rows for this class is "m"
 what class value &aux s)

 (if (eql class want)
 (if (setf s (b^2/b+r hash want m n what value))

 (push (list (round s 0.01)

Aug 31, 10 8:54 Page 5/6LISP structs for storing data
365 what value)

 out)))))
 (dolist (col (thecols tbl)) ; for every column

(unless (col−goalp col) ; that’s not the goal
 (dokeys (key (sym−counts col)) ; for everything counted in that col

370 (worker (sym−counts col) ; get the hash table counds
 (klass−name target) ; what class are we targetting?
 (klass−n target) ; how many of them do we have?
 (col−name col) ; what is the col name?
 (first key) ; what class is being counted?

375 (third key) ; what value we looking at?
))))

 (sort out #’> :key #’first))))

(defun b^2/b+r (hash want m n what value)
380 (let* ((every (gethash ‘(,*every* ,what ,value) hash 0))

 (b0 (gethash ‘(,want ,what, value) hash 0))
 (r0 (− every b0))
 (b (/ b0 m)) ; ratio in target
 (r (/ r0 (− n m)))) ; ration everwhere else

385 (if (> b r) ; in more better than rester
(/ (* b b) ; b^2/(b+r)
 (+ b r (randf 0.0000001)))))) ; add a pinch to dodge div/0 errors

;;; so does the above all work? well, we need a test rig
390

(defun which2 (&optional (tbl (thetable)) (report t))
 (train tbl)
 (learn tbl report)
)

395
(defun rounds (class which tbl report)
 (declare (ignore tbl))
 (format report ";;; ~a~%" (klass−name class))
 (dolist (one which)

400 (format report " ~a~%" one)))

(defun !learn1 ()
 (reset−seed)
 (data "../data/discrete−lisp/weather.lisp")

405 (with−output−to−string (s)
 (which2 (thetable) s)))

(deftest !learn ()
 (test (!learn1)

410 ";;; NO
 (56 HUMIDTY HIGH) ;; best predictor for not playing golf
 (44 FORECAST SUNNY)
 (39 WINDY TRUE)
 (26 TEMP HOT)

415 (22 FORECAST RAINY)
 ;;; YES
 (51 HUMIDTY NORMAL) ;; best predictor for playing golf
 (44 FORECAST OVERCAST)
 (42 WINDY FALSE)

420 (23 TEMP MILD)
 (21 TEMP COOL)"))

Aug 31, 10 8:54 Page 6/6LISP structs for storing data
Printed by timm

Tuesday August 31, 2010 3/6notes.txt

#!/sw/bin/gawk −f

##
This program is free software: you can redistribute it and/or modify

5 # it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,

10 # but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
#
You should have received a copy of the GNU Lesser General Public License

15 # along with this program. If not, see <http://www.gnu.org/licenses/>.
##

which2d : a stochastic anytime rule learner for discrete classes
(c) Tim Menzies (tim@menzies.us) 2010, LGLP 3.0

20
This program builds rules by ranking ideas, then repeatedly building new ideas
by picking # and combining two old ideas (favoring those with higher ranks).
New
ideas generated in this way are ranked and thrown back into the same pot as
the old ideas so, if they are any good, they might be picked and extended

25 # in subsequent rounds. Alternatively, if the new idea stinks, it gets buried
by the better ideas and is ignore.

One important aspect of the following is that the scoring routines for
ideas are completely seperate from the rest of the code (see the "score1"

30 # function). Hence, it is a simple # matter to try our different search biases.

e.g. This call produces the following output.
gawk −f which2.awk titanic.arff

35 # In the following, the "candidates" are ideas that look promsing
and "score" ranks the candidates. If the max score does not improve
from the last round, then "lives" decreases.

Each round tries random combinations of the stuff from prior rounds
40 # (favoring those things with higher scores). Hence, at round 1,

all the candidates are singletons. But. later on (see line 54)
the candidates can grow to combinations of things.

Each round prunes the candiates so that only the better candiadtes
45 # surive to round+1.

BEGIN {
Seed=1 # Random number see.

 More = 1.02; # Improvement means at least a 2% growth
50 Lives=5; # If no improvement after five rounds, give up

 Dull=0.1; # Ignore candidates with score < Dull*MaxScore
 Beam=10; # Only the top (say) 10 candidates survive to the next round
 Samples=20; # Pick this number of pairs of candidates from the last roun
d
 Pinch = 1/1000; # Add a random number of up to "Pinch" to each score

55 OverFitted=3; # When do we prune a rule that matches on too few instan
ces?
 CONVFMT="%.8g"; # Increase the string size for array contents so we can see
the Pinch
 IGNORECASE=1;
 SUBSEP = "=";
 _ = SUBSEP

60 OFS=",";
 C=","
 Verbose=1 # Verbose = 0 means silence
}

65 ## −−
#Data entry. Pretty routine stuff.
/@attribute/ {Name[++Name[0]]=$2; Name[$2] = Name[0]}
 {gsub(/[\t]*/,"")} # no blanks
 {gsub(/%.*/,"")} # no comments

Aug 30, 10 20:21 Page 1/5LISP structs for storing data
70 /^$/ {next} # no blank likes

/@data/ {In=1;FS=","; srand(Seed)}
/@/ {next}
In {Rows++;
 train(All,H,Rows,Data,F,$NF)}

75 END { learn(All,H,Rows,Data,F) }

function train(all,h,row,d,f,class, what,i) {
 h[class]++
 for(i=1;i<=NF;i++) {

80 if ($i == "?")
 continue;
 what = Name[i]
 d[row,what]=$i
 all[what,$i]++

85 if (i != NF)
 f[class,what,$i]++ }
}

Now we can begin. Try learning rules for each hypothesis.
90 function learn(all,h,rows,data,f, class) {

 for(class in h)
 learn1(class,all,h,rows,data,f)
}
In round0, offer a rough ranking of

95 # the ranges. In subequent rounds, randomly select and combine ranges
from prior randoms.
function learn1(class,all,h,rows,data,f, which0,which) {
 round0(class,all,rows,f,h,which0); # make some initial guess
 o(which0,"which0","!n !k 5")

100 rounds(class,1,0,Lives,which0,rows,data,f,which)
#exit

}

In round one, score by b^2/(b+r); i.e. things more likely in
105 # the target class than otherwise (with some support weighting)

function round0(class,all,rows,f,h,which, some,i,j,b,r,s,memo,score) {
 for(i in all) {
 some = f[class _ i]
 r = (all[i] − some)/(rows − h[class])

110 b = some / h[class]
 if (b > r) {
 j = class "," i
 s = b^2/(b+r) + rand()*Pinch
 memo[s] = j

115 score[j]= s
 }}
 chop(score,memo,which) # prune the dull candidates
}

120 # Given some score[key]=number and memo[number]=key,
sort the scores and return the top Beam
number of keys, pruning all keys less than
Dull times the max score.
function chop(score0,memo,out, score,n,i) {

125 n=asort(score0,score)
 for(i=n;i>=1;i−−) {
 if (score[i] <= score[n]*Dull)
 break;
 if (i <= n − Beam)

130 break
 out[memo[score[i]]] = score[i]
 }
}

135 # In subsequent rounds one, score all the candidates
by running that combination over the data (see the "score"
function. Note the "score" paramter that caches prior
calcuations of the score. This speeds up the code by
a factor of four (for large data sets).

140 function rounds(class,round, max0,lives,which0,rows,data,f,out,score, \
 max,i,sample,which1,s,memo,which2) {
 if (round == 1)

Aug 30, 10 20:21 Page 2/5LISP structs for storing data
Printed by timm

Tuesday August 31, 2010 4/6../../which2/which2d.awk

 max=0
 else { # terminate if we have stopped improving

145 max = most(which0)
 lives = (max > (max0*More)) ? Lives : lives − 1
 if(lives < 0) { # if termination, copy input to out
 for(i in which0)
 out[i] = which0[i]

150 return max }
 }

print "\n!!"
 print "% class: " class " seed: " Seed \
 " round: " round " max: " max " lives: " lives

155 normalize(which0) # make all the counts n= 1..100
 explode(which0,sample) # copy items n times
 twos(class,sample,Samples,which1) # pick items at random from that sample
 for(i in which0) # add in the last rounds’ ideas
 which1[i] = i;

160 if (Verbose) values(which1,"candidate")
 for(i in which1) { # score the new picks and the last rounds’s idea
s
 s = (i in score) ? score[i] : score(class,i,rows,data,f) + rand()*Pinch
 memo[s] = i
 score[i] = s

165 }
 chop(score,memo,which2) # prune the dull candidates
 if (Verbose) o(which2,"score","!n !k 1")
 return rounds(class,round+1,max,lives,which2,rows,data,f,out,score)
}

170
−−−
Randomly pick pairs and combine them. Note that,
in the following code, the picks come from "sample"
where an item may be repeated many times (so things

175 # that are often repeated are more likely to be picked).

"n" times, pick two things from "sample"
and store them in "sampled". note htat
the combined rules all start with the target class

180 function twos(class,sample,n,sampled, pair) {
 while(n−−) {
 pair= two(class,sample)
 sampled[pair]=pair
 }

185 }

Pick two things at random. Try not
to pick the same thing twice. Return
the combination of the two things you pick.

190 function two(class,sample, tries, this, that) {
 this = one(sample)
 if(tries == 9) # nine lives
 return this
 that = one(sample)

195 if (this == that)
 return two(class,sample,tries + 1)
 else
 return combine(class,this,that)
}

200
combine two rules. don’t repeat any ranges.
sort them so that all the ranges of the same
feature fall together. Note that the frst item in
a rule is the target class. prune those entries

205 # away (so they don not repeat themselves).
function combine(class,this,that, n,i,used,tmp,out) {
 sub(/^[^,]*,/,"",this)
 sub(/^[^,]*,/,"",that)
 split(this "," that,tmp,",")

210 n=asort(tmp)
 out=tmp[1]
 used[tmp[1]]=1
 for(i=1;i<=n;i++)
 if (!used[tmp[i]]) {

Aug 30, 10 20:21 Page 3/5LISP structs for storing data
215 out = out "," tmp[i]

 used[tmp[i]] = 1
 }
 return class "," out
}

220
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
score a rule by finding its matching rows in data.
function score(class,rule,rows,data,f,

 goal,row, col,a,b,c,d,triggered,pd,pf,prec,acc,support,
s,fits) {

225 a=b=c=d=Pinch # stop divide by zero errors
 goal=Name[Name[0]]
 for(row=1;row<=rows;row++) {
 triggered = matched(row,data,rule)
 if (data[row,goal] == class) {

230 if (triggered) {d++} else {b++}
 } else {
 if (triggered) {c++} else {a++}
 }
 }

235 fits = c + d
 pd = d/(b+d)
 pf = a/(a+c)
 prec = d/(c+d)
 acc = (a+d)/(a+b+c+d)

240 support = (c+d)/(a+b+c+d)
 return score1(pd,pf,prec,acc,support,fits)
}
function score1(pd,pf,prec,acc,support,fits) {
 if (fits <= OverFitted)

245 return 0
 if (Eval==1) return acc
 if (Eval==2) return 2 * pd * prec/(pd+prec)
 if (Eval==3) return 2 * pd * pf/(pd+pf)
 if (Eval==4) return support * 2 * pd * pf/(pd+pf)

250 return support * 2 * pd * prec/(pd+prec)
}

Given "this" of the form "f1_v1,f2_v2,...." see if "row" matches "this".
Assumes that disjunctions are modeled as configuous values from the

255 # same feature (this is gaurenteed by "combine"). Hence, whenever
we move to a new feature, we need to check that at least of the values
mentioned with the old feature was found.
function matched(row,data,this, col,n,goals,pair,f0,f,status) {
 n=split(this,goals,",")

260 for(col=2;col<=n;col++) {
 split(goals[col],pair,_)
 f = pair[1]
 status[f] += data[row,f] == pair[2]
 if (f0 && (f != f0) && !status[f0])

265 return 0
 f0 = f
 }
 return status[f]
}

270
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
interesting utils

Given an array a[i]=n,
275 # fill up "out" with "n" number

of "i". This creates a "sample" of
things, from which we can pick randomly
biased by the relative frequencies of "n".
The total size of the sample is stored

280 # in "sample[0]"
function explode(a, out,i,j) {
 for(i in a)
 for(j=1;j<=a[i];j++)
 out[++out[0]] = i

285 }

Aug 30, 10 20:21 Page 4/5LISP structs for storing data
Printed by timm

Tuesday August 31, 2010 5/6../../which2/which2d.awk

Pick any item at random from "sample".
Assumes that the same size is in array
element "sample[0]"

290 function one(sample, any) {
 any = int(rand()* sample[0])+1
 return sample[any]
}

295 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
boring utils

Given an array a[i]=num, normalize
all the numbers to integers 0..100

300 function normalize(a, i,sum) {
 for(i in a) sum += a[i]
 for(i in a) a[i] = int(100*a[i]/sum)
}

305 # combine an feature/ range
function fv(f,v) { return f _ v }

find the max item in an array
function most(a, i,max) {

310 max = −1000000000
 for(i in a)
 if (a[i] > max)
 max = a[i];
 return max

315 }

print array values
function values(a,s,what, i,com) {

print ""
320 com = what ? "sort " what : "sort"

 for(i in a)
 print "% " s": " a[i] | com;
 close(com)
 }

325 # print an array, sorted by "what"
function o(a,s,what, i,com) {

print ""
 com = what ? "sort !t, " what : "sort !t, "
 for(i in a)

330 print "["a[i] ","i"]." | com;
 close(com)
 }

Aug 30, 10 20:21 Page 5/5LISP structs for storing data
Printed by timm

Tuesday August 31, 2010 6/6../../which2/which2d.awk

