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For other view on DM + SE

e ICSE 2010 Tutorial T18 Tuesday, 4 May 2010 (afternoon)
e Mining Software Engineering Data
> Ahmed E. Hassan: Queen's University, Canada

> Tao Xie: North Carolina State University, USA

— -7
- .

e

e Tutorial Slides:

o https://sites.google.com/site/asergrp/dmse/dmse-icse08-tutorial.pptlattredirects=0



Exercise #1

* One these these things is not like the other

¢ 9

> One was generating by selecting “-” or “|”
at random, 300 times.

* Which one!?




Exercise #2

» A little experiment from http://www.youtube.com/v/
v]G698U2Mvo&hl=en_US&fs=|&rel=0

e Rules
> No one talks for the next 4 minutes
° |f you know what is about to happen, see (1)

e This is a selective
attention test
> Count the number
of times the team
with the white
shirt passes the ball.




What have we learned?

Lesson #1:
> Algorithms can be pretty dumb

o If they don’t focus on X, they see any Y, at random.

Lesson #2:
/\ Wikipedia:
> Humans can be pretty dumb List of cognitive biases

http://en.wikipedia.org/wiki/

> If they mono-focus on X, you can miss Y List._of cognitive biases

: : : * 38 decision making biases
Maybe, any induction process is a guess 5 s e AT
> And while guessing can be useful * 18 social biases,

* 10 memory biases

> Guesses can also be wrong

Lets us a create community of agents,
each with novel insights and limitations
> Data miners working with humans

> Maybe in combination, we can see more that separately



Applications

Effort estimation

Defect prediction

Optimization of discrete systems
Test case generation

Fault localization

Text mining

Temporal sequence mining
Learning software processes
Learning APIs

Etc

Welcome to Empirical SE,
Version 2.0



Applications

* Effort estimation
» Defect prediction
» Optimization of discrete systems

¢ TeSt case generation Data mining applications

® F&Ult Iocalization explored by me since 2007.

e Jext mining A career in data mining is a
— - very diverse career, indeed

®

®



Application: Effort estimation

» Can we predict development effort (time * staff)?

» E.g. using linear regression; effort = a*KLOCP ¢

> Boehm, B.W. 1981 Software Engineering Economics

Boehm, B.W,, Clark, Horowitz, Brown,Reifer, Chulani, Madachy, R., and Steece, B. 2000 Software Cost
Estimation with Cocomo |l

> Sunita Chulani, Barry W. Boehm, Bert Steece: Bayesian Analysis of Empirical Software Engineering Cost
Models IEEE Trans. Software Eng. 25(4): 573-583 (1999)

* E.g. using analogy
> Describe past projects according to N dimensions
> Float all known projects in an N-dimensional space
> To estimate a project, insert into that space; query its nearest neighbors

> For the classic estimation via analogy, see

Martin J. Shepperd, Chris Schofield: Estimating Software Project Effort Using Analogies |EEE Trans.
Software Eng. 23(11): 736-743 (1997)

> For 12,000+ variants to that process, see
Figl of http://menzies.us/pdf/10stable.pdf
» E.g. using other methods:
> See |54 variants in http://menzies.us/pdf/ | Ostable.pdf



Application: Defect Prediction

* Limited QA 100
budgets, can’t
check everything.
> Where should we

place our
inspection effort?

e For a review, see
Section Two of

o http://menzies.us/
pdf/ 1 0which.pdf

e Practical value:

> How to inspect oz

less, and find more 0 20 40 60 80 100
bUgS Effort (% LOC inspected)

80

60

40

(% probability of detection)

20

PD




Application:
Optimizations of discrete systems

« Standard numeric optimizers
assume continuous, possibly
even linear, equations

» Data miners much happier to
work in discrete spaces.

Times are hhh:mm GET

« What factors predict for landing
closest to the target?
» State-of-the-art optimizer
« Simulated annealing
» the TAR3 data miner
* TAR3 45 times faster, found
better solutions

http://menzies.us/pdf/10keys.pdf s ormaas Lt




Application: Test Case Generation

NIGHTHAWK: A genetic algorithm that
mutates sequences of method calls in order
to maximize code coverage.
RELIEF: a data mining technique to find
“interesting features”
Same attribute same values in all
classes?
* Boring
Same Attribute, different values in
different classes?
* Interesting
RELIEF found that 90% of NIGHTHAWK’s
mutators were “boring”
> Order of magnitude speed up in test
generation

James H. Andrews, Tim Menzies, Felix C.H. Li, "Genetic Algorithms
for Randomized Unit Testing," IEEE Transactions on Software

Engineering, 25 Mar. 2010.

% max coverage
(best type)/(10 types)

Rank Gene type t avgMerit
1 numberOfCalls 85
2 | valuePoolActivityBitSet 83
3 upperBound 64
4| chanceOfTrue 50
5 methodWeight 50
6 numberOfvValuePools 49
7 lowerBound 44
8 chanceOfNull 40
9 numberOfvValues 40
10 candidateBitSet 34
java.util classes
100 F T T T T T T T ]

10 20 30 40 50 60 70 80
% time using (best type)/(10 types)

90



Application: Fault Localization

* 100,000 JAVA methods

> In a matrix T*D
o T =*terms” = all the method calls in each method

o D =“documents’ = all the methods

* Bug report

(¢]

Replace text with just the method calls it mentions

(¢]

Add edited report as row D+one in the matrix

(¢]

Compute similarity of D+one to other rows (cosine similarity)

(¢]

The actual buggy method is in the closest 100 methods

(¢]

Use relevancy feedback to narrow down the search

* Gregory Gay, Sonia Haiduc, Andrian Marcus Tim Menzies: On the use of relevance feedback in IR-
based concept location ICSM 2009: 351-360



Application: Text Mining

» 80% of data in organizations is unstructured

o

o

Not in databases, or XML schemas
But in the natural language of (say) Word documents

* Given enough of these seemingly unstructured documents,
structures can be discovered

 Eg.

o

o

Thousands of natural language bug reports from NASA

Used “feature reduction” to find the top 100 most important
words

Used standard data mining to learn predictors for defect severity
from that top-100

Tim Menzies, Andrian Marcus: Automated severity assessment of
software defect reports. ICSM 2008: 346-355



Application:
Temporal Sequence Mining

* Learning software process descriptions
> No more prescriptions of what we think goes on inside software
projects

> Lets look at see at what actually happens

Li, Mingshu and Boehm, Barry and Osterweil, Leon and Jensen, Chris and Scacchi, Walt “Experiences in
Discovering, Modeling, and Reenacting Open Source Software Development Processes”, Unifying the
Software Process Spectrum, Lecture Notes in Computer Science, 2006, page 449 to 462

e Learning APIs from method sequence calls

> Tao Xie and Jian Pei. MAPO: Mining APl Usages from Open Source Repositories. InProceedings of the 3rd
International Workshop on Mining Software Repositories (MSR 2006), Shanghai, China, pp. 54-57, May 2006

* Learning patches from method sequence calls

o Suresh Thummalapenta and Tao Xie. Mining exception-handling rules as sequence association rules. In ICSE
’09: Proceedings of the 3|st International Conference on Software Engineering, pages 496— 506, Washington,
DC, USA, 2009. IEEE Computer Society.

e Obtaining sequence miners:
o https://illimine.cs.uiuc.edu/
> Another tool set is at http://himalaya-tools.sourceforge.net/
> See more tools at https://sites.google.com/site/asergrp/dmse/resources



Application: etc etc etc

Data mining + SE a very active area
PROMISE conference

Mining Software Repository conference

See also

ESEM conference

Search-based software engineering
Hint: to get ahead of the curve...

... learn sequence mining

Welcome to Empirical SE, version 2.0



Empirical SE,Version 2.0

Open Science movement
> Open Data
Everyone places their data on-line, all the time
> Open Access publishing
Death to subscription-based services
Shneiderman, B. (2008) "Science 2.0" Science 319(5868):1349-50
° Science meets web 2.0
° International team of researchers posting and analyzing data
> Research at internet speed
Anda, Markus et al (*) distinguish between
o Case studies: that collect new context variables from project data

o Experiments: that explore case study data
> Currently, very few case studies generating publicly available data

But very many researchers wanting to experiment on that data
Perfect setting for data mining

(*) Bente Anda Audris Mockus and Dag I.K. Sjoberg. Experiences from replicating a case study to investigate
reproducibility of software development. In First International Workshop on Replication in Empirical Software
Engineering Research, ICSE’09,



Q:Why Empirical SE 2.0?
A: Increasing pace of change

* New developments are radically changing SE: open source
toolkits, agile development, cloud-based computing, etc.

» 20 century Empirical SE used “big science”
> Research questions, data collection, analysis took years

> Big science is too slow to keep up with changes to
contemporary SE. e.g.

Increasing pace of organization change at NASA was fatal to the “big
science” approach of Victor Basili’s Software Engineering Laboratory (*)

V. Basili, . McGarry, R. Pajerski, and M. Zelkowitz. Lessons learned from 25 years of
process improvement: The rise and fall of the NASA software engineering laboratory. In
Proceedings of the 24th International Conference on Software Engineering (ICSE) 2002,
Orlando, Florida, 2002.

» Data mining is one response to the open and urgent issue of
> how to reason faster about SE data.



Q:Why Empirical SE 2.0?
A: Changing nature of SE theories

» 20% century SE: the struggle for the single theory
> E.g. Boehm’s COCOMO effort estimation project
> E.g. SEl capability maturity model [130];

o 215t century: faster pace = more diversity
o Less likely that there exists a single over-arching grand theory of SE

Recent reports [1,2,3,4,5] say that while such generality may elude

us, we can still find important local lessons

Rombach A. Endres, H.D. A Handbook of Software and Systems Engineering: Empirical Observa-
tions, Laws and Theories. Addison Wesley, 2003.

B. Kitchenham D. Budgen, P. Brereton. Is evidence based software engineering mature enough for
practice & policy? In 33rd Annual |IEEE Software Engineering Workshop 2009 (SEW-33),Skvde,
Sweden, 2009.

B. A.Kitchenham, E. Mendes, and G. H.Travassos. Cross- vs. within-company cost estimation studies:
A systematic review. |[EEE Transactions on Software Engineering, pages 316—329, May 2007.

Tim Menzies and Forrest Shull. The quest for convincing evidence. In A.Oram and G.Wilson, editors,
Making Software: What Really Works, and Why We Believe It. O’Reilly, 2010.

H. Gall E. Giger T. Zimmermann, N.Nagappan and B. Murphy. Cross-project defect prediction. In
ESEC/FSE’09, August 2009.

» Data mining is one way to rapidly find and verify such local best
practices



Q:Why Empirical SE 2.0
A: Changing nature of data

* In the 215 century
° we can access more data collected by others than we
can ever can collect by ourselves.

* In the 20" century,

o research was focused on case studies where

researchers collected special purpose data sets for
their particular questions.

* In the 215 century,

> much research is devoted to experimentation with
the data generated by the case studies,

o possibly investigating hypotheses not originally
considered when the data was collected.

> Data mining is one way to experiment with data.



Q:Why Empirical SE 2.0?
A: Changing nature of data analysis

e A contemporary empirical SE paper might
explore gigabytes of core dumps looking for the
method calls that lead to a crash.

» Faced with such large and complex data, analysis
methods are becoming more intricate; e.g.
> Model trees for multi-model data

> Latent Dirichlet allocation (LDA) for document
clustering

> Mining sequences to learn exception handling rules

* It is now possible to find new insights in old data,
just by applying a new analysis method.
> E.g. see later, the “W” tool




Why Data Mining for SE?

* Natural tool to help a community:

° racing to keep up with the pace of change in SE;
> while finding and verifying local theories ...
° ... from a new kind data sources ...

° ... using a large menagerie of new data analysis
tools.



The questions the
data can support
(which, BTW, you

Empirical Science 2.0 adjusts its
questions to the available data

The questions you
want to ask

The answers
- == anyone else
cares about

won’t know till

you look). &
Are you here?



1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS H

Table 1.2 The weather data.
Outlook Temperature Humidity Windy Play
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

If outlook = sunny and humidity= high then play = no

If outlook = rainy and windy= true then play = no
If outlook = overcast then play= vyes
If humidity = normal then play= vyes
If none of the above then play= yes

These rules are meant to be interpreted in order: the first one, then if it doesn’t
apply the second, and so on. A set of rules that are intended to be interpreted
in sequence is called a decision list. Interpreted as a decision list, the rules
correctly classify all of the examples in the table, whereas taken individually, out
of context, some of the rules are incorrect. For example, the rule if humidity =
normal then play = yesgets one of the examples wrong (check which one).
The meaning of a set of rules depends on how it is interpreted—not
surprisingly!

In the slightly more complex form shown in Table 1.3, two of the attributes—
temperature and humidity—have numeric values. This means that any learn-
ing method must create inequalities involving these attributes rather than
simple equality tests, as in the former case. This is called a numeric-attribute
problem—in this case, a mixed-attribute problem because not all attributes are
numeric.

Now the first rule given earlier might take the following form:

If outlook = sunny and humidity> 83 then play = no

A slightly more complex process is required to come up with rules that involve
numeric tests.



CHAPTER 1 | WHAT’S IT ALL ABOUT?

Table 1.3 Weather data with some numeric attributes.

Outlook Temperature Humidity Windy Play
sunny 85 85 false no
sunny 80 90 true no
overcast 83 86 false yes
rainy 70 96 false yes
rainy 68 80 false yes
rainy 65 70 true no
overcast 64 65 true yes
sunny 72 95 false no
sunny 69 70 false yes
rainy 75 80 false yes
sunny 75 70 true yes
overcast 72 90 true yes
overcast 81 75 false yes
rainy n 91 true no

The rules we have seen so far are classification rules: they predict the classifi-
cation of the example in terms of whether to play or not. It is equally possible
to disregard the classification and just look for any rules that strongly associate
different attribute values. These are called association rules. Many association
rules can be derived from the weather data in Table 1.2. Some good ones are as
follows:

If temperature= cool then humidity= normal
If humidity = normal and windy= false then play= yes

If outlook = sunny and play = no then humidity = high
If windy = false and play = no then outlook = sunny

and humidity = high.

All these rules are 100% correct on the given data; they make no false predic-
tions. The first two apply to four examples in the dataset, the third to three
examples, and the fourth to two examples. There are many other rules: in fact,
nearly 60 association rules can be found that apply to two or more examples of
the weather data and are completely correct on this data. If you look for rules
that are less than 100% correct, then you will find many more. There are so
many because unlike classification rules, association rules can “predict” any of
the attributes, not just a specified class, and can even predict more than one
thing. For example, the fourth rule predicts both that outlook will be sunny and
that humidity will be high.



1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS ]3

Contact lenses: An idealized problem

The contact lens data introduced earlier tells you the kind of contact lens to pre-
scribe, given certain information about a patient. Note that this example is
intended for illustration only: it grossly oversimplifies the problem and should
certainly not be used for diagnostic purposes!

The first column of Table 1.1 gives the age of the patient. In case you’re won-
dering, presbyopia is a form of longsightedness that accompanies the onset of
middle age. The second gives the spectacle prescription: myope means short-
sighted and hypermetrope means longsighted. The third shows whether the
patient is astigmatic, and the fourth relates to the rate of tear production, which
is important in this context because tears lubricate contact lenses. The final
column shows which kind of lenses to prescribe: hard, soft, or none. All possi-
ble combinations of the attribute values are represented in the table.

A sample set of rules learned from this information is shown in Figure 1.1.
This is a rather large set of rules, but they do correctly classify all the examples.
These rules are complete and deterministic: they give a unique prescription for
every conceivable example. Generally, this is not the case. Sometimes there are
situations in which no rule applies; other times more than one rule may apply,
resulting in conflicting recommendations. Sometimes probabilities or weights

If tear production rate = reduced then recommendation = none
If age = young and astigmatic = no and
tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no and
tear production rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope and
astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no and
tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes and
tear production rate = normal then recommendation = hard
If age = young and astigmatic = yes and
tear production rate = normal then recommendation = hard
If age = pre-presbyopic and
spectacle prescription = hypermetrope and astigmatic = yes
then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope
and astigmatic = yes then recommendation = none

Figure 1.1 Rules for the contact lens data.



CHAPTER 1 | WHAT’S IT ALL ABOUT?

may be associated with the rules themselves to indicate that some are more
important, or more reliable, than others.

You might be wondering whether there is a smaller rule set that performs as
well. If so, would you be better off using the smaller rule set and, if so, why?
These are exactly the kinds of questions that will occupy us in this book. Because
the examples form a complete set for the problem space, the rules do no more
than summarize all the information that is given, expressing it in a different and
more concise way. Even though it involves no generalization, this is often a very
useful thing to do! People frequently use machine learning techniques to gain
insight into the structure of their data rather than to make predictions for new
cases. In fact, a prominent and successful line of research in machine learning
began as an attempt to compress a huge database of possible chess endgames
and their outcomes into a data structure of reasonable size. The data structure
chosen for this enterprise was not a set of rules but a decision tree.

Figure 1.2 shows a structural description for the contact lens data in the form
of a decision tree, which for many purposes is a more concise and perspicuous
representation of the rules and has the advantage that it can be visualized more
easily. (However, this decision tree—in contrast to the rule set given in Figure
1.1—classifies two examples incorrectly.) The tree calls first for a test on tear
production rate, and the first two branches correspond to the two possible out-
comes. If tear production rate is reduced (the left branch), the outcome is none.
If it is normal (the right branch), a second test is made, this time on astigma-
tism. Eventually, whatever the outcome of the tests, a leaf of the tree is reached

tear production rate

reduced normal

none
yes
myope hypermetrope
Figure 1.2 Decision tree for the hard none

contact lens data.
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Table 1.6 The labor negotiations data.
Attribute Type 1 2 3 40
duration years 1 2 3 2
wage increase 1st year percentage 2% 4% 4.3% 45
wage increase 2nd year percentage ? 5% 4.4% 4.0
wage increase 3rd year percentage ? ? ? ?
cost of living adjustment {none, tcf, tc} none  tcf ? none
working hours per week hours 28 35 38 40
pension {none, ret-allw, empl-cntr}  none  ? ? ?
standby pay percentage ? 13% ? ?
shift-work supplement percentage ? 5% 4% 4
education allowance {yes, no} yes ? ? ?
statutory holidays days " 15 12 12
vacation {below-avg, avg, gen} avg gen gen avg
long-term disability assistance  {yes, no} no ? ? yes
dental plan contribution {none, half, full} none ? full full
bereavement assistance {yes, no} no ? ? yes
health plan contribution {none, half, full} none ? full half
acceptability of contract {good, bad} bad good  good good

Figure 1.3(b) is a more complex decision tree that represents the same

dataset. In fact, this is a more accurate representation of the actual dataset that
was used to create the tree. But it is not necessarily a more accurate representa-
tion of the underlying concept of good versus bad contracts. Look down the left
branch. It doesn’t seem to make sense intuitively that, if the working hours
exceed 36, a contract is bad if there is no health-plan contribution or a full
health-plan contribution but is good if there is a half health-plan contribution.
It is certainly reasonable that the health-plan contribution plays a role in the
decision but not if half is good and both full and none are bad. It seems likely
that this is an artifact of the particular values used to create the decision tree
rather than a genuine feature of the good versus bad distinction.

The tree in Figure 1.3(b) is more accurate on the data that was used to train
the classifier but will probably perform less well on an independent set of test
data. It is “overfitted” to the training data—it follows it too slavishly. The tree
in Figure 1.3(a) is obtained from the one in Figure 1.3(b) by a process of
pruning, which we will learn more about in Chapter 6.

Soybean classification: A classic machine learning success

An often-quoted early success story in the application of machine learning to
practical problems is the identification of rules for diagnosing soybean diseases.
The data is taken from questionnaires describing plant diseases. There are about
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SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS
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3.7

3.8

CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

Trees for numeric prediction

The kind of decision trees and rules that we have been looking at are designed
for predicting categories rather than numeric quantities. When it comes to pre-
dicting numeric quantities, as with the CPU performance data in Table 1.5, the
same kind of tree or rule representation can be used, but the leaf nodes of the
tree, or the right-hand side of the rules, would contain a numeric value that is
the average of all the training set values to which the leaf, or rule, applies.
Because statisticians use the term regression for the process of computing an
expression that predicts a numeric quantity, decision trees with averaged
numeric values at the leaves are called regression trees.

Figure 3.7(a) shows a regression equation for the CPU performance data, and
Figure 3.7(b) shows a regression tree. The leaves of the tree are numbers that
represent the average outcome for instances that reach the leaf. The tree is much
larger and more complex than the regression equation, and if we calculate the
average of the absolute values of the errors between the predicted and the actual
CPU performance measures, it turns out to be significantly less for the tree than
for the regression equation. The regression tree is more accurate because a
simple linear model poorly represents the data in this problem. However, the
tree is cumbersome and difficult to interpret because of its large size.

It is possible to combine regression equations with regression trees. Figure
3.7(c) is a tree whose leaves contain linear expressions—that is, regression equa-
tions—rather than single predicted values. This is (slightly confusingly) called
a model tree. Figure 3.7(c) contains the six linear models that belong at the six
leaves, labeled LM1 through LM6. The model tree approximates continuous
functions by linear “patches,” a more sophisticated representation than either
linear regression or regression trees. Although the model tree is smaller and
more comprehensible than the regression tree, the average error values on the
training data are lower. (However, we will see in Chapter 5 that calculating the
average error on the training set is not in general a good way of assessing
the performance of models.)

Instance-based representation

The simplest form of learning is plain memorization, or rote learning. Once a
set of training instances has been memorized, on encountering a new instance
the memory is searched for the training instance that most strongly resembles
the new one. The only problem is how to interpret “resembles”: we will explain
that shortly. First, however, note that this is a completely different way of rep-
resenting the “knowledge” extracted from a set of instances: just store the
instances themselves and operate by relating new instances whose class is



PRP =
-56.1
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8.29+40.004 MMAX+2.77 CHMIN

20.3+0.004 MMIN-3.99 CHMIN
+0.946 CHMAX
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+0.969 CHMAX

285-1.46 MYCT+1.02 CACH
-9.39 CHMIN

PRP=-65.8+0.03 MMIN-2.94 CHMIN

+4.98 CHMAX

Figure 3.7 Models for the CPU performance data: (a) linear regression, (b) regression
tree, and (c) model tree.
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few exemplars are needed inside stable regions. For example, you might expect
the required density of exemplars that lie well inside class boundaries to be
much less than the density that is needed near class boundaries. Deciding which
instances to save and which to discard is another key problem in instance-based
learning.

An apparent drawback to instance-based representations is that they do not
make explicit the structures that are learned. In a sense this violates the notion
of “learning” that we presented at the beginning of this book; instances do not
really “describe” the patterns in data. However, the instances combine with the
distance metric to carve out boundaries in instance space that distinguish one
class from another, and this is a kind of explicit representation of knowledge.
For example, given a single instance of each of two classes, the nearest-neigh-
bor rule effectively splits the instance space along the perpendicular bisector of
the line joining the instances. Given several instances of each class, the space is
divided by a set of lines that represent the perpendicular bisectors of selected
lines joining an instance of one class to one of another class. Figure 3.8(a) illus-
trates a nine-sided polygon that separates the filled-circle class from the open-
circle class. This polygon is implicit in the operation of the nearest-neighbor
rule.

When training instances are discarded, the result is to save just a few proto-
typical examples of each class. Figure 3.8(b) shows as dark circles only the
examples that actually get used in nearest-neighbor decisions: the others (the
light gray ones) can be discarded without affecting the result. These prototypi-
cal examples serve as a kind of explicit knowledge representation.

Some instance-based representations go further and explicitly generalize the
instances. Typically, this is accomplished by creating rectangular regions that
enclose examples of the same class. Figure 3.8(c) shows the rectangular regions
that might be produced. Unknown examples that fall within one of the rectan-
gles will be assigned the corresponding class; ones that fall outside all rectan-
gles will be subject to the usual nearest-neighbor rule. Of course this produces
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Figure 3.8 Different ways of partitioning the instance space.
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restrict ourselves to just one style of learner, the space of options is very large. For example, Figure 1
lists over 12,000 instance-based methods for effort-based estimation.

In instance-based learning, conclusions are drawn from instances near the test instance. The distance measure can be
constructed many ways. Mendes et al. [10] discuss three:
M; : A simple Euclidean measure;
Ms : A “maximum distance” measure that that focuses on the single feature that maximizes inter-project distance.
M3 : More elaborate kernel estimation methods.
Once the nearest neighbors are found, they must be used to generate an effort estimate via...
R, : Reporting the median effort value of the analogies;
Rs : Reporting the mean dependent value;
Rs : Reporting a weighted mean where the nearer analogies are weighted higher than those further away [10];
R4..Rg : Summarize the neighborhood with regression [11], model trees [12] or a neural network [13].
Prior to running an instance-based learning, it is sometimes recommended to handle anomalous rows by:
N; : Doing nothing at all;
Ny : Using outlier removal [14];
N3 : Prototype generation; i.e. replace the data set with a smaller set of most representative examples [15].
When computing distances between pairs, some feature weighting scheme is often applied:
W1 : All features have uniform weights;
Ws..Wy : Some pre-processing scores the relative value of the features. Keung [14], Li et al. [16], and Hall & Holmes [17]
review eight different pre-processors. Note that these pre-processors may require discretization (discussed below).
Discretization breaks up continuous ranges at points by, bo, ..., each containing counts of cj,cs,... of numbers [18].
Discretization methods include:
D, : Equal-frequency, where ¢; = ¢;;
Dy : Equal-width, where b; 1 — b; is a constant;
Ds : Entropy [19];
D, : PKID [20];
Ds : Do nothing at all.
Finally, there is the issue of how many k& neighbors should be used:
K; : k=1 is used by Lipowezky et al. [21] and Walkerden & Jeffery [22];
K> : k=2 is used by Kirsopp & Shepperd [23]
Ks : k=1,2,3 is used by Mendes el al. [10]
K4 :Lietal use k=5 [16];
K5 : Baker tuned £ to a particular training set using an experimental method [11].

Fig. 1. There are many methods for effort estimation. One paper cannot hope to survey them all (e.g. this paper just explores 158). But
to get a feel for the space of possibilities, consider the above list of design options for instance-based effort estimation. If we try all the
following N «* W x D x M x R x K possibilities, this generates a space of 39 * 5% 3 x 6 x5 > 12,000 methods.

Prior attempts to rank and prune different methods have been inconclusive. Shepperd and Kadoda [24]
compared the effort models learned from a variant of regression, rule induction, case-based reasoning
(CBR), and neural networks. Their results exhibited much conclusion instability where the performance
results:

« Differed markedly across different data sets;

« Differed markedly when they repeated their runs using different random seeds.

Overall, while no single best method was “best” they found weak evidence that two methods were generally
inferior (rule induction and neural nets) [24, p1020].

The genesis of this paper was two observations suggesting that it might be worthwhile revisiting the
Shepperd & Kadoda results. Firstly, our data sets are expressed in terms of the COCOMO features [1].
These features were selected by Boehm (a widely-cited and experienced researcher with much industrial
experience; e.g. see [25]) and subsequently tested by a large research and industrial community (since
1985, the annual COCOMO forum has met to debate and review the value of those features). Perhaps,
we speculated, conclusion instability might be tamed by the use of better features.
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3.9 Clusters

When clusters rather than a classifier is learned, the output takes the form of a
diagram that shows how the instances fall into clusters. In the simplest case this
involves associating a cluster number with each instance, which might be
depicted by laying the instances out in two dimensions and partitioning the
space to show each cluster, as illustrated in Figure 3.9(a).

Some clustering algorithms allow one instance to belong to more than one
cluster, so the diagram might lay the instances out in two dimensions and draw
overlapping subsets representing each cluster—a Venn diagram. Some algo-
rithms associate instances with clusters probabilistically rather than categori-
cally. In this case, for every instance there is a probability or degree of
membership with which it belongs to each of the clusters. This is shown in
Figure 3.9(c). This particular association is meant to be a probabilistic one, so
the numbers for each example sum to one—although that is not always the
case. Other algorithms produce a hierarchical structure of clusters so that at
the top level the instance space divides into just a few clusters, each of which
divides into its own subclusters at the next level down, and so on. In this case a
diagram such as the one in Figure 3.9(d) is used, in which elements joined
together at lower levels are more tightly clustered than ones joined together at
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Figure 3.9 Different ways of representing clusters.
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a cluster (according to old confidence intervals), then add
it (updating sum, sumSquared, and n of new stats).
Here, each cluster is treated as being a point at the
mean values, weighted with the number of points in the
that cluster.
When no more items can be added, then..

If any cluster has no items, seed it with the most

Site Map

About us
Data
Employment
Papers
People
Projects
Software
Starting
Subscribe to news feed
Talks
Teaching
Tools

| Search |

powered by Google™

v 2010 (55)

» August (4)

June (7)

May (1)

April (9)

March (10)

February (15)

January (9)

1987 Evett Fiber Model

Why *"W" Can't Make Up Its Mind
A Simple Approach to RDR

4 VVVYVYY

Searching For Ceiling Effects in NASA
MDP Componen...

Kernel estimation

Defect distributions across software

Checking prior results in student
retention estima...

ssh keys




distant data point
Now clear the buffer
Add the new stats to the old stats.

If there is no more new data, stop. Otherwise, go to

LOOP

Runs nearly twice as fast as old k-means. Here's the results from

using various
(95412 rows,
means is "K".

clustering algorithms on the KDD 1998 cup data
481 fields). This algorithm is "N1". Normal batch k-
"R1" is a random sampling k-means (that, btw,

generated low quality clusters).

Running tme is]
3

0 . 1c X

Running time

By

ree

S0 St N10 N1 R10 Rt K
Algorithm

Note that clusters generated by this algorithms, working in
increments of 1% of the data, produces clusters of almost the
same quality as multiple-pass K-means.

Other advantages:

Small enough memory that you could have multiple versions
going, and pick the one with the lowest variances in the

generated

clusters.

Very simple implementation.

Satisfies the data mining desiderata:

Require one scan (or less) of the database if
possible: a single data scan is considered costly,
early termination if appropriate is highly desirable.
On-line “anytime” behavior: a “best” answer is
always available, with status information on
progress, expected remaining time, etc. provided

Suspendable, stoppable, resumable; incremental
progress saved to resume a stopped job.

Ability to incrementally incorporate additional

data with existing models efficiently.

Work within confines of a given limited RAM buffer.
Utilize variety of possible scan modes:
sequential,index, and sampling scans if available.
Ability to operate on forward-only cursor over a
view of the database. This is necessary since the
database view may be a result of an expensive join

» 2009 (53)

Labels

GregG (18)
TimM (11)
Software (8)
FayolaP (7)
Paper (7)
ZachM (7)
Admin (6)
AndrewB (6)
Tar (6)
Conference (5)
treatment learning (5)
BryanL (4)
AdamN (3)
KEYS (3)
Projects (3)
presentation (3)
Misc (2)

RDR (2)
SEESAW (2)
tools (2)
AaronR (1)
Active Learning (1)
AdamB (1)
AndresO (1)
BojanC (1)
Clustering (1)
DDP (1)
Fastmap (1)
HyperPipes (1)
Nova (1)
OmidJ (1)
Ous (1)

OusR (1)
POM2 (1)
PhillipG (1)
SBSE (1)
StevenW (1)
Talk (1)
Teaching (1)
Toolkits (1)
Yue] (1)

awk (1)
clojure (1)
clump (1)

cool tools (1)
fwpsabe (1)
gawk (1)
gnuplot tools Timm (1)
humor (1)

information retrieval (1)
interesting (1)

kernel estimation (1)
latex (1)

meetings (1)




Scalability for Clustering Algorithms Revisited
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ABSTRACT

This paper presents a simple new algorithm that performs
k-means clustering in one scan of a dataset, while using a
buffer for points from the dataset of fixed size. Experiments
show that the new method is several times faster than stan-
dard k-means, and that it produces clusterings of equal or al-
most equal quality. The new method is a simplification of an
algorithm due to Bradley, Fayyad and Reina that uses sev-
eral data compression techniques in an attempt to improve
speed and clustering quality. Unfortunately, the overhead of
these techniques makes the original algorithm several times
slower than standard k-means on materialized datasets, even
though standard k-means scans a dataset multiple times.
Also, lesion studies show that the compression techniques
do not improve clustering quality. All results hold for 400
megabyte synthetic datasets and for a dataset created from
the real-world data used in the 1998 KDD data mining con-
test. All algorithm implementations and experiments are
designed so that results generalize to datasets of many giga-
bytes and larger.

1. INTRODUCTION

Clustering is the task of grouping together similar items in
a dataset. Similar data items can be seen as being gener-
ated from the same component of a mixture of probability
distributions. The clustering problem is to determine the
parameters of the mixture distribution that generated a set
of observed data items, where for each item its component
is an unobserved feature.

The k-means algorithm is a heuristic solution to the cluster-
ing problem based on the assumption that data points are
drawn from a fixed number k of spherical Gaussian distri-
butions. The algorithm is an iterative process of assigning
cluster memberships and re-estimating cluster parameters.
It terminates when the data points no longer change mem-
bership due to changes in the re-estimated cluster parame-
ters.

Under the assumption that datasets tend to be small, re-
search on clustering algorithms has traditionally focused on
improving the quality of clusterings [4]. However, many
datasets now are large and cannot fit into main memory.
Scanning a dataset stored on disk or tape repeatedly is time-
consuming, but the standard k-means algorithm typically
requires many iterations over a dataset to converge to a so-
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lution, with each element needing to be accessed on each it-
eration. Therefore, considerable recent research has focused
on designing clustering algorithms that use only one pass
over a dataset [9; 6]. These methods all assume that only
a portion of the dataset can reside in memory, and require
only a single pass through the dataset.

The starting point of this paper is a single pass k-means al-
gorithm proposed by Bradley, Fayyad, and Reina [1]. This
method uses several types of compression to limit memory
usage. However, the compression techniques make the al-
gorithm complicated. We investigate the tradeoffs involved
by comparing several variants of the algorithm of Bradley
et al. experimentally with a simple new single pass k-means
method. Our overall conclusion is that the simple method
is superior in speed, and at least equal in the quality of
clusterings produced.

2. SINGLEPASS K-MEANS ALGORITHMS

The algorithm of Bradley et al. [1] is intended to increase the
scalability of k-means clustering for large datasets. The cen-
tral idea is to use a buffer where points from the dataset are
saved in compressed form. First, the means of the clusters
are initialized, as with standard k-means. Then, all avail-
able space in the buffer is filled with points from the dataset.
The current model is updated on the buffer contents in the
usual way. The buffer contents are then compressed in two
steps.

The first step, called primary compression, finds and dis-
cards points that are unlikely ever to move to a different
cluster. There are two methods to do this. The first method
measures the Mahalanobis distance from each point to the
cluster mean it is associated with, and discards a point if
it is within a certain radius. For the second method, confi-
dence intervals are computed for each cluster mean. Tken,
for each point, a worst case scenario is created by perturbing
the cluster means within the confidence intervals. The cius-
ter mean that is associated with the point is moved away
from the point, and the cluster means of all other clusters
are moved towards the point. If the point is still closest
to the same cluster mean after the perturbations, then it is
deemed unlikely ever to change cluster membership.

Points that are unlikely to change membership are removed
from the buffer, and are placed in a discard set. Each of the
main clusters has a discard set, represented by the sufficient
statistics for all points belonging to that cluster that have
been removed. ‘

On the remaining points in the buffer, another k-means clus-
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tering is performed, with a larger number of clusters than
for the main clustering. This phase is called secondary com-
pression. The aim is to save buffer space by storing some
auxiliary clusters instead of individual points. In order to re-
place points in the buffer by a secondary cluster, the cluster
must satisfy a tightness criterion, meaning that its standard
deviation in each dimension must be below a certain thresh-
old 8. Secondary clusters are combined using hierarchical
agglomerative clustering [7], as long as the combined clusters
satisfy the tightness criterion.

After primary and secondary compression, the space in the
buffer that has become available is filled with new points,
and the whole procedure is repeated. The algorithm ends af-
ter one scan of the dataset, or if the centers of the main clus-
ters do not change significantly as more points are added.

2.1 Implementation issues

We have coded a new C++ implementation of the algorithm
of Bradley et al. All the algorithms we compare experimen-
tally are implemented as variants of the same code. The
platform for our experiments is a dual 450 MHz Pentium
II workstation with 256 megabytes of main memory, run-
ning Linux. Our program is not multithreaded, so only one
of the processors is directly used in the experiments. The
program is compiled with all optimizations turned on. All
datasets are stored on disk as Linux binary files. Regardless
of the size of any dataset, each pass of each algorithm reads
the dataset afresh from disk. Therefore, our experimental
conclusions generalize to very large datasets.

Some details of the implementation of their algorithm are
not given by Bradley et al. For each primary cluster, a Ma-
halanobis radius must be determined that causes a certain
fraction p of buffer points in that cluster to be discarded.
Our implementation computes the distance between each
buffer point and the cluster it is assigned to. For each
cluster, the list of distances is sorted. Then it is easy to
find a radius such that a certain fraction of points is dis-
carded. However, sorting can change the time complexity
of the whole algorithm. It may be possible to determine
each Mahalanobis radius more efficiently, especially when
the fraction of discarded points is small.

Our implementation stores the sufficient statistics {(sum of
elements, squared sum of elements, number of points) as well
as the mean and standard deviation in each dimension of all
main and secondary clusters. Means are stored so that the
distance between old and new means (the new mean is com-
puted from the sum of the elements) can be computed when
doing k-means clustering. Standard deviations are stored
to speed up primary compression. Representing one cluster
uses four times as much space as one data point. There-
fore, if a secondary cluster contains four or fewer points, the
points themselves are retained instead of a representation of
the cluster.

For our purposes, the sufficient statistics of a cluster are
two vectors, Sum and SumSgq, and one integer, n. The
vectors store the sum and the sum of squares of the ele-
ments of the points in the cluster, and the integer records
the number of points in the cluster. From these statis-
tics, the mean and variance along each dimension can be
calculated. Let the sufficient statistics of a cluster A be
(Sum™, SumSq™ ,n{4). If a point « is added to the clus-
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ter, the sufficient statistics are updated as follows:

A A
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If clusters A and B are merged, the sufficient statistics for
the resulting cluster C are

Sumﬁo) = S'u.mﬁA) + Sumﬁ-B )
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2O = @) L (B

2.2 A simple single pass x-means method

A special case of the algorithm of Bradley et al., not men-
tioned in their paper, would be when all points in the buffer
are discarded each time. This algorithm is:

1. Randomly initialize cluster means. Let each cluster
have a discard set in the buffer that keeps track of the
sufficient statistics for all points from previous itera-
tions.

2. Fill the buffer with points.

3. Perform iterations of k-means on the points and dis-
card sets in the buffer, until convergence. For this clus-
tering, each discard set is treated like a regular point
placed at the mean of the discard set, but weighted
with the number of points in the discard set.

4. For each cluster, update the sufficient statistics of the
discard set with the points assigned to the cluster. Re-
move all points from the buffer.

5. If the dataset is exhausted, then finish. Otherwise,
repeat from Step 2.

This algorithm is called the simple single pass k-means method.
Compared to the more complicated algorithm above, it does
much less computation each time the buffer is filled, and the
whole buffer can be filled with new points at every fill. Fol-
lowing Bradley et al. [1], if a cluster ever becomes empty, it

is reinitialized with the point in the buffer that is most dis-
tant from the centers of all other clusters. However, with a
large dataset and a small number of clusters, reinitialization

is almost never necessary.

Like the more complicated algorithm above, the simple method
uses only one scan over the dataset and a fixed size buffer.
It also satisfies all the other desiderata listed by Bradley
et al. [1): incremental production of better results given ad-
ditional data, ease of stopping and resuming execution, and
ability to use many different database scan modes, includ-
ing forward-only scanning over a database view that is never
materialized completely.

3. LESION EXPERIMENTS

To evaluate the contribution of each of the data compres-
sion methods, we report the results of experimental lesion
studies. Comparisons are made between four variants of
the algorithm of Bradley at al., the standard k-means al-
gorithm, and the simple single pass k-means algorithm de-
scribed above.
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Parameter Value
Confidence level for cluster means 95%
Max std. dev. for tight clusters (8) | 1.5
Number of secondary clusters 20
Fraction of points discarded (p) 20%

Table 1: Parameter settings used for the lesion studies of
the k-means algorithm of Bradley et al.

Three variants involve adding one of the data compression
methods described above to the previous variant. The first
variant uses none of the data compression techniques. This
variant runs until convergence on the first fill of the buffer,
and then stops. This variant is similar to clustering on a
small random sample of the dataset. In the second vari-
ant, the first primary compression technique is used. This
involves moving to the discard set each point within a cer-
tain Mahalanobis distance from its associated cluster mean.
In the third variant, the second primary compression tech-
nique is added. Confidence intervals are used to discard data
points deemed unlikely ever to change cluster membership.
The fourth variant includes the data compression technique
of determining secondary clusters. All parameter settings
used in the experiments reported here are shown in Table 1.

3.1 Spynthetic datasets

The lesion experiments use synthetic datasets. Using artifi-
cial data allows the clusters found by each algorithm to be
compared with known true probability distribution compo-
nents. In each synthetic dataset, points are drawn from a
mixture of a fixed number of Gaussian distributions. Each
Gaussian is assigned a random weight that determines the
probability of generating a data point from that component.
Following Bradley et al. [1], the mean and variance of each
Gaussian are uniformly sampled, for each dimension, from
the intervals [—5, 5] and [0.7, 1.5] respectively.

In order to measure the accuracy of a clustering, the true
cluster means must be compared with the estimated cluster
means. The problem of discovering which true cluster mean
corresponds to which estimated mean must be solved. If the
number of clusters k is small, then it is possible to use the
one of the k! permutations that yields the highest accuracy.
We do this, and for this reason the number of clusters k =5
is small in our experiments. Results with a much larger
number of clusters might be different.

The synthetic datasets have 100 dimensions and 1,000,000
data points. They are stored on disk in 400 megabyte files.
This size is chosen to guarantee that the operating system
cannot buffer a dataset in main memory. Except for the
standard k-means algorithm, each clustering algorithm uses
a limited buffer large enough to contain approximately 1%
of the data points.

The experiments use 30 different synthetic datasets. For
each dataset each algorithm generates five different cluster-
ings from different initial conditions. The best of these five
models is retained for a comparison of the accuracy of the
algorithms. The best of five runs is used because k-means
algorithms are known to be sensitive to how cluster cen-
ters are initialized. In applications where a good clustering
is wanted, it is therefore natural to use the best of several
runs.
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In general one of two different situations occurs with each
clustering. Either, one cluster mean in the model is close
to each true Gaussian center, or, two cluster means in the
model are trapped near the same center. As we measure the
distance between the true and the estimated cluster means,
if a center is trapped then the distance measure will be much
larger than otherwise. Therefore, the cluster quality in Fig-
ure 1 is based only on datasets for which every algorithm
produced at least one clustering where no center is trapped.

Cluster quality
1 ‘5 P

Distance between estimated and true means

A1 si- S NI K

Algorithm

Figure 1: The graph shows the mean sum of the distances
between the estimated and true cluster means, for synthetic
datasets of 1,000,000 points, 100 dimensions, and five clus-
ters. The algorithms are random sampling k-means (R1),
single pass k-means with the first primary compression tech-
nique only (S1--), with both primary compression tech-
niques (S1-), with primary and secondary compression ($31),
the simple single pass k-means method (N1), and the stan-
dard k-means algorithm operating on the whole dataset (K).
Error bars show standard errors.

3.2 Lesion experiment results

Figure 1 shows that even the simplest single pass algorithm
achieves the same clustering quality as the full k-means
method. Random sampling k-means is less accurate because
it uses only 1% of the total data points.

A clustering where no centers are trapped is highly desirable.
Therefore, we also measure the fraction of clusterings where
no- centers are trapped, counting clusterings from all five
random initial conditions. We call this fraction the reliability
of an algorithm. Surprisingly, Figure 2 shows that the single
pass algorithms are more reliable than the standard k-means
algorithm, and this difference is statistically significant. )
Throughout this paper, the difference between z and y is
called statistically significant if z + s; <y — s, or y+ s, <
Z — 8z, where s, and s, are the standard errors of = and y
respectively. If ¢ is the mean of n observations then its stan-
dard error is the standard deviation of the n observations
divided by +/n. For the special case where z is a propor-
tion, its standard error is 1/x(1 — z)/n. If n is sufficiently
large then a Gaussian approximation is valid, so the null
hypothesis that the true values of z and y are the same can
be rejected with confidence p < 0.05, if x + s, <y — 8y or
Yy + 8y < & — 8;. Numerical p values from specific statisti-
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Figure 2: The graph shows the reliability of the different
algorithms on the synthetic datasets. Reliability is defined
as the fraction of all runs where no centers are trapped.
Error bars show standard errors.

cal tests are not reported because their precision could be
misleading, since the assumptions on which standard tests
are based are often not valid when comparing performance
metrics for data mining methods [3].

Figure 2 shows surprisingly that the standard k-means al-
gorithm is not significantly more reliable than random sam-
pling k-means. This fact indicates that the standard algo-
rithm has difficulty escaping from a bad initialization, re-
gardless of how many data points are available. Similarly,
the more complicated single pass methods are not more reli-
able than the simple single pass method. This fact indicates
that the more complicated methods do not have any im-
proved ability to escape from a bad initialization.

The average running time of each algorithm is shown in
Figure 3. Reported times are averages over 135 runs for each
algorithm. The full algorithm of Bradley et al., identified as
S1 in Figure 3, is about four times slower than the standard
k-means algorithm, while the simple single pass method is
about 40% faster.

With the method of Bradley et al., each additional data
compression technique allows more points to be discarded
from the buffer. Doing so should make the algorithm run
faster, because then fewer refills of the buffer are needed.
A balance must be maintained between the time taken to
identify points to discard and the speedup gained from dis-
carding those points. Figure 3 shows that compression based
on confidence interval perturbation causes a net decrease in
speed, while compression based on secondary clustering is
beneficial.

4. EXPERIMENTS WITH REAL DATA

In order to experiment with real-world data, the dataset
from the 1998 KDD (Knowledge Discovery and Data Mining
Conference) contest is used. This dataset contains informa-
tion about people who have made charitable donations in
response to direct mailing requests. In principle, clustering
can be used to identify groups of donors who can be targeted
with specialized solicitations in order to maximize donation
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Figure 3: The graph shows the average running time of each
k-means algorithm variant. Error bars show standard errors.

profits.

The dataset contains 95412 records, each of which has 481
fields. We take a subset of these fields and code each record
as a real-valued vector. Numerical fields (e.g. amounts of
past donations, income, age) are directly represented by a
single element in the vector. Date values (e.g. donation
dates, date of birth) are stored as the number of months
from a fixed date. Fields with discrete values, such as an
income category, are converted into several binary elements.
Each vector has 56 elements in total, of which 18 are binary.
To give equal weight to each feature, each feature is normal-
ized to have zero mean and unit variance. The records in
the original KDD dataset are converted to this format and
saved to a binary file of about 21.4 megabytes. As men-
tioned in Section 2.1, the implementation of the standard
k-means algorithm reads the dataset from disk at each iter-
ation, even though the dataset is small enough to be saved
in memory.

The purpose of this experiment is to compare the running
time and clustering quality of standard k-means, operating
on the whole dataset or on samples, the algorithm of Bradley
et al. using all types of compression, and the simple single
pass method. Experiments are performed with samples and
buffers of 10% and 1% of the size of the whole dataset. The
number of clusters is always 10.

First, the dataset is randomly reordered. Then it is clus-
tered five times by each algorithm, each time with different
randomly chosen initial conditions. All algorithms use the
same five initial conditions. The quality of each clustering
is measured as the sum of the squared distances between
each point and the cluster mean it is associated with. Of
the five clusterings for each algorithm, the one with the best
quality is used. As above, the best of five is chosen because
k-means algorithms are highly sensitive to initial conditions.
The whole procedure is repeated 52 times with different ran-
dom orderings of the dataset.

It is difficult to discover good parameter values for the al-
gorithm of Bradley et al., especially for the parameters that
control the number of points removed by secondary com-
pression. The values used here are given in Table 2. Note
that it is difficult for a secondary cluster to have standard
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Parameter Value
Confidence level for cluster means 95%
Max std. dev. for tight clusters (8) | 1.1
Number of secondary clusters 40
Fraction of points discarded (p) 20%

Table 2: Parameter settings used for the algorithm of
Bradley et al. with the KDD dataset.

deviation 8 < 1.1 in every dimension, even though the whole
dataset is normalized to have standard deviation 1.0 in each
dimension.

Figure 4 shows the average quality of the best of five clus-
terings, for each algorithm. Random sampling k-means op-
erating on a 1% sample performs much worse than all other
methods. Standard k-means performs best, followed by the
simple single pass method using a buffer of size 1%, followed
by the algorithm of Bradley et al. All differences mentioned
here are statistically significant.

There is no “true” clustering of the KDD dataset that can
be used to define reliability in a way similar to how relia-
bility is defined for the synthetic datasets. Therefore, the
reliability of an algorithm is defined here to be the fraction
of all clusterings that have a quality measure of less than
3.9-10%. This number is chosen somewhat arbitrarily based
on Figure 4 as a threshold for what constitutes an acceptable
clustering. A reliable algorithm is one that is less sensitive
to how cluster centers are initialized, and that produces a
good clustering more often.

Figure 5 shows that the standard k-means method and the
simple single pass method with a buffer of size 1% are the
most reliable. All other methods are statistically signifi-
cantly less reliable. It is surprising that the simple single
pass algorithm using a buffer of size 1% of the entire dataset
outperforms the same method using a 10% buffer. Similar
results were found by Bradley et al. [1] when they varied
the buffer size used by their algorithm. The reason why a
smaller buffer can be better remains to be discovered.
Figure 6 shows the average running time of each method.
Compared to the standard k-means method, the algorithm
of Bradley et al. is over four times slower, while the simple
single pass method is over five times faster.

5. COMPUTATIONAL COMPLEXITY

In the discussion here of the asymptotic efficiency of the
algorithms, we use the following notation:

number of k-means passes over entire dataset
number of k-means passes over one buffer refill
number of dimensions

number of data points

size of buffer, as fraction of n

number of buffer refills

number of main clusters

2 number of secondary clusters

m2 number of passes for each secondary clustering,.

S &3S

a0 e 3 o

The time complexity of the standard k-means algorithm is
O(nkdm), where empirically m grows very slowly with n, k,
and d.

For the simple single pass k-means algorithm, the time com-
plexity of clustering the buffer contents once is O{nbkdm').
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Figure 4: The graph shows the sum of the squared distances
between each point in the dataset and the cluster mean it
is associated with, on the KDD contest dataset of 95412
points with 10 clusters. The algorithms are due to Bradley
et al. (5§10 and S1), the simple single pass method (N10 and
N1), random sampling k-means (R10 and R1), and standard
k-means working on the whole dataset. Algorithms with
names ending in 10 use a buffer or sample of size 10% of the
whole dataset, while those with names ending with 1 use a
1% buffer or sample. Error bars show standard errors.

Algorithm Time Space 1/0
Standard nkdm kd ndm
Bradley et al. nbrkedmg | nbd + kid | nd
Simple single pass | nkdm’ nbd nd

Table 3: Order of magnitude time, memory, and disk in-
put/output complexity for different k-means algorithms.

Because the buffer is emptied completely before each refill,
the number of refills is 1/b, so the time complexity of clus-
tering the whole dataset is O(nbkdm’ - 1/b) = O(nkdm').
Interestingly, m’' tends to be less than m because cluster-
ing is performed over fewer data points than for standard
k-means. In fact, m’ tends towards one for large datasets,
because when the model has stabilized, new points are sim-
ply placed in the nearest cluster. This observation is true
for all the single pass algorithms.

The complicated nature of the method of Bradley et al.
makes it difficult to analyze. The main clustering takes
O(nbkdm') time per fill. Measuring the Mahalanobis dis-
tance to the closest cluster for the points in the buffer is an
O(nbd) operation. Finding the discard radius for all main
clusters takes O(nblog nb) time if sorting is used; the worst
case is when essentially all points belong to one cluster. The
total time complexity of the first method of primary com-
pression is thus O(nb(d+lognb)). The second method of pri-
mary compression, where the cluster means are perturbed,
has time complexity O(nbkd).

In the secondary compression phase, m2 passes with ks clus-
ters are performed over the points in each fill of the buffer,
giving this phase O(nbkzdma) complexity for one fill of the
buffer. Then, hierarchical agglomerative clustering is per-
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Figure 5: The graph shows the reliability of each different
algorithm on the KDD contest dataset, defined as the frac-
tion of clusterings having a distortion less than 3.9 - 10°.
Error bars show standard errors.

formed on the ko clusters. This can be done with O(k3d)
time and space complexity [7].

The steps described above must be repeated r times to scan
through the whole dataset. Typically r > 1/b since the
whole buffer cannot be filled at each fill. So, the algorithm
of Bradley et al. has a total time complexity of

' kid
o (nbr(kdm + d + log nb + kadma + —nT)) .

In general k2 > k and m2 > m/, so the total time complexity
is O(nbrkadm2). An assumption here is that the clustering
is not stopped until the whole dataset has been processed.
This assumption is true in all our experiments.

The time, memory, and disk I/O complexities of the three
algorithms are summarized in Table 3. The simple single
pass algorithm is superior asymptotically in both time and
space complexity to the algorithm of Bradley et al.

6. DISCUSSION

The main positive result of this paper is that a simple single
pass k-means algorithm, with a buffer of size 1% of the input
dataset, can produce clusterings of almost the same quality
as the standard multiple pass k-means method, while being
several times faster.

Being faster than the standard k-means algorithm is not a
trivial accomplishment, because the standard algorithm is
already quite scalable. Its running time is close to linear
in the size of the input dataset, since the number of passes
required is empirically almost independent of the size of the
dataset. In addition, at each pass the dataset is scanned
sequentially, so a good operating system and disk array can
easily provide access to the dataset with high bandwidth.
Although it is called scalable, the algorithm of Bradley et al. is
much slower in our experiments than the standard k-means
method. Bradley et al. did not report this fact because their
paper contains no comparisons with standard k-means, and
no running times. Moreover, the paper gives no measures
of statistical significance for differences in clustering qual-

SIGKDD Explorations.

Running time

Running time [s]
-3
<

e "
N10 N1 R10 Rt
Algorithm

S10

Figure 6: The graph shows the average time taken by each
method to perform one clustering of the KDD dataset. Error
bars show standard errors.

ity between algorithms, and the largest dataset used in the
paper whose size can be computed from information in the
paper occupies only 10 megabytes when stored as a float-
ing point binary file. The operating system of any modern
workstation can cache a dataset of this size in main memory.
We may not have found optimal settings for the parame-
ters of the algorithm of Bradley et al. However, we have
searched informally for good parameter settings. In general,
algorithms that have many parameters with few guidelines
about how to choose values for them are difficult to use ef-
fectively.

Compared to the standard k-means algorithm, the method
of Bradley et al. is slower on the KDD dataset than on the
synthetic datasets. The opposite is true for the simple sin-
gle pass method: it is relatively faster on the KDD dataset.
The reason is that the KDD dataset has clusters that are
separated less well, and the method of Bradley et al. is sen-
sitive to clusters not being separated well. The standard
algorithm requires 13 passes on average to converge on the
KDD dataset, but only 3.3 passes on the synthetic datasets.
As explained in Section 5, the number m'-of iterations per
refill of the buffer tends to 1 for the simple algorithm for all
datasets. But for the method of Bradley et al., the number
my of iterations in the secondary clustering for each refill of
the buffer may remain high.

With all k~means algorithms, both single pass and multiple
pass, it is possible to update several clusterings in parallel,
where each clustering starts from different initial conditions.
We did not do so for our experiments. If we did so, the
average running time per clustering of all methods would
presumably decrease. There is no reason to think that the
relative speeds of the methods would change.

If a dataset to be clustered does not already exist as a single
table in a relational database or as a flat file, then materi-
alizing it can be expensive. Materializing a dataset may be
especially expensive if it consists of a join of tables in a dis-
tributed or heterogeneous data warehouse. In this case, all
single pass clustering methods can be faster than the stan-
dard k-means algorithm. However, the ranking of different
single pass methods according to speed is likely to be still
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the same.

The results of this paper are complementary to those of Pel-
leg and Moore [8], who show how to use a sophisticated
data structure to increase the speed of k-means clustering
for datasets of low dimensionality (d < 8). Our simple single
pass method is effective regardless of dimensionality. The re-
sults here are also complementary to those of Guha, Mishra,
Motwani, and O’Callaghan [5], who present single pass clus-
tering algorithms that are guaranteed to achieve clusterings
with quality within a constant factor of optimal.

We have not tested other single pass clustering algorithms,
notably the BIRCH method [9). The authors of BIRCH have
shown convincingly that it is faster than k-means on large
datasets. A comparison of the simple single pass method of
this paper with BIRCH would be interesting. Also, all the
single pass methods discussed in this paper can be extended
to apply to other iterative clustering approaches, and in par-
ticular to expectation maximization (EM) [2]. It would be
interesting to repeat the experiments of this paper in the
EM context.
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Abstract

In this paper we introduce a new single pass clustering
algorithm called Genlc designed with the objective of having
low overall cost. We examine some of the properties of
Genlc and compare it to windowed k-means. We also study
its performance using experimental data sets obtained from

network monitoring.

1 Introduction

Developing data mining algorithms for streaming data
has emerged as an important problem. For streaming
data, the assumption is that the data records can be ex-
amined only once. More precisely, given n data records,
we would like algorithms with O(n) time complexity and
O(1) space complexity.

In this paper we introduce a new algorithm called
Genlc, which is a single pass Generalized Incremental
algorithm for clustering. We also describe simulation
results using Genlc, as well as experimental results
applying GenlC to network monitoring data.

Perhaps the most common clustering streaming
data is a windowed version of the k-means algorithms
[6]. One of our main applications is to cluster large
amounts of distributed network monitoring data. Sim-
ply integrating the distributed data in real time is ex-
pensive and for this reason we were interested in low
cost clustering algorithms for streaming data. As we

*gupta@math.uic.edu
fgrossman@uic.edu

describe in the section on experimental results, Genlc is
significantly faster than windowed k-means.

2 Related Work

There is a large research literature on clustering algo-
rithms [4],[15],[16]. Perhaps the most common approach
to clustering is to minimize the sums of the squares
(SSQ) of the distances between data points and the cen-
ters of clusters. The K-means algorithm is a popular
heuristic for finding a solution which is a local mini-
mum to this problem since it always converges in a finite
number of steps. A wide variety of different algorithms
have been proposed to minimize the SSQ, a wide variety
of criteria other than SSQ have been proposed, and a
wide variety of clustering algorithms adapted to specific
applications have been studied.

Another approach is to view the data set as a
collection of points and then in a greedy fashion choose
the best way to divide the points into two groups.
Proceeding inductively in this way leads to what are
called hierarchical clustering algorithms and to tree like
structures. Similarly, one can work from the bottom up
and decide which two best points or clusters to combine.
Again either SSQ or either metrics can be used for these
types of algorithms.

Recently, clustering algorithms for large data sets
and streaming data sets have been developed. The as-
sumption when clustering large data sets is that the data
is so large that it resides on secondary storage. BIRCH
(Balanced Tterative Reducing and Clustering) clusters
large data sets by using specialized trees structures to
work with out of memory data [23]. CLARANS (Clus-
tering Large Applications based on RANdom Search)
identifies candidate cluster centroids through analysis
of repeated random samples of the original data [20].



The assumption when clustering streaming data is
that a data record can be examined only once [12].
One approach to clustering streaming data is to perform
local clustering on the data that fits in the local memory.
The k-mediod problem is a variation of k-means. Guha,
et. al. [13] have presented streaming algorithms using
local clustering to solve the k-mediod problem. They
use a procedure called LOCALSEARCH. The data
stream is divided into chunks and a LOCALSEARCH is
done on a weighted representation of the chunks. This
is done for all such chunks. Additional work done by
Bradley, et. al. [5] and the improvements by Farnstrom
[10] repeatedly take k-weighted centers (initially chosen
at random with a weight of 1) with as much data that
can fit in the main memory to compute k cluster centers.
The new centers are weighted by the number of points
assigned. The data in the memory is discarded and
the process is repeated again until all of the data has
streamed through.

Genlc is also a windowed algorithms for clustering
streaming data. Unlike the windowed algorithms of
Guha et. al. [13] Bradley et. al. [5], and Franstorm
[10], GenIC employs incremental clustering. Genlc also
uses evolutionary techniques to improve its search for
global optimal solutions to the SSQ problem required
to find cluster centers. Each window in Genlc is viewed
as generation for this purpose.

Incremental clustering has also been used for clus-
tering streaming data and large data sets by others
[4],[8],[17]. Hartigan’s leader algorithm [15] uses a one-
pass, incremental approach. If a point lies within a
threshold it is added to the cluster. Otherwise it is
used to make a new cluster center. Charikar, et. al. [8]
gave theoretical limits for some existing incremental hi-
erarchical clustering algorithms and suggested new ap-
proaches. Unlike the incremental clustering described
by Hartigan [15] and Charikar [8], GenIC updates each
center with each new data point and merges clusters
only at the end of a generation (i.e. window of data).
DIGNET [21],[22] uses a similar approach in that the
cluster centers are pushed or pulled towards a new point,
with each new data point; however, the approach used
by DIGNET depends strongly on the data ordering.
ART [7] is similar to DIGNET. Other incremental clus-
tering algorithms include the Cobweb system of Fisher
[11].

Evolutionary techniques have been used in cluster-
ing for sometime. They have been used as part of an
optimization to reduce overall sum of the squares er-
ror by Babu et. al. [2],[3]. Another example is the
GGA (Genetically Guided Algorithm) used for fuzzy
and hard k-means by Hall et al. [14]. Simulated anneal-
ing techniques have likewise been used [18] in clustering.

Cowgill has also introduced a evolutionary clustering al-
gorithm [9]. GenlIC is different than these techniques
since it views each consecutive set of n data points as
a generation rather than looking at all the points be-
fore applying evolutionary techniques. For this reason,
Genlc is better suited to streaming data.

3 The Genlc Algorithm

In this section, we describe the Genlc algorithm in
detail.

An incremental clustering algorithmmaintains a list
of k centers. Each new point which is presented is either
i) assigned to one of the clusters or ii) is used to start a
new cluster and two of the existing clusters are merged.

By a generalized incremental algorithm, we mean
an incremental algorithm which can move a center in
the list of centers using a weighted sum of the existing
center and the new point presented.

Our approach is to divide the stream into chunks
or windows as is common with streaming algorithms.
We view each chunk of n data points as a generation
and think of the “fitness” of a center as being measured
by the number of points assigned to it. In general,
the fittest centers survive to the next generation, but
occasionally new centers are selected and old centers
are killed off.

Here are the details:

1. Select parameters.

e Fix the number of centers k.
e Fix the number of initial points m.

e Fix the size of a generation n.
2. Initialize

e Select m points, ¢q, ..., ¢, to be the initial

candidate centers.
e Assign a weight of w; = 1 to each of these
candidate centers.

3. Incremental Clustering. For each subsequent
data point p in the stream: do

e Count = Count + 1.

e Find the nearest candidate center ¢; to the

point p
e Move the nearest candidate center using the
formula:
o (w; * ¢; + p)
' (wi +1)

e Increment the corresponding weight

w; = w; + 1



e When Count = 0 mod n, goto Step 4.

4. Generational Update of Candidate Centers.
When Count equals n, 2n, 3n, ..., for every center
¢; in the list L of centers, do:

e (Calculate its probability of survival using the

formula
Wy

Di = —=m——
' Z?;wi

e Select a random number § uniformly from
[0,1]. If p; > 4, retain the center ¢; in the list
L of centers and use it in the next generation
of n points.

o If p; < 4, kill the center ¢; and select a new
random point from the current generation to
replace it as a center in the list L of centers.

e Set the weight w; = 1 back to one. Although
some of the points in the stream will be
implicitly assigned to other centers now, we
do not use this information to update any of
the other existing weights.

e Goto step 3 and continue processing the input
stream.

5. Calculate Final Clusters. The list L contains
the m centers. These m centers can be grouped
into the final k centers based on their Euclidean
distances.

Note that every point can be assigned to a cluster
center during the incremental clustering phase of the
algorithm. This information can be used in the final
phase of the algorithm which computes the final clusters
to assign each point to one of the final clusters. For this
to work, those points assigned to a cluster center which
is dropped can be reassigned to the closest cluster at
the end of each generation.

We found that taking m to be a small multiple of
k, say m = 3,4,5 seem to produce the best results.

For our tests we used a slight variant of this
algorithm. We worked with a list L of length 2m. In
Step 3, only the first half of the list L was used when
testing for the nearest candidate center. In Step 4, we
tested the first half of the list to decide whether to drop
a center. If the center was dropped in this test, we then
tested the second half of the list L to see whether its
weight was higher than the lowest weight in the second
half. If so, then it was added to the second half of the
list L, replacing the center with lowest weight.

For some of the applications, it is useful to update
the list L in a different way: when a center say A, is
“killed” we look to see if it lies within a certain distance
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Figure 1: 2-d view of Clustering with Genlc.

from one of the existing centers in the list L. If it
lies within this distance, a new center is created and
its coordinates are the weighted mean of the two. The
weight of the new center is the sum of the two initial
centers. If the center A does not lie within a certain
distance and if its weight is greater than the lightest
weight on the list, it will be added to the list.

4 Experimental Results

We conducted a series of experiments with simulated
data using Genlc. Several different data distributions
used, including random, normal, Poisson and Cauchy,
as well as a variety of different parameters. For these
experiments, we randomly chose the centers, distributed
data around the centers using the chosen distribution,
and then distributed data randomly in the space. Some
typical results are shown in Figures 1 and 2.

Accurately identifying cluster centers. In the first
series of simulations, we created approximately 50 data
sets containing data points distributed around three
clusters, as well as other randomly place points, and
used Genlc to try to identify the centers of the clusters.
The results for some of these experiments are contained
in Table 1. For every simulation, the upper row contains
the true centers, while the lower row contains the centers
as calculated by Genlc.

In most cases, the difference between the calculated
centers and the true centers was less than one percent.
Occasionally, anomalous centers were identified. This
happened more often for points distributed using the
Cauchy distribution, when the clusters overlapped, or
when one cluster contained almost all of the points.

Quality of clusters. In the second series of simula-
tions, we compared the quality of the clusters by com-
paring the SSQ of errors of Genlc and windowed k-



Figure 2: 3-d view

of Clustering with Genlc

Exp. No. Clusterl Cluster2 Cluster3

1 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
5092,3404,7667 14884,8167,29747 | 22823,22039,20084
2 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
5080,3698,7687 14932,7634,295 22792,21831,19766
3 5000,3400,7600 15000,7800, 23000,22000,20000
5185,3692,7635 14895,7779,30017 | 23102,22199,19835
4 15000,13400,17600 | 15000,7800,30000 | 23000,22000,20000
14645,13210,17064 | 14726,7803,29942 | 23153,22066,20044
5 15000,13400,17600 1111,2222,3333 23000,22000,20000
15044,13349,17596 1094,2281 23347,21797,19483
6 6781,9989,10600 4561,8976,7899 23000,22000,20000
6738,9859,10818 4449,9076,8050 22902,21863,19755

7 16781,9989,10600 | 4561,18976,7899 | 25000,6780,11232
15114,9737,10149 | 4664,18875,8105 | 25324,6884,11307

8 16781,9989,10600 4561,18976,7899 25000,6780,11232
15932,9664,10304 4792,19498,8112 24908,6805,11281

9 16781,9989,10600 9561,18976,7899 25000,8780,11232
16798,10065,10599 | 9499,19013,7914 25001,8864,11137

10 16781,9989,10600 | 9561,18976,7899 | 25000,8780,11232
b 9399,19549,7883 | 24698,8886,10872
11 15000,7800,30000 | 23000,22000,20000
4997,3497,7594 15124,7731,29879 | 22625,22115,20087
12 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
51 14896,7794,29771 | 23022,21979,19989
13 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
6957,4223,11811 15163,76 913 | 23039,22027,19903
14 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
6908,22879,6721 14719,7710,29212 | 23016,21073,18908
15 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
5611,4021,7516 14560,7922,27874 | 22993,22007,20055
16 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
5655,4434,8596 16018,7492,28847 | 23006,22074,20251
17 5000,3400,7600 15000,7800,30000 | 23000,22000,20000

5148,3590,7550 0,0,0 0,0,0

18 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
5041,3433,7596 14955,7861,29996 | 23264,22177,20262
19 15000,3400,17600 | 15000,17800,30000 | 23000,22000,20000
14993,3487,17544 | 15080,17836,29883 | 15080,17836,29883
20 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
5033,3400,7646 15102,7756,29885 | 22969,22003,19963
21 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
0,0,0 0,0,0 23014,22133,19987
22 5000,3400,7600 15000,7800,30000 | 23000,22000,20000
5251,4268,6499 14724,7639,28289 | 23199,21920,20014
23 14000,5400,2800 15000,7800,30000 | 23000,22000,20000
14071,5405,2841 15021,7778,29965 | 23020,21999,20000
24 14000,5400,2800 | 15000,7800,30000 | 23000,22000,20000
14491,6743,28764 14491,6743,28764 | 22861,21798,20216

25 4000,15400,28000 15000,7800,3000 13000,6000,2900
3783,15893,27742 14111,6875,3204 12282,5951,3414

26 24000,5400,8000 15000,7800,3000 3000,6000,2900
24056,5421,8095 14975,7925,3041 3008,6001,2910

Table 1: Simulation Results for test for finding cluster

centers using Genlc
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Figure 4: Comparing the ratio of errors between two
variants of Genlc and windowed k-means vs. k-means
using data as suggested in [23].

means to the SSQ of the errors of standard k-means.
For this series, we created 24 data sets: 8 each using
the Normal, Cauchy and Poisson distributions. Each
set was comprised of 50000 points in three dimensions
and with k£ = 3 cluster centers. Each center had a vary-
ing number of points assigned to it and there was up to
10 percent noise in each data set. The results can be
seen in Figure 3, which compares the ratio of error of
an algorithm over the error of k-means. Genlc generally
has less error than windowed k-means, and sometimes
has less error than k-means.

Changing the number of clusters. For the third
series of experiments, we examined the effect of the
number of clusters on Genlc. We created four data
sets as suggested by the BIRCH paper [23]. There were
k = 100 centers distributed on a two-dimensional grid.
There was no noise and all of the centers had an equal
number of points assigned to them. The total number
of points for each set was 150000. The results are shown
in Figure 4. Again, we used the error of k-means as the
standard and plotted the ratio of an algorithm error to
the k-means error.

Effect of initial starting points. In this series of
experiments we tried to understand how the effect of
starting points effected Genlc and k-means. We created
18 data sets of 100000 points in 2 dimensions. We
ran experiments using 100 centers, 90 centers, ..., 10
centers, 9 centers, 8 centers, ..., and 2 centers. Since
in these experiments the error in the k-means depended
fairly strongly on the choice of starting points, we ran k-
means 10 times and computed both the minimum error
and a trimmed error. To calculate the trimmed error,
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Figure 3: Comparing the ratio of errors between two variantsof Genlc and windowed k-means vs. k-means.

we removed the two largest errors and took the mean
of the other eight. To calculate the minimum error we
took the minimum of the 10 runs.

Figure 5 plots the sum of square distances between
the points and the assigned cluster centers. As seen
on the graph, the error of Genlc is generally less than
the error of k-means when there are a large number
of centers. For a sufficiently small number of centers,
the minimum error of K-means become less than that
of Genlc. On the other hand, the trimmed error is
larger than Genlc’s, showing that for these experiments
k-means is more strongly dependent on the choice of
initial center than Genlc.

Independence of data order. The next series of
simulations tested the sensitivity of Genlc to the order
of the data, a problem faced by some incremental
clustering algorithms. Sixteen data sets, grouped into
four sets of four, were used. Let A be a set of all points
belonging to cluster 1. Let B be the set of all points
belonging to cluster 2. Let C be the set of all points
belonging to the cluster 3. Each group contained the
following four orders: A+B,C;A,B,C;A,B4+C;A+B+C,
for a total of sixteen data sets. The results are contained
in Figure 6 where the relative error between Genlc and
windowed k-means as defined by

ETTOTk—means — ETTOTGenlc

PercentError = 100 -
ETTOTk—means

is plotted. Again Genlc does very well.
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Figure 5: Comparing the ratio of errors between Genlc
and k-means. The min error and trimmed error of k-
means are plotted.
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Figure 6: Comparing the effect of data ordering on the
error of Genlc and windowed k-means.

Windowed k-means
14,543

Genlc
338

Table 2: Time in seconds using Genlc and windowed
k-means to find 4 clusters in 3 million four dimensional
feature vectors extracted from 3 million Snort alerts.

Clustering experimental data generated by
Snort.  Our main interest in developing Genlc was
to cluster large experimental data sets, such as those
which arise in network monitoring, intrusion detection,
threat detection, and related applications.

As a simple test of its speed, we compared Genlc
to windowed k-means [6] on a data set 3 million four
dimensional feature vectors extracted from 3 million
Snort alerts. For Genlc, we used m = 16 and n = 2000.
In order for windowed k-means to obtain a realistic
execution time, the window size was set at 100000
points, and for every window, up to 30 iterations were
permitted.

5 Summary and Discussion

There is no end to the creation of new clustering
algorithms, just a weariness of the flesh. Perhaps
the only justification that can be provided for a new
clustering algorithm, such as Genlc, is that we have
found it useful in applications, such as the clustering of
network data, and have found it to be fast.

Here are some of the reasons that we have found
Genlc to be useful in practice.

e Genlc is fast. Indeed in some of our experiments it
was over 40 times faster than windowed k-means.

e Genlc usually identifies well separated clusters

quite well, as confirmed by our simulation studies.

e Genlc is flexibile in the face of the unknown values
of k. It does not need an explicit initial input of
k. Indeed, it can predict the value of k£ at the end
of the run. Previously, genetic techniques had been
used for improving the value of k itself [19].

e Previous incremental algorithms ART [7],[21],[22]
are dependent upon the order in which the data
comes. Genlc overcomes this by taking every batch
of n points independently of the previous n points.
As previously shown, we conducted tests by varying
the order of streaming data, taking care that the
order was not random.

e Genlc is less affected by the choice of initial centers
than k-Means.

Any clustering algorithm faced with certain data
sets does the wrong thing and Genlc is no exception. If
one of the centers has an overwhelming concentration of
points near to it, points around it will occupy all of the
m points in our list L, and Genlc will perform poorly.
One obvious remedy is to exclude points too near to
each other. L.
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contribute independently and equally to the final outcome. A third might have
a simple logical structure, involving just a few attributes that can be captured
by a decision tree. In a fourth, there may be a few independent rules that govern
the assignment of instances to different classes. A fifth might exhibit depend-
encies among different subsets of attributes. A sixth might involve linear
dependence among numeric attributes, where what matters is a weighted sum
of attribute values with appropriately chosen weights. In a seventh, classifica-
tions appropriate to particular regions of instance space might be governed by
the distances between the instances themselves. And in an eighth, it might be
that no class values are provided: the learning is unsupervised.

In the infinite variety of possible datasets there are many different kinds of
structure that can occur, and a data mining tool—no matter how capable—that
is looking for one class of structure may completely miss regularities of a dif-
ferent kind, regardless of how rudimentary those may be. The result is a baroque
and opaque classification structure of one kind instead of a simple, elegant,
immediately comprehensible structure of another.

Each of the eight examples of different kinds of datasets sketched previously
leads to a different machine learning method well suited to discovering it. The
sections of this chapter look at each of these structures in turn.

Inferring rudimentary rules

Here’s an easy way to find very simple classification rules from a set of instances.
Called IR for I-rule, it generates a one-level decision tree expressed in the form
of a set of rules that all test one particular attribute. 1R is a simple, cheap method
that often comes up with quite good rules for characterizing the structure in
data. It turns out that simple rules frequently achieve surprisingly high accu-
racy. Perhaps this is because the structure underlying many real-world datasets
is quite rudimentary, and just one attribute is sufficient to determine the class
of an instance quite accurately. In any event, it is always a good plan to try the
simplest things first.

The idea is this: we make rules that test a single attribute and branch accord-
ingly. Each branch corresponds to a different value of the attribute. It is obvious
what is the best classification to give each branch: use the class that occurs most
often in the training data. Then the error rate of the rules can easily be deter-
mined. Just count the errors that occur on the training data, that is, the number
of instances that do not have the majority class.

Each attribute generates a different set of rules, one rule for every value
of the attribute. Evaluate the error rate for each attribute’s rule set and choose
the best. It’s that simple! Figure 4.1 shows the algorithm in the form of
pseudocode.
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For each attribute,
For each value of that attribute, make a rule as follows:
count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value.
Calculate the error rate of the rules.

Choose the rules with the smallest error rate.

Figure 4.1 Pseudocode for 1R.

Table 4.1 Evaluating the attributes in the weather data.
Attribute Rules Errors Total errors

1 outlook sunny — no 2/5 414
overcast — yes 0/4
rainy — yes 2/5

2 temperature hot — no* 2/4 5/14
mild — yes 2/6
cool — yes 1/4

3 humidity high — no 3/7 414
normal — yes 1/1

4 windy false — yes 2/8 5/14
true — no* 3/6

*A random choice was made between two equally likely outcomes.

To see the 1R method at work, consider the weather data of Table 1.2 (we will
encounter it many times again when looking at how learning algorithms work).
To classify on the final column,play, 1R considers four sets of rules, one for each
attribute. These rules are shown in Table 4.1. An asterisk indicates that a random
choice has been made between two equally likely outcomes. The number of
errors is given for each rule, along with the total number of errors for the rule
set as a whole. 1R chooses the attribute that produces rules with the smallest
number of errors—that is, the first and third rule sets. Arbitrarily breaking the
tie between these two rule sets gives:

outlook: sunny — no
overcast — yes
rainy — yes
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Table 4.2 The weather data with counts and probabilities.
Outlook Temperature Humidity Windy Play
yes no yes  no yes  no yes no  yes no
sunny 2 3 hot 2 2 high 3 4 false 6 2 9 5
overcast 4 0 mild 4 2 normal 6 1 true 3 3
rainy 3 2 cool 3 1

sunny 2/9 35 hot 2/9 2/5 high 39 4/5 false 6/9 2/5 9/14 514
overcast 4/9 0/5 mild 49 2/5 normal 6/9 1/5 true 39 35
rainy 39 2/5 cool 39 1/5

Table 4.3 A new day.

Outlook Temperature Humidity Windy Play

sunny cool high true ?

makes real-life datasets interesting is that the attributes are certainly not equally
important or independent. But it leads to a simple scheme that again works sur-
prisingly well in practice.

Table 4.2 shows a summary of the weather data obtained by counting how
many times each attribute—value pair occurs with each value (yes and no) for
play. For example, you can see from Table 1.2 thatoutlook is sunny for five exam-
ples, two of which have play = yes and three of which have play = no. The cells
in the first row of the new table simply count these occurrences for all possible
values of each attribute, and the play figure in the final column counts the total
number of occurrences of yes and no. In the lower part of the table, we rewrote
the same information in the form of fractions, or observed probabilities. For
example, of the nine days that play is yes, outlook is sunny for two, yielding a
fraction of 2/9. For play the fractions are different: they are the proportion of
days that play is yes and no, respectively.

Now suppose we encounter a new example with the values that are shown in
Table 4.3. We treat the five features in Table 4.2—outlook, temperature, humid-
ity, windy, and the overall likelihood that play is yes or no—as equally impor-
tant, independent pieces of evidence and multiply the corresponding fractions.
Looking at the outcome yes gives:

likelihood of yes = 2/9 x 3/9 x 3/9x 3/9x 9/14 = 0.0053.

The fractions are taken from the yes entries in the table according to the values
of the attributes for the new day, and the final 9/14 is the overall fraction
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representing the proportion of days on which play is yes. A similar calculation
for the outcome no leads to

likelihood of o =3/5x 1/5 x 4/5 x 3/5 x 5/14 = 0.0206.

This indicates that for the new day, no is more likely than yes—four times more
likely. The numbers can be turned into probabilities by normalizing them so
that they sum to 1:

- 0.0053
Probability of yes = ———————— =20.5%,
0.0053+0.0206
0.0206
Probability of no = —————————=79.5%.
0.0053+0.0206

This simple and intuitive method is based on Bayes’s rule of conditional prob-
ability. Bayes’s rule says that if you have a hypothesidd and evidence E that bears
on that hypothesis, then

Pr[E|H]Pr[H]
Pr[E]

We use the notation that Pr[A] denotes the probability of an event A and that
Pr[A|B] denotes the probability of A conditional on another event B. The
hypothesis H is that play will be, say, yes, and Pr[H|E] is going to turn out to be
20.5%, just as determined previously. The evidence E is the particular combi-
nation of attribute values for the new day, outlook = sunny, temperature = cool,
humidity = high, and windy = true. Let’s call these four pieces of evidence E,, E,,
E;, and E,, respectively. Assuming that these pieces of evidence are independent
(given the class), their combined probability is obtained by multiplying the
probabilities:

Pr[H|E] =

Pr|E,|yes| X Pr| E,|yes| X Pr| E;|yes| X Pr| E,|yes] X Pr]| yes
Pr[ yes|E] = [E,lyes] X Pr[E,|yes] PE[EI]J/ 1X Pr[E,|yes] x Prl yes]

Don’t worry about the denominator: we will ignore it and eliminate it in the
final normalizing step when we make the probabilities of yes and no sum to 1,
just as we did previously. The Pr[yes] at the end is the probability of a yes
outcome without knowing any of the evidence E, that is, without knowing any-
thing about the particular day referenced—it’s called the prior probability of the
hypothesis H. In this case, it’s just 9/14, because 9 of the 14 training examples
had a yes value for play. Substituting the fractions in Table 4.2 for the appro-
priate evidence probabilities leads to

2/9%3/9x3/9x3/9%x9/14

Pr[yes|E] = PrlE]

b
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In this lecture, we discuss "iterative dichotomization"

e Split things up
e Recurse on each split

How to generate a tree

e Given a bag of mixed-up stuff.
o Need a measure of "mixed-up"
e Split: Find something that divides up the bag in two new sub-bags
o And each sub-bag is less mixed-up;
o Each split is the root of a sub-tree.
e Recurse: repeat for each sub-bag
o i.e. on just the data that falls into each part of the split
= Need a Stop rule
= Condense the instances that fall into each sub-bag
e Prune back the generated tree.

Different tree learners result from different selections of

o CART: (regression trees)
o measure: standard deviation
= Three "normal" curves with different standard deviations
= Expected values under the normal curve

1 L 1 J

0.0 0.1 02 03 04

-30c -20 -lo K lo 20 30

o condense: report the average of the instances in each bag.

o Mb5prime: (model trees)

o measure: standard deviation

o condense: generate a linear model of the form a+b * x1 +c * x2 +d * x3 +...
e J48: (decision trees)

o measure: "entropy"

H(X)=E(I(X)) = > pla;)log, (1/p(z;))
i=1

= _Z p(z;) logy p(x;)
i=1



e condense: report majority class

Example: C4.5 (a.k.a. J48)
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Q: which attribute is the best to split on?
A: the one which will result in the smallest tree:
Heuristic: choose the attribute that produces the "purest" nodes (purity = not-mixed-up)
e.g. Outlook= sunny

¢ info((2,3))= entropy(2/5,3/5) = -2/5 * log(2/5) - 3/5 * log(3/5) = 0.971 bits
Outlook = overcast

e info((4,0)) = entropy(1,0) =-1 * log(1) - 0 * log(0) = O bits
Outlook = rainy

e info((3,2)) = entropy(3/5, 2/5) = -3/5 * log(3/5) - 2/5 * log(2/5) = 0.971 bits
Expected info for Outlook = Weighted sum of the above

¢ info((3,2),(4,0),(3,2)) = 5/14 * 0.971 + 4/14 = 0 + 5/14 * 0.971 = 0.693
Computing the information gain

e.g. information before splitting minus information after splitting

e.g. gain for attributes from weather data:

gain("Outlook") = info(9,57?) - info(2,32,4,02,3,2?) = 0.940 - 0.963 = 0.247 bits
gain("Temperature") = 0.247 bits

gain("Humidity") = 0.152 bits

gain("Windy") = 0.048 bits

Problem: Numeric Variables

No problem:

o use cliff learning to split the numerics



e Standard method proposed by Fayyad.

Problem: Highly-branching attributes

Problematic:

attributes with a large number of values (extreme case: ID code)

Subsets are more likely to be pure if there is a large number of values

Information gain is biased towards choosing attributes with a large number of values

This may result in over fitting (selection of an attribute that is non-optimal for prediction); e.g.

ID code Outlook Temp . Humidity Windy Play
A Sunny Hot High False No
B Sunny Hot High True No
C Overcast Hot High False Yes
D Rainy Mild High False Yes
E Rainy Cool Normal False Yes
F Rainy Cool Normal True No
G Overcast Cool Normal True Yes
H Sunny Mild High False No
I Sunny Cool Normal False Yes
J Rainy Mild Normal False Yes
K Sunny Mild Normal True Yes
L Overcast Mild High True Yes
M Overcast Hot Normal False Yes
N Rainy Mild High True No%%

o If we split on ID we get N sub-trees with one class in each;
e info("ID code")= info((0,1)) + info((0,1)) + ... + info((0,1)) = O bits
e So the info gain is 0.940 bits

Solution 1: Ignore columns with more than N unique values (where N = m*NumberOfRows?). Solution 1: the gain
ratio

Gain ratio: a modification of the information gain that reduces its bias

Gain ratio takes number and size of branches into account when choosing an attribute

It corrects the information gain by taking the intrinsic information of a split into account

Intrinsic informations: entropy of distribution of instances into branches (i.e. how much info do we need to
tell which branch an instance belongs to)

Problem: Conclusion Instability

Recall the shape of a log curve
Now play with small values of -p*log(p); consider what happens if | change those values by plus/minus 30%.
The great ones say:

o It is well known that the error rate of a tree on the cases from which it was constructed (the re-substitution
error rate) is much lower than the error rate on unseen cases (the predictive error rate).

e For example, on a well-known letter recognition dataset with 20,000 cases, the re-substitution error rate for
C4.5 is 4%, but the error rate from a leave-one-out (20,000-fold) cross-validation is 11.7%.

e As this demonstrates, leaving out a single case from 20,000 often affects the tree that is constructed!

Problem: Comprehension



Trees can hide simple rules
Naive conversion

e One rule for each leaf:
¢ Antecedent contains a condition for every node on the path from the root to the leaf

Problems with Naive Conversion

Example 1: Simple rules, complex tree

e Rules:
If a and b then x
If ¢ and d then x
e Tree:
if a ==y
then if b ==y
then x
else if b == n
then if c ==y
then if d ==y
then x
else if b == n
then if c ==y
then if d ==y
then x
Example 2: Simple tree, complex rules
e Tree:
if x == 1
then if y == 1
then b
else a
else if y == 1
then a
else b
o Rules (unaware of structure)
if x == 1 and y == 0 then a
if x == 0 and y == 1 then a
if x == 0 and y == 0 then b
if x == 1 and y == 1 then b
Example 3: the replicated subtree problem
¢ Rules:
if x == 1 and y == 1 then a
if z == 1 and w == 1 then a
otherwise b
e Tree:
if x == 1
then if y == 1
then a
else if y == 2
then SUB
else if y == 3
then SUB
else if y == 2

then SUB



SUB

else if y
then

== 1
if
then
else

( if =z
then

f == 2
then b
else if w

== 3

then b

I
]
N

else if z
then b

else if z

then

Other tree learning

Regression trees

Easy to interpret:

Differences to decision trees:

Splitting criterion: minimizing intra-subset variation
Pruning criterion: based on numeric error measure
Leaf node predicts average class values of training instances reaching that node
Can approximate piecewise constant functions

curb-weight <= 2660
curb-weight <= 2290

| curb-weight <= 2
| | length <= 16
| | length > 16
| curb-weight > 2
curb-weight > 2290
| length <= 176 :
| length > 176 :

normalized-1
normalized-1

2660
68.9 :
68.9 :

urb-weight >
width <=
width >

pric
pric

|
|
|
|
|
|
|
|
.
|
(o]
|
|

e More sophisticated version: model trees

Model trees

090
1 :
1 :

price=6220
price=7150

090 price=8010
price=9680

osses <= 157 :
osses > 157 :
e=16100

e=25500

e Regression trees with linear regression functions at each node

curb-weight <= 2660
| curb-weight <= 2290

| curb-weight > 2290

| | length <= 176 :

| | length > 176 :

curb-weight > 2660 :

| width <= 68.9 : LM4

| width > 68.9 : LM5

LM1l: price = -5280 + 6.
+ 4.
+ 22
+ 98

LM2: price = 9680

LM3: price = -1100 + 91

LM4: price = 9940 + 47.

LM5: price = -19000 + 1

LM1
LM2
LM3

68
44
.1
.6

curb-weight
horsepower -
highway-mpg

EE

price=10200
price=15800

normalized-losses

85.8 * city-mpg

* normalized-losses

5 * horsepower
3.2 * curb-weight

e Linear regression applied to instances that reach a node after full regression tree has been built
e Only a subset of the attributes is used for LR



o Attributes occurring in subtree (+maybe attributes occurring in path to the root)
e Fast: overhead for LR not large because usually only a small subset of attributes is used in tree

Building the tree

e Splitting criterion: standard deviation reduction into i bins
e SDR =sd(T) - sum( ( |Ti| / [T| * sd(Ti) ) )
o where (|T| = number of instances in that tree).
¢ Termination criteria (important when building trees for numeric prediction):
e Standard deviation becomes smaller than certain fraction of sd for full training set (e.g. 5%)
e Too few instances remain (e.g. less than four)

Smoothing (Model Trees)

Naive method for prediction outputs value of LR for corresponding leaf node
Performance can be improved by smoothing predictions using internal LR models
Predicted value is weighted average of LR models along path from root to leaf
Smoothing formula: p' = (np+kq)/(n+k)

p' is what gets passed up the tree

p is what got passed from down the tree

q is the value predicted by the linear models at this node

n is the number of examples that fall down to here

k magic smoothing constant; default=2

Enter a comment:

Wiki markup help
=Heading1=
==Heading2==
===Heading3===

*pbold* _italic_
‘inline code’
escape:

Submit m

Indent lists 2 spaces:
* bullet item
# numbered list

{{

verbatim code block

m

Horizontal rule

WikiWordLink
[http://domain/page label]
http://domain/page

|| table || cells ||

More examples @

©2010 Google - Terms - Privacy - Project Hosting Help

Powered by Google Project Hosting

=

[]



“Data Carving”:
A geometric view of data mining

* Data is like a block of marble,
> waiting for a sculptor (that’s you)
> to find the shape within

* So “data mining” is really “data

carving”
> chipping away the irrelevancies

> To find what lies beneath.




Four operators of data carving

* Each example is a row in a table

* What can can we do change the

@attribute outlook {sunny, overcast, rainy} table geometry!?
@attribute temperature real

@attribute humidity real
@attribute windy {TRUE, FALSE}

@attribute play {yes, no} I. Clump

@data

sunny,  85,85,FALSE, no 2. Select

sunny,  80,90,TRUE, no columns -9
overcast, 83,86,FALSE, yes

rainy, 70,96,FALSE, no

rainy, 68,80,FALSE, yes 3. Select

rainy, 65,70,TRUE, no

overcast, 64,65,TRUE, yes rows é
sunny, 72,95,FALSE, no

sunny, 69,70,FALSE, yes

rainy,  75,80,FALSE, yes 4. Rotate

sunny;, 75,70,TRUE, yes (add new

overcast, 72,90,TRUE, vyes columns)

overcast, 81,75,FALSE, yes

rainy, 71,91, TRUE, no | |

5. Clump columns




To understand data mining, look at
the data, not the algorithms

Why? We do data
mining not to study
algorithms.

> But to study data

Our results should be

insights about data,

° not trivia about (say)
decision tree algorithms

Besides, the thing that
most predicts for
performance is the
data, not the algorithm,

> Pedro Domingos and Michael J.
Pazzani, On the Optimality of the
Simple Bayesian Classifier under
Zero-One Loss, Machine Learning,
Volume 29, number 2-3, pages
103-130, 1997

Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test
splits. “Bayes” is the Bayesian classifier with discretization and “Gauss” is the Bayesian classifier with
Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the
Bayesian classifier and the corresponding algorithm, using a one-tailed paired £ test: 1 15 99.5%, 2 is 99%,
315 97.5%, 4 is 95%, 5 1s 90%, and 6 is below 90%.

Data Set Bayes Gauss Cc45 PEBLS CN2 Def.
Audiclogy 73.046.1 7304615 725458° 758454% 7104515 213
Annealing 953412 843438! 50.5422" 98.840.8" 81.2454! 764
Breast cancer 716447 713443° 70.1:46.8° 65.6:44.7" 6794711 676
Credit 845418 78.942.5! 85542.1% 82.2419" 82.0422! 574
Chess endgames  88.0414 88.0414°%  99240.1° 96.540.7" 98.141.0! 520
Diabetes 745424 7524215 7354345 71.1424! 73.8427% 660
Echocardiogram  69.1454 73.4445! 64.7463" 61.7+6.4" 6824729 678
Glass 619462 50.6+482! 63.548.75 6204745 6384556 317
Heart disease 819434 g4.1428! 7754430 785440" 797429 550
Hepatitis 853437 852440  792443! 79045.1" 80.3442! 78.1
Horse colic 80.7437 79343.7! 85.1438" 75.745.0" 8254427 636
Hypothyroid 975403 97.9404! 99.140.2" 95.540.7" 98.8404! 953
Iris 932435 93.9415%  62642.7° 9354305  933436% 265
Labor 913449 88741066  78.1479! 8974506  82.1469! 650
Lung cancer 4684133 46841335  4094163°  4234173% 3864135% 268
Liver disease 63.0433 54.845.5! 65.5+44" 6134435 6504387 581
LED 629465 629465°% 6124845 55346.1" 58.648.12 8.0
Lymphography 816459 81.14+48%  750+42! 8254565 788449 573
Post-operative 647468 672450°  700452! 5924807 6084827 712
Promoters 879470 879470  743478' 91.7459%  759488' 43
Primary tumor 442455 442455% 359458 305447" 36.8+52! 246
Solar flare 685430 682437%  70.6429" 76435 7044307 252
Sonar 694476 63.0483! 69.147.45 73.8474" 6624755 508
Soybean 100,000 100.0400%  95049.0° 10004005  96.9+597 300
Splice junctions 954406 954406° 934408 94.340.5" 81.545.5! 524
Voling records 912417 91241.7% 963413 945412" 95.841.6! 60.5
Wine 964422 978412% 624456 9724185  90.8:47! 364

Zoology 944241 94.1438° 89.6:4:4.7" 94.6:+4.3° 90.6:+5.0! 394




The rest of this hour

. Clump

2. Select

columns -’

3. Select

rows =
4. Rotate

(add new

columns)

5. Clump columns




Carving can be dangerous

* While carving the
training data is
recommended
° ltisa

methodological

error to carve the
test data

e Whatever is
learned from the
training data

> Should be

assessed on
“raw” (i.e.
uncarved) test
data




Clumping column data
(a.k.a. discretization)

overcast,

Rainy,
sunny,
sunny,

overcast,

rainy,
rainy,
sunny,

overcast,
overcast,

sunny,
rainy,
sunny,
rainy,

04,
65,
69,
15,
81,
68,
715,
85,
83,
12,
80,
71,
12,
70,

65, TRUE,
70, TRUE,

70, TRUE,

90 | TRUE,

90, TRUE,
91, TRUE,

%6

70| FALSE,

75| FALSE,
80| FALSE,
80| FALSE,
85| FALSE,
86| FALSE,

95, FALSE,
FALSE,

ves
no
ves
ves
ves
yes
yes
no
yes
yes
no
no
no
no

1 duald

e Learning = compression

o Take a target concept that is spread
out across all the data

> Squeeze it together till it is dense
enough to be visible.

e Discretization: clump together
observations taken over a
continuous range

> into a small number of regions.
o E.g. "toddlers” If age =1,2,3
e Discretization improves the

performance of a learner

> Gives a learner a smaller space to
reason about,

> With more examples in each part of
the space



Supervised

Discretization
overcast, 64,/65/TRUE,
Rainy, 65,70,/ TRUE,
sunny, 69,70 ,/FALSE,
sunny, 75,70 JTRUE,
overcast, 81,|75/FALSE,
rainy, 68,80,/FALSE,
rainy, 75,80 JFALSE,
sunny, 85,185 /FALSE,
overcast, 83,/86,FALSE,
overcast, 72,/90,|/TRUE,
sunny, 80,90, TRUE,
rainy, 71,91, TRUE,
sunny, 72,/95,|]FALSE,
rainy, 70,/96,/]FALSE,

yes
no

yes
yes
yes
yes
yes
no
yes
yes
no
no
no
no

1 duald

e Standard method:

° Find a break that
most reduces class
diversity either side
of the break

o Recurse on data:
above break,

below break

o Fayyad and Irani, Multi-Interval
Discretization of Continuous-Valued

Attributes for Classification Learning
[JCAI'93, pp1022-1027



Unsupervised
Discretization
e Divide into “B” bins

> (X = Min) / ((Max — Min )/ B)

> B=3 or 10 very common

* Divide into P percentile groups

> Each bins contains (say) 25% of the rows

* For Bayesian methods
> Divide into groups of N items

° Ying and Webb recommends N= sqrt(rows)

> Ying Yang and Geoff Webb, Weighted Proportional k-Interval Discretization of Naive
Bayes classifeirs, PAKADD’03, p501-512,2003



Select columns ->

* Occam's Razor - Entia non sunt multiplicanda praeter necessitatem.
( "Entities should not be multiplied more than necessary").
> the fewer features used to explain something, the better
* Log(OR):
> Discrete every feature. For all pairs of target / other of size Cl, C2 count
frequency of range NI, N2 in each class

> Log(odds ratio) = log((N1/C1) / (N2/C2)) > 0 if more frequent in target
> “Pivots” are the ranges with high Log (OR)

> Mozina, M., Demsar, J., Kattan, M., and Zupan, B. 2004. Nomograms for visualization of naive Bayesian
classifier. InProceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in
Databases (Pisa, Italy, September 20 - 24, 2004)

¢ InfoGain:
> Use Fayyad Irani trick: assses each column by how well it divides up the data
> Takes linear time : O(C)
* Wrapper:
> Explore 2¢ subsets of C columns: takes time O(2°)
> Call a learner on each subset
> Use the columns that maximize learner performance

> Not practical for large data sets

e For more, see Hall, M. and Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class
data mining. IEEE Transactions on Knowledge and Data Engineering. 1 5(3), November/December 2003



Select columns

with log(OR)

Data from Norman

Fenton’s Bayes Net
« Project Data Incorporating
Qualitative Factors for
Improved Software Defect
Prediction Norman Fenton,
Martin Neil, William Marsh,
Peter Hearty, Lukasz

Radlinski and Paul Krause.,
PROMISE 2008

Target class. worse
defects

Only a few features
matter

Only a few ranges of
those features matter

Points

Scale_of_distributed_communication
Complexity_of_new_functionality
log_KLOC_new_

log_KLOC_existing_
Integration_with_3rd_party_s_w
quality_of_existing_code_base
Rework_effort
Defined_process_followed
Development_process_effort
Complexity_of_existing_code_base
Process_maturity

Project_planning

Testing_effort
Internal_communications_quality
Rework_process_quality
Spec___doc_effort
Significant_Subcontracts
Testing_staff_experience
Requirements_stability
Standard_procedures_followed
Requirements_management
Relevant_experience_of_spec___doc_staff
Testing_process_well_defined
Quality_of_documented_test_cases
Development_staff_training_quality
Programmer_capability
Regularity_of_spec_and_doc_reviews
Stakeholder_involvement

Nuality of anv nrevious documentation

>

Points

Log OR Sum

2 04 06 0.8 09

0.1 03 05 07

" 0.95




Select columns

with log(OR)

Data from Norman
Fenton’s Bayes Net

« Project Data Incorporating
Qualitative Factors for
Improved Software Defect
Prediction Norman Fenton,
Martin Neil, William Marsh,
Peter Hearty, Lukasz
Radlinski and Paul Krause.,
PROMISE 2008

Target class. worse
defects

Only a few features
matter

Only a few ranges of
those features matter

Points

Scale_of_distributed_communication
Complexity_of_new_functionality
log_KLOC_new_

log_KLOC_existing_
Integration_with_3rd_party_s_w
quality_of_existing_code_base
Rework_effort
Defined_process_followed
Development_process_effort
Complexity_of_existing_code_base
Process_maturity

Project_planning

Testing_effort
Internal_communications_quality
Rework_process_quality
Spec___doc_effort
Significant_Subcontracts
Testing_staff_experience
Requirements_stability
Standard_procedures_followed
Requirements_management
Relevant_experience_of_spec___doc_staff
Testing_process_well_defined
Quality_of_documented_test_cases
Development_staff_training_quality
Programmer_capability
Regularity_of_spec_and_doc_reviews
Stakeholder_involvement

[Quality of anv nrevious documentation

1

5T 4 3 27

3 2

1!

Pivotal if
Log(OR) >
0.2 * max of
Log(OR)

>

Points

Log OR Sum

2 04 06 0.8 09

" 03 05 0.7

" 0.95




Select columns ->

with InfoGain

[labor.arffl with infogain [soybkean.arffl with infogain
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Simpler theories after column selection.
Work just as well as using everything




bl

Select columns
with WRAPPER

50
40
30
20
10

2 1
Very high Extra high

Nominal High
Complexity

Number of columns

1001 After pruning (A) -
80 100 « (B — A)/B —»—

BV

1 1 0 1 I e A'F/’f\#
¢cii0 cii4 cocina60 call pall tall ¢03 c01 {03 p04 {02 c02 p02 p03

Data set

° Finding the Right Data for
Software Cost Modeling

Chen, Menzies, Port, Boehm,
|[EEE Software Nov/Dec 2005

Pred(30)

Number of rows

Pruning just columns

Pruning columns and some rows Pruning columns and many rows

25

160

120

40

1 | | 1 1 |

|
d cii0 ciid coci nab0 call pall tall

|
¢03 ¢01 103 p04 102 c02 p02 p03
Data set

Before —+—— After ——>¢— Number of rows ———— I

116



Select rows >

* Replace N rows
> with M <N rows
o that best exemplify the data

» Typical result:

> Can throw out 80 to 90% of the rows without lossing accuracy
C. Chang, “Finding prototypes for nearest neighbor classifiers,” IEEE Trans. on Computers, pp. | 179—1185, 1974.

o Benefits:

(o]

Outlier removal

o

Any downstream processing is faster
E.g.any O(N?) process is 100 times faster on N/I0 of the data

° Less errors in conclusions
Instance learner: classify according to nearest neighbors

If nearest neighbors further away, harder for data collection errors to cause
wrong classifications

(¢]

Easier to visualize

Fewer things to look at



Select rows ->

* Exponential time

o

Genetic algorithm to explore the 2R subsets of rows.

When more rows than columns, even slower than the WRAPPER’s O(2€) search

Y.Li, M.Xie, and T.Goh, “A study of project selection and feature weighting for analogy based software cost estimation,’
Journal of Systems and Software, vol. 82, pp. 241-252, 2009.

* Polynomial time: Greedy agglomerative clustering

(e]

e TEAK = GAC plus ...

(e}

o]

Push every instance to its closest neighbor. a =

Build a synthetic example at each pair’s median L
Repeat for the synthetic points. 5 l
Prototypes are all nodes at level X of GAC tree

For R rows, O(R?)
I

| 1 —

Prune sub-trees with large variance e e ea i S e rEn cr e

When to Use Data from Other Projects for Effort Estimation Ekrem
Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, Jacky W. Keung ,ASE 2010

e Linear-time

o

[e]

Rank ranges by frequency delta in different classes

Discard all rows that do not have the top R pivots



Select rows
(with TEAK)

To effort estimate a test instance, start at
root of GAC tree

o> Move to nearest child

> Stop at leaf or when sub-tree variance
greater than super-tree

o Estimate = median of instances in that sub-
tree

Compared with
> linear regression,
> neural nets,

> analogy methods that use K=1,2,4 nearest
neighbors (no variance pruning)

Compared using
o 20 * {shuffle rows, 3-way cross-val)
> Hwins - # losses (in a Wilcoxon, 95%)

> Count number of times ranked first by this
procedure

Conclusion: row-selection using clustering
+ variance pruning is a good thing

LR

v

NNet

Best(K)

k=1

16

2

k
k
k

4

8

MRE
Cocomo81
Cocomo8le
Cocomo8lo
Nasa93
Nasa93c2
Nasa93c5
Desharnais

r
ISBSG-Banking
Count

»» > | TEAK

> >

Pred(25)
Cocomo81
Cocomo8le
Cocomo8lo
Nasa93
Nasa93c2
Nasa93c5

Desharnais

r
ISBSG-Banking
Count

> > (o> >

S ) N 2

> >

AR
Cocomo81
Cocomo8le
Cocomo8lo
Nasa93
Nasa93c2
Nasa93c5
Desharnais
Sdr
ISBSG-Banking
Count

> >

P> >

> >




Select rows
(with range pruning)

e For K in Klasses
o Let NotK = Klasses — K
o Let NI, N2 be nhumber of rows with K and NotK classes

° For Cin columns 3 class system

For R in range of column C 2000 . : .
* Let FI, F2 = frequency of C.R in K and NotK

befolre

1500
* Letx=FI /Nl andy=F2/N2 .
* Let Rscore = x2/ (x +y) § 1000
;;; pivotal if R far more frequent in K than NotK 500
* Remove all rows without the top five pivots
> If accuracy of reduced set decreases, then ABORT. 0 0/ 260 4'00 660 860
» For each instance, find distance needed to 2000 -
. before
travel before a K=5 nearest neighbor after -
. . . 1500 | e
algorithm changes the classification.
o In the full data set % 1000 F
> |n the reduced data set -
500 7
* Result:
> Much charger to change classification in reduced data set 0k ' ' '
] ] ] 0 200 400 600 800
» Conclusion: if concerned about errors in y

data collection, use row selection (and less classes) 5 class system



Rotate
(add columns)

 Sometimes, the data’s raw dimensions suffice for
isolating the target concept..

Theory 1: Theory 2:: Theory 3:
if true, then “a” if x> 1, then “a” ifx>1,andy>1 then “a”
‘ -
* But what if the target concept falls across. " .
and not along, the raw dimensions!? «®e




Rotate
(add columns)

Synthesize a new dimension t . e
that combines the raw S S
into something new .®a oVe

Apply single-valued " s

decomposition (SVD) to

° the covariance matrix (principal
component analysis, or PCA)

Much easier to learn rules when dimensions
match the data. E.g. a defect predictor:

or the data table (latent semantic
indexing, or LSI)

PCA that produces a set of
orthogonal “components”

[¢]

Transforms C correlated variables
into fewer uncorrelated
"components".

Component][i] accounts for as
much  variability as possible.

Component[i+ 1] accounts for as
much of the remaining variability as
possible.

if comp[I] = 0.180

then NoDefects

else if comp[1] > 0.180
then if comp[I] < 0.371 then NoDefects
else if com[1] > 0.371 then Defects

But it can be hard to explain that predictor:

mp[1] = 0.236%*v(g) +0.222*ev(g)
+0 23 Fiv(g) +0. 24I*n +0.238%v gOSé*I
+0.199*%d +0.216* +0.225%e +0.236*b
+0.221*t +0.241*|OCode +0.179*I0Comment
+0.22 1**|OBlank +0.158*|IOCodeAndComment
+0.163*uniq_Op +0.234*uniq_Opnd
+0.241*total_Op +0.241*total_Opnd
+0.236*branchCount



Rotate
(add columns)

 Special transforms

1.5 4 o °

o o o
@0 o0 o o o o ©O
o o8 8§ 8 o o@%qg)
1_@0 °© o ® 0 00 o

o Su PPO rt vector Principle of Supp(orl Vector Machines
(SVM)
machines: construct
b "'t./'/ & o [\ e /-,

a hyper-plane that PNy
separates classes Lo el S

PN R P

il 75

Input Space Feature Space



Clump rows
(a.k.a. generalize)

» Ever notice that rows and rules have (nearly) the same syntax?

> Age=young and wealth=rich and iq=high and class=happy
o If age=old and wealth=rich and iq=high then happy

» But when we write rules, we only do it for frequently
occurring patterns in the other rows

e “Clump rows” : replace them with a rule that covers many
rows, but many only mention some of the columns
If age=old and wealth=rich then happy
* If you do this after clumping columns and selecting good rows and
selecting good columns and (maybe) adding in good columns
Then the search space is very small

The exploring can be heavily biased by the other steps (e.g. look at great rows
before dull ones)

And, hey presto, you've got a working data miner



Hints and tips (note: only my view)

* Always try clumping with discretization
> So very simple
> So experiment with / without discretization

» Always try column selection

> Usually, massive reduction in the columns

o If the data won’t fit in RAM,

° try column selection first (use a linear-time approach)

> then you can explore row selection by (say)
Eral: read first 1000 instances and apply row selection

Era[i+1]: read next 1000 records and ignore instances that fall close to the
instances selected at Era[i]

* Try these last: PCA / Support vector machines

> Benefits of PCA often achieved, or beaten by other column selectors

Hall, M. and Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class
data mining. IEEE Trans on Knowledge and Data Engineering. 15(3), November/December 2003

o The FASTMAP heuristic FASTMAP, can do what PCA does, faster, scalable.

Faloutsos, C. and Lin, K. 1995. FastMap: a fast algorithm for indexing, data-mining and visualization
of traditional and multimedia datasets. In Proceedings of the 1995 ACM SIGMOD international
Conference on Management of Data

> For text mining (PCA / LDA) vs TF*IDF never benchmarked
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Not so "Naive" Bayes

Introduction

A Bayes classifier is a simple statistical-based learning scheme.

Advantages:

Tiny memory footprint

Fast training, fast learning
Simplicity

Often works surprisingly well

Assumptions

e Learning is done best via statistical modeling
o Attributes are
o equally important
o statistically independent (given the class value)

[ Search | | Edit this

Updated Oct 27, 2009 by kelcecil

o This means that knowledge about the value of a particular attribute doesn't tell us anything about the

value of another attribute (if the class is known)

e Although based on assumptions that are almost never correct, this scheme works well in practice

Domingos97



Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test
splits. “Bayes™ is the Bayesian classifier with discretization and “Gauss” is the Bayesian classifier with
Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the
Bayesian classifier and the corresponding algorithm, using a one-tailed paired £ test: 1 15 99.5%, 2 is 99%,
315 97.5%,4 is 95%, 5 1s 90%, and 6 is below 90%.

Data Set Bayes Gauss C45 PEBLS CN2 Def.
Audiology 73.046.1 73.046.1° 7254585 758454% 7104515 213
Annealing 953412 843438! 50.542.2" 98.8.40.8" 81.2454! 764
Breast cancer 71647 71.3443° 70.1.£6.8° 65.6.44.7" 6794711 676
Credit 845418 78.9425! 856.42.1% 82.2419" 82.0422! 574
Chess endgames  88.041.4 8804145  69240.1° 56.940.7" 98.1:41.0! 520
Diabetes 745424 75.242.1° 7354345 7114241 7384279 660
Echocardiogram ~ 69.1454 73.4449! 64.746.3" 61.746.4" 682:72% 678
Glass 619462 50.6482! 63.5:48.7° 6204745 6384555 317
Heart disease 819434 g4.142.8! 7754438 78.544.0" 79.742.9% 550
Hepatitis 853437 8524406  792443! 79.045.1* 80.3::42! 78.1
Horse colic 80.7437 79343.7! 85.1438" 75.745.0" 8254427 636
Hypothyroid 975403 97.9404! 69.1.£0.2" 95.5.40.7" 98.8:0.4! 953
Iris 932435 93.94198°%  62642.7° 635430 933436 265
Labor 913449 88741065  78.1479! 89.74506  82.1469! 650
Lung cancer 4684133  4684133%  4094163°  4234173°% 386413.5% 268
Liver discase 630433 548455! 655144" 61.3443%  650238% S8
LED 629465 629465° 612484 55346.1" 58.648.17 8.0
Lymphography 816459 81.1448%  750442! 825456° 788449 573
Post-operative 647468 672450  70.0452! 59.2480%7 6084827 712
Promoters 879470 87.9470° 743:47.8" 51.7459%  759488! 43.1
Primary tumor 442455 4424555 356458" 305447 3984520 246
Solar flare 685430 682437°% 706429 67.64£35% 7044307 252
Sonar 694476 63.0483! 69.1:£7.4° 73.8474" 66.2475% 508
Soybean 1000400 100.04£00°%  65.049.0% 1000400 9694597 300
Splice junctions 954206 954406°  934408' 54.3.40.5" 81.5455! 524
Voling records 912417 912417% 663413% 94.6.41.2" 95.84:1.6! 605
Wine 964222 978412% 624456" 672418%  90.8:47! 364
Zoology 944441 94.1438°% 896447 9464435  90.6450! 394

It has some drawbacks: it can offer conclusions put it is poor at explaining how those conclusions were reached.
But that is something we'll get back to below.

Example

weather.symbolic.arff

outlook temperature humidity windy play

rainy cool normal TRUE no
rainy mild high TRUE no
sunny hot high FALSE no
sunny hot high TRUE no
sunny mild high FALSE no
overcast cool normal TRUE yes
overcast hot high FALSE yes
overcast hot normal FALSE yes
overcast mild high TRUE yes
rainy cool normal FALSE yes
rainy mild high FALSE yes
rainy mild normal FALSE yes
sunny cool normal FALSE yes
sunny mild normal TRUE yes

This data can be summarized as follows:

Outlook Temperature Humidity

Yes No Yes No Yes No
Sunny 2 3 Hot 2 2 High 3 4
Overcast 4 0 Mild 4 2 Normal 6 1
Rainy 3 2 Cool 3 1



Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5
Rainy 3/9  2/5 Cool 3/9 1/5
Windy Play

Yes No Yes No
False 6 2 9 5
True 3 3
False 6/9 2/5 9/14 5/14
True 3/9 3/5

So, what happens on a new day:

Outlook Temp . Humidity Windy Play
Sunny Cool High True ?2%%

First find the likelihood of the two classes

e For "yes" =2/9 * 3/9 = 3/9 * 3/9 * 9/14 = 0.0053

e For"no" =3/5 * 1/5 * 4/5 * 3/5 * 5/14 = 0.0206

e Conversion into a probability by normalization:
o P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205
o P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

So, we aren't playing golf today.

Bayes' rule

More generally, the above is just an application of Bayes' Theorem.

¢ Probability of event H given evidence E:
Pr(H | E) = —commmmmmmmmmm

e A priori probability of H= Pr(H)
o Probability of event before evidence has been seen
e A posteriori probability of H= Pr[H|E]
o Probability of event after evidence has been seen
o Classification learning: what's the probability of the class given an instance?
o Evidence E = instance
o Event H = class value for instance
e Naive Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!

Pr(El | H ) Pr(E2 | H ) * .... *Pr(En | H ) * Pr(H )

e We used this above. Here's our evidence:

Outlook Temp . Humidity Windy Play
Sunny Cool High True ?

e Here's the probability for "yes":

Pr( yes | E) = Pr(Outlook = Sunny | yes) *
Pr (Temperature = Cool | yes) =
Pr (Humidity = High | yes) * Pr( yes)
Pr (Windy = True | yes) * Pr(yes) / Pr(E)
= (2/9 * 3/9 % 3/9 * 3/9) * 9/14) / Pr(E)

Return the classification with highest probability

e Probability of the evidence Pr(E)



o Constant across all possible classifications;
o So, when comparing N classifications, it cancels out

Numerical errors

From multiplication of lots of small numbers

o Use the standard fix: don't multiply the numbers, add the logs
Missing values

Missing values are a problem for any learner. Naive Bayes' treatment of missing values is particularly elegant.

e During training: instance is not included in frequency count for attribute value-class combination
o During classification: attribute will be omitted from calculation

Example: Outlook Temp . Humidity Windy Play
? Cool High True ?2%%

Likelihood of "yes" = 3/9 * 3/9 * 3/9 * 9/14 = 0.0238
Likelihood of "no" = 1/5 * 4/5 * 3/5 * 5/14 = 0.0343
P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%
P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

The "low-frequencies problem"

What if an attribute value doesn't occur with every class value (e.g. "Humidity = high" for class "yes")?

e Probability will be zero!
e Pr(Humidity = High | yes) =0
e A posteriori probability will also be zero! Pr( yes | E) = 0 (No matter how likely the other values are!)

So use an estimators for low frequency attribute ranges

e Add a little "m" to the count for every attribute value-class combination
o The Laplace estimator
o Result: probabilities will never be zero!

And use an estimator for low frequency classes

e Add a little "k" to class counts
o The M-estimate

Magic numbers: m=2, k=1

And wel'll return to the low frequency problem, below.

Pseudo-code

Here's the pseudo code of the the Naive Bayes classifier preferred by Yang03 (p4).

function train( i) {
Instances++
if (++N[$Klass]==1) Klasses++
for(i=1;i<=Attr;i++)
if (i != Klass)
if ($1i '~ /\?/)
symbol(i,$i,$Klass)
}
function symbol(col,value,klass) {
Count|[klass,col,value]++;

}
When testing, find the likelihood of each hypothetical class and return the one that is most likely.

Simple version



function likelihood(1, klass,i,inc,temp,prior,what,like) {
like = -10000000000; # smaller than any log
for(klass in N) {
prior=N[klass] / Instances;
temp= prior
for(i=1;i<=Attr;i++) {
if (i != Klass)
if ( $1i '~ /\?2/ )
temp *= Count[klass,i,$i] / N[klass]
}
llklass]= temp
if ( temp >= like ) {like = temp; what=klass}
}

return what

More Complex
More realistic version (handles certain low-frequency cases).

function likelihood(1l, klass,i,inc,temp,prior,what,like) {

like = -10000000000; # smaller than any log
for(klass in N) {

prior=(N[klass]+K)/(Instances + (K*Klasses));

temp= log(prior)

for(i=1;i<=Attr;i++) {

if (i != Klass)
if ( $i !~ /\2/ )
temp += log((Count[klass,i,$i]+M*prior)/(N[klass]+M))

}

llklass]= temp

if ( temp >= like ) {like = temp; what=klass}
}

return what

Handling Numerics

The above code assumes that the attributes are discrete. The usual approximation is to assume a "Gaussian" (i.e.
a "normal" or "bell-shaped" curve) for the numerics.

The probability density function for the normal distribution is defined by the mean and standardDev (standard
deviation)

Given:

e n: the number of values;
e sum: the sum of the values; i.e. sum = sum + value;
e sumSq: the sum of the square of the values; i.e. sumSqg = sumSq + value*value

Then:
function mean(sum,n) {
return sum/n
}
function standardDeviation(sumSqg,sum,n) {
return sqrt((sumSg-((sum*sum)/n))/(n-1))
}
function gaussianPdf (mean,standardDev,x) {
pi= 1068966896 / 340262731; #: good to 17 decimal places
return 1/ (standardDev*sqrt(2*pi)) °
(-1*(x-mean) "2/ (2*standardDev*standardDev))
}
For example:

outlook temperature humidity windy play



sunny 85 85 FALSE no

sunny 80 90 TRUE no
overcast 83 86 FALSE yes
rainy 70 96 FALSE yes
rainy 68 80 FALSE yes
rainy 65 70 TRUE no
overcast 64 65 TRUE yes
sunny 72 95 FALSE no
sunny 69 70 FALSE yes
rainy 75 80 FALSE yes
sunny 75 70 TRUE yes
overcast 72 90 TRUE vyes
overcast 81 75 FALSE yes
rainy 71 91 TRUE no

This generates the following statistics:

Outlook Temperature Humidity
Yes No Yes No Yes No
Sunny 2 3 83 85 86 85
Overcast 4 0 70 80 96 90
Rainy 3 2 68 65 80 70
Sunny 2/9 3/5 mean 73 74.6 mean 79.1 86.2
Overcast 4/9 0/5 std dev 6.2 7.9 std dev 10.2 9.7
Rainy 3/9 2/5
Windy Play
Yes No Yes No
False 6 2 9 5
True 3 3
False 6/9 2/5 9/14 5/14
True 3/9 3/5

Example density value:

f(temperature=66|yes)= gaussianPdf(73,6.2,66) =0.0340
Classifying a new day:

Outlook Temp. Humidity Windy Play
Sunny 66 90 true ?2%%

Likelihood of "yes" = 2/9 * 0.0340 * 0.0221 * 3/9 * 9/14 = 0.000036
Likelihood of "no" = 3/5 * 0.0291 * 0.0380 * 3/5 * 5/14 = 0.000136
o P("yes") = 0.000036 / (0.000036 + 0. 000136) = 20.9%
o P("no") = 0. 000136 / (0.000036 + 0. 000136) = 79.1%

Note: missing values during training: not included in calculation of mean and standard deviation

BTW, an alternative to the above is apply some discretization policy to the data; e.g. Yang03?2. Such discretization
is good practice since it can dramatically improve the performance of a Naive Bayes classifier (see Dougherty957.

Simple Extensions

From Naive Bayes to Hyper Pipes

When NaiveBayes? sees a new value, it increments a count.

o When HyperPipes sees a value, it just sets the count for that value to "one".
So NaiveBayes? remembers how often we see "X" in class "C"

e While HyperPipes just remembers that at least once, I've seen "X" in class "K"

Also:



e For numeric columns, HyperPipes needs to remember the Min/Max ever seen in column "C" for class "K".

function symbol(col,value,klass) {
# Count[klass,col,value]++;

if (Numericp[col]) }
if (value < Min[klass,col]) Min[klass,col] = value;
if (value > Max[klass,col]) Max[klass,col] = value;
} else {
Count[klass,col,value] = 1 ;
}

So, to classify a test instance:

e For each class, ask how what percentage of the columns "fall into" that class;
e Return the class with the highest percentage cover

function oneColumnFallsIntoKlass(klass,col,value) {
if (Numericp[col])
return Max[klass,col] >= val && Min[klass,col] <= val

else {
return Count[klass,col,value] > 0

From NaiveBayes? to Incremental Learning

Batch learners read all data, the given performance results.
¢ Incremental learners give intermediate results
In theory, batch is smarter than incremental
e Since it sees more data before having to make decisions.

In practice, the incremental performance of many learners, including NaiveBayes?, asymptotes to an performance
plateau in a few hundred instances:
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H5: nodel trees

Naive Bayes (with kernel estimation)
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Figure 5.4: R=10*N=10 incremental cross validation experiments on 20 UCI
data sets [?]. A:heart-c, B:zoo; C:vote; D:heart-statlog; E:lymph, F:autos.
G:ionosphere, H:diabetes, I:balance-scale, J:soybean, K:bodyfat. L:cloud,
M:fishcatch, N:sensory, O:pwLinear, Q:strike, R:pbec, S:auto-mpg, T:housing.
Data sets A..J have discrete classes and are scored via the accuracy of the
learned theory; i.e % successful classifications. Data sets K..T have continu-
ous classes and are scored by the PRED(30) of the learned theory; i.e. what
% of the estimated values are within 30% of the actual value. Data sets are

sorted according to how many instances were required to reach plateau using
nbk and C4.5 (left-hand side) or M5’ and LSR (right-hand side).

Building an incremental version of NaiveBayes? is a trivial task:
e Just classify each new instance before its counts are added to the frequency tables.

Batch process:

Pass="train" { train() }
Pass="test" { Klass=likelihood(L); print $NF "," L[Klass] }

Incremental process:
# don't classify till after seeing a few instances

NR>=30 { Klass = likelihood(L)
print "want= " got= " Klass

}
# but always train
{ train() }

Note that the above scheme applies to HyperPipes as well as NaiveBayes?.

From NaiveBayes? to Anomaly Detection

" $NF



In anomaly detection, we report "we have not seen this before".

Inside a NaiveBayes? classifier, there is a loop that combines frequency counts for different ranges. If we have
not seen "it" before, then some of those frequency counts will drop.

If we take (say) 10 attributes, and three of them halve their frequency count (cause we have not seen this before)
then the product of their likelihoods will decrease to 0.5*3=12.5%. So all we need to do is:

e Assign each train instance to some class "All"
e Track the likelihoods of "All".
e Complain if this number drops by orders of magnitudes.

# don't classify till after seeing a few instances
NR>=30 { Klass = likelihood(L)
print "want= " $NF " got= " Klass " track= " L["All"]
}
# but always train
{ train();
SNF="A1l1l";
train()

}

Here's a trace of the log of the "All" likelihood for five flight simulators, divided into "eras" of 100 samples.

From era=1 to era=8, all planes fly the same commissioning exercise;
Form era=9 to era=14, all planes fly different missions, repeating the same maneuver over and over again.
At era=15, all the planes were hit with different faults (engine flame up, flaps not working, etc)
In all cases, at era=15, log(likelihood("All")) dropped two orders of magnitude.
Note that, at no time, was the classier given a list of specific error conditions of the plane.
o So it learned "l have not seen that before", even though we never told it what was that.
o Magic! (but so simple)

Average Max Likelihood

| I i\ |
0.0001 3 E
1e-05 3 E
1e-06 3 E
1 5 9 15
train monitor error

The Explanation Problem

All learners are performance systems that make conclusions. But only some can explain how they reach those
conclusions.

The internal data structures of a Bayes classifier are not very pleasant to look at when listed in a table. Moreover,



the particulars of that data are not what really matter.

Mozina04 argue that what really matters is the effect of a cell on the output variables. With knowledge of this
goal, it is possible to design a visualization, called a nomogram, of that data. Nomograms do not confuse the user
with needless detail. For example, here's nomogram describing who survived and who died on the Titanic:

. -40 -20 0 20 40 60 80 100
Points ; v v - ,
thard ’ second hest
slatus Y v 1
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adullt child
age — <
male ! female
sex - 5 .
. 100 50 0 50 100 150 200 250
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Of 2201 passengers on Titanic, 711 (32.3%) survived. To predict who will survive, the contribution of each
attribute is measured as a point score (topmost axis in the nomogram), and the individual point scores are
summed to determine the probability of survival (bottom two axes of the nomogram).

The nomogram shows the case when we know that the passenger is a child; this score is slightly less than 50
points, and increases the posterior probability to about 52%. If we further know that the child traveled in first class
(about 70 points), the points would sum to about 120, with a corresponding probability of survival of about 80%.

It is simple to calculate nomogram values for single ranges. All we want is something that is far more probable in
a goal class than in other classes.

Suppose there is a class you like C and a bunch of others you hate.

Let the bad classes be combined together into a group we'll call notC

Let the frequencies of C and notC be N1 and N2.

Let two attribute range appears with frequency F1 and F2 in C1 and notC.
Then the log(OR) = log ( (N1 /H1)/ (N2 /H2))

We use logs since products can be visualized via simple addition. This addition can be converted back to a
probability as follows. If the sum is "f" and the target class occurs "N" times out of "I" instances, then the
probability of that class is "p=N/I" and and the sum's probability is:

function points2p(f,p) { return 1 / (1 + E"(-1l*log(p/(1 - p)) - £ )) }

(For the derivation of this expression, see equation 7 of Mozina04. Note that their equation has a one-bracket
typo.)

Besides enabling prediction, the nomogram reveals the structure of the model and the relative influences of
attribute values on the chances of surviving. For the Titanic data set:

e Gender is an attribute with the biggest potential influence on the probability of survival: being female
increases the chances of survival the most (100 points), while being male decreases it (about 30 points).
The corresponding line in the nomogram for this attribute is the longest.

o Age is apparently the least influential, where being a child increases the probability of survival.

e Most lucky were also the passengers of the first class for which, considering the status only, the probability
of survival was much higher than the prior.

Therefore, with nomograms, we can play cost-benefit games. Consider the survival benefits of

o sex=female (72%)
¢ sex=female and class=first (92%)
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greatly reduced. In practical implementations, we can use an ad hoc test to guard
against splitting on such a useless attribute.

Unfortunately, in some situations the gain ratio modification overcompen-
sates and can lead to preferring an attribute just because its intrinsic informa-
tion is much lower than that for the other attributes. A standard fix is to choose
the attribute that maximizes the gain ratio, provided that the information gain
for that attribute is at least as great as the average information gain for all the
attributes examined.

Discussion

The divide-and-conquer approach to decision tree induction, sometimes called
top-down induction of decision trees, was developed and refined over many years
by J. Ross Quinlan of the University of Sydney, Australia. Although others have
worked on similar methods, Quinlan’s research has always been at the very fore-
front of decision tree induction. The method that has been described using the
information gain criterion is essentially the same as one known as ID3. The use
of the gain ratio was one of many improvements that were made to ID3 over
several years; Quinlan described it as robust under a wide variety of circum-
stances. Although a robust and practical solution, it sacrifices some of the ele-
gance and clean theoretical motivation of the information gain criterion.

A series of improvements to ID3 culminated in a practical and influential
system for decision tree induction called C4.5. These improvements include
methods for dealing with numeric attributes, missing values, noisy data, and
generating rules from trees, and they are described in Section 6.1.

Covering algorithms: Constructing rules

As we have seen, decision tree algorithms are based on a divide-and-conquer
approach to the classification problem. They work from the top down, seeking
at each stage an attribute to split on that best separates the classes; then recur-
sively processing the subproblems that result from the split. This strategy
generates a decision tree, which can if necessary be converted into a set of clas-
sification rules—although if it is to produce effective rules, the conversion is not
trivial.

An alternative approach is to take each class in turn and seek a way of cov-
ering all instances in it, at the same time excluding instances not in the class.
This is called a covering approach because at each stage you identify a rule that
“covers” some of the instances. By its very nature, this covering approach leads
to a set of rules rather than to a decision tree.

The covering method can readily be visualized in a two-dimensional space
of instances as shown in Figure 4.6(a). We first make a rule covering thea’s. For
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Figure 4.6 Covering algorithm: (a) covering the instances and (b) the decision tree for
the same problem.

the first test in the rule, split the space vertically as shown in the center picture.
This gives the beginnings of a rule:

If x > 1.2 then class= a

However, the rule covers many b’s as well as a’s, so a new test is added to the
rule by further splitting the space horizontally as shown in the third diagram:

If x> 1.2 and y > 2.6 then class= a

This gives a rule covering all but one of thea’s. It’s probably appropriate to leave
it at that, but if it were felt necessary to cover the final g, another rule would be
necessary—perhaps

If x> 1.4 and y < 2.4 then class= a
The same procedure leads to two rules covering the b’s:

If x £ 1.2 then class=Db
If x> 1.2 and y < 2.6 then class= Db
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Again, one a is erroneously covered by these rules. If it were necessary to exclude
it, more tests would have to be added to the second rule, and additional rules
would need to be introduced to cover the b’s that these new tests exclude.

Rules versus trees

A top-down divide-and-conquer algorithm operates on the same data in a
manner that is, at least superficially, quite similar to a covering algorithm. It
might first split the dataset using the x attribute and would probably end up
splitting it at the same place, x = 1.2. However, whereas the covering algorithm
is concerned only with covering a single class, the division would take both
classes into account, because divide-and-conquer algorithms create a single
concept description that applies to all classes. The second split might also be at
the same place, y = 2.6, leading to the decision tree in Figure 4.6(b). This tree
corresponds exactly to the set of rules, and in this case there is no difference in
effect between the covering and the divide-and-conquer algorithms.

But in many situations there is a difference between rules and trees in terms
of the perspicuity of the representation. For example, when we described the
replicated subtree problem in Section 3.3, we noted that rules can be symmet-
ric whereas trees must select one attribute to split on first, and this can lead to
trees that are much larger than an equivalent set of rules. Another difference is
that, in the multiclass case, a decision tree split takes all classes into account,
trying to maximize the purity of the split, whereas the rule-generating method
concentrates on one class at a time, disregarding what happens to the other
classes.

A simple covering algorithm

Covering algorithms operate by adding tests to the rule that is under construc-
tion, always striving to create a rule with maximum accuracy. In contrast, divide-
and-conquer algorithms operate by adding tests to the tree that is under
construction, always striving to maximize the separation among the classes.
Each of these involves finding an attribute to split on. But the criterion for the
best attribute is different in each case. Whereas divide-and-conquer algorithms
such as ID3 choose an attribute to maximize the information gain, the cover-
ing algorithm we will describe chooses an attribute—value pair to maximize the
probability of the desired classification.

Figure 4.7 gives a picture of the situation, showing the space containing all
the instances, a partially constructed rule, and the same rule after a new term
has been added. The new term restricts the coverage of the rule: the idea is to
include as many instances of the desired class as possible and exclude as many
instances of other classes as possible. Suppose the new rule will cover a total of
t instances, of which p are positive examples of the class and t — p are in other
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space of examples
rule so far

rule after adding new term

Figure 4.7 The instance space during operation of a covering algorithm.

classes—that is, they are errors made by the rule. Then choose the new term to
maximize the ratio p/t.

An example will help. For a change, we use the contact lens problem of Table
1.1. We will form rules that cover each of the three classes, hard, soft, and none,
in turn. To begin, we seek a rule:

If ? then recommendation= hard

For the unknown term ?, we have nine choices:

age = young 2/8
age = pre-presbyopic 1/8
age = presbyopic 1/8
spectacle prescription= myope 3/12
spectacle prescription= hypermetrope 1/12
astigmatism= no 0/12
astigmatism= yes 4/12
tear production rate= reduced 0/12
tear production rate= normal 4/12

The numbers on the right show the fraction of “correct” instances in the set
singled out by that choice. In this casecorrect means that the recommendation is
hard. For instance, age = young selects eight instances, two of which recommend
hard contact lenses, so the first fraction is 2/8. (To follow this, you will need to
look back at the contact lens data in Table 1.1 on page 6 and count up the entries
in the table.) We select the largest fraction, 4/12, arbitrarily choosing between
the seventh and the last choice in the preceding list, and create the rule:

If astigmatism= yes then recommendation= hard

This rule is an inaccurate one, getting only 4 instances correct out of the 12
that it covers, shown in Table 4.8. So we refine it further:

If astigmatism= yes and ? then recommendatior= hard
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4.4
Table 4.8 Part of the contact lens data for which astigmatism = yes.
Age Spectacle Astigmatism Tear production Recommended
prescription rate lenses

young myope yes reduced none
young myope yes normal hard
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-preshyopic myope yes reduced none
pre-preshyopic myope yes normal hard
pre-preshyopic hypermetrope yes reduced none
pre-preshyopic hypermetrope yes normal none
preshyopic myope yes reduced none
preshyopic myope yes normal hard
preshyopic hypermetrope yes reduced none
preshyopic hypermetrope yes normal none

Considering the possibilities for the unknown term ? yields the seven choices:

age = young

age = pre-presbyopic

age = presbyopic

spectacle prescription= myope

spectacle prescription= hypermetrope

tear production rate= reduced

tear production rate= normal

2/4
1/4
1/4
3/6
1/6
0/6
4/6

(Again, count the entries in Table 4.8.) The last is a clear winner, getting four
instances correct out of the six that it covers, and corresponds to the rule

If astigmatism= yes and tear production rate= normal

then recommendation= hard

Should we stop here? Perhaps. But let’s say we are going for exact rules, no
matter how complex they become. Table 4.9 shows the cases that are covered by
the rule so far. The possibilities for the next term are now

age

young

age = pre-presbyopic

age = presbyopic

spectacle prescription= myope

spectacle prescription= hypermetrope

212
172
172
3/3
1/3

We need to choose between the first and fourth. So far we have treated the frac-
tions numerically, but although these two are equal (both evaluate to 1), they
have different coverage: one selects just two correct instances and the other
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Table 4.9 Part of the contact lens data for which astigmatism = yes and tear
production rate = normal.

Age Spectacle Astigmatism Tear production Recommended
prescription rate lenses
young myope yes normal hard
young hypermetrope yes normal hard
pre-preshyopic myope yes normal hard
pre-preshyopic hypermetrope yes normal none
preshyopic myope yes normal hard
presbyopic hypermetrope yes normal none

selects three. In the event of a tie, we choose the rule with the greater coverage,
giving the final rule:

If astigmatism= yes and tear production rate= normal
and spectacle prescription= myope then recommendation= hard

This is indeed one of the rules given for the contact lens problem. But it only
covers three of the four hard recommendations. So we delete these three from
the set of instances and start again, looking for another rule of the form:

If ? then recommendation= hard

Following the same process, we will eventually find that age = young is the best
choice for the first term. Its coverage is seven; the reason for the seven is that 3
instances have been removed from the original set, leaving 21 instances alto-
gether. The best choice for the second term is astigmatism = yes, selecting 1/3
(actually, this is a tie); tear production rate = normal is the best for the third,
selecting 1/1.

If age = young and astigmatism= yes and
tear production rate= normal then recommendation= hard

This rule actually covers three of the original set of instances, two of which are
covered by the previous rule—but that’s all right because the recommendation
is the same for each rule.

Now that all the hard-lens cases are covered, the next step is to proceed with
the soft-lens ones in just the same way. Finally, rules are generated for the none
case—unless we are seeking a rule set with a default rule, in which case explicit
rules for the final outcome are unnecessary.

What we have just described is the PRISM method for constructing rules. It
generates only correct or “perfect” rules. It measures the success of a rule by the
accuracy formula p/t. Any rule with accuracy less than 100% is “incorrect” in
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that it assigns cases to the class in question that actually do not have that class.
PRISM continues adding clauses to each rule until it is perfect: its accuracy is
100%. Figure 4.8 gives a summary of the algorithm. The outer loop iterates over
the classes, generating rules for each class in turn. Note that we reinitialize to
the full set of examples each time round. Then we create rules for that class and
remove the examples from the set until there are none of that class left. When-
ever we create a rule, start with an empty rule (which covers all the examples),
and then restrict it by adding tests until it covers only examples of the desired
class. At each stage choose the most promising test, that is, the one that maxi-
mizes the accuracy of the rule. Finally, break ties by selecting the test with great-
est coverage.

Rules versus decision lists

Consider the rules produced for a particular class, that is, the algorithm in Figure
4.8 with the outer loop removed. It seems clear from the way that these rules
are produced that they are intended to be interpreted in order, that is, as a deci-
sion list, testing the rules in turn until one applies and then using that. This is
because the instances covered by a new rule are removed from the instance set
as soon as the rule is completed (in the third line from the end of the code in
Figure 4.8): thus subsequent rules are designed for instances that arenot covered
by the rule. However, although it appears that we are supposed to check the rules
in turn, we do not have to do so. Consider that any subsequent rules generated
for this class will have the same effect—they all predict the same class. This
means that it does not matter what order they are executed in: either a rule will

For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A=v to the LHS of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)
Add A=v to R

Remove the instances covered by R from E

Figure 4.8 Pseudocode for a basic rule learner.
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Abstract

The k-means algorithm is by far the most widely
used method for discovering clusters in data. We
show how to accelerate it dramatically, while
still always computing exactly the same result
as the standard algorithm. The accelerated al-
gorithm avoids unnecessary distance calculations
by applying the triangle inequality in two differ-
ent ways, and by keeping track of lower and up-
per bounds for distances between points and cen-
ters. Experiments show that the new algorithm
is effective for datasets with up to 1000 dimen-
sions, and becomes more and more effective as
the number k of clusters increases. For k& > 20
it is many times faster than the best previously
known accelerated k-means method.

1. Introduction

The most common method for finding clusters in data used
in applications is the algorithm known as k-means. k-
means is considered a fast method because it is not based
on computing the distances between all pairs of data points.
However, the algorithm is still slow in practice for large
datasets. The number of distance computations is nke
where n is the number of data points, k is the number of
clusters to be found, and e is the number of iterations re-
quired. Empirically, e grows sublinearly with &, n, and the
dimensionality d of the data.

The main contribution of this paper is an optimized version
of the standard k-means method, with which the number
of distance computations is in practice closer to n than to
nke.

The optimized algorithm is based on the fact that most dis-
tance calculations in standard k-means are redundant. If a
point is far away from a center, it is not necessary to cal-
culate the exact distance between the point and the center
in order to know that the point should not be assigned to
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this center. Conversely, if a point is much closer to one
center than to any other, calculating exact distances is not
necessary to know that the point should be assigned to the
first center. We show below how to make these intuitions
concrete.

We want the accelerated k-means algorithm to be usable
wherever the standard algorithm is used. Therefore, we
need the accelerated algorithm to satisfy three properties.
First, it should be able to start with any initial centers, so
that all existing initialization methods can continue to be
used. Second, given the same initial centers, it should al-
ways produce exactly the same final centers as the standard
algorithm. Third, it should be able to use any black-box
distance metric, so it should not rely for example on opti-
mizations specific to Euclidean distance.

Our algorithm in fact satisfies a condition stronger than the
second one above: after each iteration, it produces the same
set of center locations as the standard k-means method.
This stronger property means that heuristics for merging or
splitting centers (and for dealing with empty clusters) can
be used together with the new algorithm. The third condi-
tion is important because many applications use a domain-
specific distance metric. For example, clustering to identify
duplicate alphanumeric records is sometimes based on al-
phanumeric edit distance (Monge & Elkan, 1996), while
clustering of protein structures is often based on an expen-
sive distance function that first rotates and translates struc-
tures to superimpose them. Even without a domain-specific
metric, recent work shows that using a non-traditional L,
norm with 0 < p < 1 is beneficial when clustering in a
high-dimensional space (Aggarwal et al., 2001).

This paper is organized as follows. Section 2 explains how
to use the triangle inequality to avoid redundant distance
calculations. Then Section 3 presents the new algorithm,
and Section 4 discusses experimental results on six datasets
of dimensionality 2 to 1000. Section 5 outlines possible im-
provements to the method, while Section 6 reviews related
work, and Section 7 explains three open research issues.
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2. Applying the triangle inequality

Our approach to accelerating k-means is based on the tri-
angle inequality: for any three points z, ¥, and z, d(z, z) <
d(x,y)+d(y, z). This is the only “black box” property that
all distance metrics d possess.

The difficulty is that the triangle inequality gives upper
bounds, but we need lower bounds to avoid calculations.
Let z be a point and let b and ¢ be centers; we need to
know that d(z,c) > d(z,b) in order to avoid calculating
the actual value of d(z, ¢).

The following two lemmas show how to use the triangle
inequality to obtain useful lower bounds.

Lemma 1: Let z be a point and let b and ¢ be centers. If
d(b,c) > 2d(z,b) then d(z,c) > d(x,b).

Proof: We know that d(b,c) < d(b,z) + d(z,c). So
d(b,c) — d(z,b) < d(z,c). Consider the left-hand side:
d(b,c) — d(z,b) > 2d(z,b) — d(z,b) = d(z,b). So
d(z,b) <d(z,c).m

Lemma 2: Let = be a point and let b and ¢ be centers.
Then d(z,¢) > max{0,d(z,b) — d(b,c)}.

Proof: We know that d(z,b) < d(z,¢) + d(b,c), so
d(z,c) > d(z,b) — d(b,c). Also, d(z,¢) > 0. m

Note that Lemmas 1 and 2 are true for any three points,
not just for a point and two centers, and the statement of
Lemma 2 can be strengthened in various ways.

We use Lemma 1 as follows. Let z be any data point, let
¢ be the center to which z is currently assigned, and let ¢/
be any other center. The lemma says that if d(c,c') >
d(x,c), then d(z,c') > d(x,c). In this case, it is not nec-
essary to calculate d(z, c').

Suppose that we do not know d(z,c) exactly, but we do
know an upper bound u such that u > d(x,c). Then we
need to compute d(z, ¢') and d(z, c) only if u > d(c,c’).

Ifu < % min d(c, ¢') where the minimum is over all ¢’ # ¢,
then the point £ must remain assigned to the center ¢, and
all distance calculations for = can be avoided.

Lemma 2 is applied as follows. Let  be any data point,
let b be any center, and let b’ be the previous version of the
same center. (That is, suppose the centers are numbered 1
through &, and b is center number j; then b’ is center num-
ber j in the previous iteration.) Suppose that in the previous
iteration we knew a lower bound I’ such that d(z, b') > I'.
Then we can infer a lower bound [ for the current iteration:

d(z,b) > max{0,d(z,b") — d(b,b")}
> max{0,’ — d(b,b')} = L.

Informally, if I’ is a good approximation to the previous

distance between z and the jth center, and this center has
moved only a small distance, then [ is a good approxima-
tion to the updated distance.

The algorithm below is the first k-means variant that uses
lower bounds, as far as we know. It is also the first al-
gorithm that carries over varying information from one k-
means iteration to the next. According to the authors of
(Kanungo et al., 2000): “The most obvious source of in-
efficiency in [our] algorithm is that it passes no informa-
tion from one stage to the next. Presumably in the later
stages of Lloyd’s algorithm, as the centers are converging
to their final positions, one would expect that the vast ma-
jority of the data points have the same closest center from
one stage to the next. A good algorithm would exploit this
coherence to improve running time.” The algorithm in this
paper achieves this goal. One previous algorithm also re-
uses information from one k-means iteration in the next,
but that method, due to (Judd et al., 1998), does not carry
over lower or upper bounds.

Suppose u(z) > d(z,c) is an upper bound on the dis-
tance between z and the center ¢ to which z is currently
assigned, and suppose [(z,¢') < d(z,c’) is a lower bound
on the distance between z and some other center ¢'. If
u(z) < l(z,c) then d(z,c) < u(z) < I(z,d) < d(,d)
so it is necessary to calculate neither d(z,¢) nor d(z,c').
Note that it will never be necessary in this iteration of the
accelerated method to compute d(x, ¢'), but it may be nec-
essary to compute d(z,c) exactly because of some other
center ¢’ for which u(z) < I(z,c") is not true.

3. The new algorithm

Putting the observations above together, the accelerated k-
means algorithm is as follows.

First, pick initial centers. Set the lower bound I(z,c) = 0
for each point z and center c. Assign each z to its closest
initial center ¢(z) = argmin, d(z,¢c), using Lemma 1 to
avoid redundant distance calculations. Each time d(z, ¢)
is computed, set I(x,¢) = d(z,c). Assign upper bounds
u(z) = min. d(z, ¢).

Next, repeat until convergence:
1. For all centers ¢ and ¢', compute d(c, ¢'). For all cen-
ters ¢, compute s(¢) = 1 ming. d(c, ).
2. Identify all points z such that u(z) < s(c(z)).

3. For all remaining points z and centers c such that
(i) ¢ # c¢(x) and
(ii) u(z) > I(z,c) and
(i) u(z) > 3d(c(z),0):



3a. If r(z) then compute d(z,c(z)) and assign
r(x) = false. Otherwise, d(z, ¢(x)) = u(z).
3b. If d(z,c(x)) > l(z,c)
or d(z,c(z)) > 2d(c(z), c) then
Compute d(z, c)
If d(z, ¢) < d(z,c(x)) then assign ¢(z) = c.

4. For each center ¢, let m(c) be the mean of the points
assigned to c.

5. For each point 2 and center c, assign
l(z,c) = max{l(z,c) — d(c,m(c)),0}.
6. For each point z, assign

u(z) = u(x) + d(m(c(z)), c(z))
r(z) = true.

7. Replace each center ¢ by m(c).

In step (3), each time d(z, ¢) is calculated for any z and c,
its lower bound is updated by assigning I(z, ¢) = d(z, c).
Similarly, u(z) is updated whenever ¢(z) is changed or
d(z,c(x)) is computed. In step (3a), if r(z) is true
then u(z) is out-of-date, i.e. it is possible that u(x) #
d(x,c(x)). Otherwise, computing d(x,c(zx)) is not nec-
essary. Step (3b) repeats the checks from (ii) and (iii) in
order to avoid computing d(z, c) if possible.

The fundamental reason why the algorithm above is effec-
tive in reducing the number of distance calculations is that
at the start of each iteration, the upper bounds u(z) and the
lower bounds I(z, ¢) are tight for most points z and centers
c. If these bounds are tight at the start of one iteration, the
updated bounds tend to be tight at the start of the next it-
eration, because the location of most centers changes only
slightly, and hence the bounds change only slightly.

The initialization step of the algorithm assigns each point
to its closest center immediately. This requires relatively
many distance calculations, but it leads to exact upper
bounds u(z) for all z and to exact lower bounds I(z, ¢) for
many (, ¢) pairs. An alternative initialization method is to
start with each point arbitrarily assigned to one center. The
initial values of u(x) and (¢, z) are then based on distances
calculated to this center only. With this approach, the ini-
tial number of distance calculations is only n, but u(z) and
I(c, ) are much less tight initially, so more distance calcu-
lations are required later. (After each iteration each point is
always assigned correctly to its closest center, regardless of
how inaccurate the lower and upper bounds are at the start
of the iteration.) Informal experiments suggest that both
initialization methods lead to about the same total number
of distance calculations.

Logically, step (2) is redundant because its effect is
achieved by condition (iii). Computationally, step (2) is

beneficial because if it eliminates a point z from further
consideration, then comparing u(z) to I(z, ¢) for every ¢
separately is not necessary. Condition (iii) inside step (3)
is beneficial despite step (2), because u(z) and ¢(x) may
change during the execution of step (3).

We have implemented the algorithm above in Matlab.
When step (3) is implemented with nested loops, the outer
loop can be over z or over c. For efficiency in Matlab and
similar languages, the outer loop should be over ¢ since
k < n typically, and the inner loop should be replaced by
vectorized code that operates on all relevant z collectively.

Step 4 computes the new location of each cluster center c.
Setting m(c) to be the mean of the points assigned to ¢ is
appropriate when the distance metric in use is Euclidean
distance. Otherwise, m(c) may be defined differently. For
example, with k-medians the new center of each cluster is
a representative member of the cluster.

4. Experimental results

This section reports the results of running the new al-
gorithm on six large datasets, five of which are high-
dimensional. The datasets are described in Table 1, while
Table 2 gives the results.

Our experimental design is similar to the design of (Moore,
2000), which is the best recent paper on speeding up the
k-means algorithm for high-dimensional data. However,
there is only one dataset used in (Moore, 2000) for which
the raw data are available and enough information is given
to allow the dataset to be reconstructed. This dataset is
called “covtype.” Therefore, we also use five other publicly
available datasets. None of the datasets have missing data.

In order to make our results easier to reproduce, we use a
fixed initialization for each dataset X. The first center is
initialized to be the mean of X. Subsequent centers are
initialized according to the “furthest first” heuristic: each
new center is argmax, . x min.cc d(z, c) where C is the
set of initial centers chosen so far (Dasgupta, 2002).

Following the practice of past research, we measure the
performance of an algorithm on a dataset as the number
of distance calculations required. All algorithms that ac-
celerate k-means incur overhead to create and update aux-
iliary data structures. This means that speedup compared
to k-means is always less in clock time than in number of
distance calculations. Our algorithm reduces the number of
distance calculations so dramatically that its overhead time
is often greater than the time spent on distance calculations.
However, the total execution time is always much less than
the time required by standard k-means. The overhead of
the [ and u data structures will be much smaller with a C
implementation than with the Matlab implementation used



name cardinality | dimensionality | description

birch 100000 2 | 10 by 10 grid of Gaussian clusters, DS1 in (Zhang et al., 1996)
covtype 150000 54 | remote soil cover measurements, after (Moore, 2000)

kddcup 95413 56 | KDD Cup 1998 data, un-normalized

mnist50 60000 50 | random projection of NIST handwritten digit training data
mnist784 60000 784 | original NIST handwritten digit training data

random 10000 1000 | uniform random data

Table 1. Datasets used in experiments.

k=3 k=20 k =100

birch iterations 17 38 56
standard  5.100e+06  7.600e+07 5.600e+08

fast 4.495e+05 1.085e+06 1.597e+06

speedup 113 70.0 351

covtype iterations 18 256 152
standard  8.100e+06 7.680e+08 2.280e+09

fast 9.416e+05 7.147e+06 7.353e+06

speedup 8.60 107 310

kddcup iterations 34 100 325
standard  9.732e+06 1.908e+08 3.101e+09

fast 6.179¢+05 3.812e+06 1.005e+07

speedup 154 50.1 309

mnist50 iterations 38 178 217
standard  6.840e+06 2.136e+08 1.302e+09

fast 1.573e+06 9.353e+06 3.159e+07

speedup 435 22.8 412

mnist784  iterations 63 60 165
standard  1.134e+07 7.200e+07 9.900e+08

fast 1.625¢+06 7.396e+06 3.055e+07

speedup 6.98 9.73 324

random iterations 52 33 18
standard  1.560e+06 6.600e+06 1.800e+07

fast 1.040e+06 3.020e+06 5.348e+06

speedup 1.50 2.19 3.37

Table 2. Rows labeled ‘standard”and ‘fast” give the number of distance calculations performed by the unaccelerated k-means algorithm
and by the new algorithm. Rows labeled ‘speedup” show how many times faster the new algorithm is, when the unit of measurement is
distance calculations.



for the experiments reported here. For this reason, clock
times are not reported.

Perhaps the most striking observation to be made from Ta-
ble 2 is that the relative advantage of the new method in-
creases with k. The number of distance calculations grows
only slowly with £ and with e (the number of passes over
the data, called “iterations” in Table 2). So much redundant
computation is eliminated that the total number of distance
calculations is closer to n than to nke as for standard k-
means.

A related observation is that for k& > 20 we obtain a
much better speedup than with the anchors method (Moore,
2000). The speedups reported by Moore for the “covtype”
dataset are 24.8, 11.3, and 19.0 respectively for cluster-
ing with 3, 20, and 100 centers. The speedups we obtain
are 8.60, 107, and 310. We conjecture that the improved
speedup for k£ > 20 arises in part from using the actual
cluster centers as adaptive “anchors,” instead of using a set
of anchors fixed in preprocessing. The worse speedup for
k = 3 remains to be explained.

Another striking observation is that the new method re-
mains effective even for data with very high dimension-
ality. Moore writes “If there is no underlying structure in
the data (e.g. if it is uniformly distributed) there will be lit-
tle or no acceleration in high dimensions no matter what
we do. This gloomy view, supported by recent theoreti-
cal work in computational geometry (Indyk et al., 1999),
means that we can only accelerate datasets that have in-
teresting internal structure.” While this claim is almost
certainly true asymptotically as the dimension of a dataset
tends to infinity, our results on the “random” dataset sug-
gest that worthwhile speedup can still be obtained up to at
least 1000 dimensions. As expected, the more clustered a
dataset is, the greater the speedup obtained. Random pro-
jection makes clusters more Gaussian (Dasgupta, 2000),
so speedup is better for the “mnist50” dataset than for the
“mnist784” dataset.

5. Limitations and extensions

During each iteration of the algorithm proposed here, the
lower bounds I(z, ¢) are updated for all points - and centers
c. These updates take O(nk) time, so the time complexity
of the algorithm remains at least O(nke) even though the
number of distance calculations is roughly O(n) only. It
may be possible to avoid updating many lower bounds in
most iterations, and hence to reduce the nominal complex-
ity of the algorithm. Note that if a point = is eliminated
from further consideration in step (2), then I(z,c) is not
used at all.

In some clustering applications, k& > d. This is the case
in particular for vector quantization for image compres-

sion. For these applications the memory required to store
the lower bounds I (z, ¢) may be the dominant storage cost.
However, the entire matrix I(z, c) never needs to be kept
in main memory. If the data are streamed into memory at
each iteration from disk, then the I(z, ¢) matrix can also be
streamed into memory in synchrony.

Moreover, the algorithm remains beneficial even if lower
bounds are not used, so condition (ii) becomes u(x) >
d(z, c), where d(z, ¢) is computed if necessary.

When the algorithm is used with a distance function that
is fast to evaluate, such as an L, norm, then in practice
the time complexity of the algorithm is dominated by the
bookkeeping used to avoid distance calculations. There-
fore, future work should focus on reducing this overhead.

The point above is especially true because a Euclidean dis-
tance (or other L, distance) in d dimensions can often be
compared to a known minimum distance in o(d) time. The
simple idea is to stop evaluating the new squared distance
when the sum of squares so far is greater than the known
squared minimum distance. (This suggestion is usually as-
cribed to (Bei & Gray, 1985), but in fact it is first men-
tioned in (Cheng et al., 1984).) Distance calculations can
be stopped even quicker if axes of high variation are con-
sidered first. Axes of maximum variation may be found
by principal component analysis (PCA) (McNames, 2000),
but the preprocessing cost of PCA may be prohibitive.

At the end of each iteration, centers must be recomputed.
Computing means takes O(nd) time independent of k.
This can be reduced to O((k + b)d) time where b is the
number of points assigned to a different center during the
iteration. Typically b < n in all except the first few itera-
tions. As mentioned above, the algorithm of this paper can
also be used when centers are not recomputed as means.

During each iteration, distances between all centers must
be recomputed, so the minimum number of distance com-
putations per iteration is k(k — 1)/2. For large k, as in
vector quantization, this may be a dominant expense. Fu-
ture research should investigate the best way to reduce
this cost by computing approximations for inter-center dis-
tances that are large.

6. Related work

Many papers have been published on the topic of acceler-
ating the k-means algorithm, in several different research
communities. Some of the most important of these papers
are described briefly in this section. Most of the papers
cited below only cite previous papers from the same re-
search community, so one of the contributions of this paper
is an attempt to collect references that otherwise cannot be
found in one place. All the relevant papers that we know



of can be found by following chains of citations from the
papers mentioned here.

A version of the k-means algorithm was first published by
(MacQueen, 1965). The history of different variants of the
algorithm is discussed by (Faber, 1994). The basic algo-
rithm used most commonly today, and used in this paper,
where centers are recomputed once after each pass through
the data, is usually attributed to a paper written by Lloyd in
1957 but not published until 1982 (Lloyd, 1982). However,
that paper only discusses quantization (i.e. clustering) for
some special one-dimensional cases.

The central operation in the k-means algorithm is to find
the nearest center for each data point. At least three gen-
eral approaches have been developed for accelerating this
operation.

One general approach is based on locality-sensitive hash-
ing (Indyk & Motwani, 1998), but these methods are not
well-suited for finding exact nearest neighbors. A second
general approach organizes points into trees where nearby
points are in the same subtree. Approaches using kd-trees
or similar have been proposed independently by several au-
thors (Ramasubramanian & Paliwal, 1990; Deng & Moore,
1993; Pelleg & Moore, 1999; Alsabti et al., 1998; Kanungo
et al., 2000), but these methods are not effective for d > 10
about. By using metric trees Moore’s “anchors” method is
effective for much larger d (Moore, 2000).

The third general approach to the nearest neighbor task is to
use triangle inequalities to eliminate unnecessary distance
calculations. Using Lemma 1 above appears to have been
proposed first by (Hodgson, 1988), then again indepen-
dently by (Orchard, 1991; Montolio et al., 1992; Phillips,
2002) among others. Our application of Lemma 1 is more
fine-grained than previous applications. The lemma says
that if d(z,c) < id(c,c'), then d(z,c) < d(z,c'). The
algorithm of (Hodgson, 1988) only considers the center ¢’
that is closest to c. If d(z,¢) < d(c,c')/2 for this ¢ then
z remains assigned to c. Otherwise, no distance calcula-
tions are eliminated. Our algorithm applies the lemma for
every center different from c, so for most £ some distance
calculations are avoided, even if others must be performed.

Variants of Lemma 2 have been used by many authors,
starting with (Burkhard & Keller, 1973; Vidal, 1986), but
using the lemma to update a lower bound on the distance
between moving points appears to be novel.

The triangle inequality applies to all distance metrics.
Many papers have also been published on speeding up k-
means or nearest neighbor search using inequalities that are
specific for Euclidean distance, for example (Wu & Lin,
2000; Mielikainen, 2002).

Many papers have been published on on approximating k-

means quickly; well-known papers include (Zhang et al.,
1996; Farnstrom et al., 2000). However, the exact algo-
rithm presented here is so fast that it is not clear when an
approximate algorithm is necessary.

7. Open issues

A basic open theoretical question is whether one can find a
lower bound on how many distance calculations are needed
by any implementation of exact k-means. Can one con-
struct an adversary argument showing that if any algo-
rithm omits certain distance computations, then an oppo-
nent can choose values for these distances that, together
with all other distances, satisfy the triangle inequality, yet
also make the output of the algorithm incorrect?

Perhaps the most fundamental practical question for future
work is how to find better clusterings, i.e. better local op-
tima. Now that we can run k-means fast, how can we use
additional computation to get answers of better quality?

One common approach to finding better local optima is to
run k-means with many different initializations. The al-
gorithm above allows many more initializations to be tried
in the same total time. Another widespread heuristic for
finding better clusterings is to run k-means with a large
value for k, and then to merge or prune the clusters ob-
tained into a good clustering with smaller k. Since our al-
gorithm makes the running time of k-means sublinear in k,
it is especially useful for this approach.

A third important open question is how to accelerate clus-
tering methods that use soft assignment of points to cen-
ters. Two important methods in this class are Gaussian
expectation-maximization (EM) (Dempster et al., 1977)
and harmonic k-means (Hamerly & Elkan,2002). In these
methods each center is recomputed as the weighted aver-
age of all points, where weights are related to distances.
Can triangle inequalities (or other inequalities!) be applied
to obtain upper bounds on weights that are close to zero,
and hence to obtain approximate soft assignment solutions
quickly?
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When the dataset is known in advance to contain correlated attributes, the
independence assumption no longer holds. Instead, two attributes can be
modeled jointly using a bivariate normal distribution, in which each has its own
mean value but the two standard deviations are replaced by a “covariance
matrix” with four numeric parameters. There are standard statistical techniques
for estimating the class probabilities of instances and for estimating the
means and covariance matrix given the instances and their class probabilities.
Several correlated attributes can be handled using a multivariate distribution.
The number of parameters increases with the square of the number of jointly
varying attributes. With »n independent attributes, there are 2n parameters, a
mean and a standard deviation for each. With n covariant attributes, there are
n+ n(n+ 1)/2 parameters, a mean for each and an n X n covariance matrix that
is symmetric and therefore involves n(n + 1)/2 different quantities. This escala-
tion in the number of parameters has serious consequences for overfitting, as
we will explain later.

To cater for nominal attributes, the normal distribution must be abandoned.
Instead, a nominal attribute withv possible values is characterized byv numbers
representing the probability of each one. A different set of numbers is needed
for every class; kv parameters in all. The situation is very similar to the
Naive Bayes method. The two steps of expectation and maximization corre-
spond exactly to operations we have studied before. Expectation—estimating
the cluster to which each instance belongs given the distribution parameters—
is just like determining the class of an unknown instance. Maximization—
estimating the parameters from the classified instances—is just like determin-
ing the attribute—value probabilities from the training instances, with the
small difference that in the EM algorithm instances are assigned to classes
probabilistically rather than categorically. In Section 4.2 we encountered
the problem that probability estimates can turn out to be zero, and the same
problem occurs here too. Fortunately, the solution is just as simple—use the
Laplace estimator.

Naive Bayes assumes that attributes are independent—that is why it is called
“naive.” A pair of correlated nominal attributes with v, and v, possible values,
respectively, can be replaced with a single covariant attribute with v,v, possible
values. Again, the number of parameters escalates as the number of dependent
attributes increases, and this has implications for probability estimates and over-
fitting that we will come to shortly.

The presence of both numeric and nominal attributes in the data to be clus-
tered presents no particular problem. Covariant numeric and nominal attrib-
utes are more difficult to handle, and we will not describe them here.

Missing values can be accommodated in various different ways. Missing
values of nominal attributes can simply be left out of the probability calcula-
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tions, as described in Section 4.2; alternatively they can be treated as an addi-
tional value of the attribute, to be modeled as any other value. Which is more
appropriate depends on what it means for a value to be “missing.” Exactly the
same possibilities exist for numeric attributes.

With all these enhancements, probabilistic clustering becomes quite sophis-
ticated. The EM algorithm is used throughout to do the basic work. The user
must specify the number of clusters to be sought, the type of each attribute
(numeric or nominal), which attributes are modeled as covarying, and what
to do about missing values. Moreover, different distributions than the ones
described previously can be used. Although the normal distribution is usually
a good choice for numeric attributes, it is not suitable for attributes (such as
weight) that have a predetermined minimum (zero, in the case of weight) but
no upper bound; in this case a “log-normal” distribution is more appropriate.
Numeric attributes that are bounded above and below can be modeled by a
“log-odds” distribution. Attributes that are integer counts rather than real values
are best modeled by the “Poisson” distribution. A comprehensive system might
allow these distributions to be specified individually for each attribute. In each
case, the distribution involves numeric parameters—probabilities of all possi-
ble values for discrete attributes and mean and standard deviation for continu-
ous ones.

In this section we have been talking about clustering. But you may be
thinking that these enhancements could be applied just as well to the Naive
Bayes algorithm too—and you’d be right. A comprehensive probabilistic
modeler could accommodate both clustering and classification learning,
nominal and numeric attributes with a variety of distributions, various possi-
bilities of covariation, and different ways of dealing with missing values. The
user would specify, as part of the domain knowledge, which distributions to use
for which attributes.

Bayesian clustering

However, there is a snag: overfitting. You might say that if we are not sure which
attributes are dependent on each other, why not be on the safe side and specify
that all the attributes are covariant? The answer is that the more parameters
there are, the greater the chance that the resulting structure is overfitted to the
training data—and covariance increases the number of parameters dramati-
cally. The problem of overfitting occurs throughout machine learning, and
probabilistic clustering is no exception. There are two ways that it can occur:
through specifying too large a number of clusters and through specifying dis-
tributions with too many parameters.

The extreme case of too many clusters occurs when there is one for every
data point: clearly, that will be overfitted to the training data. In fact, in the
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mixture model, problems will occur whenever any of the normal distributions
becomes so narrow that it is centered on just one data point. Consequently,
implementations generally insist that clusters contain at least two different data
values.

Whenever there are a large number of parameters, the problem of overfitting
arises. If you were unsure of which attributes were covariant, you might try out
different possibilities and choose the one that maximized the overall probabil-
ity of the data given the clustering that was found. Unfortunately, the more
parameters there are, the larger the overall data probability will tend to be—not
necessarily because of better clustering but because of overfitting. The more
parameters there are to play with, the easier it is to find a clustering that seems
good.

It would be nice if somehow you could penalize the model for introducing
new parameters. One principled way of doing this is to adopt a fully Bayesian
approach in which every parameter has a prior probability distribution. Then,
whenever a new parameter is introduced, its prior probability must be incor-
porated into the overall likelihood figure. Because this will involve multiplying
the overall likelihood by a number less than one—the prior probability—it will
automatically penalize the addition of new parameters. To improve the overall
likelihood, the new parameters will have to yield a benefit that outweighs the
penalty.

In a sense, the Laplace estimator that we met in Section 4.2, and whose use
we advocated earlier to counter the problem of zero probability estimates for
nominal values, is just such a device. Whenever observed probabilities are small,
the Laplace estimator exacts a penalty because it makes probabilities that are
zero, or close to zero, greater, and this will decrease the overall likelihood of the
data. Making two nominal attributes covariant will exacerbate the problem.
Instead of v, + v, parameters, where v, and v, are the number of possible values,
there are now v,v,, greatly increasing the chance of a large number of small esti-
mated probabilities. In fact, the Laplace estimator is tantamount to using a par-
ticular prior distribution for the introduction of new parameters.

The same technique can be used to penalize the introduction of large
numbers of clusters, just by using a prespecified prior distribution that decays
sharply as the number of clusters increases.

AutoClass is a comprehensive Bayesian clustering scheme that uses the finite
mixture model with prior distributions on all the parameters. It allows both
numeric and nominal attributes and uses the EM algorithm to estimate the
parameters of the probability distributions to best fit the data. Because there is
no guarantee that the EM algorithm converges to the global optimum, the pro-
cedure is repeated for several different sets of initial values. But that is not all.
AutoClass considers different numbers of clusters and can consider different
amounts of covariance and different underlying probability distribution types
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for the numeric attributes. This involves an additional, outer level of search. For
example, it initially evaluates the log-likelihood for 2, 3, 5, 7, 10, 15, and 25 clus-
ters: after that, it fits a log-normal distribution to the resulting data and ran-
domly selects from it more values to try. As you might imagine, the overall
algorithm is extremely computation intensive. In fact, the actual implementa-
tion starts with a prespecified time bound and continues to iterate as long as
time allows. Give it longer and the results may be better!

Discussion

The clustering methods that have been described produce different kinds of
output. All are capable of taking new data in the form of a test set and classify-

ing it according to clusters that were discovered by analyzing a training set.
However, the incremental clustering method is the only one that generates an
explicit knowledge structure that describes the clustering in a way that can be

visualized and reasoned about. The other algorithms produce clusters that could
be visualized in instance space if the dimensionality were not too high.

If a clustering method were used to label the instances of the training set with
cluster numbers, that labeled set could then be used to train a rule or decision
tree learner. The resulting rules or tree would form an explicit description of
the classes. A probabilistic clustering scheme could be used for the same
purpose, except that each instance would have multiple weighted labels and the
rule or decision tree learner would have to be able to cope with weighted
instances—as many can.

Another application of clustering is to fill in any values of the attributes that
may be missing. For example, it is possible to make a statistical estimate of the
value of unknown attributes of a particular instance, based on the class distri-
bution for the instance itself and the values of the unknown attributes for other
examples.

All the clustering methods we have examined make a basic assumption of
independence among the attributes. AutoClass does allow the user to specify
in advance that two or more attributes are dependent and should be modeled
with a joint probability distribution. (There are restrictions, however: nominal
attributes may vary jointly, as may numeric attributes, but not both together.
Moreover, missing values for jointly varying attributes are not catered for.) It
may be advantageous to preprocess a dataset to make the attributes more inde-
pendent, using a statistical technique such as the principal components trans-
form described in Section 7.3. Note that joint variation that is specific to
particular classes will not be removed by such techniques; they only remove
overall joint variation that runs across all classes.

Our description of how to modify k-means to find a good value of k by
repeatedly splitting clusters and seeing whether the split is worthwhile follows
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ABSTRACT

Moments before the launch of every space vehicle, engineering
discipline specialists must make a criticago/no-go decision. The
cost of a false positive, allowing a laurdein spite of a fault, or a false
negative, stopping a potentially successful launch, can be measured
in the tens of millions of dollarspot including the cost in morale and
other more intangible detriments. The Aerospace Corporation is
responsible for providing engineering assessments critical to the
go/no-go decision for every Department of Defense space vehicle.
These assessments are made byconstantly monitoring streaming
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who must make these engineering assessments. VizTree was
developed at the University of California, Riverside and is unique in
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1. INTRODUCTION

One of the crucial responsibilities oThe Aerospace Corporation is to
provide engineering assessmentsfor the government engineering
discipline specialists who make the criticalgo/no-go decision
moments before the launch of every space vehicle launched by the
DoD. The cost of a false positive, allowing a launch in spite of a
fault, or a false negative, stopping potentially successful launch, can
be measured in the tens of millionof dollars, not including the cost
in morale and other more intangill detriments to the U.S. defense
program.

The launch monitoring facilities at Aerospace are similar to the
familiar Hollywood movie recreations [26]. There are several rows of
work cells, each with a computer display and a headset. Each work
cell is devoted to one analyst,for example, propulsion, guidance,
electrical, etc. Each display presents some common data (say vehicle
location and orientation), as well as data specific to that discipline.

The analyst making the engineering assessments has access to data
from previous launches and mustconstantly monitor streaming
telemetry from the current mission.

Currently, the analysts use electronic strip charts similar to those used
to record earthquake shock on paper rolls. However, while these
charts illustrate the recent history of each sensor, they do not provide
any useful higher-level information that might be valuable to the
analyst.

To reduce the possibility of wrongo/no-go decisions, Aerospace is
continually investing in researchThere are two major directions of
research in this area.

e Producing better techniques to nie the archival launch data
from previous missions. Finding rles, patterns, and regularities
from past data can help us &now what to expect for future
missions, and allow more accurate and targeted monitoring,
contingency planning, etc [26].

e Producing better techniques to visalize the streaming telemetry
data in the hours before launchThis is particularly challenging
because an analyst may have to monitor as many as dozens of
rapidly changing sensors [26].

Although these two tasks are quite dtinct, and are usually tackled

separately, the contribution of this work is to introduce a single

framework that can address bothHaving a single tool for both tasks
allows knowledge gleaned in themining stage to be represented in

the same visual language of themonitoring stage, thus allowing a

more natural and intuitive transfer of knowledge.

More concretely, we propose VizTreeg time series pattern discovery

and visualization system basedon augmenting suffix trees. VizTree

simultaneously visually summaries both the global and local
structures of time series data. laddition, it provides novel interactive



solutions to many pattern dicovery problems, including the
discovery of frequently occurring perns (motif discovery) [7, 29,
38], surprising patterns (anomaly dettion) [9, 24, 36], and query by
content [11, 15, 21, 34]. The useinteractive paradigm allows users
to visually explore the time seriesand perform real-time hypotheses
testing [1, 19].

We employ the widely referenced Overview, zoom & filter, details
on demand’ paradigm of Dr. Ben Shneiderman of the University of
Maryland [37]. As we will show in tis paper, our work fits neatly
into these principles. We give amoverview of the global structure of
an arbitrarily long time series in constant space, while we allow the
user to zoom in on particular local structures and patterns, and
provide details on demandfor patterns and regularities that the user
has tentatively identified.

While there are several systems for visualizing time series in the
literature, our approach is unique iseveral respects. First, almost all

other approaches assume highlyperiodic time series [40, 41],

whereas ours makes no such assumfion. Other methods typically

require space (both memory space, and pixel space) that grows at
least linearly with the length ofthe time series, making them

untenable for mining massive datass. Finally, our approach allows

us to visualize a much richer sets of features, including global
summaries of the differences between two time series, locally
repeated patterns, anomalies, etc.

While the evaluation of visualizatin systems is often subjective, we
will evaluate our system with objective experiments by comparing
our system with state-of-the-arbatch algorithms on several real and
synthetic datasets.

The rest of the paper is organizeds follows. In Section 2 we review
necessary background material ad survey related work. We
introduce our system VizTree in Section 3. In Section 4, we extend
the idea to further allow comparison and contrast between two time
series. Section 5 contains a dailed empirical evaluation of our
system. We conclude in Section 6.

We note that all the figures in thigext suffer from their small scale
and monochromatic printing. We ensurage the interested reader to
visit [27] to view high-reolution full-color examples.

2. BACKGROUND AND RELATED WORK

We begin this section by brieflyreviewing the most important time
series data mining tasks. We will thn consider current visualization
techniques and explain why they are unsuited to the problem at hand.

2.1 Time Series Data Mining Tasks

For lack of space, this brief introduction to the important time series
data mining tasks is necessarilysubjective and somewhat domain
driven. Nevertheless, these three tasks cover the majority of time
series data mining research [6, 7, 911, 15, 18, 22, 24, 29, 30, 31, 38].

2.1.1 Subsequence Matching

Sequence matching is perhaps the most widely studied area of time
series data mining [11, 15]. The tsk has long been divided into two
categories: whole matching andsbsequence matching [11, 21].

e Whole Matching a query time series is matched against a
database of individual time series to identify the ones similar to
the query.

e  Subsequence Matching a short query subequence time series
is matched against longer timeseries by sliding it along the
longer sequence, looking for thbest matching location.

While there are literally hundreds of methods proposed for whole
sequence matching (see, e.g., [22] andeferences therein), in practice,
its application is limitd to cases where some information about the
data is knowna priori

Subsequence matching can be genralized to whole matching by
dividing sequences into non-overlaping sections. For example, we
may wish to take a long electrocardiogram and extract the individual
heartbeats. This informal idea has been used by many researchers and
is also an optional feature of ViTree. We will therefore formally
name this transformationchunking, and define it below.

Definition 1 Chunking the process where a time series is broken
into individual time series by either a specific period or, more
arbitrarily, by its shape.

The former usually applies to pdodic data, for example consider
power usage data provided by a Dutch research facility (this dataset
is used as a running example in tls work, see Figures 3 and 15): the
data can be chunked by days, weeksgtc. The latter applies to data
having regular structure or repetitive shape, but not necessarily
having the same length for each occurrence. Electrocardiogram data
are such an example, and they can be separated into individual
heartbeats.

There is increasing awareness that for many data mining and
information retrieval tasks, very fasapproximate search is preferable
to slower exact search [5]. This is particularly true for exploratory
purposes and hypotheses testing. Consider the stock market data.
While it makes sense to look for pproximate patterns, for example,
“a pattern that rapidly decreases after a long plategi it seems
pedantic to insist onexact matches. As we will demonstrate in
Section 5.1, our application Hows rapid approximate sequence
matching.

2.1.2 Anomaly Detection

In time series data mining and moitoring, the problem of detecting
anomalous/surprising/novel patterns Imattracted much attention [9,
30, 36]. In contrast to subsequace matching, anomaly detection is
identification of previously unknown patterns. The problem is
particularly difficult because what constitutes an anomaly can greatly
differ depending on the task at hand. In a general sense, an
anomalous behavior is one that deiates from “normal” behavior.
While there have been numerous dfinitions given for anomalous or
surprising behaviors, the one giveiby Keogh et. al. [24] is unique in
that it requires no explicit formulatin of what is anomalous. Instead,
they simply defined an anomalous pattern as onevhose frequency
of occurrences differs substantily from that expected, given
previously seen datd. Their definition was implemented in an
algorithm (called “Tarzan) that was singled out by NASA as an
algorithm that has $reat promise in the long terni [17]. As it will
become clearer later, a subset ofthe system that we propose here
includes what may be considered a visual encoding of Tarzan.

2.1.3 Time Series Motif Discovery

In bioinformatics, it is well doemented that overrepresented DNA
sequences often have biological significance [2, 10, 35]. Other
applications that rely heavily on overrepresented (and
underrepresented) pattern discoverynclude intrusion detection, fraud
detection, web usage prediction, financial analysis, etc.

A substantial body of literature hs been devoted to techniques to
discover such overrepresented patterns in time series; however, each
work considered a different definition opattern[3, 32]. In previous
work, we unified and formalized th problem by defining the concept
of “time series motif”’ [29]. Timeeries motifs are close analogues of



their discrete cousins, although thdefinitions must be augmented to
prevent certain degenerating solutins. This definition is gaining
acceptance, and now being used in animation [4], mining human
motion data [38], and several otheapplications. The naive algorithm
to discover motifs is quadratic in the length of the time series. In
[29], we demonstrated a simple technique to mitigate the quadratic
complexity by a large constant factor; nevertheless this time
complexity is clearly untenable formost real datasets. As we shall
demonstrate in Section 5.2, VizTreallows users to visually discover
approximate motifs in real time.

2.2 Visualizing Time Series

Time series is perhaps the mostcommon data type encountered in
data mining, touching as it does, ahost every aspect of human life,
including medicine (ECG, EEG data)finance (stock market data,
credit card usage data), aerospace @unch telemetry, satellite sensor
data), entertainment (music, movies) [4], etc. Because time series
datasets are often massive (in gigabtes or even terabytes), time- and
space-complexity is of paramount importance.

Surprisingly, although the human eye is often advocated as the
ultimate data-mining tool [19, 37, 39], there has been relatively little
work on visualizing massive tim series datasets. We have
reimplemented the three most refeneced approaches in the literature.
Below, we will briefly review them and explain why they are not
suited to the task at hand.

2.2.1 TimeSearcher

TimeSearcher [14] is a time serieexploratory and visualization tool
that allows users to retrieve timeseries by creating queries. This is
achieved by use of “TimeBoxes”, which are rectangular query
locators that specify the region(s) in which the users are interested
within any given time series. In Igure 1, three TimeBoxes have been
drawn to specify time series that start low, increase, then fall once
more.

The main advantage of this tool ists flexibility. In particular, unlike
conventional query-by-content similarity search algorithms,
TimeSearcher allows users to specify different regions of interest
from a query time series, rather than feeding the entire query for
matching. This is useful when usrs are interested in finding time
series that exhibit similar behavions the query time series in only
specific regions.

While TimeSearcher and VizTree proposed here both serve as
visualization and exploratory tools for time series, their
functionalities are fundamentally different. For example,
TimeSearcher is a query-by-exampm tool for multiple time series
data. Even with its flexibility, usrs still need to specify the query
regions in order to find similar ptterns. In other words, some
knowledge about the datasets may baeeded in advance and users
need to have a general idea of whats interesting. On the other hand,
VizTree serves as a true pattern dicovery tool for a long time series
that tentatively identifies and isolas interesting patterns and invites
further inspection by the analyst.

The functionality of TimeSearcher fosimilarity search is implicit in
the design of our system: similapatterns are automatically grouped
together.  Furthermore, TimeBarcher suffers from its limited
scalability, which restricts its utility to smaller datasets, and is
impractical for the task at hand.
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Figure 1: The TimeSearcher visual query iterface. A user can filter away
sequences that are not interesting by insting that all sequences have at least
one data point within the query boxes.

2.2.2 Cluster and Calendar-Based Visualization
Another time series visualizationsystem is cluster and calendar-
based, developed by [40]. The tim series data are chunked into
sequences of day patterns, and theseay patterns are in turn clustered
using a bottom-up clustering algorithm. This visualization system
displays patterns represented by cluster averages, as well as a
calendar with each day color-coded bythe cluster that it belongs to.
Figure 2 shows just one view othis visualization scheme.
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Figure 2: The cluster and calendar-based visualization on employee working
hours data. It shows six clusters, repsenting different working-day patterns.

While the calendar-based approach provides a good overview of the
data, its application is limited to ca@hdar-based data, that is to say,
data which has some regularity impasd on it by social or financial
dependence on the calendar. This approach is of little utility for data
without obvious daily/weekly patterns and/on priori knowledge
about such patterns. In short, tis system works well to find patterns
within a specific, known time scal, while our system aims to
discover previously unknown patterns with little or no knowledge
about the data.

2.2.3 Spiral

Weber et. al developed a tool thatvisualizes time series on spirals
[41]. Each periodic section of timaeries is mapped onto one “ring”
and attributes such as color and line thickness are used to characterize
the data values. The main use of tis approach is the identification of
periodic structures in the data. Howeer, the utility of this tool is



limited for time series that do notxhibit periodic behaviors, or when
the period is unknown.

We reimplemented the spiral pproach and ran it on the power

consumption dataset. A screenshot othe resulting spiral is shown in

Figure 3

Friday 23:59

Monday 00:01

Figure 3: The Spiral visualization approachof Weber et al. applied to the
power usage dataset.

Note that one can clearly visualize the normal “9-to-5” working week
pattern. In addition, one can see seval other interesting events. For
example, while it is apparent thaho one works during weekends in
general, on one Saturday in latsummer, there was a power demand
suggestive of a full days shift. Surprisingly, this idea for visualizing
time series predates computers, with elegant hand drawn examples
dating back to at least the 1880°s [12, 39].

While the Spiral approach is elegant, it does not meet our
requirements for several reasonsAs mentioned, it works well only
for periodic data (based on the original authors’ claims and our own
experiments). More importantly, it requires pixel space linear in the
length of the time series; this isimply untenable for our purposes.

3. OUR APPROACH: VIZ-TREE

Our visualization approach works by transforming the time series
into a symbolic representation, nd encoding the data in a modified
suffix tree in which the frequency ad other properties of patterns are
mapped onto colors and other visualproperties. Before explaining
our approach in detail, we will present a simple problem that
motivates our work.

Two sets of binary sequences oflength 200 were generated: the first
set by the pseudo-random-number genator by the computer, and the
second set by hand by a group of volunteers. The volunteers were
asked to try and make the bit stringas random as possible, and were
offered a prize to motivate them. Figure 4 shows one sample
sequence from each set.

By simply looking at the original bit strings, it’s difficult, if not
impossible, to distinguish the cmputer-generated from the human-
constructed numbers. However, ifwe represent them with a tree
structure where the frequencies of subsequences are encoded in the
thickness of branches, the distinction becomes clear. For clarity, the
trees are pruned at depth three. Each tree represents one sequence
from each set, and each node in the¢ree has exactly two branches: the

' Of all the figures in this paper, this one suffers the most from the small
scale of reproduction. In addition we did not optimize the anti-aliasing and
other graphic tricks to make the hard copy reproduction as good as the on
screen version. We encourage the interested reader to refer to the original
paper [29] for much higher quality images.

upper branch represents 1, and thdower branch represents 0. The
tree is constructed as follows: starting from the beginning of each
sequence, subsequences of length three are extracted with a sliding
window that slides across the sequere one bit at a time. So for the
first sequence we get a set of subsquences {(0,1,0), (1,0,1), (0,1,1),
..}
Sequence 1

010110010111100110100100001000101001
101101011100001010101110111110001101
101101111110100110010010001101000111
100110110100010111100010110100110110
011010000001001100010011100000111010
01100101100001010010

Sequence 2

100010001010010001010101000010101000
101011101111010110100101110100101010
011101010101001010010101011101010100
101010101101010100101100101110111101
000111000010100001001110101000111000
01010101100101110101

Figure 4: (Leff) Computer-generated random bits presented as an augmented
suffix tree Righf) Human-constructed bits presented as an augmented suffix
tree.

For the tree shown on the left in Figure 4, the branches at any given
level have approximately the samehickness, which means that the
probabilities of subsequences at any given level are approximately
evenly distributed. In contrast, the tree on the right shows that
subsequences of alternating 0’s and 1°s dominate the whole
sequence. The “motifs” for the sequence, 101 and 010, can be easily
identified, since they appear more frequently than the other
subsequences.

The non-randomness, which can be seewery clearly in this example,
implies that humans usually try td‘fake” randomness by alternating
patterns [16]. Undoubtedly, there exist other solutions to uncover
these “patterns” (entropy, Hlden Markov models, etc.).
Nonetheless, what this visuhlization scheme provides is a
straightforward solution that allowsisers to easily identify and view
the patterns in a way intuitive to human perception.

The simple experiment demonstates how visualizing augmented
suffix trees can provide an overall visual summary, and potentially
reveal hidden structures in the data Since the strings represented in
the tree are in fact “subsequences” rather than “suffixes,” we call
such treessubsequence trees.

This simple experiment motivatesur work. Although time series are
not discrete, they can be discretized with little loss of information,
thus allowing the use ofuffix/subsequence trees.

Our system is partly inspired by Visualysis [25], a visualization tool
for biological sequences. Visualysis uses a suffix tree to store the
biological sequences and, through the properties of the tree, such as
bushiness, branch distribution, etcand user navigation, interesting
biological information can be discovered [25]. Visualysis
incorporates algorithms that utike suffix trees in computational
biology; more specifically, exactsequence matching and tandem
repeat algorithms. At a first glance, our visualization system is
similar to Visualysis in the sense that it also has the objective of
pattern discovery using a tree structure. However, several
characteristics that are unique to our application make it more
diversely functional than its cormutational-biology counterpart.
First, although the tree structure needs the data to be discrete, the



original time series data is not. Using a time-series discretization
method that we introduced in an earlier work [28], continuous data
can be transformed into discretedomain, with certain desirable
properties such as lower-bounding distance, dimensionality
reduction, etc. Second, insteadof using a suffix tree, we use a
subsequence tree that maps all subsquences onto the branches of the
tree. Thus, given the same parmeters, the trees have the same
overall shape for any dataset. This approach makes comparing two
time series easy and anomaly detection possible.

3.1 The Utility of Discretizing Time Series

In [28], we introduced Symbolic Aggregate approximation (SAX), a
novel symbolic representation for timeeries. It is ideal for this
application since, unlike all previously proposed discretization
methods for time series, SAX allows lower-bounding distance
measures to be defined on the symbolic space. In addition, its
dimensionality reduction feature mlaes approximating large dataset
feasible, and its ability to converthe data using merely the local
information, without having to accesshe entire dataset, is especially
desirable for streaming time series. The utility of SAX has been
demonstrated in [28], and the adptation or extension of SAX by
other researchers further shows its impact in diverse fields such as
medical and video [6, 33]. For thse reasons, we choose to use SAX
as the discretization method for the input time series data.

Before converting a time series taymbols, it should be normalized.
The importance of normalization habeen extensively documented in
the past [22]. Without normalizatin, many time series data mining
tasks have little meaning [22]. After normalizatién SAX performs
the discretization in two steps. First, a time series T of lengthw is
divided intow equal-sized segments; the values in each segment are
then approximated and replaced by a single coefficient, which is their
average. Aggregating thesew coefficients form the Piecewise
Aggregate Approximation (PAA) representation of T.

Next, to convert the PAA coefficiets to symbols, we determine the
breakpoints that divide the distribution space intet equiprobable
regions, wherea is the alphabet size specified by the user. In other
words, the breakpoints are determined such that the probability of a
segment falling into any of the regions is approximately the same. If
the symbols were not equi-probablesome of the substrings would be
more probable than others. As aconsequence, we would inject a
probabilistic bias in the process. I1{8], Crochemore et. al. showed
that a suffix tree automation algoritin is optimal if the letters are
equiprobable.

Once the breakpoints are determined, each region is assigned a
symbol. The PAA coefficients can then be easily mapped to the
symbols corresponding to the regions in which they reside. In [28],
the symbols are assigned in a bottom-up fashion so the PAA
coefficient that falls in the lowest region is converted taz” in the
one above to ‘b,” and so forth. In this paper, for reason that will
become clear in the next sectionwe reverse the assigning order, so
the regions will be labeled top-down instead (i.e. the top-most region
is labeled “a,” the one below it “b,’and so forth). Figure 5 shows an
example of a time series being converted to stringcdchbdba Note
the general shape of the time seriesis preserved, in spite of the
massive amount of dimensionality reduction, and the symbols are
equiprobable.

? In the unusual event where it might be more appropriate not to normalize,
for example, when offset and amplitude changes are important, VizTree
provides an option to skip the normalization step.

The discretization technique can be applied to VizTree by calling
SAX repeatedly for each subsequence. More specifically,
subsequences of specified lengthare extracted from the input time

series and normalized to have a mean of zero and a standard
deviation of one. Applying SAX orthese subsequences, we obtain a

set of strings. From this point on, the steps are identical to the
motivating example shown in the bginning of Section 3: the strings

are inserted into the subsequence tree one by one.
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Figure 5: A time series dataset “leleccum” of length 1024 is converted into an
eight-symbol string 4cdcbdba” Note that the general shape of the time series
is preserved, in spite of the massie amount of dimensionality reduction.

3.2 A First Look at VizTree

Figure 6 shows a screen shot of VizTree. When the program is
executed, four blank panels and a parameter-setting area are
displayed. To load a time series datset, the user selects the input file
using a familiar dropdown menu. The input time series is plotted in
the top left-hand panel. Next tohe time series plotting window is the
parameter setting area; the analyst can enter the sliding window
length, the number of SAX segmnts per window, and select
alphabet size from a dropdown menu. Once the parameters are
entered, the user can click on the “Show Tree” button to display the
subsequence tree on the bottom left panel.

Figure 6: A screenshot of Viztree. The top panel is the input time series.
The bottom left panel shows the subsequece tree for the time series. On the
right, the very top is the parameter setting area. Next to the subsequence tree
panel, the top window shows the zoom-in of the tree, and the bottom
window plots the actual subsequences when the analyst clicks on a branch.

The time series used forthis example is a rea) industrial dataset of
smog emissions from a motor vehicle.The length of the time series
is 2478. The length of the sliding widow is set to 53; the number of
segments (i.e., the depth of the te) is four, and the alphabet size
(i.e., the number of children for each node) is four.

Each branch represents one pattern As mentioned in the previous
section, we reverse the assigningrder of the symbols from bottom-



up to top-down. The reason is that when the symbols are arranged
this way, it is more consistent witlthe natural shape of the tree. For
example, for any given node, a branch at a higher position denotes
segments with higher values. Taversing breadth-first from the top-
most branch of any given node, the symbols that represent the
branches are a, b, ¢, and d, respectively. Each level of the tree
represents one segment (or one symbgl To retrieve any string, we
simply traverse down the appropriate branches.

Definition 2 Pattern: a patternp is the SAX representation of a
subsequence in the time sems, denoted by the strings formed by
following any path down the subsequence tree. The frequency gf
in time series A is denoted byf{p,), which is the number of
occurrences ofp over the number of all occurrences in A.

The frequency of a pattern is encoded in the thickness of the branch.
For clarity, the full tree is drawn.Branches with zero frequency are
drawn in light gray, while others are drawn in red with varying
thicknesses.

On the right hand side of VizTree, there are two panels. The upper
one shows the zoom-in of the tree show in the left panel. This is
very useful especially for deep and bushy trees. The user can click
on any node (on the subsequence tre window, or recursively, on the
zoom-in window) and the sub-tree rooted at this node will be
displayed in this upper panel. The sub-tree shown in Figure 6 is
rooted at the node representing the string dbxx,” where the “xx”
denotesdon 't-caresince we are not at the leaf level. If the user clicks
on any branch, then the actualsubsequences having the string
represented by this particular brach will be displayed in the bottom
panel and highlighted in the time series plot window. In the figure,
subsequences encoded to #bdb” are shown.

3.2.1 Parameter Selection

Three parameters need to be detemined: the length of the sliding
window, the number of segments, andhe alphabet size. In [29] we
showed the trade-off between th number of segments and the
alphabet size. In general, VizTree works very well even with
massive dimensionality reduction, aswe will demonstrate in Section
5 (in the experiments we used no mee than 5 segments). The length
of the sliding window is data-depedent; however, the user can drag
a range over any pattern of interst on the time series plot window
and the window size will be filled in automatically.

3.3 Subsequence Matching

Subsequence matching can be done iy efficiently with VizTree.
Instead of feeding another time sees as query, the user provides the
query in an intuitive way. Recalthat each branch corresponds to one
of the equiprobable regions that are used to convert the PAA
coefficients to symbols. The dp branch corresponds to the region
with the highest values, and thebottom branch corresponds to the
region with the lowest values. Therefore, any path can be easily
translated into a general shape and can be used as a query. For
example, the top-most branch at depth one (i.e., stringa¥xx”)
represents all subsequences thatstart with high values, or more
precisely, whose values in the first segment have the mean value that
resides in the highest region. Inthe previous example, the user is
interested in finding a concave-down pattern (i.e., a U-shape). This
particular pattern, according to the domain experts, corresponds to a
change of gears in the motor vehicle during the smog emission test.
From the U shape, the user can approximate the query to be
something that goes down and comesip, or a string that starts and
ends with high branches, with low branches in the middle. As a

result, clicking on the branch representingdbdb” as shown in the
figure uncovers the pattern of interest.

3.4 Motif Discovery & Simple Anomaly Detection
VizTree provides a straightforward way to identify motifs. Since the
thickness of a branch denotes the frequency of the subsequences
having the same, corresponding stringswe can identify approximate
motifs by examining the subsequaces represented by thick tree
paths. A feature unique to VizTree is that it allows users to visually
evaluate and inspect the patterns retmed. This interactive feature is
important since different strings can also represent similar
subsequences, such as those thatdiffer by only one symbol. In
addition, the user can prune off uninteresting or expected patterns to
improve the efficiency of the system and reduce false positives. For
example, for ECG data, the motifilgorithm will mostly likely return
normal heart beats as the most important motif, which is correct but
non-useful. Allowing user to maually prune off this dominant
pattern, secondary yet more interdsng patterns may be revealed.
Figure 7 shows such an example. The dataset used here is meal,
industrial dataset, “winding,” whie records the angular speed of a
reel. The subsequences retrievedn the lower right panel have the
string representation dach.” Examining the motifs in this dataset
allowed us to discover an intersting fact: while the dataset was
advertised as real, we noted that repeated patterns occur at every
1000 points. For example, in Figure 7, the two nearly identical
subsequences retrieved are locatedit offsets 599 and 1599, exactly
1000 points apart. We checked with the original author and
discovered that this is actually a synthetic dataset composed from
parts of a real dataset, a fact thats not obvious from inspection of the
original data.

s =7 ]

Figure 7: Example of motif discovery on the winding dataset. Two nearly
identical subsequences are idetified, among the other motifs.

The complementary problem of motif discovery is anomaly
detection. While frequently occrring patterns can be detected by
thick branches in the Viztree, simple anomalous patterns can be
detected by unusually thin branhes. Figure 8§ demonstrates both
motif discovery and simple anomat detection on an MIT-BIH Noise
Stress Test Dataset (ECG recordigs) obtained from PhyioBank [13].
Here, motifs can be identified very easily from the thick branches;
more remarkably, there is one very thin line straying off on its own
(the path that starts with “a”). Tis line turns out to be an anomalous
heart beat, independently annotated by a cardiologist as a premature
ventricular contraction.



While anomalies can be detected tis way for trivial cases, in more
complex cases, the anomalies are usually detected by comparing the
time series against a normal, reference time series. Anything that
differs substantially from thisreference time series can signal
anomalies. This is exactly th objective of the Diff-Tree, as
described in the next section.
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Figure 8: Heart-beat data with anomaly is shownWhile the subsequence tree
can be used to identify méifs, it can be used for simple anomaly detection as
well.

4. DIFF-TREE

We have described how global stuctures, motifs, and simple
anomalies can be identified by a subsquence tree. In this section,
we extend these ideas to furtherallow the comparison of two time
series by means of a “diff-tree.” A diff tree is short for “difference
tree,” and as the name implies,shows the distinction between two
time series. The construction of aiff-tree is fairly straightforward
with the use of subsequence tree, since the overall tree shape is the
same regardless of the strings, proved that the parameters selected
(i.e., alphabet size, number of segment, etc) are the same. The diff-
tree is constructed by computingthe difference in thickness (i.e.,
frequency of occurrence) for each branch. Intuitively, time series data
with similar structures can be expcted to have similar subsequence
trees, and in turn, a sparse diff-treeIn contrast, those with dissimilar
structures will result in distinctisly different subsequence trees and
therefore a relatively dense diff-tree.

One or two datasets can be loaded to VizTree simultaneously. If
only one is loaded, then its subsquence tree will be shown. If two
datasets are loaded, the user has the option of viewing the
subsequence tree of either one, or thir diff-tree. The branches in the
difference tree are color-coded to distinguish between the
overrepresented and underrepresentd patterns. Given two time
series A and B, where A is the basis for comparison (the reference
time series), and B is the added time series, we can define the
following terms:

Definition 3.Overrepresented Patterna pattern is over-represented
in B if it occurs more frequently in B than it does in A.

Definition 4 Underrepresented Pattern a pattern is under-
represented in B if it occurs more frequently in A than it does in B.

Definition 5. Degree of Differencethe degree of difference for
any patternp between A and B is defined as follows:

S(py) = f(p,) (1

- max(max_ freq _in_A,max_ freq in_B)

P

Simply stated, D, measures how a pattern(i.e. branch) differs from
one time series to another, by computing the difference of
frequencies between A and B ad dividing by the maximum
frequency in A and B. Ifp occurs less frequently in B than in A, then
the pattern is underrepresented andD, < 0, otherwise it is
overrepresented andD,, > 0.

This is the measure ewoded in the diff-tree as the thickness of the
branch. Currently, discrete cbors are used to distinguish
overrepresentation  from underrepsentation:  overrepresented
patterns are drawn in green (same color as the test time series);
underrepresented patterns in blue(same color as the basis time
series); and if the frequency is the same, then the branch is drawn in
red. However, color intensity canbe used to further highlight the
degrees of difference.

4.1 Anomaly Detection

The datasets used for anomaly detction, constructed independently
of the current authors and provided by the Aerospace Corporation for
sanity check, are shown in Figure 9.The one on the top is the normal
time series, and the one below is similar to a normal time series,
except it has a gap in the middle as anomaly. Figure 10 shows a
screenshot of the anomaly detection by diff-tree. The tree panel
shows the diff-tree between the twadatasets. The two thick paths
denote the beginning and the end of the anomaly, respectively.

This is a very trivial example fo demonstration purpose. However,
the effect is similar for more complex cases.
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Figure 9 The input files used for anomaly detection by diff-tre¢7op) Normal
time series. (Bottom) Anomaly is introduced as a gap in the middle of the
dataset.
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Figure 10: Diff-tree on the datasets shown in the previous figure. The gap is
successfully identified.

5. EXPERIMENTAL EVALUATION

In this section we evaluate (ad demonstrate) our approach on
datasets which are either very intitive to the average person or have
been extensively annotated by domain experts. In particular, we will
evaluate our work on human motion data and the power demand



data. Note that all datasets used here are available for free from the
UCR archive [20].

5.1 Subsequence Matching

This experiment incorporates bdt subsequence matching and motif
discovery. The dataset used is the human motion data of yoga
postures. A model postured yoga rotines in front of a green screen,
and her motion was captured by vanus sensors. The motion capture
is transformed into a time series byomputing the aspect ratio of the
minimum-bounding rectangle formed around her body. The length
of the time series is approximately 26,000 (i.e. there are
approximately these many frames in the original video).

Suppose we are interested in finding a yoga sequence like the one in
Figure 11:

A ol Bt b

e

Figure 11: A sample yoga sequence for pproximate subsequence matching.

Then we would expect the shape of the query to descend rapidly after
the first position (the width-to-hght-ratio decreases), ascend slowly
after the second position, descend again, and finally ascend once
more. Assume that we set the nuther of segments to be five (an
arbitrary choice), then a reasonble start would be the branch
“adxxx.” Since there are only two paths extending from the node
“ad,” the matches are found very quicly without much refinement in
the search space. The result is shown in Figure 12 and the actual
yoga sequences for the matches are outlined in Figure 13. The
subsequence length is 400 (i.e. hout 6.5 seconds). As the figure
shows, the two sequences are verysimilar with only very minor
distinction.
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Figure 12: Matches for the yoga sequence in Figure 11. The bottom right
corner shows how similar these two subsequences are.

D TR

S T P et

Figure 13:Outline of the actual yoga sequeces that match the query.

There are several advantages of the approximate subsequence
matching by VizTree. One is thatthis feature is built-in to the
application, and it is relatively easy to specify the query without

explicitly providing it. More importantly, the system retrieves the
results very efficiently since the information is already stored in the
tree. With the current state-of-the-artxact subsequence matching
algorithms, retrieval is much too slow for a real time interaction.

5.2 Motif Discovery

For the motif discovery experiment, we will continue with the
previous human-motion example. There are obviously some
noticeable motifs such as the long spikes that occur throughout the
sequence (see the time series plot in Figure 12). They denote the
posture where the model is lying fit on the ground, when the aspect
ratio is at its maximum. Howeverpne of the desirable features of
VizTree is that it allows users tovisually identify secondary yet more
interesting motifs. The matches found in the previous section are
such example. We can zoom-in on these subsequences and examine
their similarity.

From Figure 14 we can see that these two subsequences are indeed
very similar to each other. Note that they both have a small dip
towards the end of the sequence. However, there is a slight
difference there — the dip for the fitssequence occurs before that for
the second sequence, and is followd by a plateau. Examining the
motion captures we discover that the dip corresponds to the™6
position shown in Figure 13, rightbefore the model stretched her
arms straight in front of her. Iraddition, for the first sequence, the
model held that last position fora longer period of time, thus the
plateau following the dip. These subtle differences are difficult to
notice without the motif discoveryand/or the subsequence matching
features in VizTree.

S oo

Figure 14 Zoom-ins of the two matches found in the yoga subsequence match
example. Note that they both have dip towards the end of the sequences.

For comparison, we ran the fastest knowrexact motif discovery
algorithm [29] . Although the same motif can also be successfully
identified, it takes minutes to compute, while VizTree gives instant
(less than one second) feedbackon the results. Even with the
approximatemotif discovery algorithm [7], it takes tens of seconds to
complete. In addition, the visualization power of VizTree allows the
user to see exactly where the motif occurs and how it maps to the
original time series.

5.3 Anomaly Detection

For anomaly detection, we used th power demand data that was also
used in Figure 3. Electricity onsumption is recorded every 15
minutes; therefore, for the year of 1997, there are 35,040 data points.
Figure 15 shows the resulting tree with the sliding window length set
to 672 (exactly one week of dath and both alphabet size and number
of segments to 3. The majority of the weeks follow the regular
Monday-Friday, 5-working-day pattern, as shown by the thick
branches. The thin branches denote the anomalies. The one circled
is from the branch bab.” The zoom-in shows the beginning of the
three-day week during Christmas (Thursday and Friday off). The



other thin branches denote other anomalidsuch as New Year’s Day,
Good Friday, Queen’s Birthday, etc.

While other anomaly detection algorithms such as the TSA-Tree
Wavelet-based algorithm by Shahabi et. al. [36] and the
Immunology-based algorithm (IMM) by Dasgupta and Forrest [9]
can potentially find these anomalies as well given the right
parameters, both are much more computationally intensive. While
VizTree requires input of parametersthe results are almost instant.
In the contrary, the TSA-Tree takes tens of seconds, and IMM needs
re-training its data with every adjustment of parameters, with each
training session taking several minutes.This is clearly untenable for
massive datasets.

In addition to the fast computtional time, anomaly detection by
VizTree does not always require a tiining dataset. As demonstrated,
simple anomalies can be identified as an inverse to the motifs.

o e
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Figure 15 Anomaly detection on power onsumption data.
shown here is a short week during Christmas.

5.4 Scalability

The pixel space of the subsequence tree is determined solely by the
number of segments and alphabet sizeIn particular, we note that the
pixel size of the tree isconstantand independent to the length of time
series. We have already shown that large amounts of dimensionality
reduction do not greatly affect the accuracy of our results (in Section
5.3, the dimensionality is reduced from 672 to 3, a compression ratio
of 224-to-1). However, the size ofhe dataset plays a role in memory
space, since each node in the e stores the offsets of its
subsequences. However, SAX allws efficient numerosity reduction
to reduce the number of subsequencebeing included into the tree, in
addition to alleviating the problem associated with trivial matches
(see below) [23, 29].

The anomaly

5.4.1 Numerosity Reduction

In [29] we showed that the besmatches for a subsequence tend to be
its immediate neighbors: the subsguence one point to the right and
the subsequence one point to the ft. We defined these matches to
be the “trivial matches.” In themooth regions of the time series, the
amount of trivial matches might be ke. If we include them in any
sliding-window algorithms, the trivial matches will dominate over the
true patterns due to over-countingand the results will likely be
distorted, or worse, become meaingless [23]. Therefore, when

3 Anomalies in the sense that the electricity consumption is abnormal
given the day of the week.

extracting subsequences from theime series by a sliding window,
the trivial matches should be excluded.

Different definitions can be used to identify trivial matches. The
easiest way is to compare the SAX strings and only record a
subsequence if its string is different from the last one recorded. In
other words, no two consecutive strings should be the same.

Additionally, we can check two strings symbol-by-symbol and
consider them trivial matches of onanother if no pair of symbols is
more than one alphabet apart. This extra check is based on the same
idea as the previous numerosity reduction option, that similar
subsequences have the same SAX repsentation. However, it is also
likely that similar subsequenceslo not have exactly the same SAX
representations; rather, they might have alphabets that differ by at
most one at any given position (i.e. thvalues could be very close but
reside on different sdes of a breakpoint).

Furthermore, the second option can be extended to also exclude non-
monotonic strings. Depending on thamature of the datasets, users
might only be interested in finding patterns with ups and downs.
Finally, the ultimate numerosity reduction can be achieved by
chunking, which allows no overlappingubsequences. This has been
used for many approaches; howeverye would like to note that it is
only useful if the dataset exhibits rgular patterns, either by shape or
by period. For example, if we use chunking for the power
consumption data used in Section5.3, then we get an even more
distinctive tree.

6. CONCLUSIONS AND FUTURE WORK

We proposed VizTree, a novel wualization framework for time
series that summarizes the global and local structures of the data. We
demonstrated how pattern discoveryan be achieved very efficiently
with VizTree.

As mentioned, VizTree will be formally evaluated by The Aerospace
Corp in the summer of 2004, and we will incorporate the feedback
into the system. We believe that researchers from other sectors of the
industry can greatly benefit from ousystem as well. For example, it
could potentially be used for indeing and editing video sequences.
We plan to have domain experts imther fields such as medicine and
animation evaluate our system.

In the beginning of the paper we mention that the system can be used
for monitoring and mining time serieslata. While we mainly focus
on the “mining” aspect in thispaper, we will extend VizTree to
accept online streaming data for monitoring purposes.

Reproducible Research StatementAll datasets and code used in
this work will be freely availalel For higher-quality images and
more information, please visit
http://www.cs.ucr.edu/~jessica/VizTree.htm.
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ABSTRACT

Most data mining algorithms require the setting of many input
parameters. Two main dangers of working with parameter-laden
algorithms are the following. First, incorrect settings may cause an
algorithm to fail in finding the true patterns. Second, a perhaps
more insidious problem is that the algorithm may report spurious
patterns that do not really exist, or greatly overestimate the
significance of the reported patterns. This is especially likely when
the user fails to understand the role of parameters in the data
mining process.

Data mining algorithms should have as few parameters as possible,
ideally none. A parameter-free algorithm would limit our ability to
impose our prejudices, expectations, and presumptions on the
problem at hand, and would let the data itself speak to us. In this
work, we show that recent results in bioinformatics and
computational theory hold great promise for a parameter-free data-
mining paradigm. The results are motivated by observations in
Kolmogorov complexity theory. However, as a practical matter,
they can be implemented using any off-the-shelf compression
algorithm with the addition of just a dozen or so lines of code. We
will show that this approach is competitive or superior to the state-
of-the-art approaches in anomaly/interestingness detection,
classification, and clustering with empirical tests on time
series/DNA/text/video datasets.

Keywords
Kolmogorov Complexity, Parameter-Free Data Mining, Anomaly
Detection, Clustering.

1. INTRODUCTION

Most data mining algorithms require the setting of many input
parameters. There are many dangers of working with parameter-
laden algorithms. We may fail to find true patterns because of
poorly chosen parameter settings. A perhaps more insidious
problem is that we may find patterns that do not exist [21], or
greatly overestimate the significance of a pattern because of a
failure to understand the role of parameter searching in the data
mining process [5][7]. In addition, as we will show, it can be very
difficult to compare the results across methods or even to reproduce
the results of heavily parameterized algorithms.
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Data mining algorithms should have as few parameters as possible,
ideally none. A parameter-free algorithm prevents us from
imposing our prejudices and presumptions on the problem at hand,
and let the data itself speak to us.

In this work, we introduce a data mining paradigm based on
compression. The work is motivated by results in bioinformatics
and computational theory that are not well known outside those
communities. As we will demonstrate here, our approach allows
parameter-free or parameter-light solutions to many classic data
mining tasks, including clustering, classification, and anomaly
detection.

Our approach has the following advantages, which we will
empirically demonstrate with extensive experiments:

1) It allows true exploratory data mining, rather than forcing us
to impose our presumptions on the data.

2) The accuracy of our approach can be greatly superior to those
of parameter-laden algorithms, even if we allow these
algorithms to search exhaustively over their parameter spaces.

3) Our approach is based on compression as its cornerstone, and
compression algorithms are typically space and time efficient.
As a consequence, our method is generally much more
efficient than other algorithms, in some cases by three or four
orders of magnitude.

4) Many parameterized algorithms require the data to be in a
special format. For concreteness, consider time series data
mining [14][20]. Here, the Euclidean distance requires that the
dimensionality of two instances being compared is exactly the
same, and Dynamic Time Warping (DTW) is not defined if a
single data point is missing [30]. In contrast, our approach
works for time series of different lengths, sampling rates,
dimensionalities, with missing values, etc.

In this work, we decided to take the unusual step of reproducing
our entire actual code, rather than just the pseudocode. There are
two reasons for doing this. First, free access to the actual code
combined with our policy of making all data freely available allows
independent confirmation of our results. Second, it reinforces our
claim that our methods are very simple to implement.

The rest of the paper is organized as follows. In Section 2, we
discuss the results in bioinformatics and computational theory that
motivate this work. In Section 3, we consider the minor changes
and extensions necessary to extend these results to the classic data
mining tasks of anomaly/interestingness detection, classification,
and clustering. Section 4 sees an exhaustive empirical comparison,
in which we compare dozens of algorithms to our approach, on
dozens of datasets from several domains, including time series,
video, DNA, and text. Finally, in Section 5, we discuss many
avenues for possible extensions.



2. BACKGROUND AND RELATED WORK

We begin this section by arguing that a contribution made by a
parameter-laden algorithm can be difficult to evaluate. We review
some background material on Kolmogorov complexity, which
motivates the parameter-free Compression-based Dissimilarity
Measure (CDM), the technique at the heart of this paper.

2.1 The Perils of Parameter-Laden Algorithms

A recent paper in a top-tier journal introduced a new machine-
learning framework and noted that it “...abounds with parameters
that can be tuned” (our emphasis). It is surely more accurate to
state that the approach has parameters that must be tuned. When
surveying the literature on this topic, we noted that while there are
many techniques for automatically tuning parameters, many of
these techniques themselves have parameters, possibly resulting in
an infinite regression.

An additional problem of parameter-laden algorithms is that they
make it difficult to reproduce published experimental results, and to
understand the contribution of a proposed algorithm.

A recently published paper introduced a new time series distance
measure. The algorithm requires the setting of two parameters, and
the authors are to be commended for showing the results of the
cross-product: sixteen by four possible parameter choices. Of the
sixty-four settings, eleven are slightly better than DTW, and the
authors conclude that their approach is superior to DTW. However,
the authors did not test over different parameters for DTW, and
DTW does allow a single parameter, the maximum temporal
distortion (the “warping window” [30]). The authors kindly
provided us with the exact data they used in the experiment, and we
reproduced the experiment, this time allowing a search over
DTW’s single parameter. We discovered that over a wide range of
parameter choices, DTW produces a near perfect accuracy,
outperforming all sixty-four choices of the proposed algorithm.

Although the above is only one anecdotal piece of evidence, it does
help make the following point. It is very difficult to evaluate the
contribution of papers that introduce a parameter-laden algorithm.

In the case above, the authors’ commendable decision to make their
data public allows the community to discover that DTW is
probably a better distance measure, but only at the expense of some
effort on the readers’ behalf. In general, the potential asymmetry in
parameter tuning effort effectively prevents us from evaluating the
contribution of many papers. Here, the problem is compounded by
the fact that the authors created the dataset in question. Creating a
dataset may be regarded as a form of meta parameter tuning, since
we don’t generally know if the very first dataset created was used
in the paper, or many datasets were created and only the most
satisfactory one was used. In any case, there are clearly problems
in setting parameters (training) and reporting results (testing) on the
same dataset [32]. In the field of neural networks, Flexer [11] noted
that 93% of papers did just that. While no such statistics are
published for data mining, an informal survey suggests a similar
problem may exist here. In Section 4.2.2, we will empirically
reinforce this point by showing that in the context of anomaly
detection, parameter-laden algorithms can have their parameters
tuned to achieve excellent performance on one dataset, but
completely fail to generalize to a new but very similar dataset.

Before leaving this section, it would be remiss of us not to note that
many papers by the authors of this manuscript also feature

algorithms that have (too) many parameters. Indeed, the frustration
of using such algorithms is one inspiration for this work.

2.2 Kolmogorov Complexity

The proposed method is based on the concept of Kolmogorov
complexity. Kolmogorov complexity is a measure of randomness
of strings based on their information content. It was proposed by
A.N. Kolmogorov in 1965 to quantify the randomness of strings
and other objects in an objective and absolute manner.

The Kolmogorov complexity K(x) of a string x is defined as the
length of the shortest program capable of producing x on a
universal computer — such as a Turing machine. Different
programming languages will give rise to distinct values of K(x), but
one can prove that the differences are only up to a fixed additive
constant. Intuitively, K(x) is the minimal quantity of information
required to generate x by an algorithm.

Hereafter, we will follow the notation of [23], which was the main
inspiration of this work. The conditional Kolmogorov complexity
K(x[y) of x to y is defined as the length of the shortest program that
computes x when y is given as an auxiliary input to the program.
The function K(xy) is the length of the shortest program that
outputs y concatenated to x.

In [22], the authors consider the distance between two strings x and

¥, defined as

K(x|»)+K(y|x) )
K(xy)

which satisfies the triangle inequality, up to a small error term. A
more mathematically precise distance was proposed in [23].

dk(x5y) =

Kolmogorov complexity is without a doubt the ultimate lower
bound among all measures of information content. Unfortunately, it
cannot be computed in the general case [24]. As a consequence,
one must approximate this distance.

It is easy to realize that universal compression algorithms give an
upper bound to the Kolmogorov complexity. In fact, K(x) is the
best compression that one could possibly achieve for the text string
x. Given a data compression algorithm, we define C(x) as the size
of the compressed size of x and C(x|y) as the compression achieved
by first training the compression on y, and then compressing x. For
example, if the compressor is based on a textual substitution
method, one could build the dictionary on y, and then use that
dictionary to compress Xx.

We can approximate (1) by the following distance measure

Cx[y»)+C|x) )
C(xy)

The better the compression algorithm, the better the approximation
of d, for dj is.

In [23], Li ef al. have shown that d, is a similarity metric, and can
be successfully applied to clustering DNA and text. However, the
measure would require hacking the chosen compression algorithm
in order to obtain C(xly) and C(y|x). We therefore decided to
simplify the distance even further. In the next section, we will show
that a simpler measure can be just as effective.

d,(x,y)=

The idea of using data compression to classify sequences is not
new. In the early days of computational biology, lossless
compression was used to classify DNA sequences. We refer to,



e.g., [1][10][12][26][27], and references therein for a sampler of the
rich literature existing on this subject.

Recently, Benedetto et al. [2] have shown how to use a
compression-based measure to classify fifty languages. The paper
was featured in several scientific (and less-scientific) journals,
including Nature, Science, and Wired. It has also generated some
controversies (see, e.g., [16]).

Finally, the idea of using compression to classify sequences is
tightly connected with the minimum description length (MDL)
principle. The principle was introduced by the late *70 by Rissanen
[31], and has generated a very extensive body of literature in the
machine learning community (see, e.g., [29])

2.3 Compression-Based Dissimilarity Measure
Given two strings, x and y, we define the Compression-based
Dissimilarity Measure (CDM) as follows

Cl) 3)

COMEN = C+ e

The CDM dissimilarity is close to 1 when x and y are not related,
and smaller than one if x and y are related. The smaller the
CDM(x,y), the more closely related x and y are. Note that
CDM(x,x) is not zero.

The dissimilarity measure can be easily implemented. The entire
Matlab code is shown in Table 1.

Table 1: Compression-based Dissimilarity Measure (CDM)
function dist = CDM(A, B)
save A.txt A-ASCII
zip(A.zip', 'A.txt);

A_file = dir(A.zip');

% Save variable A as A.ixt
% Compress A.txt

% Get file information

save B.ixt B -ASCII
zip('B.zip', 'B.txt');
B_file = dir('B.zip");

% Save variable B as B.ixt
% Compress B.txt

% Get file information

A_n_B=[A; B];

save A_n_B.txt A_n_B -ASCII
zip('A_n_B.zip', 'A_n_B.txt');
A_n_B_file = dir('A_n_B.zip');

% Concatenate A and B
% Save A_n_B.txt
% Compress A_n_B.txt
% Get file information
% Return CDM dissimilarity
dist = A_n_B_file.bytes / (A_file.bytes + B_file.bytes);

The inputs are the two matrices to be compared. These matrices can
be time series, DNA strings, images, natural language text, midi
representations of music, etc. The algorithm begins by saving the
two objects to disk, compressing them, and obtaining file
information. The next step is to concatenate the two objects (A_n_B
= [A; B]); the resulting matrix is also saved, compressed, and the file
information is retrieved. At this point we simply return the size of
the compressed concatenation over the size of the sum of the two
individual compressed files.

One could argue that also CDM has several parameters. In fact,
CDM depends on the choice of the specific compressor (gzip,
compress, bzip2, etc.), and on the compression parameters (for
example, the sliding window size in gzip). But because we are
trying to get the best approximation of the Kolmogorov

complexity, one should just choose the best combination of
compression tool and compression parameters for the data. There
is, in fact, no freedom in the choice to be made. We simply run
these compression algorithms on the data to be classified and
choose the one that gives the highest compression.

2.4 Choosing the Representation of the Data

As we noted above, the only objective in CDM is to obtain good
compression. There are several ways to achieve this goal. First, one
should try several compressors. If we have domain knowledge
about the data under study, and specific compressors are available
for that type of data, we use one of those. For example, if we are
clustering DNA we should consider a compression algorithm
optimized for compressing DNA (see, e.g., [3]).

There is another way we can help improve the compression; we can
simply ensure that the data to be compared is in a format that can
be readily and meaningfully compressed. Consider the following
example; Figure 1 shows the first ten data points of three
Electrocardiograms from PhysioNet [15] represented in textual
form.

A B Cc
0.13812500000000 0.51250000000000 0.49561523437690
0.04875000000000 0.50000000000000 0.49604248046834
0.10375000000000 0.50000000000000 0.49653076171875
0.17875000000000 0.47562500000000 0.49706481933594
0.24093750000000 0.45125000000000 0.49750732421875
0.29875000000000 0.45125000000000 0.49808715820312
0.37000000000000 0.47656250000000 0.49875854492187
0.48375000000000 0.50000000000000 0.49939941406230
0.55593750000000 0.48281250000000 0.50007080078125
0.64625000000000 0.48468750000000 0.50062011718750
0.70125000000000 0.46937500000000 0.50123046875826

Figure 1: The first ten data points of three ECG s

It happens to be the case that sequences A and C are both from
patients with supraventricular escape beats. If we are allowed to see
a few hundred additional data points from these sequences, we can
correctly group the sequences ((A,C),B) by eye, or with simple
Euclidean distance.

Unfortunately, CDM may have difficulties with these datasets. The
problem is that although all sequences are stored with 16-digit
precision, sequences A and B were actually recorded with 8-digit
precision and automatically converted by the Rdsamp-O-Matic tool
[15]. Note that, to CDM, A and B may have great similarity,
because the many occurrences of 00000000’s in both A and B will
compress even better in each other’s company. In this case, CDM
is finding true similarity between these two sequences, but it is a
trivial formatting similarity, and not a meaningful measure of the
structure of the heartbeats. Similar remarks can be made for other
formatting conventions and hardware limitations, for example, one
sensor’s number-rounding policy might produce a surfeit of
numbers ending with “5”.

Before explaining our simple solution this problem, we want to
emphasize that CDM is extremely robust to it. For example, all the
anomalies detected in Section 4.2 can be easily discovered on the
original data. However, addressing this problem allows us to
successfully apply CDM on much smaller datasets.

A simple solution to problem noted above is to convert the data
into a discrete format, with a small alphabet size. In this case, every
part of the representation contributes about the same amount of
information about the shape of the time series. This opens the



question of which symbolic representation of time series to use. In
this work, we use the SAX (Symbolic Aggregate ApproXimation)
representation of Lin et al. [25]. This representation has been
shown to produce competitive results for classifying and clustering
time series, which suggest that it preserves meaningful information
from the original data. Furthermore, the code is freely available
from the authors’ website. While SAX does allow parameters, for
all experiments here we use the parameterless version.

Similar remarks can be made for other data types, for example,
when clustering WebPages, we may wish to strip out the HTML
tags first. Imagine we are trying to cluster WebPages based on
authorship, and it happens that some of the WebPages are graphic
intensive. The irrelevant (for this task) similarity of having many
occurrences of “<IMG SRC...>” may dominate the overall
similarity.

3. PARAMETER-FREE DATA MINING

Most data mining algorithms, including classification [5],
clustering  [13][17][21],  anomaly/interestingness  detection
[4][28][33], reoccurring pattern (motif) discovery, similarly search
[35], etc., use some form of similarity/dissimilarity measure as a
subroutine. Because of space limitations, we will consider just the
first three tasks in this work.

3.1 Clustering

As CDM is a dissimilarity measure, we can simply use it directly in
most standard clustering algorithms. For some partitional
algorithms [6], it is necessary to define the concept of cluster
“center”. While we believe that we can achieve this by extending
the definition of CDM, or embedding it into a metric space [9], for
simplicity here, we will confine our attention to hierarchical
clustering.

3.2 Anomaly Detection

The task of finding anomalies in data has been an area of active
research, which has long attracted the attention of researchers in
biology, physics, astronomy, and statistics, in addition to the more
recent work by the data mining community [4][28][33]. While the
word “anomaly” implies that a radically different subsection of the
data has been detected, we may actually be interested in more
subtle deviations in the data, as reflected by some of the synonyms
for anomaly detection, interestingness/deviation/surprise/novelty
detection, etc.

For true parameter-free anomaly detection, we can use a divide-
and-conquer algorithm as shown in Table 2. The algorithm works
as follows: Both the left and right halves of the entire sequence
being examined are compared to the entire sequence using the
CDM dissimilarity measure. The intuition is that the side
containing the most unusual section will be less similar to the
global sequence than the other half. Having identified the most
interesting side, we can recursively repeat the above, repeatedly
dividing the most interesting section until we can no longer divide
the sequence.

This twelve-line algorithm appears trivial, yet as we shall see in
Section 4.2, it outperforms four state-of-the-art anomaly detection
algorithms on a wide variety of real and synthetic problems. The
algorithm has another important advantage; it can handle both
single dimensional anomaly detection and multidimensional
anomaly detection without changing a single line of code. We will
demonstrate this ability in Section 4.2.3.

Table 2: Parameter-Free Anomaly Detection Algorithm

function loc_of_anomaly = kolmogorov_anomaly(data)
loc_of_anomaly = 1;
while size(data,1) > 2
left_dist = CDM(data(1:floor(end/2),:),data);
right_dist = CDM(data(ceil(end/2):end,:),data);
if left_dist < right_dist
loc_of_anomaly = loc_of_anomaly + size(data,1) / 2;
data = data(ceil(end/2):end,:);
else
data = data(1:floor(end/2),:);
end
end

While the algorithm above easily detects the anomalies in all the
datasets described in Section 4.2, there are two simple ways to
greatly improve it further. The first is to use the SAX
representation when working with time series, as discussed in
Section 2.4. The second is to introduce a simple and intuitive way
to set parameter. The algorithm in Table 2 allows several potential
weaknesses for the sake of simplicity. First, it assumes a single
anomaly in the dataset. Second, in the first few iterations, the
measure needs to note the difference a small anomaly makes, even
when masked by a large amount of surrounding normal data. A
simple solution to these problems is to set a parameter W, for
number of windows. We can divide the input sequence into W
contiguous sections, and assign the anomaly value of the i™
window as CDM(W,, data ). In other words, we simply measure
how well a small local section can match the global sequence.
Setting this parameter is not too burdensome for many problems.
For example of the ECG dataset discussed in Section 4.2.3, we
found that we could find the objectively correct answer, if the size
of the window ranged anywhere from a Y4 heartbeat length to four
heartbeats. For clarity, we call this slight variation Window
Comparison Anomaly Detection (WCAD).

3.3 Classification

Because CDM is a dissimilarity measure, we can trivially use it
with a lazy-learning scheme. For simplicity, in this work, we will
only consider the one-nearest-neighbor algorithm. Generally
speaking, lazy learners using non-metric proximity measures are
typically forced to examine the entire dataset. However, one can
use an embedding technique such as FASTMAP [9] to map the
objects into a metric space, thus allowing indexing and faster
classification. For simplicity, we disregard this possibility in this
work.

4. EMPIRICAL EVALUATION

While this section shows the results of many experiments, it is
actually only a subset of the experiments conducted for this
research project. We encourage the interested reader to consult [18]
for additional examples.

4.1 Clustering

While CDM can work with most clustering techniques, here we
confine our attention to hierarchical clustering, since it lends itself
to immediate visual confirmation.



4.1.1 Clustering Time Series

In order to perform convincing experiments, we wanted to test our
algorithm against all reasonable alternatives. However, lack of
space prevents us from referencing, much less explaining them. So,
we re-implemented every time series distance/dissimilarity/
similarity measure that has appeared in the last decade in any of the
following conferences: SIGKDD, SIGMOD, ICDM, ICDE, VLDB,
ICML, SSDB, PKDD, and PAKDD. In total, we implemented fifty-
one such measures, including the ten mentioned in [20] and the
eight variations mentioned in [13]. For fairness, we should note
that many of these measures are designed to deal with short time
series, and made no claim about their ability to handle longer time
series. In addition to the above, we considered the classic
Euclidean distance, Dynamic Time Warping (DTW), the L, metric,
the L; ¢ metric, and the Longest Common Subsequence (LCSS), all
of which are more than a decade old. Some of these (Euclidean and
the other L, metrics) are parameter free. For measures that require a
single parameter, we did an exhaustive search for the best
parameter. For measures requiring more than one parameter (one
method required seven!), we spent one hour of CPU time searching
for the best parameters using a genetic algorithm and independently
spent one hour searching manually for the best parameters. We
then considered only the better of the two.

For our first experiment, we examined the UCR Time Series
Archive [19] for datasets that come in pairs. For example, in the
Foetal-ECG dataset, there are two time series, thoracic and
abdominal, and in the Dryer dataset, there are two time series, sot
gas exhaust and fuel flow rate. We were able to identify eighteen
such pairs, from a diverse collection of time series covering the
domains of finance, science, medicine, industry, etc. Although our
method is able to deal with time series of different lengths, we
truncated all time series to length 1,000 to allow comparisons to
methods that require equal length time series.

While the correct hierarchical clustering at the top of the tree is
somewhat subjective, at the lower level of the tree, we would hope
to find a single bifurcation separating each pair in the dataset. Our
metric, Q, for the quality of clustering is therefore the number of
such correct bifurcations divided by eighteen, the number of
datasets. For a perfect clustering, Q = 1, and because the number of
dendrograms of thirty-six objects is greater than 3*10%°, for a
random clustering, we would expect O = 0.

For each measure, we clustered using single linkage, complete
linkage, group average linkage, and wards methods, and reported
only the best performing result. Figure 2 shows the resulting
dendrogram for our approach.

Our approach achieved a perfect clustering, with O = 1. Although
the higher level clustering is subjective, here too our approach
seems to do very well. For example, the appearance of the
Evaporator and Furnace datasets in the same subtree is quite
intuitive, and similar remarks can be made for the two Video
datasets and the two MotorCurrent datasets.

More than % of the other approaches we tested scored Q = 0.
Several of the parameter-laden algorithms suffer from the
following limitation. Although their parameters could be carefully
tuned to do well on one type of data, say the relatively smooth
MotorCurrent datasets, they achieve poor performance on the more
noisy datasets like Balloon. We could then tune the parameters to
do better on the noisy datasets, but immediately lose discriminatory
power on the smooth data.
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Figure 2: Thirty-six time series (in eighteen pairs) clustered using the
approach proposed in this paper

The only measures performing significantly better than random
were the following. Euclidean distance had Q = 0.27. DTW was
able to achieve Q = 0.33 after careful adjustment of its single
parameter. The Hidden Markov Model approach of [14] achieved
0O = 0 using the original piecewise linear approximation of the time
series. However, when using the SAX representation, its score
jumped to Q = 0.33. The LPC Cepstra approach of [17] and the
similar Autocorrelation method of [35] both had O = 0.16. LCSS
had 0 =0.33.

Our first experiment measured the quality of the clustering only at
the leaf level of the dendrogram. We also designed a simple
experiment to test the quality of clustering at a higher level. We
randomly extracted ten subsequences of length 2,000 from two
ECG databases. For this problem the clustering at the leaf level is
subjective, however the first bifurcation of the tree should divide
the data into the two classes (the probability of this happening by
chance is only 1 in 524,288). Figure 3 shows the two best
clusterings obtained.

In a sense, our exhaustive comparison to other similarity methods
was unfair to many of them, which can only measure the similarity
of a few local shapes, rather then the higher-level structural
similarity required.

The following “trick” improved the results of most of the
algorithms on both problems above. To compare two time series 4
and B of length n, we can extract a subsequence of length s from 4,
and compare it to every location in B, then record the closest match



as the overall distance between 4 and B. Although this does help
the majority of the similarity measures, it has a significant
downside. It adds a new (and highly sensitive) parameter to set and
increases the time complexity by a factor of O(#%) and even after
this optimization step, none of the competing similarity measures
come close to the performance of our method.
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Figure 3: Two clusterings on samples from two records from the MIT-
BIH Arrhythmia Database (Left) Our approach (Right) Euclidean distance

Finally, while the results of these experiments are very promising
for our approach, some fraction of the success could be attributed
to luck. To preempt this possibility, we conducted many additional
experiments, with essentially identical results. These experiments
are documented in [18].

4.1.2 Clustering Text

As a test of our ability to cluster text, we began by conducting
experiments on DNA strings. We took the first 16,300 symbols
from the mitochondrial DNA of twelve primates and one “outlier”
species, and hierarchically clustered them. A similar strategy was
used in [23] on a different set of organisms. To validate our results,
we showed the resulting dendrogram to an expert in primate
evolution, Dr. Sang-Hee Lee of UCR. Dr. Lee noted that some of
the relevant taxonomy is still the subject of controversy, but
informed us that the “topography of the tree looks correct’. Figure
4 shows the clustering obtained; Dr. Lee provided the annotation of
the internal nodes.

We want to note that using a compressor optimized for DNA [3]
was essential here. A standard dictionary-based compressor like
gzip, would have resulted in less meaningful distances.

We conducted additional experiments with a more diverse
collection of animals; in every case the clustering agreed with the
current consensus on evolutionary history [18].

We also examined natural language text. A similar experiment is
reported in [2]. Here, we began by clustering the text of various
countries’ Yahoo portals. We only considered the first 1,615
characters, the size of the smallest webpage (excluding white
spaces). Figure 5 (leff) shows the resulting clustering. Note that the
first bifurcation correctly divides the tree into Germanic and
Romance languages. While we striped out all HTML tags for this
experiment, we found that leaving them in made little difference,
presumably because they where more or less equally frequent
across languages.

Surprisingly, the clustering shown is much better than that achieved
by the ubiquitous cosine similarity measure. In retrospect, this is
hardly surprising.
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Figure 4: The clustering achieved by our approach on 16,300 symbols
from the mitochondrial DNA of twelve primates, and one “outlier”
species
Consider the following English, Norwegian and Danish words
taken from the Yahoo portals:

English: {England, information, addresses}
Norwegian: {Storbritannia, informasjon, adressebok}
Danish: {Storbritannien, informationer, adressekartotek}

Because there is not a single word in common to all (even after
applying Porters algorithm), the three vectors are completely
orthogonal to each other in vector space. However, any human
inspection of the text is likely to correctly conclude that Norwegian
and Danish are much more similar to each other than they are to
English. Our approach can leverage off the same cues by finding
repeated structure within and across texts.

We tried a similar experiment with text from various translations of
the first fifty chapters of the bible, this time including what one
would expect to be an outlier, the Maori language of the indigenous
people of New Zealand. As shown in Figure 5 (right) the clustering
is subjectively correct, except for an inclusion of French in the
Germanic subtree.

USA Maori
Germany English ]
Sweden Latin

Norway ) ]
Denmark Italian

Italy Dutch }
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Brazil German
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Figure 5: (Left) The clustering achieved by our approach on the text from
various Yahoo portals (Jan-15" 2004). The smallest webpage had 1,615
characters, excluding white spaces. (Righf) The clustering achieved by
our approach on the text from the first fifty chapters of Genesis. The
smallest file had 132,307 characters, excluding white spaces. Maori, a
Malayo-Polynesian language, is clearly identified as an “outlier”

Once again, we reiterate the following disclaimer. We are not
suggesting that our method replace the vector space model for
indexing text, or a linguistic aware method for tracing the evolution
of languages. Our point is simply to show that given a dataset in
which we know nothing about, we can expect our CDM to produce
reasonable results that can be a starting point for future study.



4.2 Anomaly Detection

Although our approach can be used to find anomalies in text, video,
images, and other data sources, we will confine our attention here
to time series, since this domain has attracted the most attention in
the data mining community and readily lends itself to visual
confirmation.

For all the problems shown below, we can objectively discover the
anomaly using the simple algorithm in Table 2. However, that
algorithm only tells us the location of the anomaly, without telling
us anything about the relative strength of the anomaly. For this
reason, we use the Window Comparison Anomaly Detection
(WCAD) variation discussed in Section 2.2. This slight variation
allows us to determine the relative strength of the anomaly, which
we can visualize by mapping onto the line’s thickness. As noted in
Section 3.2, WCAD does have one simple parameter to set, which
is W, the approximate size of the window we expect to find
anomalies in. In these experiments, we only count an experiment as
a success for CDM if the first window size we choose finds the
anomaly, and if window sizes four times as large, and one quarter
as large, can also find the anomaly.

Because of space limitations, we will consider only four rival
techniques. Here, we simply list them, and state the number of
parameters each requires in parenthesis. We refer the interested
reader to the original papers for more details. We compared our
approach to the Support Vector Machine (SVM) based approach of
[28] (6), the Immunology (IMM) inspired approach of [4] (5), The
Association Rule (AR) based approach of [36] (5), and the TSA-
tree Wavelet based approach of [33] (3). As before, for each
experiment we spent one hour of CPU time, and one hour of human
time trying to find the best parameters and only reported the best
results.

4.2.1 A Simple Normalizing Experiment
We begin our experiments with a simple sanity check, repeating the
noisy sine problem of [28]. Figure 6 shows the results.
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Figure 6: A comparison of five novelty detection algorithms on the
synthetic sine problem of Ma and Perkins [28]. The first 400 data points
are used as training data, an “event” is embedded at time point 600. A)
The approach proposed in this work, the thickness of the line encodes the
level of novelty. B) SVM. C) IMM. D) AR. E) TSA.

Our approach easily finds the novelty, as did SVM with careful
parameter tuning. The IMM algorithm is stochastic, but was able to
find the novelty in the majority of runs. We were simply unable to
make the AR approach work. Finally, TSA does peak for the
novelty, although its discriminatory power appears weak.

The ability of our approach to simply match the prowess of SVM
and IMM on this problem may not seem like much of an
achievement, even though we did it orders of magnitude faster and

without setting any parameters. However, the real utility of our
approach becomes evident when we see how the algorithms
generalize, or when we move from toy problems to real world
problems. We consider both cases below.

4.2.2 Generalizability Experiment

To illustrate the dangers of working with parameter-laden
algorithms, we examined a generalization of the last experiment.
As illustrated in Figure 7, the training data remains the same.
However, in the test data, we changed the period of the sine wave
by a barely perceptible 5%, and added a much more obvious
“anomaly”, by replacing a half of a sine wave with its absolute
value. To be fair, we modified our algorithm to only use the
training data as reference.
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Figure 7: A comparison of five novelty detection algorithms on a
generalization of the synthetic sine problem. The first 400 data points are
used as training data. In the rest of the time series, the period of the sine
wave was changed by 5%, and one half of a sine wave was replaced by its
absolute value. A) The approach proposed in this work, the thickness of
the line encodes the level of novelty. B) SVM. C) IMM. D) AR. E) TSA.

The results show that while our algorithm easily finds the new
anomaly, SVM and IMM discover more important “anomalies”
elsewhere. It may be argued that the very slight change of period is
the anomaly and these algorithms did the right thing. However, we
get a similar inability to generalize if we instead slightly change the
amplitude of the sine waves, or if we add (or remove!) more
uniform noise or make any other innocuous changes, including
ones that are imperceptible to the human eye.

In case the preceding example was a coincidentally unfortunate
dataset for the other approaches, we conducted many other similar
experiments. And since creating our own dataset opens the possibly
of data bias [20], we considered datasets created by others. We
were fortunate enough to obtain a set of 20 time series anomaly
detection benchmark problems from the Aerospace Corp. A subset
of the data is shown in Figure 8.

The TSA algorithm easily discovered the anomaly in the time
series L-1j, but not the other two time series. We found that both
SVM and IMM could have their parameters tuned to find the
anomaly on any individual one of the three sequences, but once the
parameters were tuned on one dataset, they did not generalize to
the other two problems.

The objective of these experiments is to reinforce the main point of
this work. Given the large number of parameters to fit, it is nearly
impossible to avoid overfitting.
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Figure 8: The results of applying our algorithm to (a subset of) a
collection of anomaly detection benchmark datasets from the Aerospace
Corp. the thickness of the line encodes the level of novelty. In every case,
an anomaly was inserted beginning at time point 500

Before leaving this section we would like to briefly relate an
anecdote as a further support for our approach. For the above
problem, we wrote a simple Matlab script to read in the twenty
datasets, run our anomaly detection algorithm, and confirm that the
most anomalous section was discovered within twenty-five points
of 500. After successfully testing our approach, we modified the
script to consider the other approaches but found that it always
crashed when working with dataset L-1s. After some careful
debugging, we discovered that the artificial anomaly in this
sequence is some missing data points, which are encoded in Matlab
as the special character “NaN”. While none of the other algorithms
are defined for missing values (hence the crashing), and are not
trivially extendible, our approach was robust enough not to crash,
and to find the right answer.

4.2.3 Real-World Anomaly Detection

We examined annotated datasets from the MIT-BIH Noise Stress
Test Database. For the algorithms which need a training/test split,
we gave them 1/3 of the dataset which had been annotated as
normal. We then asked the algorithms to examine the rest of the
data to find the most interesting events, comparing the results to the
cardiologists’ annotations. Figure 9 shows the result of one such
experiment. Note that only a small excerpt from the full dataset is
shown.
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Figure 9: A small excerpt from dataset 118e06 from the MIT-BIH Noise
Stress Test Database. The full dataset is 21,600 data points long. Here, we
show only a subsection containing the two most interesting events
detected by our algorithm (the bolder the line, the more interesting the
subsequence). The gray markers are independent annotations by a
cardiologist indicating Premature Ventricular Contractions

We only illustrate the performance of our approach in Figure 9
because all the other approaches produced results that were
objectively (per the cardiologists’ annotations) and subjectively
incorrect, in spite of careful parameter tuning.

Our final example illustrates the flexibility of our approach. None
of the approaches for anomaly detection in time series in the

literature are defined for multidimensional time series', in spite of
an increasing general interest in multidimensional time series [34].
However, we can consider multidimensional time series without
changing a single line of code. In order to have some straw man to
compare to, each of the four completing methods was adapted as
follows. We collected the results on each individual dimension and
then we linearly combined them into a single measure of novelty.

We experimented on a 2D time series that was collected for a
different purpose (in particular, a classification problem [30]). The
2D time series was extracted from a video of an actor performing
various actions with and without a replica gun. Figure 10 (bottom)
illustrates a typical sequence. The actor draws a replica gun from a
hip mounted holster, aims it at a target, and returns it to the holster.
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Figure 10: (Bottom) A typical video snippet from the Gun video is
mapped onto a two-dimensional time series (Center) by tracking the
actor’s right hand. While the vast majority of the dataset looks
approximately like the first 200 data points, the section from about 300 to
450 looks somewhat different, and was singled out by our anomaly
detection algorithm. Examining the original video (Zop), we discovered
the cause of the anomaly.
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Watching the video we discovered that at about ten seconds into
the shoot, the actor misses the holster when returning the gun. An
off-camera (inaudible) remark is made, the actor looks toward the
video technician, and convulses with laughter. At one point (frame
385), she is literally bent double with laughter. This is the only
interesting event in the dataset, and our approach easily finds it.
The other techniques returned results that do not seem truly
anomalous, given a careful inspection of both the time series and
the original video.

We have not considered time efficiency as a metric in these
experiments, because we cannot guarantee that our
implementations of the rival approaches are as efficient as they
might be, given careful optimization. However, our approach is
certainly not sluggish, requiring less than ten seconds (on a 2.65
GHz machine) to process a million data points.

4.3 Classification
In this section, we illustrate the utility of CDM for classification
with the following simple experiment. We use the following

! This includes the 4 rival approaches considered here [4][28][33][36].
While the TSA-Wavelet approach was extended to 2D, this extension is
for spatial mining.



similarity measures on four datasets (Two each from two
databases:- ECG and Gun) and measure their error rates:

e  Euclidean Distance [20].

e  Dynamic Time Warping (DTW). Here, we exhaustively test
all values of its single parameter (warping window size [30])
and report only the best result, and

e  Compression-Based Dissimilarity Measure (CDM)

Note that we only compare CDM with Dynamic Time Warping and

Euclidean Distance metric in this section for brevity, since it has

been shown in [20] that many of the more complex similarity

measures proposed in other work have higher error rates than a

simple Euclidean Distance metric.

The ECG datasets are four-class problem derived from BIDMC
Congestive Heart Failure Database [15] of four patients. Since this
original database contains two ECG signals, we separate each
signal and create two datasets of one-dimensional time series in the
following way. Each instance of 3,200 contiguous data points
(about 20 heartbeats) of each signal is randomly extracted from
each long ECG signals of each patient. Twenty instances are
extracted from each class (patient), resulting in eighty total
instances for each dataset.

The Gun datasets are time-series datasets extracted from video
sequences of two actors either aiming a gun or simply pointing at a
target [30] (see also, Figure 10). We randomly extract twenty
instances of 1,000 contiguous data points (about 7 reps) from each
of the following long time series:

A. Actor 1 with gun

B. Actor 1 without gun (point)

C. Actor 2 with gun

D. Actor 2 without gun (point)
The first dataset is a two-class problem of differentiating Actor 1
from Actor 2 -- (A+B) vs. (C+D). The second dataset is a four-
class problem of differentiating each of the acts independently — A
vs. B vs. C vs. D. In total, each dataset contains eighty instances.
Some samples from both databases are illustrated in Figure 11.
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Figure 11. Some extracted time series from the gun datasets (left) and
the ECG (sig.1) dataset (right)

We measure the error rates on each dataset, using the one-nearest-
neighbor with ‘leaving-one-out’ evaluation method. The lower
bounding technique noted in [30] is also integrated in all the DTW
calculations to help achieve speedup. The experimental results are
summarized in Table 3.

In all four datasets discussed above, Euclidean distance is
extremely fast, yet inaccurate. DTW with the best uniform window
size greatly reduces the error rates, but took several orders of
magnitude longer. However, CDM outperforms both Euclidean
and DTW in all datasets. Even though CDM is slower than
Euclidean distance, it is much faster than the highly optimized
DTW.

Table 3. Classification Error Rates (%) for all four datasets

Euclidean | = (¢ urll)ig\xmdow) DM
ECG: signal 1 | 42.25% 16.25 % 6.25%
ECG: signal 2 | 47.50 % 11.25% 7.50 %
Gun: 2 classes | 5.00 % 0.00 % 0.00 %
Gun: 4 classes | 37.50 % 12.5 % 5.00 %

We do not give exact times here since CDM is implemented in the
relatively lethargic Matlab, whereas DTW is implemented in highly
optimized C++. Nevertheless, even if we excluded the time taken
to find search over DTW’s single (and sensitive, see [30])
parameter, CDM is still about 25 times faster than DTW.

5. CONCLUSIONS AND FUTURE WORK

In this work, we argued that data mining algorithms with many
parameters are burdensome to use, and make it difficult to compare
results across different methods. We further showed empirically
that at least in the case of anomaly detection, parameter-laden
algorithms are particularly vulnerable to overfitting. Sometimes
they achieve perfect accuracy on one dataset, and then completely
fail to generalize to other very similar datasets [7].

As a step towards mitigating these problems, we showed that
parameter-free or parameter-light algorithms can compete with or
outperform parameter-laden algorithms on a wide variety of
problems/data types.

There are many directions in which this work may be extended. We
intend to perform a more rigorous theoretical analysis of the CDM
measure. For example, CDM is a dissimilarity measure; if it could
be modified to be a distance measure, or better still, a distance
metric, we could avail of a wealth of pruning and indexing
techniques to speed up classification [30], clustering [6], and
similarity search [34]. While it is unlikely that CDM can be
transformed in a true metric, it may be possible to prove a weaker
version of the triangular inequality, which can be bounded and used
to prune the search space [6]. The results in [8] on textual
substitution compressors could lead to some insights in the general
problem.

Finally, we note that our approach is clearly not suitable for
classifying or clustering low dimensionality data (although Figure
2 shows exceptionally good results on time series with only 1,000
data points). We plan to theoretically and empirically investigate
the limitations on object sizes that we can meaningfully work with
using our proposed approach.
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We report here on additional results and information that
were left out from the paper due to lack of space.

This work was inspired by an article in the June 2003 issue
of Scientific American, by Charles H. Bennett, Ming Li,
and Bin Ma. The article, “Chain Letters and Evolutionary
Histories”, is a beautiful example of popular science
writing. The authors have made the data used in this work
available here: www.math.uwaterloo.ca/~mli/chain.html

Dr. Ming Li, and Dr. Paul Vitanyi have (together and
separately) published many papers that explore
compression for clustering, bioinformatics, plagiarism
detection etc. Dr. Li’s webpage is
www.math.uwaterloo.ca/~mli/ and Dr. Vitanyi’s webpage
is  http://homepages.cwi.nl/~paulv/. There has been
enormous interest in this work, as you can gauge from
http://homepages.cwi.nl/~paulv/pop.html

In addition, Li and Vitanyi have published the definitive
book on Kolmogorov Complexity: “An Introduction to
Kolmogorov Complexity and Its Applications”, Second
Edition, Springer Verlag 1997; ISBN 0-387-94868-6.

Additional papers that are (to varying degrees) related to
this work, but not cited in the full paper due to lack of
space (or because they came to our attention too late)
include:

A.  Eibe Frank, Chang Chui and Ian H. Witten (2000). Text Categorization
Using Compression Models. Proceedings of the IEEE Data Compression
Conference, Snowbird, Utah, IEEE Computer Society, pp. 555.

B.  Matthew B. Kennel (2004). Testing time symmetry in time series using
data compression dictionaries. Phys. Rev. E 69, 056208 (9 pages).

C.  Matt Mahoney (2003). Space Shuttle Engine Valve Anomaly Detection
by Data Compression. Unpublished notes. (Thanks to Stan Salvador for
bringing this to our attention).

D. J. Segen (1990). Graph Clustering and Model Learning by Data
Compression. In Proceedings of the Machine Learning Conference,
pages 93-101.

E.  Chunyu Kit. 1998. A goodness measure for phrase learning via
compression with the MDL principle. In I. Kruijff-Korbayova(ed.), The
ELLSSI-98 Student Session, Chapter 13, pp.175-187. Aug. 17-28,
Saarbrueken.

F.  P. Griinwald, A Tutorial Introduction to the Minimum Description
Length Principle. To appear as Chapters 1 & 2 of Advances in Minimum
Description Length: Theory and Applications. MIT Press, 04.

G.  A. Ortega, B. Beferull-Lozano, N. Srinivasamurthy, and H. Xie. (2000).
Compression for Recognition and Content based Retrieval. In Proc. of the
European Signal Processing Conference, EUSIPCO'00, Tampere,
Finland.

H.  Andrea Baronchelli, Vittorio Loreto (2004). Data Compression approach
to Information Extraction and Classification CoRR cond-mat/0403233:
(submitted for publication).

Both Dr. Stephen Bay and one of the anonymous reviewers
noted that one implication of the experiments in Section
4.1.1 is that the Euclidean distance works very well for
time series! This is true, we did not emphasize this fact in
this work, because we already forcefully made this point in
[20] (see Section 4.2).

Finally, we will show some additional experiments that did
not make it to the published paper due to lack of space.

The experiment in Figure A is similar to the one shown in
Figure 3, but with more classes.
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Cluster 1 (datasets 1 ~ 5):
BIDMC Congestive Heart Failure Database (chfdb): record chf02
Start times at 0, 82, 150, 200, 250, respectively
Cluster 2 (datasets 6 ~ 10):
BIDMC Congestive Heart Failure Database (chfdb): record chfl5
Start times at 0, 82, 150, 200, 250, respectively
Cluster 3 (datasets 11 ~ 15):
Long Term ST Database (ltstdb): record 20021
Start times at 0, 50, 100, 150, 200, respectively
Cluster 4 (datasets 16 ~ 20):
MIT-BIH Noise Stress Test Database (nstdb): record 118¢6
Start times at 0, 50, 100, 150, 200, respectively

Figure A: Two clusterings on samples from four records from the MIT-
BIH Arrhythmia Database, (Left) Our approach (Right) Euclidean distance

Several people that viewed an early version of the work suggested
that the clustering might only work in highly structured data, but not
for more “random” data. As a simple sanity check we tried
clustering random data and random walk data, as shown in Figure B.

I C. Noble and D. J. Cook, Graph-Based Anomaly Detection, Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2003.

J. Teahan, W.J., Wen, Y., McNab, R.J., Witten, .H.(2000). A compression-
based algorithm for Chinese word segmentation. Computational
Linguistics 26. 375--393
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Figure B: Two clusterings on 15 samples of random walk, and 15

samples of random data

In Figure C, we add some structured data to the mix, to see if CDM

Euclidean

is confused by the presence of random data.

Video Surveillance: Eamonn, no gun FUWUWU\HNUWWWU\WMNWUW

Video Surveillance: Eamonn, gun
Video Surveillance: Ann, no gun
Video Surveillance: Ann, gun
MotorCurrent: healthy 2
MotorCurrent: healthy 1
MotorCurrent: broken bars 2

MotorCurrent: broken bars 1

Power Demand: Apri-June (talizn) MR A,k A A A :'_
Power Demand: Jan-March (tatian) RIS,

Power Demand: April-June (Dutch) lmmmj : -
Power Demand: Jan-March (Dutch) j.mwm

random walk
random walk
random walk
random walk
random walk
random walk
random walk
random walk
random walk
random walk

Figure C: The clustering obtained on some random walk data, random data,

and some highly structured datasets.
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It goes without saying that CDM is by no means perfect, in Figure
D, Time Series 3 is incorrectly clustered.
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MIT-BIH Arrhythmia Database www.physionet.org/physiobank/database/qtdb
Class 1: Record sel102, Class 2: Record sel104, Class 3: Record sel213

Figure D: The clustering obtained on a 3-class problem. Note that time series
3 (at the bottom of the figure) is not clustered properly

In Figure E we show additional examples from the dataset shown in
Figure 8. Although the problems look too simple to be of interest,
none of the other four approaches discussed in the paper can find the
anomaly in all four examples.

ANV

Figure E: Additional examples from the Aerospace anomaly detection
problems, the thickness of the line encodes the level of novelty
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the X-means algorithm of Moore and Pelleg (2000). However, instead of the
MDL principle they use a probabilistic scheme called the Bayes Information
Criterion (Kass and Wasserman 1995). The incremental clustering procedure,
based on the merging and splitting operations, was introduced in systems called
Cobweb for nominal attributes (Fisher 1987) and Classit for numeric attributes
(Gennari et al. 1990). Both are based on a measure of category utility that had
been defined previously (Gluck and Corter 1985). The AutoClass program is
described by Cheeseman and Stutz (1995). Two implementations are available:
the original research implementation, written in LISP, and a follow-up public
implementation in C that is 10 or 20 times faster but somewhat more
restricted—for example, only the normal-distribution model is implemented
for numeric attributes.

Bayesian networks

The Naive Bayes classifier of Section 4.2 and the logistic regression models of

Section 4.6 both produce probability estimates rather than predictions. For each
class value, they estimate the probability that a given instance belongs to that

class. Most other types of classifiers can be coerced into yielding this kind of

information if necessary. For example, probabilities can be obtained from a

decision tree by computing the relative frequency of each class in a leaf and from
a decision list by examining the instances that a particular rule covers.

Probability estimates are often more useful than plain predictions. They
allow predictions to be ranked, and their expected cost to be minimized (see
Section 5.7). In fact, there is a strong argument for treating classification learn-
ing as the task of learning class probability estimates from data. What is being
estimated is the conditional probability distribution of the values of the class
attribute given the values of the other attributes. The classification model rep-
resents this conditional distribution in a concise and easily comprehensible
form.

Viewed in this way, Naive Bayes classifiers, logistic regression models, deci-
sion trees, and so on, are just alternative ways of representing a conditional
probability distribution. Of course, they differ in representational power.
Naive Bayes classifiers and logistic regression models can only represent simple
distributions, whereas decision trees can represent—or at least approximate—
arbitrary distributions. However, decision trees have their drawbacks: they frag-
ment the training set into smaller and smaller pieces, which inevitably yield less
reliable probability estimates, and they suffer from the replicated subtree
problem described in Section 3.2. Rule sets go some way toward addressing these
shortcomings, but the design of a good rule learner is guided by heuristics with
scant theoretical justification.
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Does this mean that we have to accept our fate and live with these shortcom-
ings? No! There is a statistically based alternative: a theoretically well-founded
way of representing probability distributions concisely and comprehensibly in
a graphical manner. The structures are calledBayesian networks. They are drawn
as a network of nodes, one for each attribute, connected by directed edges in
such a way that there are no cycles—a directed acyclic graph.

In our explanation of how to interpret Bayesian networks and how to learn
them from data, we will make some simplifying assumptions. We assume that
all attributes are nominal and that there are no missing values. Some advanced
learning algorithms can create new attributes in addition to the ones present in
the data—so-called hidden attributes whose values cannot be observed. These
can support better models if they represent salient features of the underlying
problem, and Bayesian networks provide a good way of using them at predic-
tion time. However, they make both learning and prediction far more complex
and time consuming, so we will not consider them here.

Making predictions

Figure 6.20 shows a simple Bayesian network for the weather data. It has a node
for each of the four attributes outlook, temperature, humidity, and windy and
one for the class attribute play. An edge leads from the play node to each of the
other nodes. But in Bayesian networks the structure of the graph is only half
the story. Figure 6.20 shows a table inside each node. The information in the
tables defines a probability distribution that is used to predict the class proba-
bilities for any given instance.

Before looking at how to compute this probability distribution, consider the
information in the tables. The lower four tables (for outlook, temperature,
humidity, and windy) have two parts separated by a vertical line. On the left are
the values of play, and on the right are the corresponding probabilities for each
value of the attribute represented by the node. In general, the left side contains
a column for every edge pointing to the node, in this case just the play attrib-
ute. That is why the table associated with play itself does not have a left side: it
has no parents. In general, each row of probabilities corresponds to one com-
bination of values of the parent attributes, and the entries in the row show the
probability of each value of the node’s attribute given this combination. In
effect, each row defines a probability distribution over the values of the node’s
attribute. The entries in a row always sum to 1.

Figure 6.21 shows a more complex network for the same problem, where
three nodes (windy, temperature, and humidity) have two parents. Again, there
is one column on the left for each parent and as many columns on the right as
the attribute has values. Consider the first row of the table associated with the
temperature node. The left side gives a value for each parent attribute, play and
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ves [.238
no .538

outlook
sunny overcast rainy

.429
.077

.333
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temperature

hot
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mild cool
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windy

windy
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.350 .650
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humidity

play humidity
high normal
ves .350 .650
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Figure 6.20 A simple Bayesian network for the weather data.
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outlook; the right gives a probability for each value of temperature. For example,
the first number (0.143) is the probability of temperature taking on the value

hot, given that play and outlook have values yes and sunny, respectively.

How are the tables used to predict the probability of each class value for a
given instance? This turns out to be very easy, because we are assuming that
there are no missing values. The instance specifies a value for each attribute. For
each node in the network, look up the probability of the node’s attribute value
based on the row determined by its parents’ attribute values. Then just multi-
ply all these probabilities together.
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windy

play outlook windy
false true
ves sunny .500 .500
yes overcast| .500 .500

ves rainy .125 .875

no sunny .375 .625
no overcast| .500 .500
no rainy .833 .167

outlook

outlook

humidity

sunny overcast rainy

ves |[.238 .429 .333 play temperat. humidity
.538 .077 .385 high normal
ves hot .500 .500
ves mild .500 .500
ves cool .125 .875
no hot .833 .167
no mild .833 .167
no cool .250 .750

temperature

play outlook temperature
hot mild cool
ves sunny |.143 .429 .429
yves overcast|.455 .273 .273

ves rainy |[.111 .556 .333

no sunny |.556 .333 .111
no overcast|.333 .333 .333
no rainy |.143 .429 .429

Figure 6.21 Another Bayesian network for the weather data.
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For example, consider an instance with values outlook = rainy, temperature =
cool, humidity = high, and windy = true. To calculate the probability for play =
no, observe that the network in Figure 6.21 gives probability 0.367 from node
play, 0.385 from outlook, 0.429 from temperature, 0.250 from humidity, and
0.167 from windy. The product is 0.0025. The same calculation for play = yes
yields 0.0077. However, these are clearly not the final answer: the final proba-
bilities must sum to 1, whereas 0.0025 and 0.0077 don’t. They are actually the
joint probabilities Pr[play = no,E] and Pr|[play = yes,E], where E denotes all the
evidence given by the instance’s attribute values. Joint probabilities measure the
likelihood of observing an instance that exhibits the attribute values in E as well
as the respective class value. They only sum to 1 if they exhaust the space of all
possible attribute—value combinations, including the class attribute. This is cer-
tainly not the case in our example.

The solution is quite simple (we already encountered it in Section 4.2).
To obtain the conditional probabilities Pr [play = no|E]| and Pr [play = yes|E],
normalize the joint probabilities by dividing them by their sum. This gives
probability 0.245 for play = no and 0.755 for play = yes.

Just one mystery remains: why multiply all those probabilities together? It
turns out that the validity of the multiplication step hinges on a single assump-
tion—namely that, given values for each of a node’s parents, knowing the values
for any other ancestors does not change the probability associated with each of
its possible values. In other words, ancestors do not provide any information
about the likelihood of the node’s values over and above the information pro-
vided by the parents. This can be written

Pr[node|ancestors] = Pr[node| parents],

which must hold for all values of the nodes and attributes involved. In statistics
this property is called conditional independence. Multiplication is valid pro-
vided that each node is conditionally independent of its grandparents, great-
grandparents, and so on, given its parents. The multiplication step results
directly from the chain rule in probability theory, which states that the joint
probability of n attributes a; can be decomposed into this product:

n
Prla,a,,...,a,]1=[]Prla;|a.y,...,a]
i=1

The decomposition holds for any order of the attributes. Because our Bayesian
network is an acyclic graph, its nodes can be ordered to give all ancestors of a
node a; indices smaller than i. Then, because of the conditional independence
assumption,

n n
Prla,,a,,...,a,]1=[[Prla;|a.y,...,a,]1= ][ Prla;|a’s parents],
i=1 i=1
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which is exactly the multiplication rule that we applied previously.

The two Bayesian networks in Figure 6.20 and Figure 6.21 are fundamentally
different. The first (Figure 6.20) makes stronger independence assumptions
because for each of its nodes the set of parents is a subset of the corresponding
set of parents in the second (Figure 6.21). In fact, Figure 6.20 is almost identi-
cal to the simple Naive Bayes classifier of Section 4.2. (The probabilities are
slightly different but only because each count has been initialized to 0.5 to avoid
the zero-frequency problem.) The network in Figure 6.21 has more rows in the
conditional probability tables and hence more parameters; it may be a more
accurate representation of the underlying domain.

It is tempting to assume that the directed edges in a Bayesian network rep-
resent causal effects. But be careful! In our case, a particular value of play may
enhance the prospects of a particular value of outlook, but it certainly doesn’t
cause it—it is more likely to be the other way round. Different Bayesian net-
works can be constructed for the same problem, representing exactly the same
probability distribution. This is done by altering the way in which the joint
probability distribution is factorized to exploit conditional independencies. The
network whose directed edges model causal effects is often the simplest one with
the fewest parameters. Hence, human experts who construct Bayesian networks
for a particular domain often benefit by representing causal effects by directed
edges. However, when machine learning techniques are applied to induce
models from data whose causal structure is unknown, all they can do is con-
struct a network based on the correlations that are observed in the data. Infer-
ring causality from correlation is always a dangerous business.

Learning Bayesian networks

The way to construct a learning algorithm for Bayesian networks is to define
two components: a function for evaluating a given network based on the data
and a method for searching through the space of possible networks. The quality
of a given network is measured by the probability of the data given the network.
We calculate the probability that the network accords to each instance and
multiply these probabilities together over all instances. In practice, this quickly
yields numbers too small to be represented properly (calledrithmetic underflow),
so we use the sum of the logarithms of the probabilities rather than their product.
The resulting quantity is the log-likelihood of the network given the data.
Assume that the structure of the network—the set of edges—is given. It’s easy
to estimate the numbers in the conditional probability tables: just compute the
relative frequencies of the associated combinations of attribute values in the
training data. To avoid the zero-frequency problem each count is initialized with
a constant as described in Section 4.2. For example, to find the probability that
humidity = normal given that play = yes and temperature = cool (the last number
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of the third row of the humidity node’s table in Figure 6.21), observe from Table
1.2 (page 11) that there are three instances with this combination of attribute
values in the weather data, and no instances with humidity = high and the
same values for play and temperature. Initializing the counts for the two values
of humidity to 0.5 yields the probability (3 + 0.5) / (3 + 0 + 1) = 0.875 for
humidity = normal.

The nodes in the network are predetermined, one for each attribute (includ-
ing the class). Learning the network structure amounts to searching through the
space of possible sets of edges, estimating the conditional probability tables for
each set, and computing the log-likelihood of the resulting network based on
the data as a measure of the network’s quality. Bayesian network learning
algorithms differ mainly in the way in which they search through the space of
network structures. Some algorithms are introduced below.

There is one caveat. If the log-likelihood is maximized based on the training
data, it will always be better to add more edges: the resulting network will simply
overfit. Various methods can be employed to combat this problem. One possi-
bility is to use cross-validation to estimate the goodness of fit. A second is to
add a penalty for the complexity of the network based on the number of param-
eters, that is, the total number of independent estimates in all the probability
tables. For each table, the number of independent probabilities is the total
number of entries minus the number of entries in the last column, which can
be determined from the other columns because all rows must sum to 1. Let K
be the number of parameters, LL the log-likelihood, and N the number of
instances in the data. Two popular measures for evaluating the quality of a
network are the Akaike Information Criterion (AIC),

AIC score=—LL+K,

and the following MDL metric based on the MDL principle:
K
MDL score=—LL+ ?log N.

In both cases the log-likelihood is negated, so the aim is to minimize these
scores.

A third possibility is to assign a prior distribution over network structures
and find the most likely network by combining its prior probability with the
probability accorded to the network by the data. This is the “Bayesian” approach
to network scoring. Depending on the prior distribution used, it can take
various forms. However, true Bayesians would average over all possible network
structures rather than singling out a particular network for prediction. Unfor-
tunately, this generally requires a great deal of computation. A simplified
approach is to average over all network structures that are substructures of a



218

CHAPTER 6 | IMPLEMENTATIONS: REAL MACHINE LEARNING SCHEMES

given network. It turns out that this can be implemented very efficiently by
changing the method for calculating the conditional probability tables so that
the resulting probability estimates implicitly contain information from all sub-
networks. The details of this approach are rather complex and will not be
described here.

The task of searching for a good network structure can be greatly simplified
if the right metric is used for scoring. Recall that the probability of a single
instance based on a network is the product of all the individual probabilities
from the various conditional probability tables. The overall probability of the
dataset is the product of these products for all instances. Because terms in a
product are interchangeable, the product can be rewritten to group together all
factors relating to the same table. The same holds for the log-likelihood, using
sums instead of products. This means that the likelihood can be optimized sep-
arately for each node of the network. This can be done by adding, or removing,
edges from other nodes to the node that is being optimized—the only constraint
is that cycles must not be introduced. The same trick also works if a local scoring
metric such as AIC or MDL is used instead of plain log-likelihood because the
penalty term splits into several components, one for each node, and each node
can be optimized independently.

Specific algorithms

Now we move on to actual algorithms for learning Bayesian networks. One
simple and very fast learning algorithm, called K2, starts with a given ordering
of the attributes (i.e., nodes). Then it processes each node in turn and greedily
considers adding edges from previously processed nodes to the current one. In
each step it adds the edge that maximizes the network’s score. When there is no
further improvement, attention turns to the next node. As an additional mech-
anism for overfitting avoidance, the number of parents for each node can be
restricted to a predefined maximum. Because only edges from previously pro-
cessed nodes are considered and there is a fixed ordering, this procedure cannot
introduce cycles. However, the result depends on the initial ordering, so it makes
sense to run the algorithm several times with different random orderings.

The Naive Bayes classifier is a network with an edge leading from the class
attribute to each of the other attributes. When building networks for classifica-
tion, it sometimes helps to use this network as a starting point for the search.
This can be done in K2 by forcing the class variable to be the first one in the
ordering and initializing the set of edges appropriately.

Another potentially helpful trick is to ensure that every attribute in the data
is in the Markov blanket of the node that represents the class attribute. A node’s
Markov blanket includes all its parents, children, and children’s parents. It can
be shown that a node is conditionally independent of all other nodes given
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values for the nodes in its Markov blanket. Hence, if a node is absent from the
class attribute’s Markov blanket, its value is completely irrelevant to the classi-
fication. Conversely, if K2 finds a network that does not include a relevant attrib-
ute in the class node’s Markov blanket, it might help to add an edge that rectifies
this shortcoming. A simple way of doing this is to add an edge from the
attribute’s node to the class node or from the class node to the attribute’s node,
depending on which option avoids a cycle.

A more sophisticated but slower version of K2 is not to order the nodes but
to greedily consider adding or deleting edges between arbitrary pairs of nodes
(all the while ensuring acyclicity, of course). A further step is to consider invert-
ing the direction of existing edges as well. As with any greedy algorithm, the
resulting network only represents a local maximum of the scoring function: it
is always advisable to run such algorithms several times with different random
initial configurations. More sophisticated optimization strategies such as simu-
lated annealing, tabu search, or genetic algorithms can also be used.

Another good learning algorithm for Bayesian network classifiers is calledtree
augmented Naive Bayes (TAN). As the name implies, it takes the Naive Bayes
classifier and adds edges to it. The class attribute is the single parent of each
node of a Naive Bayes network: TAN considers adding a second parent to each
node. If the class node and all corresponding edges are excluded from consid-
eration, and assuming that there is exactly one node to which a second parent
is not added, the resulting classifier has a tree structure rooted at the parentless
node—this is where the name comes from. For this restricted type of network
there is an efficient algorithm for finding the set of edges that maximizes the
network’s likelihood based on computing the network’s maximum weighted
spanning tree. This algorithm is linear in the number of instances and quad-
ratic in the number of attributes.

All the scoring metrics that we have described so far are likelihood
based in the sense that they are designed to maximize the joint probability
Prla,, a,, . . ., a,] for each instance. However, in classification, what we really
want to maximize is the conditional probability of the class given the values of
the other attributes—in other words, the conditional likelihood. Unfortunately,
there is no closed-form solution for the maximum conditional-likelihood prob-
ability estimates that are needed for the tables in a Bayesian network. On the
other hand, computing the conditional likelihood for a given network and
dataset is straightforward—after all, this is what logistic regression does. Hence
it has been proposed to use standard maximum likelihood probability estimates
in the network, but the conditional likelihood to evaluate a particular network
structure.

Another way of using Bayesian networks for classification is to build a sepa-
rate network for each class value, based on the data pertaining to that class, and
combine the predictions using Bayes’s rule. The set of networks is called a
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when a redundant attribute is about to be added than the backward elimina-
tion approach—in conjunction with a very simple, almost “naive,” metric that
determines the quality of an attribute subset to be simply the performance of
the learned algorithm on thetraining set. As was emphasized in Chapter 5, train-
ing set performance is certainly not a reliable indicator of test-set performance.
Nevertheless, experiments show that this simple modification to Naive Bayes
markedly improves its performance on those standard datasets for which it does
not do so well as tree- or rule-based classifiers, and does not have any negative
effect on results on datasets on which Naive Bayes already does well. Selective
Naive Bayes, as this learning method is called, is a viable machine learning tech-
nique that performs reliably and well in practice.

Discretizing numeric attributes

Some classification and clustering algorithms deal with nominal attributes only
and cannot handle ones measured on a numeric scale. To use them on general
datasets, numeric attributes must first be “discretized” into a small number of
distinct ranges. Even learning algorithms that do handle numeric attributes
sometimes process them in ways that are not altogether satisfactory. Statistical
clustering methods often assume that numeric attributes have a normal distri-
bution—often not a very plausible assumption in practice—and the standard
extension of the Naive Bayes classifier to handle numeric attributes adopts the
same assumption. Although most decision tree and decision rule learners can
handle numeric attributes, some implementations work much more slowly
when numeric attributes are present because they repeatedly sort the attribute
values. For all these reasons the question arises: what is a good way to discretize
numeric attributes into ranges before any learning takes place?

We have already encountered some methods for discretizing numeric attrib-
utes. The 1R learning scheme described in Chapter 4 uses a simple but effective
technique: sort the instances by the attribute’s value and assign the value into
ranges at the points that the class value changes—except that a certain minimum
number of instances in the majority class (six) must lie in each of the ranges,
which means that any given range may include a mixture of class values. This
is a “global” method of discretization that is applied to all continuous attributes
before learning starts.

Decision tree learners, on the other hand, deal with numeric attributes on a
local basis, examining attributes at each node of the tree when it is being con-
structed to see whether they are worth branching on—and only at that point
deciding on the best place to split continuous attributes. Although the tree-
building method we examined in Chapter 6 only considers binary splits of con-
tinuous attributes, one can imagine a full discretization taking place at that
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point, yielding a multiway split on a numeric attribute. The pros and cons of
the local versus the global approach are clear. Local discretization is tailored to

the actual context provided by each tree node, and will produce different dis-

cretizations of the same attribute at different places in the tree if that seems

appropriate. However, its decisions are based on less data as tree depth increases,
which compromises their reliability. If trees are developed all the way out to

single-instance leaves before being pruned back, as with the normal technique

of backward pruning, it is clear that many discretization decisions will be based

on data that is grossly inadequate.

When using global discretization before applying a learning method, there
are two possible ways of presenting the discretized data to the learner. The most
obvious is to treat discretized attributes like nominal ones: each discretization
interval is represented by one value of the nominal attribute. However, because
a discretized attribute is derived from a numeric one, its values are ordered, and
treating it as nominal discards this potentially valuable ordering information.
Of course, if a learning scheme can handle ordered attributes directly, the solu-
tion is obvious: each discretized attribute is declared to be of type “ordered.”

If the learning method cannot handle ordered attributes, there is still a simple
way of enabling it to exploit the ordering information: transform each dis-
cretized attribute into a set of binary attributes before the learning scheme is
applied. Assuming the discretized attribute has k values, it is transformed into
k — 1 binary attributes, the first i — 1 of which are set to false whenever the ith
value of the discretized attribute is present in the data and to true otherwise.
The remaining attributes are set to false. In other words, the (i — 1)th binary
attribute represents whether the discretized attribute is less than i. If a decision
tree learner splits on this attribute, it implicitly uses the ordering information
it encodes. Note that this transformation is independent of the particular dis-
cretization method being applied: it is simply a way of coding an ordered attrib-
ute using a set of binary attributes.

Unsupervised discretization

There are two basic approaches to the problem of discretization. One is to quan-
tize each attribute in the absence of any knowledge of the classes of the instances
in the training set—so-called unsupervised discretization. The other is to take
the classes into account when discretizing—supervised discretization. The
former is the only possibility when dealing with clustering problems in which
the classes are unknown or nonexistent.

The obvious way of discretizing a numeric attribute is to divide its range into
a predetermined number of equal intervals: a fixed, data-independent yardstick.
This is frequently done at the time when data is collected. But, like any unsu-
pervised discretization method, it runs the risk of destroying distinctions that
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would have turned out to be useful in the learning process by using gradations
that are too coarse or by unfortunate choices of boundary that needlessly lump
together many instances of different classes.

Equal-interval binning often distributes instances very unevenly: some bins
contain many instances, and others contain none. This can seriously impair the
ability of the attribute to help to build good decision structures. It is often better
to allow the intervals to be of different sizes, choosing them so that the same
number of training examples fall into each one. This method, equal-frequency
binning, divides the attribute’s range into a predetermined number of bins based
on the distribution of examples along that axis—sometimes called histogram
equalization, because if you take a histogram of the contents of the resulting
bins it will be completely flat. If you view the number of bins as a resource, this
method makes best use of it.

However, equal-frequency binning is still oblivious to the instances’ classes,
and this can cause bad boundaries. For example, if all instances in a bin have
one class, and all instances in the next higher bin have another except for the
first, which has the original class, surely it makes sense to respect the class
divisions and include that first instance in the previous bin, sacrificing the equal-
frequency property for the sake of homogeneity. Supervised discretization—
taking classes into account during the process—certainly has advantages.
Nevertheless, it has been found that equal-frequency binning can yield excellent
results, at least in conjunction with the Naive Bayes learning scheme, when the
number of bins is chosen in a data-dependent fashion by setting it to the square
root of the number of instances. This method is called proportional k-interval
discretization.

Entropy-based discretization

Because the criterion used for splitting a numeric attribute during the forma-
tion of a decision tree works well in practice, it seems a good idea to extend it
to more general discretization by recursively splitting intervals until it is time
to stop. In Chapter 6 we saw how to sort the instances by the attribute’s value
and consider, for each possible splitting point, the information gain of the
resulting split. To discretize the attribute, once the first split is determined the
splitting process can be repeated in the upper and lower parts of the range, and
so on, recursively.

To see this working in practice, we revisit the example on page 189 for dis-
cretizing the temperature attribute of the weather data, whose values are

64 65 68 69 70 71 72 75 80 81 83 85

no ves
ves no yes yes yes no no yes yes no
yes vyes
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(Repeated values have been collapsed together.) The information gain for each
of the 11 possible positions for the breakpoint is calculated in the usual way.
For example, the information value of the test temperature < 71.5, which splits
the range into four yes’s and two n0’s versus five yes’s and three #0’s, is

info([4, 2], [5, 3]) = (6/14) x info([4, 2]) + (8/14) X info([5, 3]) = 0.939 bits

This represents the amount of information required to specify the individual
values of yes and no given the split. We seek a discretization that makes the
subintervals as pure as possible; hence, we choose to split at the point where the
information value is smallest. (This is the same as splitting where the informa-
tion gain, defined as the difference between the information value without the
split and that with the split, is largest.) As before, we place numeric thresholds
halfway between the values that delimit the boundaries of a concept.

The graph labeled A in Figure 7.2 shows the information values at each pos-
sible cut point at this first stage. The cleanest division—smallest information
value—is at a temperature of 84 (0.827 bits), which separates off just the very
final value, a no instance, from the preceding list. The instance classes are written
below the horizontal axis to make interpretation easier. Invoking the algorithm
again on the lower range of temperatures, from 64 to 83, yields the graph labeled
B. This has a minimum at 80.5 (0.800 bits), which splits off the next two values,

0.8
0.6
0.4
0.2
0 -————r——— 1
65 70 75 80 85
no yes
yes no yes yes yes no no yes yes no
yes yes

Figure 7.2 Discretizing the temperature attribute using the entropy method.
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64 65 68 69 70 71 72 75 80 81 83 85
no | yes
yes no |yes yes  yes no no | yes yes | no
yes | yes
F E D C B A
66.5 70.5 735 77.5 80.5 84

Figure 7.3 The result of discretizing the temperature attribute.

both yes instances. Again invoking the algorithm on the lower range, now from

64 to 80, produces the graph labeled C (shown dotted to help distinguish it from
the others). The minimum is at 77.5 (0.801 bits), splitting off another no

instance. Graph D has a minimum at 73.5 (0.764 bits), splitting off two yes

instances. Graph E (again dashed, purely to make it more easily visible), for the

temperature range 64 to 72, has a minimum at 70.5 (0.796 bits), which splits

off two nos and a yes. Finally, graph F, for the range 64 to 70, has a minimum

at 66.5 (0.4 bits).

The final discretization of the temperature attribute is shown in Figure 7.3.
The fact that recursion only ever occurs in the first interval of each split is an
artifact of this example: in general, both the upper and the lower intervals will
have to be split further. Underneath each division is the label of the graph in
Figure 7.2 that is responsible for it, and below that is the actual value of the split
point.

It can be shown theoretically that a cut point that minimizes the informa-
tion value will never occur between two instances of the same class. This leads
to a useful optimization: it is only necessary to consider potential divisions that
separate instances of different classes. Notice that if class labels were assigned to
the intervals based on the majority class in the interval, there would be no guar-
antee that adjacent intervals would receive different labels. You might be
tempted to consider merging intervals with the same majority class (e.g., the
first two intervals of Figure 7.3), but as we will see later (pages 302—304) this is
not a good thing to do in general.

The only problem left to consider is the stopping criterion. In the tempera-
ture example most of the intervals that were identified were “pure” in that all
their instances had the same class, and there is clearly no point in trying to split
such an interval. (Exceptions were the final interval, which we tacitly decided
not to split, and the interval from 70.5 to 73.5.) In general, however, things are
not so straightforward.
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A good way to stop the entropy-based splitting discretization procedure turns
out to be the MDL principle that we encountered in Chapter 5. In accordance
with that principle, we want to minimize the size of the “theory” plus the size
of the information necessary to specify all the data given that theory. In this
case, if we do split, the “theory” is the splitting point, and we are comparing the
situation in which we split with that in which we do not. In both cases we assume
that the instances are known but their class labels are not. If we do not split, the
classes can be transmitted by encoding each instance’s label. If we do, we first
encode the split point (in log,[ N — 1] bits, where N is the number of instances),
then the classes of the instances below that point, and then the classes of those
above it. You can imagine that if the split is a good one—say, all the classes below
it are yes and all those above are no—then there is much to be gained by split-
ting. If there is an equal number of yes and no instances, each instance costs 1
bit without splitting but hardly more than 0 bits with splitting—it is not quite
0 because the class values associated with the split itself must be encoded, but
this penalty is amortized across all the instances. In this case, if there are many
examples, the penalty of having to encode the split point will be far outweighed
by the information saved by splitting.

We emphasized in Section 5.9 that when applying the MDL principle, the
devil is in the details. In the relatively straightforward case of discretization, the
situation is tractable although not simple. The amounts of information can be
obtained exactly under certain reasonable assumptions. We will not go into the
details, but the upshot is that the split dictated by a particular cut point is worth-
while if the information gain for that split exceeds a certain value that depends
on the number of instances N, the number of classes k, the entropy of the
instances E, the entropy of the instances in each subinterval E, and E,, and the
number of classes represented in each subinterval k; and k;:

log,(N —1) . log, (3" —2)—kE+kE, +k,E,
N N '

gain >

The first component is the information needed to specify the splitting point;
the second is a correction due to the need to transmit which classes correspond
to the upper and lower subintervals.

When applied to the temperature example, this criterion prevents any split-
ting at all. The first split removes just the final example, and as you can imagine
very little actual information is gained by this when transmitting the classes—
in fact, the MDL criterion will never create an interval containing just one
example. Failure to discretize temperature effectively disbars it from playing any
role in the final decision structure because the same discretized value will be
given to all instances. In this situation, this is perfectly appropriate: the temper-
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ature attribute does not occur in good decision trees or rules for the weather
data. In effect, failure to discretize is tantamount to attribute selection.

Other discretization methods

The entropy-based method with the MDL stopping criterion is one of the best
general techniques for supervised discretization. However, many other methods
have been investigated. For example, instead of proceeding top-down by recur-
sively splitting intervals until some stopping criterion is satisfied, you could
work bottom-up, first placing each instance into its own interval and then con-
sidering whether to merge adjacent intervals. You could apply a statistical crite-
rion to see which would be the best two intervals to merge, and merge them if
the statistic exceeds a certain preset confidence level, repeating the operation
until no potential merge passes the test. The ” test is a suitable one and has
been used for this purpose. Instead of specifying a preset significance threshold,
more complex techniques are available to determine an appropriate level
automatically.

A rather different approach is to count the number of errors that a dis-
cretization makes when predicting each training instance’s class, assuming that
each interval receives the majority class. For example, the 1R method described
earlier is error based—it focuses on errors rather than the entropy. However,
the best possible discretization in terms of error count is obtained by using the
largest possible number of intervals, and this degenerate case should be avoided
by restricting the number of intervals in advance. For example, you might ask,
what is the best way to discretize an attribute into k intervals in a way that min-
imizes the number of errors?

The brute-force method of finding the best way of partitioning an attribute
into k intervals in a way that minimizes the error count is exponential in k and
hence infeasible. However, there are much more efficient schemes that are based
on the idea of dynamic programming. Dynamic programming applies not just
to the error count measure but also to any given additive impurity function, and
it can find the partitioning of N instances into k intervals in a way that mini-
mizes the impurity in time proportional to kN This gives a way of finding the
best entropy-based discretization, yielding a potential improvement in the
quality of the discretization (but in practice a negligible one) over the recursive
entropy-based method described previously. The news for error-based dis-
cretization is even better, because there is a method that minimizes the error
count in time linear in N.

Entropy-based versus error-based discretization

Why not use error-based discretization, since the optimal discretization can be
found very quickly? The answer is that there is a serious drawback to error-based
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Numeric Transforms

Pragmatically, the following transforms for numbers are very useful:

e Coarse-grain: if many numbers, bunch them up into a small set; e.g. below mean, above mean
o More generally, discretize them (see [#Discretization]).

e Log: if the numerics form an exponential distribution, convert all N to log(N)
o Used in the COCOMO example
o pragmatics: missing values can't be "zero" (infinitely negative log values)
o Apply some min value (e.g. 0.0001) and use:
o new = (if old < min then log(min) else log(old))
¢ Remove outliers: suspiciously large/small values
e Replace unknowns with most expected value
o Numerics: use mean or median
e Discretes: use most common symbol
o ?cluster first, then fill in from local neighborhood
o Warning: maybe missing really means missing!
o Also, some learners can handle missing valus.
e Bore: Best or Rest
o Sort: rename the top X% (best) values "good" and the rest "bad"; eg. X=25%
o Scales to multi-variables (can be used to replace multiple numeric target classes with one binary
classification)
e Time series
o Add attributes to record the moving average over the last N minutes, 5N minutes, 25N minutes, etc

Sampling

Build data sets by sub-sampling real data

e Column sub-sampling: manual FeatureSelection?
o Maybe there is domain knowledge that some columns are
o More costly to use



o Less trustworthy
o E.g. in the MDP data: different measures from modules
e Row sampling: manual [Stratification?]
o Ignore all but the relevant data (how to judge? domain knowledge? nearest neighbor?).

(# modules) .
data | language examples features %defective
pcS C++ 17,186 30
mcl | C++ 9,466 38 071
pc2 C++ 5,589 36 041
kel C++ 2,109 21 1545
pc3 | C++ 1,563 37 1023
pcd | C 1,458 37 122
pel C++ 1,109 21 6.94
ke2 C++ 522 21 2049
cml | C++ 498 21 9.83
ke3 | JAVA 458 39 938
mwl | C++ 403 37 7.69
mc2 | C++ 61 39 3229

40,422

When the target class is rare,

e Sub-sample: create training sets that contain all the target instances and an equal number of randomly
selected non-target instances (stand back! give the little guy some air!).
e Super-sample: take the minority class and repeat it (build yourself up in the crowd).

Some experimental results:

¢ In one study, under-sampling beat over-sampling Drummond03?.

¢ In another, once again, over-sampling was useless and under-sampling did the same as no-sampling, but
with much much less data Menzies08a?. The following results show balance results for the above data
sets. NB= naive bayes. J48= a decision tree learner.

quartiles

min median max
treatment 0 25% 50% 75% | 100%
NB/none | 219| 67.7| 746 | 81.9| 1000/ } () {
NB/under| 19.9| 67.1| 74.1 | 81.6| 100.0! f ® ‘|
148/ under| 21.6| 64.8| 73.6 | 82.6| 1000 f ® i
NB/over | 17.5| 420| 625 | 122| 1000/ — | @ —Ff
148/ over | 00| 203| 456 | 562| 10001 o I
J48/none | 0.0 | 293| 423 | 54.5| 100,01 o | I

Standard Text Transforms

Tokenize (kill white space).
Send to lower case.

Remove stop words (boring words like "a above above.." (see examples at
http://www.dcs.gla.ac.uk/idom/irresources/linguisticutils/stop_words

e Warning: don't remove words that are important to your domain.
Stemming

o These words are all "connect": connect, connected, connecting, connection,connections
e PorterStemming?: the standard stemming algorithm, available in multiple languages:
http://www.tartarus.org/~martin/PorterStemmer/
o Definition: http://www.tartarus.org/~martin/PorterStemmer/def.txt

Reject all but the top k most interesting words

¢ |Interesting if frequent OR usually appears in just a few paragraphs
o TF=*IDF (term frequency, inverse document frequency)



o |Interesting =

F(i,j) * log((Number of documents)/(number of documents including word i))

e F(i,j): frequency of word i in document j
e Often, on a very small percentage of the words are high scorers, so a common transform is to just use the

high fliers. e.g. here's data from five bug tracking systems a,b,c,d,e:

TF*IDF
1 T T T T
a
b
C mannan
01 I H d b
e
0.01 | i ]
0.001 | 2/ ]
0.0001 § 1
1e-05 L L ! 1 1 L

0 1000 2000 3000 4000 5000 6000 7000
all tokens, sorted by TF*IDF

Build a symbol table of all the remaining words

e Convert strings to pointers into the symbol table
e So "the cat sat on the cat" becomes 6 pointers to 4 words

Misc
Watch for one-letter typos
e Check all symbols that occur only once in the data.

Add synthetic attributes

e Capture domain knowledge
e e.g. risk is age/weight*temperature

Sample randomly

e Useful when the whole data can't fit into ram.
e Useful when building training/test sets

Sample instances according to the mis-classification rate of its class

e So focus more on the things that are harder to classify
e Also called Boosting: discussed (much) later

Discretization

Think of learning like an accordion- some target concept is spread out across all the data and our task is to
squeeze it together till it is dense enough to be visible. That is, learning is like a compression algorithm.

One ftrick that helps compressions is discretization: i.e. clumping together observations taken over a continuous
range into a small number of regions. Humans often discretize real world data. For example, parents often share

tips for "toddlers"; i.e. humans found between the breaks of age=1 and age=3.

Many researchers report that discretization improves the performance of a learner since it gives a learner a
smaller space to reason about, with more examples in each part of the space (Dou95, Yang03, Fayyad93). What

is Discretization?

Formally, discretization can generally be described as a process of assigning data attribute instances to bins or



buckets that they fit in according to their value or some other score:

e The general concept for discretization as a binning process is dividing up each instance of an attribute to
be discretized into a number distinct buckets or bins.

e The number of bins is most often a user-defined, arbitrary value.

o However, some methods use more advanced techniques to determine an ideal number of bins to use for
the values.

o While others use the user-defined value as a starting point and expand or contract the number of bins that
are actually used (based upon the number of data instances being placed in the bins).

e Each bin or bucket is assigned a range of the attribute values to contain, and discretization occurs when
the values that fall within a particular bucket (or bin) are replaced by identifier for the bucket into which they
fall.

After Gama and Pinto, we say that

o Discretization is the process of converting a continuous range into a histogram with "k" break points

e by ... bk (where for all i < j: not(b; = bj)).

e The histogram divides a continuous range into bins (one for each break) and many observations from the
range may fall between two break points b; and bj,4 at frequency counts c;.

Simple discretizers are unsupervised methods that build their histograms without exploiting information about the
target class; e.g.

¢ equal width discretization: (b - bj-1) = (bj - bj-1)

¢ equal frequency discretization: ¢; = c;

How to discretize

Unsupervised discretization: ignore the class variable, just chop each column (this may seem dumb, but often
works surprisingly well)

Supervised discretization: separates the numerics according to the class variable
Unsupervised methods

Nbins: divide data into N equal width bins

e Pass1: find min and max of each column. Find bin size for each column (max - min)/N.
e Pass2: convert all numbers X to floor(X - min)/binsize.
e N=10 is a commonly used number (but for Naive Bayes classifiers working on
Webb Yang03 advocate equal frequency with ci=c;=sqrt(n)).
e Example:
o e.g. divide 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,4,5,10,20,40,80,100 using 10bins

n" instances, Yang and

0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,4,5,10,20,40,80,100

binl b2 b3 b5 b9 bl0

o

one bucket would get numbers 1 to 25,
the last 4 numbers would get a bin each.
So our learner would have 5 bins with nothing in it,
= one bin with 83% of the data and
= 4 bins with 3.3% of the data in each.
Simple variants:
= BinLogging?: set N via the number of unique numerics N=max(1,log2(uniqueValues))
= Caution, for numbers generated from some random process and if you are using many
significant figures, then you may need to round back.
= Logging filter: hit distributions like the above with X = log(X). This smoothes out the
distributions across more of the buckets.

o o

o

Percentile chop: diver data into N equal sized bins

e Pass1: collect all numbers for each column. Sort them. Break the sorted numbers into N equal frequency
regions (checking that numbers each size of the break are different).

e So the frequency counts in each bin is equal (flat histogram).

e Example: In practice, not quite flat. e.g. 10 equal frequency bins on the above data:



0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,4,5,10,20,40,80,100

binl bin2 bin3 bin4 bin5 bin6é bin7 bin8 bin9

* Note the buckets with repeated entries. lts a design choice what to do with those.
e We might squash them together such that there are no repeats in the numbers that are the boundaries
between bins.

0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,4,5,10,20,40,80,100

binl bin2 bin3 bin4 bin5 biné

Supervised Discretization

Find a cliff where there most change in the class ditribution. For example:

e class=dead (always) if age under 120; class=alive (sometimes) if age under 120
o 120 is the cliff
o The following graph shows the number of o-ring damage reports seen in the space shuttle prior to
the Challenger launch. There is a cliff at X=65 degrees, below which all launches had o-ring

damage.

number of o-ring crosion or blowby reports
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Some details on cliff learning (from https://list.scms.waikato.ac.nz/pipermail/wekalist/2004-October/002986.html.
Per numeric attribute, apply the following:

e Sort the instances on the attribute of interest
e Look for potential cut-points.
Cut points are points in the sorted list above where the class labels change.
Eg. if | had five instances with values for the attribute of interest and labels
(1.0,A), (1.4,A), (1.7, A), (2.0,B), (3.0, B), (7.0, A),
then there are two cut points of interest (mid-way between the points where the classes change
from A to B or vice versa):
= 1.85
= 5
e Apply your favorite measure on each of the cuts, and choose the one with the maximum value
o Weight the measures by the same size; e.qg.
= if 20% and 80% of the data fall left and right of the slot
= measure = 0.2* rightMeasure + 0.8 *leftMeasure
o e.g. variance, info gain etc etc
= Common practice is to follow the lead of Fayyad93 and use info gain
= Let classes X and Y occur on the right-hand-side (containing 20%) of the data
= Let class frequency be Fy and Fy (and N=Fy + F,, numbers)
= Let py = Fy/N
= Let py =Fy/N
= Let entropyy = -px*logz(px)
= Let entropyy = -py*logz(py)
= Let weighted entropyignt = -0.2* (entropyy + entropyy)
= Return the split that minimizes entropy ignt + entropyjef
e Repeat recursively in both subsets (the ones less than and greater than the cut point) until either
o the subset is "pure" i.e. only contains instances of a single class
o some stopping criterion is reached. e.g. too few examples to proceed

o

o 0 o



Incremental Discretization

An interesting variant on discretization is incremental discretization. Suppose we are learning from an infinite data
stream so we'll never know "the number of unique symbols" or the "max" and "min" of that data. How might we
conduct discretization?

Incremental discretization can be very simple. Below, we describe two schemes:

e D.J. Bolands' RBST method (a local favorite; sees 2007 WVU CSEE masters thesis;
e Gamma and Pinto's PID method (more widely used).

RBSTs for Incremental Discretization

Consider this binary search tree BST, where everything on the left is less than everything on the right.

We can add the number "5" in at least two places in this tree, and still preserve the search property that
everything on the left is less than the stuff on the right. In case (a), we insert at root and in (b), we insert at leaf.

(a) 5 (b) 4

Internally, what we really do is always insert at leaf and sometimes bubble up the leaf to the root, switching sub-
trees as we go to preserve the ordering. In random BST (RBST), we insert at root of a sub-tree with probability
1/(N+1), where "N" is the number of sub-tree nodes. RBST's tend to generate balanced trees.

Why? Because we are reaching in at random to a distribution, and dividing into into two sets below and above a
number. Repeat that a few times and you tend to get balanced trees. So you very rarely get this:

/
6
/
5
/
4
/
3
/
2
Rather, you tend to get this:
5
/ \
3 6
/\ \
2 4 7

So, what has all this got to do with incremental discretization?

* Note that if we had a balanced tree, we could perform discretization by just returning (say) the breaks at
level 3 of the tree (below 2, 2 to 4, 4 to 7, above 7). To do this, we'd add a counter to each node and if
something arrives T times at node N, then N's counter value is T. So balanced trees can be used for
batched discretization.

e But note that RBSTs adjust themselves after each insertion. So if used for an infinite stream of arrivals,
they are always self-adjusting. This ability to react to new data and changes in the distribution of the new
data reacting is exactly what we want from an incremental discretizer.

¢ Infinite data streams cause memory problems (cannot store infinite memory). RBSTs support a simple
garbage collection algorithm. If we are discretizing at level L (in the above case, L=3) then we can
periodically throw away the subtrees below level (say) 2*L. Yes, we'll lose some details but those details



are down in the weeds and we can live without them.
Pid

Gama and and Pinto's Partition Incremental Discretization (PiD) maintains two sets of "break" points and "counts"
of values that fall into each break:

e Layer two: the actual discretized ranges. Layer two is very small and is generated on demand from layer
one.

e Layer one: is very large (say, 30 times the number of bins you seek); Layer one just maintains counts on a
large number of bins and if one bin gets too big (e.g. 1/(number of bins)), it is split in two (and all the
breaks and counts arrays are pushed up by one index value).

That's nearly all there is too it. Layer one is initialized according to some wild guess about the min and max
possible values (and if data arrives outside that range, then a new bin is added bottom or two of "breaks" and
"counts"). Layer two could be generated in any number of ways (nbins, logbins, Fayyadlranni, etc) and those
methods could work by querying the layer one data.

When should we recreate layer2? Here are three policies:

e For equal width discretization: if ever we split a bin, rebuild layer2.

e For equal frequency discretization: if a layer1 bin gets two large, rebuild layer2. If we have seen "n"
examples, and our bins have min and max counts of "cmin" and "cmax" then rebuild layer2 when we see
an interval with:

o count below (1-beta)*cmin/n or
o count above (1+beta)*cmax/n
o Gama and Pinto comment that beta=1/100 seems to be a useful value.
e For other discretization policies, recreate layer2 after seeing N examples (say, N=100).

Here's the pseudo-code for updating layer1. lts a little tacky (a linear time operation to increase the size of an
array) but it runs so fast than no one cares:

Update-Layerl(x, breaks, counts, NrB, alfa, Nr)
X - observed value of the random variable
breaks - vector of actual set of break points
counts - vector of actual set of frequency counts
NrB - Actual number of breaks
alfa - threshold for Split an interval
Nr - Number of observed values

If (x < breaks[1l]) k = 1; Min.x = X
Else If (x > breaks[NrB] k = NrB; Max.x = X
Else k = 2 + integer((x - breaks[l]) / step)

while(x < breaks[k-1]) k <- k - 1
while(x > breaks[k]) k <- k + 1

counts[k] = 1 + counts[k]
Nr = 1 + Nr
If ((l+tcounts[k])/(Nr+2) > alfa) {
val = counts[k] / 2
counts[k] = val
if (k == 1) {
breaks = append(breaks[l]-step, breaks)
counts <- append(val,counts)

}
else {
if(k == NrB) {
breaks <- append(breaks, breaks[NrB]+step)
counts <- append(counts,val)
}
else {
breaks <- Insert((breaks[k]+ breaks[k+1])/2, breaks, k)
counts <- Insert(val, counts, k)
}
}

NrB = NrB + 1



Applications of Incremental Discretization: Anomaly Detection and Repair

Curiously, the literature is silent on two obvious applications of incremental discretization:

e Anomaly detection: if the discretization boundaries in an incremental discretizer where stable, then start
changing, then something is happening to the data generating phenomena. Incremental discretizers could
alert when old knowledge needs to be thrown out and new learning initiated.

e Repair: if we could track how discretization ranges changed, then we could take old knowledge, patch its
ranges, and test the fixes. If that happened incrementally with changes to the discretization boundaries,
then we'd be keeping the knowledge up to date with the underlying data generating phenomena.

What Works Best?

The following graph from Dou95, shows results from three experiments:

e Experiment 1: Running a standard Naive Bayes classifier
e Experiment 2,3: Discretizing the data in one of two ways, then running Naive Bayes.

The y-axis of this graph shows the difference between experiment1 and the others. Any "y" value greater than
one means that discretization increased accuracy. The data sets on the x-axis are sorted by the delta between
the experiment 2,3 results (so, on the left, one discretizer is best and, on the right, the other is best).

Acc diff Naive-Bayes
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Note that:

e discretization rarely made things worse;
e often made things much better;
e and the exact nature of the discretizer was not so important.

What win loss ties
fayyadIrani 4 0 0
pkid 2 1 1
disctree3 2 1 1
tbin 1 3 0
cat 0 4 0

Here's another result, from Boland07. These are "win-loss-tie" tables showing a statistical analysis of the
difference between several discretization methods:

e Some of the undiscretized methods shown below:
o "tbin" is Nbins (discussed below) with N=10
o "disctree3" (a neat trick from Boland07);
o A supervised methods (discussed below) called "fayyadlrani" from Fayyad93 (discussed below, see "cliff



learning").
¢ And other methods including "cat" (do nothing).

Note that there is an overall winner (fayyadlirani) and this is the discretizer in widest current use.

But if you look at the raw numbers (say, for "balance"), a different picture emerges. This is one result, out of the

hundreds explored by Boland07. Note, as before:

e discretization rarely made things worse (i.e. do worse than "cat";
e can make things much better;
e and the exact nature of the discretizer is not so important.

bal comparisen for letter

cat
2F disctree3
pkid =
tbin
0 . _ fayyadirani
0 500 1000 1500 2000 2500 3000

From the above, we conclude that discretization is important and that we not get too tense about exploring better

discretizers. Time to move on.
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Abstract This project is in two parts. The second part will
try to combine two (or more) of the IV&V data sources into
an active monitoring framework where data collected during
an active IV&V project will trigger an alert if a project be-
comes unusual” (and defining “unusual” is one of the goals
of this project).

But before we can generalize between sources, we need to
study each source in isolation to determine its strengths and
weaknesses. Hence, the first part of this project aims to gain
experience with the various IV&V data sources available to
researchers like myself; i.e.

— SILAP, from the IV&V planning and scoping team;

— James Dabney’s Bayes networks that describe the IV&V
business practices of the L3 IV&V contractor;

The PITS issue tracking data;

The LINKER database project that intends to join PITS
to other data sources;

Balanced score card strategy maps from NASA Langley.
and the COCOMO data sets from JPL.

This is the second year of a three year project that started

in June 2006. The project is data-rich project and much progress

has already been achieved.

— At SAS’06, a preliminary report described what had been
learned from the SILAP data. A ranking was offered on
the most common IV&V work-breakdown structure (WBS)
activities. This ranking can be used for (e.g.) identifying
what WBS tasks would benefit most from optimization.

— This report on SILAP was finalized in the first part of
2007. In summary, there exists a very strong signal in the
SILAP data for issue frequency and severity.

— In October’06, a preliminary report was delivered on the
Bayes network. On a limited case study, it was shown that
Bayes nets and treatment learning could generate parsi-
monious explanations for project events.

— A preliminary report on text mining from the PITS issues
tracking database that generated an expert system which
audited a test engineer’s proposed severity level.

This document updates the preliminary PITS report. Before,
the PITS report studied two projects with a limited range of

severities (mostly severity 3 and 4). Here, we explore five
projects with a much wider range of severities. The results
from the PITS preliminary report is confirmed. Using text
mining, PITS can be used to generate an expert system that
audits a test engineer’s proposed severity level for an issue.

Credits: This work was made possible due to the heroic ef-
forts of Ken Costello (chief engineering at NASA IV&V)
who provided the PITS defect reports. The text mining tech-
nology used here was inspired by the trace-ability work of
Jane Hayes and Alex Dekhtyar. Alex was particularly help-
ful is mapping out the ABCs of text mining. Jane also of-
fered extensive advice on how to extend the current system.
This research was conducted at West Virginia University un-
der NASA sub-contract project 100005549, task Se, award
1002193r.

Cautions Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufac-
turer, or otherwise, does not constitute or imply its endorse-
ment by the United States Government.

Revision history : Much of the introductory and exposition

text of this document comes from the preliminary report. How-
ever, all the results of this document have been recomputed

for the five new projects. Also new in this report are the rule

minimization results.
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1 Introduction: We don’t need another hero

NASA’s software IV&V
Program captures all of
its findings in a database
called the Project and
Issue Tracking System
(PITS). The data in PITS
has been collected for
more than 10 years and
includes issues on robotic
satellite missions and
human-rated systems.

It is difficult, to say
the least, to generate
conclusions from a mov-
ing target like PITS. Several heroic studies have made signif-
icant conclusions using PITS data (see Figure 1). These stud-
ies were heroic in the sense that the “heroes” reached their
goals after tedious and complex struggling. Worse, the ex-
tracted data was only accessible with the help of NASA civil
servants- a scarce and expensive resource.

The problem with PITS is that there is a lack of con-
sistency in how each of the projects collected issue data. In
virtually all instances, the specific configuration of the infor-
mation captured about an issue was tailored by the IV&V
project to meet its needs. This has created consistency prob-
lems when metrics data is pulled across projects. While there
was a set of required data fields, the majorities of those fields
do not provide information in regards to the quality of the
issue and are not very suitable for comparing projects.

NASA is very aware of the problems with PITS and is
taking active steps to improve it. At the time of this writing,
there is an on-going effort to implement a mandatory data set
in each IV&V project database to support IV&V effective-
ness metrics. This effort has been in development for about
a year and is currently being executed by several projects.
However, it is too early to make any useful observations from
that data.

— Ken Costello (IV&V’s chief engineer) compiled statistics for
NASA headquarters that showing, in nine IV&V tasks, the
majority of issues found by IV&V were found via an analy-
sis of requirements documents.

— Marcus Fisher (IV&V’s research lead) applied a “mid-
course correction” to one IV&V project after checking the
progress of the IV&V against historical records in PITS.

— David Raffo (University of Portland), working with Ken
Costello and other civil servants, found enough cost data to
partially tune his waterfall-based model of IV&V;

— In a prior report in this project, Melissa Northey (Project
Manager) performed some joins across PITS to return costs
for different IV&V tasks;

Fig. 1 A partial list of past heroic successes with PITS.

To be fair, PITS is hardly unique. Based on my experi-
ence with data mining at other corporations, I assert that PITS
is a typical database, useful for storing day-to-day informa-
tion and generating small-scale tactical reports (e.g. “list the
bugs we found last Tuesday”), but difficult to use for high-
end business strategic analysis (e.g.. “in the past, what meth-
ods have proved most cost effective in finding bugs?”). Like
many other databases, it takes heroes to extract information
from PITS. Sadly, most of the heroes I know are so busy sav-
ing their own part of the world that they have little time to
save researchers like me.

Hence, in this report, we try a new approach for extracting
general conclusions from PITS data. Unlike previous heroic
efforts, our text mining and machine learning methods are
low cost, automatic, and rapid. We find we can build an agent
to automatically review issue reports and alert when a pro-
posed severity is anomalous. Better, the way we generated
the agent means that we have probabilities that the agent is
correct. These probabilities can be used to intelligently guide
decision making.

An extremely surprising conclusion from this report is
that the unstructured text might be a better candidate for gen-
erating lessons learned than the structured data base fields.

— While the database fields in PITS keep changing, the na-
ture of the unstructured text remains constant.

— In other words, the reason it is so hard in the past to reason
about PITS is that we have been looking at the wrong
data.

If we could properly understand unstructured text, this would
be a result of tremendous practical importance. A recent study'
concluded that

— 80 percent of business is conducted on unstructured in-
formation;

— 85 percent of all data stored is held in an unstructured
format (e.g. the unstructured text descriptions of issues
found in PITS);

— Unstructured data doubles every three months;

That is, if we can tame the text mining problem, it would
be possible to reason and learn from a much wider range of
NASA data than ever before.

' http://www.b—eye-network.com/view/2098
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2 Concept of Operations

NASA uses a five-point scale to score issue severity. The
scale ranges one to five, worst to dullest, respectively. A dif-
ferent scale is used for robotic and human-rated missions (see
Figure 2 and Figure 3). The data used in this report comes
from robotic missions.

Using text mining and machine learning methods, this re-
port shows that it is possible to automatically generate a re-
view agent from PITS issue reports via the process of Fig-
ure 4. This agent can check the validity of the severity levels
assigned to issues:

— After seeing an issue in some artifact, a human analyst
generates some text nofes and assigned a severity level
severityX.

— An agent learns a predictor for issue severity level from
logs of {notes, severityX}. A training module (a) up-
dates the agent beliefs and (b) determines how much self-
confidence a supervisor might have in the agent’s conclu-
sions.

— Using the learned knowledge, the agent reviews the ana-
lysts’s text and generates its own severityY level.

— If the agent’s proposed severityY differs from the severi-
tyX level of the human analyst, then a human supervisor
can decide to review the human analyst’s severityX. To
help in that process, the supervisor can review the self-
confidence information to decide if they trust the agent’s
recommendations.

This agent would be of useful under the following circum-
stances:

— When a less-experienced test engineer has assigned the
wrong severity levels.

— When experienced test engineers are operating under ur-
gent time pressure demands, they could use the agent to
automatically and quickly audit their conclusions.

— For agents that can detect severity one and two-level er-
rors with high probability, the agent could check for the
rare, but extremely dangerous case, that an IV&V team
has missed a high-severity problem.

Severity 1: Prevent the accomplishment of an essential capability;
or jeopardize safety, security, or other requirement designated
critical.

Severity 2: Adversely affect the accomplishment of an essential ca-
pability and no work-around solution is known ; or adversely
affect technical, cost or schedule risks to the project or life cycle
support of the system, and no work-around solution is known.

Severity 3: Adversely affect the accomplishment of an essential ca-
pability but a work-around solution is known; or adversely af-
fect technical, cost, or schedule risks to the project or life cycle
support of the system, but a work-around solution is known.

Severity 4: Results in user/operator inconvenience but does not af-
fect a required operational or mission essential capability; or
results in inconvenience for development or maintenance per-
sonnel, but does not affect the accomplishment of these respon-
sibilities.

Severity 5: Any other issues.

Fig. 2 Severities for robotic missions.

Severity 1: A failure which could result in the loss of the human-
rated system, the loss of flight or ground personnel, or a perma-
nently disabling personnel injury.

Severity IN: A failure which would otherwise be Severity 1 but
where an established mission procedure precludes any opera-
tional scenario in which the problem might occur, or the number
of detectable failures necessary to result in the problem exceeds
requirements.

Severity 2: A failure which could result in loss of critical mission
support capability.

Severity 2N: A failure which would otherwise be Severity 2 but
where an established mission procedure precludes any opera-
tional scenario in which the problem might occur or the number
of detectable failures necessary to result in the problem exceeds
requirements.

Severity 3: A failure which is perceivable by an operator and is nei-
ther Severity 1 nor 2.

Severity 4: A failure which is not perceivable by an operator and is
neither Severity 1 nor 2.

Severity 5: A problem which is not a failure but needs to be cor-
rected such as standards violations or maintenance issues.

Fig. 3 Severities for human-rated missions.
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artifact

self-

. severity X
confidence Y
A
notes
| 4
training
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severity Y

Fig. 4 An agent for reviewing issue severity levels. Gray nodes denote humans.
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3 How it Works

The essential problem of text mining is dimensionality re-
duction. Standard machine learners work well for instances
that are nearly all fully described using dozens (or fewer) at-
tributes [6]. But text mining applications (e.g. analyzing PITS
detect reports) must process thousands of unique words, and
any particular paragraph may only mention a few of them [1,
5]. Therefore, before we can apply machine learning to text
mining, we have to reduce the number of dimensions (i.e. at-
tributes) in the problem.

There are several standard methods for dimensionality re-
duction such as tokenization, stop lists, stemming, Tf*Idf and
InfoGain. All these methods are discussed below.

3.1 Tokenization

Figure 5 shows the tokenizer used in this study:

— Clean replaces certain punctuation with blanks spaces.

— The file bad.txt contains some non-printable escape
characters which are removed from the issue reports.

— Finally, lowerCase sends all text to lower case.

3.2 Stop lists

Another way to reduce dimensionality is to remove “dull”
words via a stop list of “dull” words. Figure 6 shows a sample
of the stop list used in this study. IV&V’s chief engineer, Ken
Costello, reviewed this list and removed “counting words”
such as “one”, “every”, etc, arguing that “reasoning about
number of events could be an important requirement”. Fig-
ure 7 shows code for a stop-list function. Note that our code
supports use a keep list of words we want to retain (but, in
this study, the keep list was empty).

3.3 Stemming

Terms with a common stem will usually have similar mean-
ings. For example, all these words relate to the same concept.

clean() {
gawk ’{gsub(Bad,""); print $0}’ \
Bad=‘cat S$Here/bad.txt‘ $1 |
sed s/ [\"\AFN/NANN D) NNININTI><N(\) 1/ /g’
}
lowerCase () {
tr A-Z a-z $1 ;
}

Fig. 5 Tokenization

a about across again against
almost alone along already also
although always am among amongst
amongst amount an and another
any anyhow anyone anything anyway
anywhere are around as at

Fig. 6 24 of the 262 stop words used in this study.

6of 13
stops () { gawk ’
NR==1 {
while (getline < Stops) Stop[$0] = 1;
while (getline < Keeps) Keep[$0] = 1;

}
{ for(I=1;I<=NF;I++)
if (Stop[$I] && ! Keep[$I])
$I=""
print $0
PN

Stops="$Here/stop_words.txt" \
Keeps="$Here/keep_words.txt" \

S1

Fig. 7 Applying a stop-list.

RULE EXAMPLE
ATIONAL -> ATE relational -> relate
TIONAL -> TION conditional —-> condition
rational -> rational
ENCI —-> ENCE valenci -> valence
ANCI -> ANCE hesitanci -> hesitance
IZER -> IZE digitizer -> digitize
ABLI -> ABLE conformabli -> conformable
ALLI -> AL radicalli -> radical
ENTLI -> ENT differentli -> different
ELI -> E vileli -> vile
OUSLI -> 0US analogousli -> analogous
IZATION -> IZE vietnamization -> vietnamize
ATION -> ATE predication -> predicate
ATOR -> ATE operator -> operate
ALISM -> AL feudalism -> feudal
IVENESS -> 1IVE decisiveness —> decisive
FULNESS -> FUL hopefulness —> hopeful
OUSNESS -> 0US callousness -> callous
ALITI -> AL formaliti -> formal
IVITI -> 1IVE sensitiviti -> sensitive
BILITI -> BLE sensibiliti -> sensible

Fig. 8 Some stemming rules.

stemming () { perl $Here/stemming.pl $1 ; }

Fig. 9 Using a downloaded stemmer.

CONNECT
CONNECTED
CONNECTING
CONNECTION
CONNECTIONS

Porter’s stemming algorithm [4] is the standard stemming
tool. It repeatedly replies a set of pruning rules to the end of
words until the surviving words are unchanged. The pruning
rules ignore the semantics of a word and just perform syntac-
tic pruning (e.g. Figure 8).

Porter’s stemming algorithm has been coded in any num-
ber of languages® such as the Perl stemming.pl used in this
study (see Figure 9).

Stemming is the end of our pre-processing (a sequence
that began with the clean function shown above). Recall
that the complete sequence was

clean — lowerCase — stops — stems

This full sequence is shown in Figure 10.

2 http://www.tartarus.org/martin/
PorterStemmer
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selectColumns () {
gawk -F, ’$3 {OFS=","; print $4 "," $3}’ -
}
cleans () {
for 1 in $Files; do
(cd $Dir; clean tab${i}5.csv 2> /dev/null
lowerCase |
stops
stemming
selectColumns > $Temp/ok_S$i
done
}
Files="a b c d e
Dir=$Root/mine/trunk/doc/07/telling/data/raw
cleans

Fig. 10 Preparation.

#update counters for all words in the record
function train() {
Documents++;
for (I=1; IKNF; I++) {
if( ++In[S$I,Documents]==1)
Document [SI]++
Word[$I]++
Words++
}
}
# computer tfidf for one word
function tfidf (i) {
return Word[i]/Words*log (Documents/Document [1])

}

Fig. 11 tfidf.awk.

tfidf () |
gawk —-f tfidf.awk --source '
{ train() }
END { OFS=","; for(I in Word) print I, tfidf(I) } ’ $1 ;
} sl

}
tfidf | sort -t, -n +0 | tail -100

Fig. 12 Finding the 100 highest Tf*Idf words using the ¢ fidf.awk
code of Figure 11.

3.4 Tf*IDF

Tf*1df is shorthand for “term frequency times inverse docu-
ment frequency”. This calculation models the intuition that
jargon usually contains technical words that appear a lot, but
only in a small number of paragraphs. For example, in a doc-
ument describing a space craft, the terminology relating to
the power supply may be appear frequently in the sections
relating to power, but nowhere else in the document.
Calculating Tf*1df is a relatively simple matter. If there be
W ords number of document and each word I appear Word|I|

number of times inside a set of Documents and if Document[I]

be the documents containing /, then:
T fxId = Word[i|/Wordsxlog( Documents/ Document][i])

The standard way to use this measure is to cull all but
the & top Tf*Idf ranked stopped, stemmed tokens. This study
used £ = 100 (see Figure 11 and Figure 12).

3.5 InfoGain

According to the In foGain measure, the best words are those
that most simplifies the target concept (in our case, the distri-

bution of severities). Concept “simplicity” is measured us-
ing information theory. Suppose a data set has 80% sever-
ity=5 issues and 20% severity=1 issues. Then that data set
has a class distribution Cy with classes ¢(1) = severityb
and ¢(2) = severityl with frequencies n(1) = 0.8 and
n(2) = 0.2. The number of bits required to encode an ar-
bitrary class distribution Cy is H(C)) defined as follows:

N =3 .conlc)
p(c) =n(c)/N 1)
H(C) = =3 ccplc)logap(c)

If A is a set of attributes, the number of bits required to
encode a class after observing an attribute is:

H(ClA) == pla))]

The highest ranked attribute A; is the one with the largest
information gain; i.e the one that most reduces the encoding
required for the data after using that attribute; i.e.

p(cla)log(p(cla)

InfoGain(A;) = H(C) — H(C|A4;) )
where H(C) comes from Equation 1. In this study, we will
use InfoGain to find the top N € {100, 50, 25,12, 6, 3} most
informative tokens.

3.6 Rule Learning

A data miner was then called to learn rules that predict for
the severity attribute using the terms found above. The learner

used here was a JAVA version of Cohen’s RIPPER rule learner [2,

7]. RIPPER is useful for generating very small rule sets. The
generated rules are of the form i f — then:

Feature; = Valuei; A Features = Values A ... —> Class
\—.\/—/
condition conclusion

RIPPER, is a covering algorithm that runs over the data in
multiple passes. Rule covering algorithms learns one rule at
each pass for the majority class. All the examples that satisfy
the conditions are marked as covered and removed from the
data set. The algorithm then recurses on the remaining data.
The output of a rule covering algorithm is an ordered decision
list of rules where rule; is only tested if all conditions in
rule;«; fail.

One way to visualize a covering algorithm is to imag-
ine the data as a table on a piece of paper. If there exists a
clear pattern between the features and the class,define that
pattern as a rule and cross out all the rows covered by that
rule. As covering recursively explores the remaining data, it
keeps splitting the data into:

— what is easiest to explain, and
— any remaining ambiguity that requires a more detailed
analysis.
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a b c d <-- classified as
321 12 21 0 | a =1
157 41 8 1] b =2
49 3 259 0 | c =3
21 1 2 2 d =4

Fig. 13 Sample 10-way classification results.

3.7 Assessing the Results

It is a methodological error to assess the rules learned from
a data miner using the data used in training. Such a self-test
can lead to an over-estimate of the value of that model.

Cross-validation, on the other hand, assesses a learned
model using data not used to generate it. The data is divided
into, say, 10 buckets. Each bucket is set aside as a test set
and a model is learned from the remaining data. This learned
model is then assessed using the test set. Such cross-validation
studies are the preferred evaluation method when the goal is
to produce predictors intended to predict future events [7].

Mean results from a 10-way cross-validation can be as-
sessed via a confusion matrix such as Figure 13. In that fig-
ure, some rule learner has generated predictions for classes
{a,b,c,d} which denote issues of severity {1,2,3,4} (respec-
tively). As shown top left of this matrix, the rules correctly
classified issue reports of severity=1 as severity=1 321 times
(mean results in 10-way cross-val). However, some sever-
ity=1 issues were incorrectly classified as severity=2 and sever-
ity=3 in 12 and 21 cases (respectively).

A confusion matrices can be summarized as follows. Let
{A, B, C, D} denote the true negatives, false negatives, false
positives, and true positives (respectively). When predicting
for class “a”, then for Figure 13:

— A are all the examples where issues of severity=1 were
classified as severity=1; i.e. A=321.

B are all the examples where lower severity issues were
classified as severity=1; i.e. B=157+49+21;

C are all the examples where severity=1 issues were clas-
sified as something else; i.e. C=21+12

— D are the remaining examples; i.e. D=414+8+1=2+259+0+1+2+2.

A, B,C, D can be combined in many ways. Recall (or pd)
comments on how much of the target was found.

pd =recall = D/(B + D) 3)

Precision (or prec) comments on how many of the instances
that triggered the detector actually containing the target con-
cept.

prec = precision = D /(D + C) )

The f-measure is the harmonic mean of precision and recall.
It has the property that if either precision or recall is low, then
the f-measure is decreased. The f measure is useful for dual
assessments that include both precision and recall.

2 - prec- pd

f-measure = W (5)

precision pd = recall  f-measure | severity
0.893 0.833 0.862 1
0.586 0.907 0.712 2
0.719 0.198 0.311 3
0.667 0.077 0.138 4

Fig. 14 Some precision, recall, f-measures from Figure 13.

Note that all these measures fall in the range
0 < {pd,prec, f} <1

Also, the larger these values, the better the model. Figure 14
shows the precision, recall, and f-measure values for Fig-
ure 13.

4 Results
4.1 Data

The above methods where applied to {a,b,c.d,e}, five anony-
mous PITS projects supplied by Ken Costello (see Figure 15).
All these systems were robotic. Note that this data has no
severity one issues (these are quite rate and few severity five
issues (these often not reported since they have such a low
priority).

dataset severity number
a 1 0
2 311
3 356
4 208
5 26
b 1 0
2 23
3 523
4 382
5 59
c 1 0
2 0
3 132
4 180
5 7
d 1 0
2 1
3 167
4 13
5 1
e 1 0
2 24
3 517
4 243
5 41

Fig. 15 Data sets in the this study.
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4.2 Stopping and Stemming

Figure 16 shows some disappointing results for stopping and
stemming. In these data sets, stopping and stemming methods
barely reduced the number of tokens.

4.3 TFIdf

Tf*1df proved to be more powerful than stopping or stem-
ming. Figure 17 shows that in all data sets, there exist a very
small number of words with high Tf*Idf scores. These top
100 terms are shown in Figure 18 and Figure 19. We have
shown these lists to domain experts but, to date, we have not
found any particular domain insights from these words. How-
ever, as shown below, even if we don’t understand why these
terms were chosen, they are can be used very effectively for
the task of predicting issue severity.

4.4 Learning

The issue reports for each data set were then rewritten as
frequency counts for those top 100 tokens (with the sever-
ity value for each record written to the end of line- see Fig-
ure 20). As shown in Figure 21 the resulting data sets are
quite sparse. This figure shows the distributions of the fre-
quency counts of the cells in the data sets. Note that most
cells have a zero frequency count; 10% of the cells have a
frequency count of one, and frequency counts higher than 10
occur in only W%o% of cells, or less.

Figure 22 shows the rules and confusion matrix see when
learning from the top 100 tokens of data set “a”. This rule

a b
1e+06 T " 100000 T T
al —
100000 F ~Unigue—eee- 4 unique
10000 ¢ E
10000 ¢ E
1000 2 5 5 1000 . 5 5
Z 3 3 z 3 3
[ <3 £ g oy £
9] £ Qo £
% 2 @ L
c d
100000 T T 100000 T T T
all all
—unique unique
10000 ¢ E 10000 f T A
1000 s s s 1000 . s L
= ° ° = ° °
s g ¢ & & ¢
o £ g £
k7] 2 k7] 2
e
100000 = T T
unique
10000 £ 9
1000 s 5 5
= kel gl
& & £
S £
® 2

Fig. 16 Effects of stopping and stemming.

TF*IDF
1 T
a
b
C un un
0.1 d
e
0.01 ]
0.001 ]
0.0001 ¢ E
1e-05 L L L L L L

0 1000 2000 3000 4000 5000 6000 7000
all tokens, sorted by TF*IDF

Fig. 17 Tf*Idf scoring for the stopped, stemmed tokens. Note that
most tokens can be ignored since they have very low Tf*1df scores.

data set

rank a b c d e
1 rvim fsw softwar switch  convent
2 sr declar fsw  default the
3 script requir specifi statement capabl
4 engentrl arrai command  contain state
5 set sr parent case interfac
6 differ parent sc trace  control
7 cdh  comment trace code word
8 14 us ground line declar
9 indic verifi perform violat variabl
10 verifi step section comment line
11 section gce spec detail fsw
12 link ac matrix avion inst5
13 flight  scenario cdh spacecraft document
14 paramet defin initi appear  conduct
15 state valid who/what would  septemb
16 obc base pip data set
17 system command child downward  hardwar
18 onli valu tim fsw artifact
19| spacecraft els $919-er2342 defin stp
20 all test icd  presum condit
21 trace includ mu pixel compon
22 check onli spacecraft mask icd
23 vm  complet verif spec st
24 softwar state glori  process  version
25| bootload control comm fpa check
26 capabl all traceabl  packet releas
27 number page data on flight
28 vml alloc configur  collater statu
29 sequenc caus card scienc implement
30 13 verif channel sc  current
31 specif flag artifact oper  number
32 issu inform downlink logic specifi
33 oper fail valid mode power
34 messag trace mechan tabl 14
35 support detail satellit document rqmt
36 defin read system initi list
37 fp pse oper ffi macro
38 address ivv includ collect unsign
39 code  function instrument onli  messag
40 uplink condit launch  column assign
41| document interfac possibl black fault
42| command on adac within short
43 task tabl scienc Zero test
44 rt thruster electr and/or rev
45 note document tp point time
46 monitor initi mode  apertur design
47 ground true safehold  support mode
48 accept the note fault jpl
49 load in _vbuf exist clear
50 initi fprintfsetup common2/includ/vbufh /line data

Fig. 18 Top 1 to 50 terms found by TF*IDF, sorted by infogain.
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data set

rank a b c d e
51 calcul  correct ‘common?2 hdlclite hdlclitec’ cadenc oper
52 attitud rate struct dure int
53| telemetri two refer all  paramet
54 fsw end list store tefsw
55 within reset store csc rafsw
56 point req packet momentum read
57 dure telemetri all fine all
58 log  packet telemetri target inst6
59 packet address point kav refer
60 receiv  buffer ap protect inst9
61 rate  counter syspciinbyt second function
62 fault list interfac  autonom reset
63 event  uint32 ’common2 gener tim_cmdc’ capabl inst4
64 reset rvtm  ’glori cdh comm genportc’ level command
65 process error "'common?2 gener com_cmdc’ note  configur
66 mode level detail manag enabl
67 refer issu rate ground dl
68 memori note em_map_pageunsign command us
69 engin can common?2/includ/emsfunch ced code
70 error data int implic trace
71 data plan collect bin long
72 second sdn  ’common?2 router routerc’ long flow
74 enabl paramet subsystem appar discret
75 perform number valu  perform chart
76 ac algorithm ’common? vbuf vbufc’ short c
71 transit  specifi short flight b
78 includ  execut compar engin gener
79 design  exampl control field posit
80 time void capabl set spacecraft
81 execut time hlite_freestruct ~ hardwar section
82 arrai line us valu m
83 specifi  current soh softwar defin
84 control set float implement case
85 respons  review char enter fail
86 current indic vbuf_freestruct respect call
87| checksum case power could initi
88| interrupt  variabl unsign nim 15
89 power  specif accuraci smear actuat
90 case  chang commun us  descript
91 tabl  section asec fg tabl
92 singl code document signal subsystem
93 list[ statement ’common2 gener mm_utilc’  segment valu
94 dump  instanc long fulli  softwar
95 us updat specif error issu
96 valu procedur compon safe error
97 scrub need orbit design switch
98 safe check ignor requir level
99| procedur softwar _hlite_cntl_blk check requir
100 word charact common2/includ/hl_protoh period temperatur

Fig. 19 Top 51 to 100 terms found by TF*IDF, sorted by infogain.

NR == {
# grab the words we want to count
while (getline < "toplOO0") Want[$0] = 1;

# write the header
for (I in Want)
printf("%s,",I);
print "severity"
}
NR > 1 { # rewrite each record as counts of "Want"
gsub(/ /,"",$2); counts(S$1l,Want, $2)
}
function counts (str,want,klass,
n=split (str,tmp," ");
for (i=1;i<=n;i++)
if (tmp[i] in want)
got [tmp[1]]++;
for(j in want) {
sum += got[j]
out = out got[j]+0 ",";

sum, out, i, j, n, tmp, got)

}
if (sum)
print out "_" klass

Fig. 20 Re-writing issue reports as frequency counts.

Percent occurences of frequency X of top 100 terms

100 T
a
b
L C o un
10 d
k e
- 1 1
c
[0}
<4
g
0.1 i
0.01 i
0.001 i
0 60 80 100 120 140 160

X= frequency

Fig. 21 Frequency counts seen in the cells of our data. Note that
our data is mostly sparse: only 10% of the time (or less) were there
frequency counts at or over 1. In most data sets, frequency counts of
0 (i.e. empty cell) appeared in 90% of the cells..

set is a little hard to read so Figure 23 shows the same ex-
periment, but only using the top 3 ranked tokens. In those
rules sr is a stemmed version of srs; i.e. systems require-
ments specification. Note that the rules of Figure 22 use only
a subset of the 100 terms in the data set. That is, for data set
“a”, there exists a handful of terms that most predict for is-
sue severity. Similar results hold for same results repeat for
data sets {b,c,d,e} (see Figure 24 to Figure 31). That is, even
when learning from all 100 tokens, most of the rules use a
few dozens terms or less. Even though few tokens were used,
in many cases, the f measures are quite large:

— Data set “a”, for issues of severity=2, f = 78...82%;
— Data set “a”, for issues of severity=3, f = 69...71%;
— Data set “b”, for issues of severity=3, f = 70...71%;
— Data set “c”, for issues of severity=3, f = 80...92%;
— Data set “c”, for issues of severity=4, f = 86...92%;
— Data set “d”, for issues of severity=3, f = 96...98%);
— Data set “d”, for issues of severity=4, f = 87...87%;
— Data set “e”, for issues of severity=3, f = 79...80%;

These results are better than they might first appear:

— These results are listed in the format, e.g. of f = 79...80%.
and show the results from using the N = 3...N = 100
tokens. Note how using just a vanishingly small number
of tokens performed nearly as well as using a much larger
number of tokens.

— Recall that these are all results from a 10-way cross-validation

which usually over-estimates model error [3], That is, the
real performance values are higher than the values shown
above.

For other severities, the results are not as positive. Recall-
ing Figure 15, none of our data sets had severity=1 errors so
the absence of severity=1 results in the above list is not a con-
cern. However, not all datasets resulted in good predictors for
severity=2 errors. In all cases where this was observed, the
data set had very few examples of such issues:
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Data set “b”, only has 22 records of severity=2;
Data set “c”, has zero records of severity=2;
Data set “d”, only has 1 record of severity=2;
Data set “e”, only has 21 record of severity=2;

5 Discussion

Over the years, the Project Issue Tracking System (PITS) has
been extensively and repeatedly modified. Prior attempts at
generating generalized conclusions from PITS have required
significant levels of manual, hence error-prone, processing.

Here, we show that conclusions can be reached from PITS
without heroic effort. Using text mining and machine learn-
ing methods, we have shown that it is possible to automati-
cally generate predictors for severity levels from the free text
entered into PITS.

Better yet, our rules are self-certifying. Our data mining
generation methods builds the rules and prints performance
statistics (the confusion matrix). With those statistics, these
rules support the following dialogue:

Tim wrote the problem report and he says this is a
severity 5 issue. But the agent says that its a severity 3
issue with probability 83%. Hmmm... the agent seems
pretty sure of itself- better get someone else to take a
look at the issue.

When this work began, we thought that we were conducting
a baseline text mining experiment that would serve as a (low)
baseline against which we could assess more sophisticated
methods. However, for data sets with more that 30 examples
of high severity issues, we always found good issue predic-
tors (with high f-measures).

Further, we did so using surprisingly little domain knowl-
edge. In call cases where large f-measures were seen using
the top 100 terms, similar f measures were seen when us-
ing 3 terms. This is a very exciting result since it speaks to
the usability of this work. It would be a simple to matter to
apply these rules. E Given that a few frequency counts are
enough to predict for issue severity, even a manual method
would suffice.

We end this report with one caution. As seen in Figure 22
to Figure 31, the learned predictors are different for differ-
ent data sets. We hence recommend adding these text mining
tools to PITS and, on a regular basis, generate new rules rel-
evant to just one project.
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if CONDITION then SEVERITY USED / INCORRECT
if (script <= 0) and (section >= 2) and (14 >= 1) and (cdh >= 1) then 4 35.0 / 0.0
else if (sr <= 1) and (issu >= 1) and (code >= 3) then 4 12.0 / 1.0
else if (sr >= 2) and (rvm >= 1) then 2 183.0 / 9.0
else 1if (sr >= 2) and (14 >= 1) then 2 55.0 / 1.0
else if (within >= 2) and (state <= 0) and (system <= 0) then 2 22.0 / 2.0
else if (verifi >= 1) and (fsw >= 1) then 2 10.0 / 1.0
else if (control >= 1) and (code >= 1) and (attitud >= 4) then 2 5.0 / 0.0
else if (13 >= 2) and (obc <= 0) and (perform <= 0) then 2 19.0 / 7.0
else if (script >= 1) and (trace >= 1) then 2 3.0 / 0.0
else 1if true then 3 554.0 / 219.0
a b c d <-—- classified as
321 12 21 0 | a =3
157 41 8 1] b =4
49 3 259 0 | c =2
21 1 2 2 | d =5
Fig. 22 Data set “a”; top 100 tokens; learned rules.
if CONDITION then SEVERITY USED / INCORRECT
if (rvm <= 0) and (sr = 3) then 4 52.0 / 21.0
else if (sr >= 2) then 2 289.0 / 54.0
else if true then 3 557.0 / 245.0
a b c d <-- classified as
314 13 27 0 | a =3
158 25 24 0 | b =4
69 10 232 0 | c =2
25 0 1 0 | d=2>5
Fig. 23 Data set “a”; top 3 tokens; learned rules.
if CONDITION then SEVERITY USED / INCORRECT
if (arrai >= 2) and (line >= 1) and (us <= 1) then 2 7.0 / 0.0
else if (base >= 4) then 2 3.0 / 0.0
else if (fsw <= 0) and (declar >= 1) then 4 86.0 / 26.0
else if (fsw <= 0) and (complet >= 1) and (section <= 0) then 4 27.0 / 4.0
else 1f (fsw <= 0) and (statement >= 1) and (need <= 0) and (valu <= 0) then 4 36.0 / 10.0
else if true then 3 819.0 / 332.0
a b c d <-- classified as
120 253 0 4 | a =4
69 445 0 71 b =3
11 47 0 0 | c =5
2 9 0 11 | d=2

Fig. 24 Data set “b”; top 100 tokens; learned rules.

if CONDITION then SEVERITY USED / INCORRECT
if (fsw <= 0) and (declar >= 1) then 4 94.0 / 34
else if true then 3 884.0 / 383.0
a b c d <-- classified as
60 317 0 0 | a=_4
20 501 0 0 | b =_3
3 55 0 0 | c=_5
11 11 0 0 | d=_2
Fig. 25 Data set “b”; top 3 tokens; learned rules.
if CONDITION then SEVERITY USED / INCORRECT
if (section >= 2) and (matrix >= 1) and (icd >= 1) then 5 7.0 / 1.0
else if (softwar >= 1) then 3 95.0 / 3.0
else if (parent <= 0) and (trace <= 0) then 3 48.0 / 14.0
else if true then 4 167.0 / 4.0
a b c <-- classified as
162 14 4 | a = _4
7 123 0 | b=_3
2 1 4 | c=_5

Fig. 26 Data set “c”;

top 100 tokens; learned rules.
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if CONDITION then SEVERITY USED / INCORRECT
if (softwar >= 1) then 3 95.0 / 3.0
else 1if true then 4 222.0 / 44.0
a b c <-- classified as
169 11 0 | a=_4
37 93 0 | b=_3
6 1 0 | c=_5

Fig. 27 Data set “c”; top 3 tokens; learned rules.

if CONDITION then SEVERITY USED / INCORRECT
if (switch >= 2) then 4 11.0 / 1.0
else if true then 3 167.0 / 4.0

a b c d <-- classified as
0 0 1 0 | a = _2
0 10 2 0 | b= _4
0 1 163 0 | c=_3
0 0 1 0 | d=_5

Fig. 28 Data set “d”; top 100 tokens; learned rules.

if CONDITION then SEVERITY USED / INCORRECT
if (switch >= 2) then 4 11.0 / 1.0
else if true then 3 167.0 / 4.0)

a b c d <-— classified as

0 0 1 0 | a=_2

0 10 2 0 | b=_4

0 1 163 0 | c=_3

0 0 1 0 | d=_5

Fig. 29 Data set “d”; top 3 tokens; learned rules.

if CONDITION

if (trace >= 1) and (test >= 1) and (case >= 3)

else if (error >= 1) and (line >= 2)
else if (convent >= 2) and (declar <= 0) and (function <= 0)
else 1f (case >= 2) and (sr >= 3)
else if (refer >= 1) and (section >= 3) and (refer <= 1)
else if (the >= 1) and (fsw >= 2)
else if (control <= 0) and (convent >= 3)
else 1if true

a b c d <-- classified as

1 20 0 0 | a=_2

3 490 3 20 | b=_3

0 26 9 6 | c=_5

0 167 1 74 | d=_4

Fig. 30 Data set “e”; top 100 tokens; learned rules.

if CONDITION then
if (the >= 1) and (convent >= 3) then 4 30.0 /
else if true 3
a b c d <-- classified as
0 21 0 0 | a = _2
0 515 0 1| b=_3
0 34 0 7 c=_5
0 222 0 20 | d=_4

Fig. 31 Data set “e”; top 3 tokens; learned rules.

SEVERITY USED / INCORRECT

8.0

790.0 / 275.0

then
then
then
then
then
then
then
then
then

SEVERITY
2
2
5
5
5
4 47
4 25
3 723

USED / INCORRECT
.0 0.0
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» fss
Feature Subset Selection (FSS)

e Occam's Razor - The English philosopher, William of Occam (1300-1349) propounded Occam's Razor:
o Entia non sunt multiplicanda praeter necessitatem.
o (Latin for "Entities should not be multiplied more than necessary"). That is, the fewer assumptions an
explanation of a phenomenon depends on, the better it is.
e (BTW, Occam's razor did not survive into the 21st century.
o The data mining community modified it to the Minimum Description Length (MDL) principle.
o MDL: the best theory is the smallest BOTH is size AND number of errors).

The case for FSS

Repeated result: throwing out features rarely damages a theory
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And, sometimes, feature removal is very useful:

e E.g. linear regression on bn.arff yielded:

_____________________________________________________________________________________________________

Defects =
82.2602 * Ss1=L,M,VH +
158.6082 * S1=M,VH +
249.407 * S1=VH +
41.0281 * Ss2=L,H +



[ 50 lines deleted ]

i 68.9153 * S2=H +

! 151.9207 * S3=M,H +

! 125.4786 * S3=H + !
! 257.8698 * S4=H,M,VL +

I 108.1679 * S4=VL +

5 134.9064 * S5=L,M +

; -385.7142 * S6=H,M,VH +

! 115.5933 * S6=VH +

! -178.9595 * S7=H,L,M,VL +

e On a 10-way cross-validation, this correlates 0.45 from predicted to actuals.

e 10 times, take 90% of the date and run a WRAPPER- a best first search through combinations of attributes.
At each step, linear regression was called to asses a particular combination of attributes. In those ten
experiments, WRAPPER found that adding feature X to features A,B,C,... improved correlation the following
number of times:

number of folds (%) attribute

E 2( 20 %) 1 s1

! 0( 0 %) 2 S2 !
: 2( 20 %) 3 s3

' 1( 10 %) 4 sS4 '
i 0( 0 %) 5 S5

5 1( 10 %) 6 S6 E
! 6( 60 %) 7 87 <==

! 1( 10 %) 8 F1

: 1( 10 %) 9 F2

' 2( 20 %) 10 F3 '
i 2( 20 %) 11 D1

5 0( 0 %) 12 D2

! 5( 50 %) 13 D3 <==

! 0( 0 %) 14 D4

: 0( 0 %) 15 T1

' 1( 10 %) 16 T2 '
i 1( 10 %) 17 T3

5 1( 10 %) 18 T4 5
! 0( 0 %) 19 p1

! 1( 10 %) 20 P2

: 0( 0 %) 21 P3

' 1( 10 %) 22 P4 ‘
i 6( 60 %) 23 P5 <== :
5 1( 10 %) 24 P6 5
; 2( 20 %) 25 P7

! 1( 10 %) 26 P8

: 0( 0 %) 27 P9

: 2( 20 %) 28 Hours i
i 8( 80 %) 29 KLoC <== :
5 4( 40 %) 30 Language

! 3( 30 %) 32 log(hours)

e Four variables appeared in the majority of folds. A second run did a 10-way using just those variables to
yield a smaller model with (much) larger correlation (98\%):

E Defects = E
! 876.3379 * S7=VL +

: -292.9474 * D3=L,M + :
: 483.6206 * P5=M +

5 5.5113 * KLoC + 5

_____________________________________________________________________________________________________



Excess attributes

e Confuse decision tree learners

o Too much early splitting of data

o Less data available for each sub-tree

e Too many things correlated to class?

o Dump some of them!
Why FSS?

throw away noisy attributes
throw away redundant attributes

smaller model= simpler explanation
smaller model= less variance

Problem

Exploring all subsets exponential

o e.g. forward/back select

Forward select:

o start with empty set
o grow via hill climbing:
o repeat

smaller model= better accuracies (often)

Need heuristic methods to cull search;

smaller model= any downstream processing will thank you

= try adding one thing and if that improves things

= try again using the remaining attributes

o until no improvement after N additions OR nothing to add

Back select

o as above but start with all attributes and discard, don't add

O O O o

FSS types:

Filter

Usually, we throw away most attributes:

so forward select often better

exception: J48 exploits interactions more than,say, NB.
so, possibly, back select is better when wrapping j48
so, possibly, forward select is as good as it gets for NB

Search
Algorithm

—_

Features

Selected
Features

{

Evaluation
Function

Classifier

Wrapper
—

Features

Search
Algorithm

Classifier




o filters vs wrappers:

wrappers: use an actual target learners e.g. WRAPPER

filters: study aspects of the data e.g. the rest

filters are faster!

wrappers exploit bias of target learner so often perform better, when they terminate
= don't terminate on large data sets

O 0O o o

e solo vs combinations:

o evaluate solo attributes: e.g. INFO GAIN, RELIEF
o evaluate combinations: e.g. PCA, SVD, CFS, CBS, WRAPPER
o solos can be faster than combinations

e supervised vs unsupervised:
o usefignores class values e.g. PCA/SVD is unsupervised, reset supervised
e numeric vs discrete search methods
o ranker: for schemes that numerically score attributes e.g. RELIEF, INFO GAIN,

o best first: for schemes that do heuristic search e.g. CBS, CFS, WRAPPER

Hall and Holmes:

This paper: pre-discretize numerics using entropy.

Hall & Holmes.

INFO GAIN

e often useful in high-dimensional problems
o real simple to calculate
e attributes scored based on info gain: H(C) - H(C|A)
e Sort of like doing decision tree learning, just to one level.

RELIEF

Kononenko97

useful attributes differentiate between instances from other class

randomly pick some instances (here, 250)

find something similar, in an another class

compute distance this one to the other one

Stochastic sampler: scales to large data sets.

Binary RELIEF (two class system) for "n" instances for weights on features "F"

set all weights W[f]=0
for i = 1 to n; do
randomly select instance R with class C
find nearest hit H // closest thing of same class
find nearest miss M // closest thing of difference class
for £f = 1 to #features; do
W[f] = W[f] - diff(f,R,H)/n + diff(f,R,M)/n
done
done



o diff:

discrete differences: 0 if same 1 if not.

continuous: differences absolute differences

normalized to 0:1

When values are missing, see Kononenko97, p4.

e N-class RELIEF: not 1 near hit/miss, but k nearest misses for each class C

o O O

o

C W[E]= W[£] - $i;. . diff(f,R, H;) / (n*k) :
: + ZC # class (R) Zi=1..k ( :
E P(C) / (1 - P(class(R))) E
! * diff(f,R, M; (C)) / (n*k) !

The P(C) / (1 - P(class(R)) expression is a normalization function that
o demotes the effect of R from rare classes
o and rewards the effect of near hits from common classes.

CBS (consistency-based evaluation)

e Seek combinations of attributes that divide data containing a strong single class maijority.
o Kind of like info gain, but emphasis of single winner

e Discrete attributes

e Forward select to find subsets of attributes

WRAPPER

e Forward select attributes
o score each combination using a 5-way cross val

e When wrapping, best to try different target learners
o Check that we aren't over exploiting the learner's bias
o e.g.J48 and NB

Feature set
Feature set Performance | Feature set
estimation

Test set Estimated
Accuracy

Induction Algorithm is ‘wrapped’ in the selection mechanism

PRINCIPAL COMPONENTS ANALYSIS (PCA)

(The traditional way to do FSS.)

Only unsupervised method studied here
Transform dimensions
Find covariance matrix CJi,j] is the correlation i to j;
o CIi,i]=1;
o C[i,j]=CIi.i
Find eigenvectors



e Transform the original space to the eigenvectors
e Rank them by the variance in their predictions
e Report the top ranked vectors

e Makes things easier, right? Well...

_____________________________________________________________________________________________________

if domainl <= 0.180

then NoDefects

else if domainl > 0.180
then if domainl <= 0.371 then NoDefects
else if domainl > 0.371 then Defects

= 0.241 * loc + 0.236 *

+ 0.222 * ev(g) + 0.236 * iv(g) + 0.241 * n

+ 0.238 * v - 0.086 * 1 + 0.199 +* d

+ 0.216 * i + 0.225 * e + 0.236 * b + 0.221 * t
+ 0.241 * 10Code + 0.179 * 1lOComment

+ 0.221 * 1l0Blank + 0.158 * 10CodeAndComment

+ 0.163 * uniqO0 p + 0.234 * uniqOpnd

+ 0.241 * totalOp + 0.241 * totalOpnd

+ 0.236 * branchCount

, domainl v(g) X

PCA vs LDA (linear discrminant analysis)

LDA = PCA + class knowledge

(Note: LDA should not be confused with LDA (latent Dirichlet allocation) which currently all the rage in text mining.
And that LDA is not covered in this subject.)

PCA LDA: discovers a discriminating
. projection
20
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Latent Semantic Indexing

e Performing PCA is the equivalent of performing Singular Value Decomposition (SVD) on the data.
e Any n * m matrix X (of terms n in documents m) can be rewritten as:
o X=To* So* Do

o So is a diagonal matrix scoring attributes, top to bottom, most interesting to least interesting
o We can shrink X by dumping the duller (lower) rows of So

Singular Value Decomposition

documents

B E : S() (")
X - T, '

terms

mxm mxd

txd txm

documents Select first ksingular values

5 Y- '
X = | “T ¥ 2

terms

o kxd

txd txk

e Latent Semantic Indexing is a method for selecting informative subspaces of feature spaces.
e |t was developed for information retrieval to reveal semantic information from document co-occurrences.
e Terms that did not appear in a document may still associate with a document.

e LSl derives uncorrelated index factors that might be considered artificial concepts.
e SVD easy to perform in Matlab

o Also, there is some C-code.
o Also Java Classes available
= class SingularValueDecomposition
= Constructor: SingularValueDecomposition(Matrix Arg)
= Methods: GetS(); GetU(); GetV(); (U,V correspond to T,D)
e Be careful about using these tools blindly
o |t is no harm to understand what is going on!

e The Matrix Cookbook

e Note: major win for SVD/LSI: scales very well.

o Research possibility: text mining for software engineering
= typically very small corpuses
= so might we find better FSS for text mining than SVD/LSI

CFS (correlation-based feature selection)

e Scores high subsets with strong correlation to class and weak correlation to each other.



Numerator: how predictive

Denominator: how redundant

FIRST ranks correlation of solo attributes
THEN heuristic search to explore subsets

And the winner is:

Wrapper! and it that is too slow...

CFS, Relief are best all round performers
o CFS selects fewer features

Phew. Hall invented CFS

Other Methods

Other methods not explored by Hall and Holmes...

Note: the text mining literature has yet to make such an assessment. Usually, SVD rules. But see An
Approach to Classify Software Maintenance Requests, from ICSM 2002, for a nice comparison of nearest
neighbor, CART, Bayes classifiers, and some other information retrieval methods).

Using random forests for feature selection of the mth variable:

randomly permute all values of the mth variable in the oob data
Put these altered oob x-values down the tree and get classifications.
Proceed as though computing a new internal error rate (i.e. run the classifier).

The amount by which this new error exceeds the original test set error is defined as the importance
of the mth variable.

Use the Nomogram scores

O O O o
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Exploiting the Essential Assumptions of
Analogy-based Effort Estimation

Ekrem Kocaguneli, Student Member, IEEE, Tim Menzies, Member, IEEE,
Ayse Bener, Member, IEEE, and Jacky W. Keung, Member, IEEE

Abstract

Background: There are too many design options for software effort estimators. How can we best explore
them all?

Aim: We seek aspects on general principles of effort estimation that can guide the design of effort estimators.
Method: We identified the essential assumption of analogy-based effort estimation: i.e. the immediate
neighbors of a project offer stable conclusions about that project. We test that assumption by generating
a binary tree of clusters of effort data and comparing the variance of super-trees vs smaller sub-trees.
Results: For ten data sets (from Coc81, Nasa93, Desharnais, Albrecht, ISBSG, and data from Turkish
companies), we found: (a) the estimation variance of cluster sub-trees is usually /arger than that of cluster
super-trees; (b) if analogy is restricted to the cluster trees with lower variance then effort estimates have a
significantly lower error (measured using MRE and a Wilcoxon test, 95% confidence, compared to nearest-
neighbor methods that use neighborhoods of a fixed size).

Conclusion: Estimation by analogy can be significantly improved by a dynamic selection of nearest
neighbors, using only the project data from regions with small variance.

Index Terms

Software Cost Estimation, Analogy, k-NN

1 INTRODUCTION

Software effort estimates are often wrong by a factor of four [1] or even more [2]. As a result,

the allocated funds may be inadequate to develop the required project. In the worst case, over-
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running projects are canceled and the entire development effort is wasted. For example:

o NASA canceled its incomplete Check-out Launch Control System project after the initial
$200M estimate was exceeded by another $200M [3].
« The ballooning software costs of JPL’s Mission Science Laboratory recently forced a two-year

delay.

It is clear that we need better ways to generate project effort estimates. However, it is not
clear how to do that. For example, later in this paper we document thousands of variations for
analogy-based effort estimation (ABE). Effort estimation is an active area of research [4]-[7] and
more variations are constantly being developed. We expect many more variations of ABE, and
other effort estimation methods, to appear in the very near future.

Recent publications propose data mining toolkits for automatically exploring this very large
(and growing) space of options for generating effort estimates. For example, in 2006, Auer et
al. [8] propose an extensive search to learn the best weights to assign different project features.
Also in that year, Menzies et al. [9]'s COSEEKMO tool explored thousands of combinations of
discretizers, data pre-processors, feature subset selectors, and inductive learners. In 2007, Baker
proposed an exhaustive search of all possible project features, learners, etc. He concluded that
such an exhaustive search was impractical [10].

The premise of this paper is that we can do better than a COSEEKMO-style brute-force search
through the space of all variants of effort estimators. Such studies are computationally intensive
(the COSEEKMO experiments took two days to terminate). With the ready availability of cheap
CPU farms and cloud computing, such CPU-investigations are becoming more feasible. On the
other hand, datasets containing historical examples of project effort are typically small'. In our
view, it seems misdirected to spend days of CPU time just to analyze a few dozen examples.
These CPU-intensive searches can generate gigabytes of data. Important general properties of
the estimation process might be missed, buried in all that data. As shown below, if we exploit
these aspects, we can significantly improve effort estimates.

This paper proposes an alternative to brute-force and heuristic search. According to our easy
path principle for designing an effort predictor:

Find the situations that confuse estimation. Remove those situations.
(Later in this paper, in §3.2, we will offer a precision definition of “confuse estimation”. For now,
we need only say that confused estimates are highly inaccurate).

The easy path is not standard practice. Usually, prediction systems are matured by adding

mechanisms to handle the harder cases. For example, the AdaBoost algorithm generates a list

1. For example, the effort estimation datasets used in Mendes et al. [11], Auer et al. [8], Baker [10], this study, and Li et al. [12]
have median size (13,15,31,33,52), respectively.
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of learners, and each learner focuses on the examples that were poorly handled by the one
before [13].

Focusing on just the easy cases could be problematic. If we only explore the easy cases, we
could perform badly on the hard test cases. On the other hand, if the easy path works, it finds
short-cuts that simplifies future effort estimation work. Also, it avoids COSEEKMO'’s brute-force
search since, according to this principle, we only explore the options that challenge the essential
assumptions of the predictor.

The rest of this paper uses the easy path to build and evaluate an effort estimator called
TEAK (short for “Test Essential Assumption Knowledge”). In keeping with the easy path, we
only explored design options that commented on TEAK's essential assumptions; specifically:
(a) case subset selection and (b) how many training examples should be used for estimation.

TEAK’s design applied the easy path in five steps:

1) Select a prediction system.

2) Identify the predictor’s essential assumption(s).
3) Recognize when those assumption(s) are violated.
4) Remove those situations.

5) Execute the modified prediction system.

On evaluation, we found that for the data sets studied here, TEAK generated significantly better
estimates than comparable methods.

More generally, the success of the easy path principle recommends it for future research. When
designing a predictor, it is useful to first try optimizing for the situations where prediction is
easy, before struggling with arcane and complex mechanisms to handle the harder situations. For
example, in future work, we will apply steps 1,2,3,4,5 to other aspects of effort estimation like
feature weighting, and similarity measures.

The rest of this paper is structured as follows. After a review of the general field of effort
estimation, we will focus on ABE (analogy-based estimation). For ABE, we will work through
the above five steps to design TEAK. TEAK’s performance will then be compared against six
other ABE systems. Our conclusion will be to recommend TEAK for effort estimation.

The paper uses the notation of Figure 1.

2 BACKGROUND
2.1 Scope

This paper is not a detailed comparison of analogy-based estimation to other estimation methods
(for such a large scale comparison of many different methods, the reader is referred to [9], [14]).

While we compare our proposed new technique to a limited number of other estimation methods
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Symbol Explanation

ABE Analogy Based Estimation.

ABEOQ A Dbaseline ABE method.

NNet A neural net prediction system with one hidden
layer.

LR Li}rllear regression.

GAC Greedy Agglomerative Clusterin%.

TEAK Test Essential Assumption Knowledge.

GAC1, GAC2 First and second GAC trees within TEAK.

x,y Depending on the context,  and y can refer to
two instances/projects in a dataset or alterna-
tively to two vertices in a GAC tree.

i, Yi ith features of projects = and y respectively.

w; Feature weight for the difference of features x;
and y; in Euclidean distance function.

Ly, Ly, L, Leaves of the sub-trees whose roots are z, y and
z respectively.

kz, ky, k- The number of leaves in Ly, Ly, L respectively.

k-NN k Nearest Neighbors.

k An italic k alone refers to analogies, i.e. selected
similar projects.

bi,bj, ci, cj All these symbols are related to discretization
of continuous columns. b; and b; refer to break-
goints i and j, which in return produce discrete

ins that have counts of ¢; and c; instances
within themselves.

Best(K) A ]procedure that heuristically finds the best k
value for a dataset.

02,02, Assuming that x, y and z are vertices in a GAC

‘ tree and x is the parent of y and z, U?E refers to
the variance of instances in = and aiz refers to
the weighted sum of the variances of y and z.

o, B, 7, R, | These symbols are associated with different

maz(a?) pruning policies. o, 3 and ~ keep user-defined
values to fine-tune pruning. R is a random vari-
able that can have values from 0 to 1. maxz(o?)
refers to maximum variance of all sub-trees in
a GAC tree.

T, N T refers to a given dataset and N refers to a test
set out of this dataset.

predicted; The effort of test instance N; € N predicted by
some induced prediction system.

actual; The actual effort seen in test instance N;inN

AR Absolute residual. |actual; — predicted;|

MRE magnitude of relative error. 7"

PRED(X) The percentage of estimates that are within X%
of the actual value.

win;, tie;, loss; | The total number of wins, ties and Ilosses of a
variant in comparison to other variants accord-
ing to Wilcoxon signed rank test.

Fig. 1: The explanations of symbols that are used in our research are summarized here. Symbols

that are related to each other are grouped together.

(specifically, neural networks and regression), that comparison is only to ensure that analogy-
based estimation is not noticeably worse that other methods in widespread use.

The main point of this paper is as follows. Analogy-based effort estimation is a widely-used
and widely-studied technique [8], [12], [15]-[26]. This paper reports a novel method to improve
that technique. Specifically, when estimating via analogy, it is best to first prune all subsets of
the data with high variance. We will argue that a new variance heuristic is a better way to select
analogies:

« Without this heuristic, analogies are selected by their distance to the test instance.

« With this heuristic, a pre-processor prunes the space of possible analogies, removing the

subsets of the data with high variance (in high variance subsets, training data offers highly

variable conclusions).
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This heuristic works, we believe, since if a test instance falls into such subsets then (by definition)
minor changes to the test will lead to large changes in the prediction (due to the variability in
that region). We show below that, by removing those problematic subsets, effort estimation by

analogy can be improved.

2.2 Analogous Approaches

While the variance heuristic is novel and unique in the effort estimation literature, analogous
proposals can be found in the requirements engineering literature, dating back to the 1990s. In
the seminal paper “To Be and Not To Be”, Nuseibeh [27] discusses a spectrum of methods for
handling inconsistent specifications. One method is circumvent; i.e. instead of expending effort
resolving regions of contradiction, add “pollution markers” that screen the problematic regions
away from the rest of the system. Note that our variance heuristic (that prunes the data subsets
with high variance) is something like a pollution marker since it guides the reasoning away
from problematic training data.

Another use for such marks is to mark any segments that human agents need to explore.
Turning back from requirements engineering (which was the focus of Nuseibeh’s discussion)
back to effort estimation (which is the focus of this paper), we could utilize pollution marks
to highlight regions where more data collection might be beneficial. Note that this approach is
not explored here since our premise is that we must make the best use possible of fixed data.

However, this might be a promising area of future research.

2.3 Effort Estimation

Having set the context for this paper, we now turn to the details.

After Shepperd [6], we say that software project effort estimation usually uses one of three
methods:

o Human-centric techniques (a.k.a. expert judgment);

o Model-based techniques including;:

— Algorithmic/parametric models such COCOMO [1], [28];
— Induced prediction systems.

Human centric techniques are the most widely-used estimation method [29], but are prob-
lematic. If an estimate is disputed, it can be difficult to reconcile competing human intuitions
(e.g.) when one estimate is generated by a manager who is senior to the other estimator. Also,
Jorgensen [30] reports that humans are surprisingly poor at reflecting and improving on their

expert judgments.
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One alternative to expert judgment is a model-based estimate. Models are a reproducible
methods for generating an estimate. This is needed for (e.g.) U.S. government software contracts
that require a model-based estimate at each project milestone [9]. Such models are used to
generate and audit an estimate, or to double-check a human-centric estimate.

Model-based estimates can be generated using an algorithmic/parametric approach or via
induced prediction systems. In the former, an expert proposes a general model, then domain
data is used to tune that model to specific projects. For example, Boehm’s 1981 COCOMO
model [1] hypothesized that development effort was exponential on LOC and linear on 15 effort
multipliers such as analyst capability, product complexity, etc. Boehm defined a local calibration
procedure to tune the COCOMO model to local data.

Induced prediction systems are useful if the available local training data does not conform
to the requirements of a pre-defined algorithmic/parametric model such as COCOMO. There
are many induction methods including linear regression, neural nets, and analogy, just to name
a few [9], [31]. Analogy-based estimation is discussed in detail in the next section. In order to
give the reader some context, we offer here some notes on none-analogy methods. Regression
assumes that the data fits some function. The parameters of that function are then adjusted to
minimize the difference between the values predicted by the model and the actual values in the

training data. For example, in linear regression, the model is assumed to be of the form:

y = Bo+ fiz1 + Baza + ...

where z; are model inputs, y are the model outputs and [, are the coefficients adjusted by a
linear regression induction system.

Neural nets are useful when the data distributions are not simple linear functions [32]-[34].
An input layer of project details is connected to zero or more “hidden” layers which, in turn,
connect to an output node (the effort prediction). The connections are weighted directed edges.
If the signal arriving to a node sums to greater than some threshold value, the node is said to
“fire” and a weight is propagated across the network. Learning in a neural net compares the
output value to the expected value, then applies some correction method to improve the edge
weights (e.g. the “back propagation” algorithm first invented by Bryson and Ho in 1969 [35],
and made popular by Rumelhart et al. in the 1980s [36]).

All induction systems require a bias in order to decide what details can be safely ignored. For
example, linear regression assumes that the effort data fits a straight line. When data does not
match the bias of the induction system, various patches have been proposed. Boehm [1, p526-
529] and Kitchenham & Mendes [37] advocate taking the logarithms of exponential distributions
before applying linear regression. Selecting the right patch is typically a manual process requiring

an analyst experienced in effort estimation.
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2.4 Analogy-based Estimation (ABE)

In ABE, effort estimates are generated for a test project by finding similar completed software
projects (a.k.a. the training projects). Following Kadoda & Shepperd [19], Mendes et al. [11], and
Li et al. [12] we define a baseline ABE called ABEO, as follows.

ABEOQ executes over a table of data where:

« Each row contains one project;
o Columns contain independent variables (features) in the projects and dependent variables

(features) that stores, for example, effort and duration required to complete one project.

After processing the training projects, ABEO inputs one test project then outputs an estimate
for that project. To generate that estimate, a scaling measure is used to ensure all independent
features have the same degree of influence on the distance measure between test and training
projects. Also, a feature weighting scheme is applied to remove the influence of the less informative
independent features. For example, in feature subset selection [38], some features are multiplied
by zero to remove redundant or noisy features.

The similarity between the target project case and each case in the case-based repository
is determined by a similarity measure. There are different methods of measuring similarity
have been proposed for different measurement contexts. A similarity measure is measuring the
closeness or the distance between two data objects in an n-dimensional Euclidean space, the
result is usually presented in a distance matrix (or similarity matrix) identifying the similarity
among all cases in the dataset. The Euclidean distance metric is the most commonly used in
ABE for its distance measures, and it is suitable for continuous values such as software size,
effort and duration of a project. It is based on the principle of Pythagorean Theorem to derive
a straight line distance between two points in n-dimensional space.

In general, the unweighted Euclidean distance between two points P = (pi,ps,...,p,) and

Q= (q1,¢, -, qn), and can be defined and calculated as:

Vi —a)2+ 2 — @)+ o+ (pn — qn)2 = Z (pi — qi)? 1)

An alternative is to apply different weights to each individual project feature to reflect the its

relative importance in the prediction system. The weight Euclidean distance can be calculated

Vwi(pr— q1)? + wa(pz — ¢2)> + oo+ wa(pn — gn)? = | Y wilps — q:)° )
i=1

where w; and w,, are the weights of 1*' and n'" project features. Note that in the special case of

as:

w; = 1 (i.e. equal weighting) then the equations are indentical.
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The above Euclidean distance functions is suitable for general problems, particularly when
values are of continuous nature. There are other different distance metrics for non-continuous
variable, these include, but are not limited to Jaccard distance for binary distance [39] and Gower
distance described by Gower & Legendre [40]. In this paper, we only consider the Euclidean
distance measure which is most relevant to the context of software cost estimation.

Irrespective of the similarity measure used, the objective is to rank similar cases from the
dataset to the target case and utilize the known solution of the nearest k-cases. The value of k
in this case has been the subject of debate in the ABE research community [19] [17]. Shepperd
& Schofield [17] suggested the ideal value for k is 3, that is, only three closest neighboring cases
will be considered. These k cases will be adjusted or adapted to better fit the target problem by
predefined rules, a human expert or more commonly, using a simple mean or median of the

selected k cases.

2.5 Alternatives to ABEO

Within the space of ABE methods, ABEO is just one approach. Based on our reading of the

literature we see other variants that take different approaches to:

o The selection of relevant features;

o The similarity function;

« The weighting method used in similarity function;

o The case subset selection method (a.k.a selected analogies or k value);

« And the adaption strategy (a.k.a solution function)
Not every paper explores every option. For example:

« In [19], the focus of Kadoda et. al. is the impact of the selected number of analogies;
o In [12] Li et. al. study the effects of relevant subset selection in training set (i.e. historical
data) as well as feature weighting in the similarity function;
o« Auer et. al. propose an optimal weight finding mechanism by means of extensive search
in [8];
o In [15], Walkerden et. al. investigate selected analogies and compare the performance of
human experts to that of tools;
o Finally in [11], Mendes et. al. limit historical data to a single domain and compare different
ABE configurations to non-ABE methods.
Generalizing from the above, the following notes tries to map the space of options within ABE
research. Since researchers are developing new technologies for effort estimation all the time,
this map is incomplete. However, it does illustrate our general point that there are thousands

of possible variants to ABE.
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2.5.1 Three Case Subset Selectors

A case subset selection is sometimes applied to improve the set of training projects. These selection
mechanisms are characterized by how many cases they remove:

o Remove nothing: Usually, effort estimators use all training projects [17]. ABEO is using this
variant.

o« Outlier methods prune training projects with (say) suspiciously large values [25]. Typically,
this removes a small percentage of the training data.

o Prototype methods find, or generate, a set of representative examples that replace the training
cases. Typically, prototype generation removes most of the training data. For example,
Chang’s prototype generators [41] explored three data sets A, B,C of size 514, 150,66 in-
stances, respectively. He converted these into new data sets A’, B’,C’ containing 34, 14,6
prototypes, respectively. Note that the new data sets were very small, containing only
7%,9%,9% of the original data.

2.5.2 Ten Feature Weighting Methods
In other work Li et al. [12], and Hall & Holmes [38] review eight different feature weighting

schemes. Li et al. uses a genetic algorithm to learn useful feature weights. Hall & Holmes
review a variety of methods ranging from WRAPPER (a O(2") search through all subsets of
F features) to various filters methods (that run much faster than WRAPPER) including their
preferred correlation-based method.

In our own work, we have developed yet another feature weighted scheme. The fundamental
assumption underlying ABEQ is that projects that are similar with respect to project features will
be similar with respect to project effort. To formally evaluate this hypothesis, Keung et al. [25]
developed a more comprehensive solution towards ABEO, called Analogy-X (a.k.a AX). For
example, given two distance matrices constructed from the selected predictor variables and the
response variable, we can correlate the two matrices and show their distance correlation function.
However different ordering of the matrix elements may result different matrix correlations, AX
applies Mantel’s technique that randomly permute the distance matrix elements 1,000 times to
produce randomisation statistic distribution. Based on the Mantel correlation, AX selects the
project features that improves overall Mantel correlation and uses a set of procedures similar
to that of stepwise regression to select the project features that are statistically relevant to the
solution space, effectively removes the need for brute force feature selection in the classical
ABEOQ proposed in [17]. More importantly AX provides a statistical justification as to whether
ABE should be used for the dataset under investigation. Keung et al. [25]’s study also concludes
that dataset quality and variance within the dataset are influential factors, removing data points

with large variance will improve prediction performance.
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2.5.3 Five Discretization Methods

Some feature weighting schemes require an initial discretization of continuous columns. Dis-
cretization divides a continuous range at break points by, bs, ..., each containing a count ¢y, co, ...
of numbers [42]. There are many discretization policies in the literature including:

« Equal-frequency, where ¢; = ¢;;

o Equal-width, where b,,, — b; is a constant;
Entropy [43];
« PKID [44];
« Do nothing at all.

2.5.4 Six Similarity Measures

Mendes et al. [11] discuss three similarity measures including the weighted Euclidean measure
described above, an unweighted variant (where w; = 1) and a “maximum distance” measure
that that focuses on the single feature that maximizes inter-project distance. Frank et al. [45]
offer a fourth similarity measure that uses a triangular distribution that sets to the weight to
zero, after the distance is more than “k” neighbors away from the test instance. A fifth and sixth
similarity measures are the Minlowski distance measure used in [46] and the mean value of the

ranking of each project feature used in [15].

2.5.5 Six Adaption Mechanisms
With regards to adaptation, the literature reports many approaches including:
« Report the median effort value of the analogies;
o Report the mean dependent value;
o Summarize the adaptations via a second learner; e.g. regression [10], model trees [9], [47]
or neural network [48].
« Report a weighted mean where the nearer analogies are weighted higher than those further

away [11];

2.5.6 Six Ways to Select Analogies

Li et al. [12] comment that there is much discussion in the literature regarding the number of
analogies to be used for estimation. Numerous methods are proposed, which we divide into
fixed and dynamic.

Fixed methods use the same number of analogies for all items in the test set. For example, Li

et al. [12] report that a standard fixed method is to always use 1 < k < 5 nearest projects:

o k=1 is used by Lipowezky et al. [49] and Walkerden & Jeffery [15];
o k=2 is used by Kirsopp & Shepperd [50]



JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 11

o k=1,2,31is used by Mendes el al. [11]

Dynamic methods adjust the number of analogies, according to the task at hand. For example,
following advice from Martin Shepperd?, Baker [10] tuned & to a particular training set using
the following “Best(K)” procedure:

1) Select N C T training projects at random;

2) For each k € 1..T'— N, compute estimates for n € N;

3) Find the k£ value with least error in step 2.

4) When estimating, use the k-nearest neighbors, where k is set by step 3.

Our results show that Best(K) out-performs the standard fixed methods (i.e. £ < 5). More
interestingly, as shown in Figure 2, Best(K) recommends % values that are very different to
those seen in the standard fixed methods. These results come from three commonly used data
sets (Desharnais, NASA93, and the original COCOMO data set from [1]: for notes on these data
sets, see the appendix).

While ABE systems differ on many aspects, they all use analogy selection . The Figure 2 results
suggest that there may be something sub-optimal about standard, widely-used, fixed selection

methods. Hence, the rest of this paper takes a closer look at this aspect of ABE.

3 DESIGNING TEAK

The above sample of the literature describes
3x10*x5%6x6x%6 > 30,000

ways to implement similarity, adaptation, weighting, etc. Some of these ways can be ruled out,
straight away. For example, at £ = 1, then all the adaptation mechanisms return the same result.
Also, not all the feature weighting techniques require discretization, decreasing the space of
options by a factor of five. However, even after discarding some combinations, there are still
thousands of possibilities to explore. How might we explore all these variations?

The rest of this paper applies the easy path to design and evaluate an ABE system called TEAK
(Test Essential and Assumption Knowledge). TEAK is an ABEO, with the variations described

below.

3.1 Select a Prediction System

Firstly, we select a prediction system. We use ABE since:
o It is a widely studied [8], [12], [15]-[26].

« It works even if the domain data is sparse [51].

2. Personal communication.
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Fig. 2: Distribution of k after removing each project instance, then applying Best(K) on the

remaining data. The y-axis counts the number of times a particular k& value was found by Best(K).

o Unlike other predictors, it makes no assumptions about data distributions or an underlying

model.
« When the local data does not support standard algorithmic/parametric models like CO-

COMO, ABE can still be applied.
The easy path limits the space of design options to just those that directly address the essential
assumptions of the predictor. As shown below, for ABE, this directs us to issues of case subset

selection and the number of analogies used for estimation.

3.2 Identify Essential Assumption(s)

The second step is to identify the essential assumptions of that prediction system. Although it is
usually unstated, the basic hypothesis underlying the use of analogy-based estimation is that
projects that are similar with respect to project and product factors will be similar with respect
to project effort [26]. In other words:

Assumption One: Locality implies uniformity.
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This assumption holds for project training data with the following property:

o The k-nearest training projects with effort values FEi, Es, .., E;, have a mean value p =

(Zf EZ> /k and a variance o? = <Zf(EZ — u)2> J(k—1).

« By Assumption One, decreasing k also decreases o°.
Note that if all estimates always have the same distance to the mean y, then AssumptionOne
always fails since in (Zf(EZ - M)Q) /(k — 1), if the numerator is constant then decrease k will
always increase the variance. The core of ABE is the premise that in the neighborhood of training
instances, the reductions seen in (E; — 11)> dominates over the increases due to 1/(k —1). As we

shall see below, this sometimes holds (and sometimes it does not).

3.3 Identify Assumption Violation

The third step is to recognize situations that violate the essential assumption. Implementing this step
requires some way to compare the variance of larger-k estimates to smaller-£ estimates. Once
way to achieve this is to use some clustering methods that generates a tree of clusters, where
each sub-tree contains training data that is closer together than the super-tree.

There are many algorithms for generating trees of clusters. The basic method, called greedy
agglomerative clustering (GAC) is used in various fields (data mining [52], databases [53] bioin-
formatics [54]). GAC executes bottom-up by grouping together at a higher level (i+1) the closest
pairs found at level i. The algorithm terminates when some level i is found with only one node.
GAC is “greedy” in that it does not pause to consider optimal pairings for vertices with very
similar distances. It never backtracks looking for (say) better pairings a level i to reduce the
distance between nodes at level i + 1.

The result of GAC is a tree like Figure 3. Note that, in this tree, the original training data
are found at the leaves of the tree. All other nodes are nodes artificially generated by GAC to
represent the median of pairs of the leaves, the median of the medians, and so on (recursively).

A GAC tree can be viewed as a tree of clusters where each node at height ¢ is the centroid
of the sub-clusters at height i — 1. Given 7' initial instances, GAC builds a trees of maximum
height l0og,(T"). Since the number of vertices is halved at each next level, building a GAC tree

requires the following number of distance calculations:

loga(T) 7 \2
> (55) |-

7

(7= 1)

Lo W~

This O(T?) computation is deprecated for large 7. However, for this study, GAC construction
takes less than a second®. Our runtimes were fast because effort estimation data sets are usually

very small: Figure 4 shows all our training projects contain less than 100 examples.

3. Using Matlab on a standard Intel x86 dual core notebook running LINUX with 4GB of ram.
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Fig. 3: A sample GAC tree built from 7 instances: a, b, ¢, d, e, f and g¢. In each level the closest
two nodes are coupled-up to produce the nodes in one higher level. However, odd numbered
instances result in unbalanced trees. In this figure, when all leaf nodes are paired up (pairing
of letters here is random and just for illustration), ¢ remains alone. The alone remaining node
at any level, will find the closest node to itself in one higher level and will merge to that node.

For example ¢ merges to the node containing b and f.

There are many other, faster, algorithms for generating trees of clusters including bisecting
k-means [55] which, at each level, calls k-means* with K=2 several times to split one cluster into
two. The division leading to the clusters with the best intra-cluster similarities are then stored
and used in subsequent splits. Other approaches, like MESO [56], recursively divide the data
into smaller and smaller spheres containing close instances. MESO uses an incremental method
to learn and update what close means for a particular data set.

We use GAC (with the distance measure of Equation ??) rather than other methods like
bisecting k-means or MESO for two reasons. Firstly, these other methods use various heuristics to
improve their runtimes. Our data sets are so small that such heuristic methods are not necessary.
Secondly, our results (described below) with GAC are so promising that we are not motivated
to experiment beyond GAC.

Using a GAC tree, finding the k-nearest neighbors in project data can be implemented using
the following TRAVERSE procedure:

1) Place the test project at the root of the GAC tree.

2) Move the test project to the nearest child (where “nearest” is defined by Equation ??).

3) Go to step 2
Clearly, a k£ = 1 nearest-neighbor estimate comes from TRAVERSE-ing to a leaf, then reporting the
effort of that leaf. More generally, a k = N nearest-neighbor estimate comes from TRAVERSE-ing
to a sub-tree with IV leaves, then reporting the median efforts of those leaves.

TRAVERSE can test Assumption One. Let some current vertex x have children y and z. We say

4. The k-means clustering algorithm selects centroids at random, labels each instance by its nearest centroid, then updates

the centroid position to the central position of all instances with the same label. The algorithm repeats till the centroid position

stabilizes.
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Historical Effort Data
Dataset Features T = |Projects| Content Units Min Median Mean  Max Skewness
Cocomo81 17 63  NASA projects months 6 98 683 11400 44
Cocomo8le 17 28  Cocomo81 embedded projects | months 9 354 1153 11400 34
Cocomo8lo 17 24  Cocomo8l organic projects months 6 46 60 240 1.7
Nasa93 17 93  NASA projects months 8 252 624 8211 4.2
Nasa93c2 17 37  Nasa93 projects from center 2 | months 8 82 223 1350 24
Nasa93c5 17 40  Nasa93 projects from center 5 | months 72 571 1011 8211 3.4
Desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
SDR 22 24  Turkish software projects months 2 12 32 342 3.9
Albrecht 7 24 Projects from IBM months 1 12 22 105 2.2
ISBSG-Banking 14 29  Banking projects of ISBSG hours 662 2355 5357 36046 2.6
© Total: 448

Fig. 4: The 448 projects used in this study come from 10 data sets. Indentation in column one

denotes a dataset that is a subset of another dataset. For notes on this data, see the appendix.

that:

o« The sub-trees starting at xz,y, z have leaves L,,L,, L. (and L, = L, U L,).

o The number of sub-tree leaves is k, = k, + k..

2 2

« The variance of the leaves’ efforts are o2, 0;,0?.

o After C4.5 [57], we say the variance of the trees below z (denoted ¢7,) is the weighted sum:

052 = %02 + %02
Parent trees have the nodes of their children (plus one). If we TRAVERSE from a parent «
to a child, then the sub-tree size k decreases. That is, TRAVERSE-ing moves into progressively
smaller sub-trees.
Assumption One holds if, when TRAVERSE-ing from all vertices = with children y and z, the
sub-tree variance decreases. That is:

VeeT:o)> o, 3)

Note one special case of the above: in the case of £ = 1, variance is zero since, by definition, all
members of a population of one thing are all the same. Hence, earlier versions of TEAK always
just returned just the leaf nodes. The bug, it was realized, was the direction of the search. A
bottom-up traversal that tries to grow a smaller region to a larger region will rarely grow more
than one level (since, at level two, it usually encounters training instances that are somewhat
different to the leaf nodes on level one). Accordingly, TEAK was changed to the following top-
down procedure that works from a larger space to a smaller space. In the usual case, this search

stops before the k=1 region.
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3.4 Remove Violations

The fourth step in TEAK’s design is to remove the situations that violate the essential assumption.
We instrumented TRAVERSE to report examples where Equation 3 was violated; i.e. where it
recursed into sub-trees with a larger variance than the parent tree. We found that this usually
occurs if a super-tree contains mostly similar effort values, but one sub-tree has a minority of
outliers. For example:

« Suppose some vertex x has children y, 2.

« Let each child start sub-trees whose leaves contain the effort values leaves(y) € {1253,1440}
staff hours and leaves(z) € {1562,5727} staff hours.

In this example:

o The leaves of the parent tree = have similar effort values: 1,253 and 1,562 and 1,440 staff
hours.

« But the leaves of the subtree z has outlier values; i.e. 5,727.

« TRAVERSE-ing from the super-tree x to the sub-tree z increases the variance by two orders
of magnitude.

A sub-tree pruning policy is used to prune sub-trees with a variance that violates the essential
assumption. We experimented with various policies that removed subtrees if they had:

1) more than o times the parent variance;

2) more than 3 * maz(c?);

3) more than R” x max(c?), where R is a random number 0 < R < 1.

In order to avoid over-fitting, our pruning policy experiments were restricted to one data set
(Boehm’s COCOMO embedded projects [1]) then applied, without modification, to the others.
The randomized policy (#3) produced lowest errors, with smallest variance. The success of this
randomized policy suggests two properties of effort estimation training data:

« The boundary of “good” training projects is not precise. Hence, it is useful to sometimes
permit random selection of projects either side of the boundary.

« The policy tuning experiments recommended ~ = 9. This selects for subtrees with less than
10% of the maximum variance’. This, in turn, suggests that the above example is typical of
effort estimates; i.e. sub-tree outliers are usually a few large effort values.

In theory, stochastic methods like policy #3 introduce a degree of instability in the performance
of the induction system. In practice, this is not an issue with TEAK. In the evaluation section,
described below, we repeat out analysis of TEAK 20 times using various performance measures
and experimental rigs. When we compare the results of those repeated trials against just running

TEAK once, we can see no major performance differences.

5. The mean of rand()? ~ 0.1.
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3.5 Execute the Modified System

The final step in the design of TEAK is to build a new prediction system. TEAK executes as
follows:
o Apply GAC to the training projects to build a tree called GACI;
o Prune GAC1 using the sub-tree pruning policy described above. The remaining leaves are
the prototypes to be used in effort estimation.
« Apply GAC to the prototypes to build a second tree called GAC2.
o Place the test project at the root of GAC2. Compute an estimate from the median value
of the GAC2 projects found by TRAVERSE2. TRAVERSE? is a variant of TRAVERSE that
ensures the essential assumption is never violated. It stops recursing into GAC2 sub-trees

when Equation 3 is violated.

4 COMPARISONS

Recall the pre-experimental concern expressed above: Taking the easy path might ignore im-
portant design issues, to the detriment of the predictions. To address that concern, this section
compares TEAK to a range of other ABEQ variants as well the other induced prediction systems
described in §2; i.e. neural nets and linear regression (we selected this particular range of
algorithms at the suggestion of reviewers of this paper).

As discussed above in §2.1, the reader should look elsewhere for a detailed comparison of
analogy-based estimation to other estimation methods (e.g. [14]). We compare TEAK to a limited
number of other estimation methods (specifically, neural networks and regression), merely to
ensure that analogy-based estimation is not significantly worse than other methods in widespread
use.

In the following comparisons, TEAK will be assessed using:

o Two different experimental rigs (leave-one-out and n-way cross-validation: see §4.1);

o Three different performance measures (AR, MRE, PRED(25): see §4.2);

A pre-experimental concern with this approach was that if different performance measures/rigs
endorsed different induction methods, how might we judge any overall winner? On experi-
mentation, this theoretical concern was not realized: TEAK performed best over all rigs and

performance measures.

4.1 Randomized Trials

Recall that TEAK uses a randomized method for sub-tree pruning. Any evaluation of such a
randomized method must be repeated multiple times. Appealing to the central limit theorem,

we used twenty repeats.
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« Twenty times, for each data set, we randomize the order of the rows in that data set.

« Next, we conducted both a Leave-One-Out study and a 3-way cross-validation study.

In Leave-One-Out, given T' projects, then V¢ € T, use t as the test project and the remaining
T — 1 projects for training. In 3-way cross-validation, the data set of 7" projects is divided into
three bins, bin; is used for testing while the remaining 7" — bin; projects are used for testing.

Since some of our data sets are very small (e.g. the 24 instances of Cocomo8l0), we used
a 3-way cross validation (and not the 10-way used by, say, Quinlan [57]). Some thought was
given to using 3-way for small data sets and 10-way for larger data sets. However, this would
introduce a complication into the analysis that is neither recommended by the literature, nor
handled by any statistical technique that we are aware of.

We use both Leave-one-out and N-way cross-validation since the effort estimation literature
is ambiguous on which is most appropriate. In the Kitchenham et al. survey [58], all the projects
reviewed in their Table 3 used N-way cross-validation. However, other prominent studies prefer
leave-one-out [23].

For these studies, we used all independent features when computing similarities. We applied
twenty randomized trials using the 448 projects from thel0 data sets of Figure 4 (for notes on this
data, see the appendix). In all, these randomized trials generated 20*2*448=17,920 training/test

set pairs.

4.2 Details

For each of these 17,920 pairs of training/test, estimates were generated by TEAK, neural
networks, regression, and six other ABEQ variants:
« Five variants returned the median effort seen in the k-th nearest neighbors for k € {1,2,4,8, 16}.
o The other variant returned the median effort seen in k£ neighbors found using Baker’s Best(K)
procedure. From §2.5, recall that Best(K) adjusts k to each data set by reflecting over all the
training projects.
Since this is paired data (same train and test data passed through multiple treatments), we
applied a Wilcoxon signed rank test (95% confidence) to rank the resulting estimates. Ranked®
statistical tests like the Wilcoxon are useful if it is not clear that the underlying distributions
are Gaussian [59]. Also, ranked statistics mitigate the problem of effort estimation results that
sometimes contain a small number of very large errors [60].

6. In a ranking analysis, the raw results (10.2,21.3,22.1,24,25,30,100) are replaced with their ranks in the sort order; i.e.
1,2,3/4,5,6,7).
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win; =0, tie; =0, loss; =0
wing =0, tie; =0, loss; =0
if WILCOXON(F;, P;) says they are the same then
tie; = tie; + 1;
tie; = tiej + 1;
else
if median(P;) < median(P;) then
win; = win; + 1
loss; = lossj + 1

else
win; = win; + 1
loss; = loss; + 1
end if
end if

Fig. 5: Pseudocode for Win-Tie-Loss Calculation Between Variant i and j with performance
measures P; and P;.

We collected information on three performance metrics: AR, MRE, PRED(25). The magnitude

of the absolute residual (AR) is computed from the difference between predicted and actual:
AR = |actual; — predicted,| 4)

We prefer AR to other performance measures since we share Shepperd’s concern [61] that
anything other than the simplest evaluation statistic can introduce analysis issues. Nevertheless,
other measures are more common in the effort estimation literature (e.g. see Table 3 of [58]) such
as MRE and PRED(25). MRE is the magnitude of the relative error. It is calculated by expressing
AR as a ratio of the actual prediction:

lactual; — predicted;|

MRE =

)

actual;
AR and MRE are calculated for every item in a test set. PRED(X), on the other hand, is a summary
statistic that reports behavior over an entire test suite. PRED(X) reports the average percentage

of the N estimates in the test set that were within X% of the actual values:

T . X
1if MRE; < X
PRED(X) = % > { ' - (6)

0 otherwise

For example, PRED(30)=50% means that half the estimates are within 30% of the actual. Chulani
& Boehm assesses his models using PRED(30) [62]. We use the stricter criteria of PRED(25) since
that is more common in the literature; e.g. [17], [34], [63].

In order to summarize the results of the Wilcoxon comparisons of the MRE, AR, PRED(25)
measures, we use the following win-tie-loss procedure. For each iteration of the randomized
trials, each data set generated 20*7=140 (MRE, PRED(25), AR) distributions for each induced
prediction system (neural nets, regression, the ABEO variants). To calculate the win-tie-loss val-
ues, we first checked if two distributions ¢, j are statistically different according to the Wilcoxon

test. If not, then we incremented tie; and tie;. On the other hand, if they turned out to be
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different, we updated win;, win,; and loss;,loss; after a numerical comparison of their median
values. The pseudocode for win-tie-loss calculation is given in Figure 5.

Note that Figure 5 is different to the “median(MRE)” and “mean(MRE)” performance measures
used in other papers (see Table 3 of [58]). In median and mean performance measures, the entire
distribution is summarized by its central tendency (measured in terms of median or mean), then
two methods are compared solely in terms of those two central points. Unlike the Wilcoxon test
used in Figure 5, such single-point assessment does not consider the variance around centrality.
Such single point assessments are depreciated in literature; e.g. see Foss et al.’s scathing critique
of mean MRE [64].

4.3 Results

Initially, our intention was to report results using all the data sets of Figure 4. However, we
found that the Albrecht data set was producing a very large number of ties (over 98%). On
closer inspection, we found that in our rig, Albrecht was a data set in which all our treatments
generated very similar results (the plots of the MREs generated by our eight methods was indis-
tinguishable). Since Albrecht was mostly unable to distinguish between the different treatments,
we excluded it from the rest of our analysis.

The resulting Win/Loss/Ties values from a Leave-One-Out study that measured MRE are
shown in Figure 6. When ranked in terms of win — loss, in g data sets, TEAK is the top ranked
method; i.e it always ranked first on that performance score. The next best method was linear
regression that is found in the top rank in only 2 data sets.

These scores are summarized top left of Figure 7 (see the tables for “MRE”). There is not
enough space in this article to repeat Figure 4 for every combination of (Leave-One-Out, Cross-
Val)*(MRE, AR, PRED(25)); i.e. six times in all. Hence, we present a summary of those results

in Figure 7. In all cases:

1) Best(K) and K € {1,2,4,8,16} rarely appeared in the top ranked methods. That is, stan-
dard analogy selection mechanism performed comparatively worse than applying TEAK'’s
variance heuristic.

2) While non-analogy methods sometimes did better on certain data sets, overall, TEAK’s

extension to analogy-based reasoning was competitive with non-analogy methods.

From result 1), we recommend variance pruning for analogy estimation since unequivocally, of
all the analogy variants studied here, TEAK is the superior system.

As to result 2), we hesitate to conclude, just from this sample, that TEAK is always the best
effort estimation method. However, its results are encouraging and should motivate continued

research into analogy-based methods. In our review of effort estimation [9], we commented that
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Data set Variant Win Tie Loss | Win - Loss
Cocomo8T TEAK 87 73 0 87
Best(K) 49 110 1 48

k=16 42 107 11 31

k=8 41 100 19 22

k=4 28 96 36 -8

NNet 37 76 47 -10

k=1 28 88 44 -16

k=2 26 82 52 -26

LR 7 18 135 -128

Cocomo81e TEAK 55 105 0 55
NNet 43 117 0 43

k=8 32 126 2 30

k=16 32 126 2 30

Best(K) 32 126 2 30

k=4 18 113 29 -11

k=1 8 97 55 -47

k=2 4 101 55 -51

LR 11 59 90 -79

Cocomo8To TEAK 136 0 24
k=16 9 151 0 9

k=8 8 152 0 8

Best(K) 8 152 0 8

NNet 9 150 1 8

k=4 7 151 2 5

LR 7 145 8 -1

k=2 2 128 30 -28

k=1 1 125 34 -33

Nasa93ch TEAK 40 120 0 40
LR 25 135 0 25

k=16 17 141 2 15

Best(K) 17 139 4 13

k=8 16 134 10 6

NNet 10 144 6 4

k=4 10 127 23 -13

k=2 7 110 43 -36

k=1 3 100 57 -54

SDR TEAK 67 93 0 67
k=1 43 97 20 23

NNet 25 123 12 13

k=4 26 118 16 10

k=8 18 132 10 8

k=2 20 126 14 6

Best(K) 16 126 18 2

k=16 13 120 27 -14

LR 0 49 111 -111

ISBSG-Banking TEAK 30 130 0
NNet 24 136 0
LR 23 137 0
k=16 22 138 0 22
k=8 19 141 0
Best(K) 21 137 2
k=4

= 14 112 34 -20

k=1 8 106 46 -38

k=2 4 73 83 -79

Nasa93 LR 72 88 0 72
TEAK 26 134 0 26

NNet 16 143 1 15

k=16 13 133 14 -1

k=8 15 128 17 -2

Best(K) 14 128 18 4

k=4 6 122 32 -26

k=2 4 113 43 -39

k=1 6 107 47 -41

Nasa93c2 LR 158 2 0 158
TEAK 36 106 18 18

k=16 25 115 20 5

NNet 17 123 20 -3

k=8 15 116 29 -14

Best(K) 15 116 29 14

k=4 11 101 48 -37

k=2 5 95 60 -55

k=1 6 90 64 -58

Desharnais LR 63 97 0 63
NNet 51 109 0 51

TEAK 37 121 2 35

k=16 25 129 6 19

k=8 22 124 14 8

Best(K) 16 120 24 -8

k=4 14 116 30 -16

k=2 6 80 74 -68

k=1 1 74 85 -84

Fig. 6: MRE based win-loss-tie results from the 20*Leave-One-Out experiments. For each data
set results are sorted by win minus loss values. Gray cells indicate variants with zero losses.
The performance of the various induced prediction systems is summarized in top-left corner of
Figure 7
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20 * LEAVE-ONE-OUT 20 * 3-WAY CROSS-VALIDATION
N v 4 N = 4
< 2 Z - 32 o « o < % T~ 2 & « o
Mmoo 9] Il Il Il il 1T = 7 @ Il Il D il T
E d Z M M M N M M E 4 Z /B M8 M N NN
MRE MRE
Cocomo81 A Cocomo81 A
Cocomo8le A Cocomo8le A
Cocomo8lo A Cocomo8lo A
Nasa93 A Nasa93 A
Nasa93c2 A Nasa93c2 A
Nasa93c5 A Nasa93c5 A
Desharnais Desharnais
Sdr A Sdr A
ISBSG-Banking A ISBSG-Banking A
Count 6 3 0 0 0 0 0 0 0] Count 6 3 0 0 0 0 0 o0 o
Pred(25) Pred(25)
Cocomo81 A Cocomo81 A
Cocomo8le A Cocomo8le A
Cocomo8lo A Cocomo8lo A
Nasa93 A Nasa93 A
Nasa93c2 A Nasa93c2 A
Nasa93c5 A Nasa93c5 A
Desharnais A Desharnais
Sdr A Sdr A
ISBSG-Banking A ISBSG-Banking A
Count 5 3 1 0 0 0 0 o0 o0 Count 5 3 1 0 0 0 0 0 o0
AR AR
Cocomo81 A Cocomo81 A
Cocomo8le A Cocomo8le A
Cocomo8lo A Cocomo8lo A
Nasa93 A Nasa93 A
Nasa93c2 A Nasa93c2 A
Nasa93c5 A Nasa93cb A
Desharnais A Desharnais
r A r A
ISBSG-Banking A ISBSG-Banking A
Count 6 3 0 0 0 0 0 o0 o0 Count 6 3 0 1 0 0 0 0 o0

Fig. 7: Summary of the random trials; e.g. Figure 6 is summarized top-left in “MRE”. This
figure displays the top performing inducted predictive system, measured via (win — loss). This
is repeated for all the performance measures (MRE, PRED(25), AR) and both experimental rigs
(leave-one-out on the left and 3-way cross-validation on the right). The last row of each table
shows the sum of times a method appeared as the top performing variant. In the majority of
cases, TEAK appears as the top-ranked predictive system.

best practices include generating estimates from multiple sources. Certainly, these results offer

no reason to exclude analogy as one of those sources.

4.4 Discussion

Two more features of these results deserve special attention. Firstly, there is a large number of
ties seen in all datasets: in some data sets like Nasa93c2 and Cocomo81o in Figure 4, most of the
methods tied 80% of the time or more. This point is interesting in that it suggests that as well
as assessing effort estimation algorithms, it might be productive to also assess effort estimation
data sets. If it is too easy or too hard to generate accurate estimates in a particular dataset, then
that data set will exhibit ceiling or floor etfects where all learners have the same high or low
(respectively) performance scores. We might be able to rank data sets according to their ceiling
and floor effects. With that ranking in hand, researchers might care to avoid data sets that do not
differentiate between different effort estimation methods (e.g. since all methods perform equally

as well, or equally as poorly).
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Secondly, the there is a marked conclusion stability over all our results: the same pattern of
results in Figure 7 repeats nearly exactly across all data sets, multiple evaluation criteria, and
multiple experimental rigs. When this conclusion stability was first seen, all the scripts generating
these results were inspected. Also, sample results from this paper were compared with known
results we had generated previously in past publications using different code. No errors in the
generation scripts were detected so we assert that this conclusion stability is a true result, and
not due to some programming error.

At first glance, these repeated results contradicted simulation studies that reported conclusion
instability. Those studies reported marked instability in the ranking of different effort estimation
methods according to the choice of random number seeds for train/test set selection; the choice
of data set; and the performance measure used to assess the results [31], [65].

On reflection, it was realized that Figure 7 was generated under different conditions than those
simulation studies. Those simulation studies generated artificial data sets using distributions
taken from a single data set. Further, those studies used very few project features (in one of
them, only a size measure was used’). There is hence no contradiction between:

o Conclusion instability results found in simulated data from a few features (e.g. [31], [65]);

« And conclusion stability results found in naturally occurring data sets, when all features are

used (e.g. our results in Figure 7).
Nevertheless, this conclusion stability should be explored further. Perhaps those prior simulation
studies need to be revisited using the large space of data sets and induced prediction systems

that is now available.

4.5 But Why Does it Work?

In discussions over TEAK, we are sometimes asked if it is wise to use variance to assess the
suitability of neighborhood for providing donor cases. The argument goes as follows: While a
high variance for a given neighborhood of k suggests that this is a bad neighborhood, a low
variance does not necessarily imply that the neighborhood is good.

In reply, we note that TEAK does not only use variance to select the donor cases. TRAVERSE2
pushes away from regions with high variance while pushing towards regions with similar features
to the test instance. TRAVERSE2 pushes away from high variance regions since:

o It executes over a space of training data which high variance regions pruned away;

o Its recursive descent terminates if it enters a region of increasing variance.

At the same time, TRAVERSE2 pushes towards regions with similar features as follows:

o It descends a binary tree of clusters.

7. EKREM: in both??? No, only in one, Kadoda2001 uses 4 indep. features.
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« At each step, the test instance is moved towards the sub-tree whose median is closest to the

test instance.

The above experiments show, we argue, this twin policy does better than just pushing towards
regions with higher similarity. That is, augmenting nearest neighbor algorithms with variance

avoidance does better than just applying nearest neighbor.

4.6 Threats to Validity

Internal validity questions to what extent the cause-effect relationship between dependent and
independent variables hold [66].

The general internal validity issue is that data mining experiments (like those discussed above)
do not collect new data, but only generates theories from historical data. Ideally, we should take
a learned theory and apply it to some new situation, then observe if the predicted effect occurs
in practice. Note that if no explicit theory is generated, then it cannot be be applied outside of
the learning system. That is, all ABE systems suffer from issues of internal validity since they do
not generate an explicit theory. However, it is possible to mitigate this problem by simulating
how an ABE system might be applied to a new situation. Note that the Leave-One-Out approach
used in this paper generates estimates using test data that is not used in training.

Construct validity (i.e. face validity) assures that we are measuring what we actually intended
to measure [67]. In our research we are using a variety of performance measures (AR, MRE,
PRED(25) and a pair of evaluation experiments (leave-one-out and cross-val). This was done to
increase the construct validity of this study. MRE is widely used for assessing the performance
of competing software effort estimation models [68]-[70]. Foss et al. [69] have provided an
extensive discussion demonstrating that by using only MRE itself may be leading to incorrect
evaluation. Hence, we take care to apply multiple performance measures and a pair of evaluation
experiments.

External validity is the ability to generalize results outside the specifications of that study [71].
To ensure the generalizability of our results, we studied a large number of projects. Our datasets
contain a wide diversity of projects in terms of their sources, their domains and the time period
they were developed in. For example, we used datasets composed of software development
projects from different organizations around the world to generalize our results [72]. Our reading
of the literature is that this study uses more project data, from more sources, than numerous
other papers. All the papers we have read, as well as, Table 4 of [7] list the total number of
projects in all data sets used by other studies. The median value of that sample is 186, which is

less than half the 448 projects used in our study.
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4.7 Future Work

In this paper, we have applied the easy path principle to design a new method for case &
analogy selection. In future work, we will apply the easy path to similarity measures, feature

weighting, and adaption. For example:

 After grouping together rows with similar estimates, we might weight features by their
variance within each group (and higher variance means lower weight).

o Alternatively, Lipowezky [49] observes that feature and case selection are similar tasks (both
remove cells in the hypercube of all cases times all columns). Under this view, it should be

possible to convert our case selector to a feature selector.

Our investigations in this area are very preliminary and, at this time, we have no conclusive
results to report.

Another promising avenue to explore is variations on the GAC clustering used in this paper.
Since our results have so far been quite promising, we have not explored alternatives to GAC.
For example, we form links between quite distinct clusters merely because their medians are
proximal. Perhaps another, more sophisticated, clustering algorithm would be a better way to

group the training data.

5 CONCLUSION

In response to the growing number of options for designing software project effort estimators,
various researchers (e.g. [9], [10], [12]) have proposed elaborate and CPU-intensive search tools
for selecting the best set of design options for some local data. While useful, these tools offer
no insight into the effort estimation task: They report what the design is in simplifying future
effort estimation tasks, but not why they were useful. Such insights are useful for reducing the
complexity of future effort estimations.

In order to avoid the computation cost of these tools, and to find the insights that simplify
effort estimation, we design TEAK using an easy path principle. The easy path has five steps.

1. Select a prediction system: Analogy-based effort estimation, or ABE, is a widely-studied
method that works on sparse data sets. Hence, we selected ABE as our prediction system.

2. Identify the predictor’s essential assumption(s): The essential assumption of ABE is that locality
implies uniformity; i.e. the closer the test project approaches the training projects, the smaller the
variance in that neighborhood.

3. Recognize when those assumption(s) are violated: Mathematically, this can be tested by recur-
sively clustering project data into a tree whose leaves contain historical effort data and whose
internal nodes are medians of pairs of child nodes. When descending this tree, the essential ABE

assumption is violated when sub-trees have a larger variance than the parents.
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4. Remove those situations: This assumptions can be removed by pruning sub-trees with the
larger variances.

5. Execute the modified prediction system: TEAK builds a second tree of clusters using just the
projects not found in high variance sub-trees. Estimates are generated from this second tree by a
recursive descent algorithm that stops before the sub-tree variance is higher than the super-tree
variance. The leaves of terminating sub-tree are then accessed and the estimate is calculated
from the median of the effort values in those leaves.

A pre-experimental concern with the easy path was that, in ignoring the hard training cases,
we would miss important aspects of the data. Our experiments do not support that concern.
TEAK never lost against other ABE methods and always won the most. Also, TEAK performed
at least as well (if not better) than certain other non-analogy-based estimation methods.

Our conclusions are two-fold:

« For those use analogy-based estimation, we strongly recommend pruning instances from
regions of high variance prior to generating estimates.

« For those designing new data algorithms, we conclude that it may be detrimental to obsess
on the hard cases. Rather, it may be better to enhance what a predictor does best, rather
than try to patch what it does worst. For example, in the case of ABE, case selection via

variance significantly improved the estimates.
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APPENDIX
With the exception of ISBSG-Banking and SDR, all the data used in this study is available at

http://promisedata.org/data or from the authors. As shown in Figure 4, our data includes:

« Data from the International Software Benchmarking Standards Group (ISBSG);

o The Desharnais and Albrecht data sets;

« SDR, which is data from projects of various software companies from Turkey. SDR is col-
lected from Softlab, the Bogazici University Software Engineering Research Laboratory repos-
itory [72];

o And the standard COCOMO data sets (Cocomo*, Nasa¥).

Projects in ISBSG dataset can be grouped according to their business domains. In previous

studies, breakdown of ISBSG according to business domain has also been used [72]. Among

different business domains we selected banking due to:
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1. Banking domain includes many projects whose data quality is reported to be high (ISBSG
contains projects with missing attribute values).
2. ISBSG Banking domain is the dataset we have analyzed and worked for a long time due

to our hands on experience in building effort estimation models in banking industry.

We denote the banking domain subset of ISBSG as “ISBSG-Banking”.
Note that two of these data sets (Nasa93c2, Nasa93c5) come from different development centers
around the United States. Another two of these data sets (Cocomo8le, Cocomo81l0) represent

different kinds of projects:

o The Cocomo8le “embedded projects” are those developed within tight constraints (hard-
ware, software, operational, ...);
« The Cocomo8lo “organic projects” come from small teams with good experience of working

with less than rigid requirements.

Note also in Figure 4, the skewness of our effort values (2.0 to 4.4): our datasets are extremely
heterogeneous with as much as 40-fold variation. There is also some divergence in the features

used to describe our data:

« While our data includes some effort value (measured in terms of months or hours), no other
feature is shared by all data sets.

« The Cocomo* and NASA* data sets all use the features defined by Boehm [1]; e.g. analyst
capability, required software reliability, memory constraints, and use of software tools.

« The other data sets use a wide variety of features including, number of entities in the data
model, number of basic logical transactions, query count and number of distinct business

units serviced.



Next Generation “Treatment Learning”
(finding the diamonds in the dust)

Tim Menzies
Lane Dept CS & EE, WVU

tim@menzies.us

Better RX, June 5, 2009 Treatment Learning - p. 1/33


http://menzies.us
file://localhost/Users/timm/svns/wisp/var/timm/10/dm/learn101/tim@menzies.us

The strangest thing...

Introduction “In any field, find the strangest thing, and explore it” — John Wheeler
® Complex Models? ) ) .

® Exploiting Simplicity B Q: How have dummies (like me) managed to gain

@ Different learners .

i S (some) control over a (seemingly) complex world?

@ Definition

DI B A: The world is simpler than we think.

Scaling Lp ¢ Models contain clumps

el s ¢ A few collar variables decide which clumps to use.
And so...

Questions? Comments? . TARZ,TARS,TAR4

¢ Data miners that assume clumps/collars

¢ Reports effects never seen before

¢ Finds solutions faster than other methods

¢ Returns tiniest theories

¢ Scales to infinite data streams (<= new result)

Better RX, June 5, 2009 Treatment Learning - p. 2/33



http://menzies.us

How Complex are our Models?

B COLLARS- 525,312 possible states
A small number few variables controls > 06
=
: 03 | .
Introduction the reSt % DDD UHM
@ The strangest thing... 'S DéKléeT [WQSG] “Minimal lg 00 r ——:—EDD? DII]DEE_TE.D o
. |
® Exploiing Simpliiy environments” in the ATMS; 20 58 <m -5 1
@ Different learners . . pp— babili f state (in 1 1ithm
® Why Learn Small Theories? ‘ IVIé| 1ZIES al |d S" |g|| [m] T|ny proba ty oL s (111 oBatt S)
@ Definition . . . ”
minimal environments”; i
e ¢ Crawford and Baker [1994]: l
=ealnglp “Master variables” in scheduling; {f 7 _
Felzitzs o ¢ Williams et al. [2003]: ‘Backdoors” s :
And so... in satisfiability. A G A
. ! ¢ T e .
Questions? Comments? i )
d.. \

B CLUMPS- A
¢ Druzdzel [1994]. Commonly, a few i
states; very rarely, most states;

¢ Pelanek [2004]. “Straight jackets” 7 i
in formal models: state spaces f AL AN
usually sparse, small diameter, N ; x\- :

many diamonds.
25,000 states in IEEE1394
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- Exploiting Simplicity

i

S

Introduction | If ClumpS
@ The strangest thing... . .
@ Complex Models? €® most of the action in a small number of states
- _
T ——— ¢ cffective search space = small
® Why Learn Small Theories? .
@ Definition . If CO“arS
_ ¢ A few variables that switch you between states
In practice...
Scaling Up B Treatment learning

¢ [f a few variables control the rest, then..
m All paths inputs — outputs use the collars (by
definition).
¢ So don’t search for the collars:
m They’ll find you.
m Just sample, and count frequencies F..
¢ Divide output good and bad
®m Focus on ranges R; with large

Related Work

And so...

Questions? Comments?

F(Ri|good)
F‘(I:iz |bad)

B Great way to learn tiny theories.

Better RX, June 5, 2009
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= Learns Smaller Theories

find graphics on a page from 11 features find good housing in Boston

Introduction

@ The strangest thing...

® Complex Models?

@ Exploiting Simplicity

® Why Learn Small Theories?
@ Definition

In practice...

Scaling Up

Related Work

And so...

Questions? Comments?

100 100 T a7
75ﬂ 751 I Ll horzline 100
50 50 il graphic 4
28 | 28 RS vertline ]

906122 0000100 M picure 25410 0 3
34 < height < 86 A 6.7 < RM < 9.8 A
3.9 < mean_tr < 9.5 12.6 < PTRATION < 15.9
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Introduction

@ The strangest thing...
® Complex Models?

@ Exploiting Simplicity
@ Different learners

® Why Learn Small Theories?

@ Definition

In practice...

Scaling Up

Related Work

And so...

Questions? Comments?

Better RX, June 5, 2009

E Why Learn Small Theories?

Reduce Uncertainty:
Linear regression: o2 o |variables| (Miller [2002]);

“Pluralitas non est ponenda sine neccesitate”:

MDL (Wallace and Boulton [1968]); FSS (Hall and Holmes [2003])

Explanation:
Smaller theories are easier to explain (or audit).

Performance:
The simpler the target concept, the faster the learning.

Construction cost:
Need fewer sensors and actuators.

Operations cost:
Less to do: important for manual procedures;
Less to watch: important for data-intensive tasks like security monitoring.

Pruning is good modeling:
Real world data often has noisy, irrelevant, redundant variables.
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Introduction

@ The strangest thing...

® Complex Models?

@ Exploiting Simplicity

@ Different learners

® Why Learn Small Theories?

@ Definition

In practice...

Scaling Up

Related Work

And so...

Questions? Comments?
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So What is Treatment Learning?

100 100 T o
?5 ?5 horz..l.inc
50 50 '!!!H!' graphlc
281 | 251 5SS vertline
906 1 2 2 0000100 MM picure

34 < height < 86 N 3.9 < mean_tr < 9.5

B F: training data with examples of R; — C
¢ R,: attribute ranges
¢ (' classes with utilities {U; < Uz < .. < Ug}
® "%, 2%, ..., Fc%: frequencies of C' in E

B 7 treatment of size X: {R1 A R2... AN Rx };

¢ T'NE — e C E with frequencies f1%, 2%, ...fc%

¢ seek smallest T with largest lift = (3o Ucfc) / (o UcFc)
B This talk:

¢ Implementation, examples, a new scale-up method
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Introduction

In practice...

@ Algorithm

@ Saving the World
® Compare

Scaling Up

Related Work

And so...

Questions? Comments?

Better RX, June 5, 2009

In practice...
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Introduction

In practice...

@ Algorithm

@ Saving the World
® Compare

Scaling Up

Related Work

And so...

Questions? Comments?

Better RX, June 5, 2009

B Assume clumps and collars
€ Just thrash around some.

B Build treatments
{R1 N Rs... N\ Rx} of size X
® FIRSTry X =1
€ THEN use the X = 1 results
to guide the X > 1 search.

B Hu [2002] :: grow treatments
via a stochastic search.
® Discretization: equal
frequency binning

B Empirically:
€ Run times linear on treatment
SIZE, number of examples
€ Works as well as TAR2’s
complete search

E The TAR3 Treatment Learner

function ONE(x = random(SIZE) )
X timesDo
treatment = treatment + ANYTHING()
return treatment

function ANYTHING ( )
return a random range from CDF(liftl)

function SOME ()
REPEATS timesDo
treatments = treatments + ONE()
sort treatments on lift
return ENOUGH top items

function TAR3(1lives = LIVES )
for every range r do liftl[r]= lift(r)

repeat
before = size(temp)
temp = union(temp, SOME())

if (before==size(temp))
then lives--
else lives = LIVES

until lives ==

sort temp on lift;

return ENOUGH top items

Useful defaults: <SIZE=10, REPEATS=100, ENOUGH=20, LIVES=5>

Treatment Learning - p. 9/33
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Saving the World

“Limits to Growth” :: Meadows et al. [1972]
iroduction A second look at “Limits to Growth”: Geletko and Menzies [2003]
Vensim’s World-3 (1991): 295 variables

In practice...
@ Algorithm
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Questions? Comments?
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Happily ever after if
B family size < 2, menstruation onset > 18, industrial capital output = [3..5).

B This happy ending is not mentioned in Meadows et al. [1972].
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EJ. Compared with More Complete Search

L

Introduction B DDP requirements models from deep-space missions (from JPL).
e B |terative learning: simulation; — learn — constrain — simulation;i
gorithm
@ Saving the World
Scaling Up benefit o cost
SA — max Benefit + (1 ma:cCost)
Related Work —
number of
And so... 2 * + 1

selected mitigations

Questions? Comments?

3000 T T T T T T T T T
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000 e

benefits

iB(300,50) —+—
| SATreg§300|0) T

040608 1 12141618 2 2224
cost

TARS: 7*300 samples
SA: 9*3000 samples
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9 vears later:

TARZAN =2 TARZ2, TARS, TAR4.1

* TARZAN is no longer a post-
processor
 Branch queries performed
directly on discretized data

« thanks David Poole
« Stochastic sampling
for rule generation
» Benchmarked against state-of-the-
art numerical optimizers for GNC

control
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g i
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Metric Project 1
Rank | Program | 50%
1 TARA4.1 0.13
Runtime 2 TAR3 0.31
3 QN 6
4 SA-T4 15
4 SA-T3 16
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1 TARA4.1 59 L
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Recall
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Introduction

In practice...

Scaling Up

® TARS is not a Data Miner
® SAWTOOTH

® NaiveBayes classifiers

® CUBE & TAR4

@ Why did TAR4.0 fail?

® TAR4.1

@ Pre-condition

@ Typical values

® TAR4.1 Works

® So What?

@ But Why Big Treatments?

Related Work

And so...

Questions? Comments?

Better RX, June 5, 2009

Scaling Up
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In practice...

Scaling Up

® SAWTOOTH

® NaiveBayes classifiers
® CUBE & TAR4

® Why did TAR4.0 fail?
® TAR4.1

@ Pre-condition

@ Typical values

® TAR4.1 Works

® So What?

@ But Why Big Treatments?

Related Work

And so...

Questions? Comments?
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E TAR3 is not a Data Miner

The data mining desiderata :: Bradley et al. [1998]:
B Requires one scan, or less of the data

B On-line, anytime algorithm

B Suspend-able, stoppable, resumable

B Efficiently and incrementally add new data to existing models
B Works within the available RAM

TARS3 is not a data miner
B Stores all examples in RAM

B Requires at three scans
1. discretization

2. collect statistics, build treatments
3. rank generated theories
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Scaling Up

® TARS is not a Data Miner
® NaiveBayes classifiers

® CUBE & TAR4

® Why did TAR4.0 fail?

® TAR4.1

@ Pre-condition

@ Typical values

® TAR4.1 Works

® So What?

@ But Why Big Treatments?

Related Work

And so...

Questions? Comments?

Better RX, June 5, 2009

SAWTOOTH= incremental NaiveBayes
classifier Menzies and Orrego [2005]
B Exploits the “saturation effect”:
® | earners performance improves and
plateaus, after 100s of examples
® Processes data in chunks (window =
250)
¢ Disables learning while performance
stable
B One-pass through the data
® Incremental discretization of numeric
data (SPADE)
® |nput each example, converted to
frequency counts, then deletes

B Results
€ Small memory; scales.

® Recognizes and reacts to concept drift

B Can we model treatment learning as a
NaiveBayes classifier?

status

%accuracy

learn=off
learn=on

stable=yes
stable=no

100
75
50
25

0

:: SAWTOOTH is a data miner

B _II ] n ] III__ n n n n _II_
1 Il Il [ Il 1l [ [ [ [ [
ab c de ab c de
era=1 era=50
1 | 1 | 1
0 i
g 0.75 |-sawtooth -
o ¥
(7]
o
=
= 05 -
©
(3]
£
025 =
| 1 | 1
1 10 1824
entrants
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now % past
future= - -\ N A
. | —— P(H)
evidence E, hypothesis H PH|E)= (][] P(E:|H) | x——*
| P(E)
1
Ey Eg  Eg
H = car job suburb wealthy? P(E;|H)
ford tailor NW y P(H) job suburb wealthy?
ford tailor SE n ford:3=0.5 | tinker:1=0.33| NW:1=0.33| y:1=0.33
ford tinker SE n tailor:2=0.67 | SE:2=0.67 | n:2=0.67
bmw tinker NW y bmw:3=0.5| tinker:2=0.67| NW:3=1.00| y:3=1.00
bmw tinker NW y tailor:1=0.33 | SE:0=0.00| n:0=0.00
bmw tailor NW y

E = job=tailor & suburb=NW
likelihood = L(bmw|E) =[], P(E|bmw) * P(bmw) =0.331.00*0.5 =0.16500

L(ford|E) =[], P(E|ford) = P(ford) =0.67*0.33*0.5 =0.11055

_ L(bmw|E) _
Prob(bmw|E) = LOhmw BT L(FordE) = 09-9%

_ L(ford|E) _
Prob(ford|E) = TOhmuw BYTL (Fora[Ey = 40-1%

So our tailor drives a brnw

Naive: assumes independence; counts single attribute ranges (not combinations)

¢ But optimal under the one-zero assumption Domingos and Pazzani [1997].
® Incremental simple, fast learning/classification speed, low storage space.
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=
E CUBE & TAR4

outlook [ U1 : minimize temperature| humidity| windy | Usg: maximize play| wup;| dowmn;
overcast 64 65 TRUE yes=1 1.00 0
rainy 68 80 FALSE yes=1 0.87 0.13
Introduction
In practice... sunny 80 90 TRUE no=0 0.11 0.89
Scaling Up sunny 85 85 FALSE no=0 0.00 1
:;ﬁggﬁj Data Miner B Examples are placed in a U-dimensional hypercube (one dimension for each utility):
® NaiveBayes classifiers ’ apeX = beSt = {1 ,1 ,1 ,1 },
® base = worst ={0,0,0,0,...}
@ Why did TARA4.0 fail?
® TARY.1 B crample; has distance 0 < D, < 1 from apex (normalized by U°-°
p
@ Pre-condition
@ Typical values . EaCh range Rj 6 Gxamplez addS
’;AR‘“ otk down; = D; and up; =1 — D; to F(R;|base) and F(R;|apex).
@ So What?
@ But Why Big Treatments? P(a,pex) = Zz 'u,p,b/ (Zz up; + Zz downz)
Related Work P(base) = >, down;/ (>, up; + >, down;)
And so... P(Rjlaper) = F(Rjlapex)/> , up;
Questions? Comments? P(RJ |bCLS€) = F(RJ |bCLS€)/ Zz dO’U)’I’Li
L(apex|Ry NRy N ...) =TI, P(Rs|apex) * P(apex)
L(base|Ry N Ry N...) = 1], P(Rs|base)*x P(base)

TAR4.0: Bayesian treatment learner = find the smallest treatment T' that maximizes:

L(apex|T)
L(apex|T) + L(base|T)

P(apex|T) = ; didn’t work: out-performed by TARS3

Better RX, June 5, 2009 Treatment Learning - p. 16/33
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E Es> Es3

. Why did TAR4.0 fail?

B Hypothesis: muddled-up by dependent attributes;

B “Naive” Bayes: assume independence, keeps singleton counts.

H = car| job suburb wealthy?
ford tailor NW y
ford tailor SE n
ford tinker SE n
bmw tinker NW y
bmw tinker NW y
bmw tailor NW y

E P(omwlE) | P(fordlE)
job = tailor & 59.9% 40.1%
suburb = NW

job = tailor & 81% 19.0%

suburb = NW &
wealthy =y

B Adding redundant information radically changes probabilities? Bad!
B Note: gets class probabilities WRONG, but RANKS classes correctly
Domingos and Pazzani [1997]

B We asked TAR4.0 to do what you must never do:
¢ compare numeric of probabilities of the same class in NaiveBayes.
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ﬁ TAR4.1

B Prune treatments with low support in the data.

B What does “support” mean?
€ Maximal when includes all examples from a class

® 0 < support <1

® support = likelihood = ], P(Ry|H) = P(H)

B probability * support =

B Worked!

L(ape:c|E)2

L(apex|E)+L(base|FE)

® Much faster, less memory than TARS:
B No need for a second scan

® No need to hold examples in RAM

(almost) the same as TAR3

B But why did it work so well?

¢ Bayesian guess-timate for support of best class

® No connection treatment size to guess-timate error.

size (KB)

seconds

guesstimate errors

less memory

100000 E=T T T T T 1 3
- tar3 .
F tar4 —=— 1
10000 £ "

= a f

i rr”‘ af

. I\ ]
1000 | P B
T, i 3

100 l | 1 | l | 1 | L 1

A BCDEFGH I J

data sets sorted smallest (left) to largest (right)

faster, less variance

tard —— -

P

..................

AA AAA BB BRE CC CCC DD DOD EE EEE

FFOFFF GG GGG HA HHH I 1 0 du
0ale sats §orfeo smalast (e b Egest (ngnt)

lift errors small

| feared —+— : I A
actual —<—

I <

one two three four five
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B 7’ = T 4 t where t is an attribute dependent on members of T';

B TAR4.1 not confused by ¢ when it ignores treatments that use it.

L(apex|T") =
L(base|T") =

—TN—
P(tlapex) *[], P(T;|apex) x P(apex)

P(t|base) *x[], P(T;|base) x P(base)
Y

B Then when is support * probability increased by ignoring = and y?

ignoring  and y
— N

(a/z)?
a/x+b/y

B And for TAR4.0:s pre-condition for no confusion:

using « and y

—N—

a2

a-+b

—— Yy >

b=01 —
y b=0.00001 |

(a/o)

a
a/x+b/y a+b
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0<11<20 : treatment size

+ Typical Values and Constraints::

(a/x)’

a/z+b/y

b<a ; apex is better than base

10719 <« 2 <y <0.25 ;seegraphs

0<a<z®'<z<0.25 ;acombines many x-like numbers

0<b<y®<y<0.25 ;bcombines many y-like numbers

three bins
1 ; T T T T T T
0.25 |
01|/
% 0.01 _ weather -
el 3 iis -
i g housing  *
0.001 - vowsl -
- — kc2
0.0001 : : : : '
0 200 400 600 800 1000 1200 1400
all 'P(EIH)’ values, sorted numerically
bin logging
0215 EI T T T T T T T T
0.1 ?
— 0.01 | ere—
I i
M 0.0 Z)—" weather -
= iris~ ~
& 0.0001 housing
.05 L vowel o
1e-05 5 koo
1e_06 t 1 1 1 1 1 1 1 1
0O 500 1000 1500 2000 2500 3000 3500 4000 4500

all ’'P(EIH)’ values, sorted numerically
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TAR4.1 Works

B Pick {a,b,x,y,i} at random within typical values; reject those violate our constraints;

B Check pre-conditions; report rounded log1¢ values;

B TAR4.0: not confused when (a/(gf;)/y > aib)

Introduction

% not confused (in 10,000 runs)

In practice...
100
Scaling Up
® TARS is not a Data Miner 7
® SAWTOOTH
® NaiveBayes classifiers 50
® CUBE & TAR4 o5
@ Why did TAR4.0 fail?
® TAR4.1 0 Often confused.
@ Pre-condition
@ Typical values -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
log10 (%)
® So What? 10
@ But Why Big Treatments?
B TAR4.1: not confused when  —2/z)°_ ~ a2
Related Work ot O CO use w e a,/m—'—b/y > a+b
And so... % not confused (in 10,000 runs)
100
Questions? Comments?
75
50
25
0 Rarely confused.
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
logip ()
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T
E So What?

B Mathematically, TAR4.0 will always fails (except for z < 1);

B TAR4.1 succeeds since pre-condition is usually satisfied
® In 96.52% of our simulations

B So, theoretically and empirically:
¢ Bayesian treatment learning with CUBE can guess effect of treatments
using frequency counts,
¢ Does not need a second scan of the data (providing you use
support x probability)
¢ Now we have a data miner TAR4.1.

B By the way,
¢ No need for Bayes nets in this domain
¢ Why doesn’t this mean that treatments will never grow beyond size=1?
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But Why Big Treatments?

2
B When are larger treatments acceptable; i.e. (a(/z/fg/y < aajb)?

Introduction

) 2
B Whenis y < —2&

In practice... bt+a—zxza’

Scaling Up
® TARS is not a Data Miner
@ SAWTOOTH b_O 1

® NaiveBayes classifiers y b=0 00001 B

® CUBE & TAR4

@ Why did TAR4.0 fail?
® TAR4.1

@ Pre-condition

@ Typical values

® TAR4.1 Works

® So What?

@ But Why Big Treatments?

Related Work

And so...

Questions? Comments?

B When z is large and y is much smaller than x

B i.e. when some attribute ranges has a high frequency in the apex and a
much lower frequency in the base.

B |f collars then such ranges are not common; i.e. dependencies unlikely.
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B SAWTOOTH
¢ Tim Menzies and Andres Orrego. Incremental discreatization and bayes classifiers
handles concept drift and scaled very well. 2005. Submitted, IEEE TKDE, Available
from http://menzies.us/pdf/05sawtooth.pdf

B Treatment learning

® R. Clark. Faster treatment learning, 2005

¢ D. Geletko and T. Menzies. Model-based software testing via treatment learning. In
IEEE NASE SEW 2003, 2003. Available from
http://menzies.us/pdf/03radar.pdf

® Y. Hu. Treatment learning, 2002. Masters thesis, Unviersity of British Columbia,
Department of Electrical and Computer Engineering. In preperation

€ T. Menzies, R. Gunnalan, K. Appukutty, Srinivasan A, and Y. Hu. Learning tiny
theories. In International Journal on Artificial Intelligence Tools (IJAIT), to appear,
2005. Available from http://menzies.us/pdf/03select.pdf

€ T. Menzies and Y. Hu. Just enough learning (of association rules): The TAR2
treatment learner. In Artificial Intelligence Review (to appear), 2006. Available from
http://menzies.us/pdf/02tar2.pdf

¢ T. Menzies and Y. Hu. Data mining for very busy people. In IEEE Computer,
November 2003. Available from http://menzies.us/pdf/03tar2.pdf
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&
A References (2)

B Phase transition

In practice...

€ H.H. Hoos and T. Stutzle. Evaluating las vegas algorithms - pitfalls and remedies.

In Proc. of UAI-98, 1998. Available from

Scaling Up

http://www.cs.ubc.ca/~hoos/Publ/uai98.ps
ﬁaet;‘:e":::: € David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and easy
distributions for SAT problems. In Paul Rosenbloom and Peter Szolovits, editors,

@ References (3
@ References (4
@ References (5

= S ==

And so...

Proceedings of the Tenth National Conference on Atrtificial Intelligence, pages
459-465, Menlo Park, California, 1992. AAAI Press. Available from
http://www.citeseer.ist.psu.edu/mitchell92hard.html

Questions? Comments?

Better RX, June 5, 2009

B Contrast set learners

¢ S.B. Bay and M.J. Pazzani. Detecting change in categorical data: Mining contrast
sets. In Proceedings of the Fifth International Conference on Knowledge Discovery
and Data Mining, 1999. Available from
http://www.ics.uci.edu/~pazzani/Publications/stucco.pdf
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Introdution B Collars and clumps
In practice... ¢ J. Crawford and A. Baker. Experimental results on the application of satisfiability
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— ¢ J. DeKleer. An Assumption-Based TMS. Artificial Intelligence, 28:163—196, 1986
e ¢ M.J. Druzdzel. Some properties of joint probability distributions. In Proceedings of
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Questions? Comments? ¢
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Success Despite Complexity

Introduction | Maybe....

In practice... ¢ The world is not as complex as we thing

Scaling Up ¢ Real world models clump, have collars.

Related Work ¢ Possible to quickly search, find ways to select for preferred states.

And so... B Ultimately, this is an empirical study.

¢ Q: When does a clumping/collaring-inspired search engine succeed?
¢ A: Often

Questions? Comments?

m Reports effects never seen before (limits to growth)
m Finds solutions faster than other methods (JPL).

m Returns tiniest theories (fss)

m Scales to infinite data streams (TAR4.1)

B Many applications. May | try this on your problems?
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= A Final Word

Introduction B Sometimes the world is complex:

In pratice. . ¢ 2% optimizing air-flow over leading wing in trans-sonic range

Scaling Up ¢ synthesis of optimized code for complex engineering problems
Related Work B And sometimes it ain’t.

And so.. ¢ Try the simple solution before the more complex.

¢ Benchmark the complex against the seemingly less sophisticated.

Questions? Comments?

¢ Warning: your straw man may not burn

Better RX, June 5, 2009 Treatment Learning - p. 32/33
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to partition an N-dimensional continuous space into
a Voronot Tessellation and then represent the set of
points in each region by the region into which it falls.
This discretization method creates local regions and
is thus a local discretization method. Alternatively, 1t
can be thought of as a complete instance space dis-
cretization as opposed to the feature space discretiza-
tions discussed here.

Table 1 shows a summary of these discretization
methods, identified by the global/local and super-
vised /unsupervised dimensions. All the methods pre-
sented are static discretizers.

3 Methods

In our study, we consider three methods of dis-
cretization in depth: equal width intervals, 1RD, the
method proposed by Holte for the 1R algorithm, and
the entropy minimization heuristic (Fayyad & TIrani

1993, Catlett 19915).

3.1 Equal Width Interval Binning

Equal width interval binning is perhaps the simplest
method to discretize data and has often been applied
as a means for producing nominal values from contin-
uous ones. It involves sorting the observed values of a
continuous feature and dividing the range of observed
values for the variable into k equally sized bins, where
k 1s a parameter supplied by the user. If a variable z
is observed to have values bounded by x,,;, and %44
then this method computes the bin width

LTmaz — Tmin
J =

k

and constructs bin boundaries, or thresholds, at x.,;, +
id where i = 1, ..., k—1. The method is applied to each
continuous feature independently. It makes no use of
instance class information whatsoever and is thus an
unsupervised discretization method.

3.2 Holte’s 1R Discretizer

Holte (1993) describes a simple classifier that in-
duces one-level decision trees, sometimes called deci-
sion stumps (Iba & Langley 1992). In order to prop-
erly deal with domains that contain continuous valued
features, a simple supervised discretization method is
given. This method, referred to here as 1RD (One-
Rule Discretizer), sorts the observed values of a con-
tinuous feature and attempts to greedily divide the
domain of the feature into bins that each contain only
instances of one particular class. Since such a scheme
could possibly lead to one bin for each observed real
value, the algorithm is constrained to forms bins of at

least some minimum size (except the rightmost bin).
Holte suggests a minimum bin size of 6 based on an
empirical analysis of 1R on a number of classifica-
tion tasks, so our experiments used this value as well.
Given the minimum bin size, each discretization in-
terval is made as “pure” as possible by selecting cut-
points such that moving a partition boundary to add
an observed value to a particular bin cannot make the
count of the dominant class in that bin greater.

3.3 Recursive Minimal Entropy Partitioning

A method for discretizing continuous attributes based
on a minimal entropy heuristic, presented in Catlett
(19916) and Fayyad & Trani (1993), is also used in our
experimental study. This supervised algorithm uses
the class information entropy of candidate partitions
to select bin boundaries for discretization. Our nota-
tion closely follows the notation of Fayyad and Irani.
If we are given a set of instances S, a feature A, and
a partition boundary T, the class information entropy
of the partition induced by T, denoted E(A,T;S) is
given by:

S S
E(A,T;S) = %Ent(&) + %Ent(é}) .

For a given feature A, the boundary 7,,;, which min-
imizes the entropy function over all possible parti-
tion boundaries is selected as a binary discretization
boundary. This method can then be applied recur-
sively to both of the partitions induced by T,;, un-
til some stopping condition is achieved, thus creating
multiple intervals on the feature A.

Fayyad and Irani make use of the Minimal Descrip-
tion Length Principle to determine a stopping criteria
for their recursive discretization strategy. Recursive
partitioning within a set of values S stops iff

loga(N —1)  A(A,T;9)
N N '

Gain(A,T;S) <
where NV is the number of instances in the set .S,
Gain(A,T;S) = Ent(S) — E(A,T; S),

A(A, T;S) =logs(3F —2)—
[k - Ent(S) — ki - Ent(S1) — ko - Ent(Ss)],

and k; 1s the number of class labels represented in
the set S;. Since the partitions along each branch
of the recursive discretization are evaluated indepen-
dently using this criteria, some areas in the continuous
spaces will be partitioned very finely whereas others
(which have relatively low entropy) will be partitioned
coarsely.
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Abstract Building quality software is expensive and software quality assurance
(QA) budgets are limited. Data miners can learn defect predictors from static code
features which can be used to control QA resources; e.g. to focus on the parts of the
code predicted to be more defective.

Recent results show that better data mining technology is not leading to better
defect predictors. We hypothesize that we have reached the limits of the standard
learning goal of maximizing area under the curve (AUC) of the probability of false
alarms and probability of detection “AUC(pd, pf)”’; i.e. the area under the curve of a
probability of false alarm versus probability of detection.

Accordingly, we explore changing the standard goal. Learners that maximize
“AUC(effort, pd)” find the smallest set of modules that contain the most errors.
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WHICH is a meta-learner framework that can be quickly customized to different
goals. When customized to AUC(effort, pd), WHICH out-performs all the data min-
ing methods studied here. More importantly, measured in terms of this new goal,
certain widely used learners perform much worse than simple manual methods.

Hence, we advise against the indiscriminate use of learners. Learners must be
chosen and customized to the goal at hand. With the right architecture (e.g. WHICH),
tuning a learner to specific local business goals can be a simple task.

Keywords Defect prediction - Static code features - WHICH

1 Introduction

A repeated result is that static code features such as lines of code per module, number
of symbols in the module, etc., can be used by a data miner to predict which modules
are more likely to contain defects.! Such defect predictors can be used to allocate the
appropriate verification and validation budget assigned to different code modules.

The current high water mark in this field has been curiously static for several
years. For example, for three years we have been unable to improve on our 2006
results (Menzies et al. 2007b). Other studies report the same ceiling effect: many
methods learn defect predictors that perform statistically insignificantly different to
the best results. For example, after a careful study of 19 data miners for learning
defect predictors seeking to maximize the area under the curve of detection-vs-false
alarm curve, Lessmann et al. (2008) conclude

...the importance of the classification model is less than generally assumed
... practitioners are free to choose from a broad set of models when building
defect predictors.

This article argues for a very different conclusion. The results of Lessmann et al. are
certainly correct for the goal of maximizing detection and minimizing false alarm
rates. However, this is not the only possible goal of a defect predictor. WHICH (Mil-
ton 2008) is a meta-learning scheme where domain specific goals can be inserted
into the core of the learner. When those goals are set to one particular business goal
(e.g. “finding the fewest modules that contain the most errors”) then the ceiling effect
disappears:

— WHICH significantly out-performs other learning schemes.
— More importantly, certain widely used learners perform worse than simple manual
methods.

That is, contrary to the views of Lessmann et al., the selection of a learning method
appropriate to a particular goal is very critical. Learners that appear useful when

ISee e.g. Weyuker et al. (2008), Halstead (1977), McCabe (1976), Chapman and Solomon (2002), Na-
gappan and Ball (2005a, 2005b), Hall and Munson (2000), Nikora and Munson (2003), Khoshgoftaar
(2001), Tang and Khoshgoftaar (2004), Khoshgoftaar and Seliya (2003), Porter and Selby (1990), Tian
and Zelkowitz (1995), Khoshgoftaar and Allen (2001), Srinivasan and Fisher (1995).
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pursuing certain goals, can be demonstrably inferior when pursuing others. We rec-
ommend WHICH as a simple method to create such customizations.

The rest of this paper is structured as follows. Section 2 describes the use of static
code features for learning defect predictors. Section 3 documents the ceiling effect
that has stalled progress in this field. After that, Sects. 4 and 5 discuss a novel method
to break through the ceiling effect.

2 Background

This section motivates the use of data mining for static code features and reviews
recent results. The rest of the paper will discuss limits with this approach, and how to
overcome them.

2.1 Blind spots

Our premise is that building high quality software is expensive. Hence, during de-
velopment, developers skew their limited quality assurance (QA) budgets towards
artifacts they believe most require extra QA. For example, it is common at NASA
to focus QA more on the on-board guidance system than the ground-based database
which stores scientific data collected from a satellite.

This skewing process can introduce an inappropriate bias to quality assurance
(QA). If the QA activities concentrate on project artifacts, say A, B, C, D, then that
leaves blind spotsin E, F, G, H, I, .... Blind spots can compromise high assurance
software. Leveson remarks that in modern complex systems, unsafe operations often
result from an unstudied interaction between components (Leveson 1995). For exam-
ple, Lutz and Mikulski (2003) found a blind spot in NASA deep-space missions: most
of the mission critical in-flight anomalies resulted from errors in ground software that
fails to correctly collect in-flight data.

To avoid blind spots, one option is to rigorously assess all aspects of all software
modules, however, this is impractical. Software project budgets are finite and QA
effectiveness increases with QA effort. A linear increase in the confidence C that we
have found all faults can take exponentially more effort. For example, to detect one-
in-a-thousand module faults, moving C from 90% to 94% to 98% takes 2301, 2812,
and 3910 black box tests (1respectively).2 Lowry et al. (1998) and Menzies and Cukic
(2000) offer numerous other examples where assessment effectiveness is exponential
on effort.

Exponential cost increase quickly exhausts finite QA resources. Hence, blind spots
can’t be avoided and must be managed. Standard practice is to apply the best available
assessment methods on the sections of the program that the best available domain
knowledge declares is the most critical. We endorse this approach. Clearly, the most

ZA randomly selected input to a program will find a fault with probability x. Voas observes (Voas and
Miller 1995) that after N random black-box tests, the chance of the inputs not revealing any fault is
(1- x)N. Hence, the chance C of seeing the faultis 1 — (1 — x)N which can be rearranged to N(C, x) =

log(1-C —
=y - For example, N(0.90, 1073) = 2301.
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critical sections require the best known assessment methods, in hope of minimizing
the risk of safety or mission critical failure occurring post deployment. However,
this focus on certain sections can blind us to defects in other areas which, through
interactions, may cause similarly critical failures. Therefore, the standard practice
should be augmented with a lightweight sampling policy that (a) explores the rest of
the software and (b) raises an alert on parts of the software that appear problematic.
This sampling approach is incomplete by definition. Nevertheless, it is the only option
when resource limits block complete assessment.

2.2 Lightweight sampling
2.2.1 Data mining

One method for building a lightweight sampling policy is data mining over static
code features. For this paper, we define data mining as the process of summarizing
tables of data where rows are examples and columns are the features collected for
each example.? One special feature is called the class. The Appendix to this paper
describes various kinds of data miners including:

— Naiive Bayes classifiers use statistical combinations of features to predict for class
value. Such classifiers are called “naive” since they assume all the features are
statistically independent. Nevertheless, a repeated empirical result is that, on av-
erage, seemingly ndive Bayes classifiers perform as well as other seemingly more
sophisticated schemes (e.g. see Table 1 in Domingos and Pazzani 1997).

— Rule learners like RIPPER (Cohen 1995a) generate lists of rules. When classifying
a new code module, we take features extracted from that module and iterate over
the rule list. The output classification is the first rule in the list whose condition is
satisfied.

— Decision tree learners like C4.5 (Quinlan 1992b) build one single-parent tree
whose internal nodes test for feature values and whose leaves refer to class ranges.
The output of a decision tree is a branch of satisfied tests leading to a single leaf
classification.

There are many alternatives and extensions to these learners. Much recent work has
explored the value of building forests of decision trees using randomly selected sub-
sets of the features (Breimann 2001; Jiang et al. 2008b). Regardless of the learning
method, the output is the same: combinations of standard features that predict for
different class values.

2.2.2 Static code features

Defect predictors can be learned from tables of data containing static code features,
whose class label is defective and whose values are frue or false. In those tables:

3Technically, this is supervised learning in the absence of a background theory. For notes on unsupervised
learning, see papers discussing clustering such as Bradley et al. (1998). For notes on using a background
theory, see (e.g.) papers discussing the learning or tuning of Bayes nets (Fenton and Neil 1999).
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Fig. 1 Static code features . )
m = Mccabe v(g) cyclomatic_complexity

iv(G) design_complexity

ev(G)  essential_complexity

locs loc loc_total (one line = one count)
loc(other) loc_blank

loc_code_and_comment
loc_comments
loc_executable
number_of_lines

(opening to closing brackets)

Halstead h Np num_operators

Ny num_operands

I num_unique_operators

7% num_unique_operands

H N length: N = Ny + N

14 volume: V = N xlog,

L level: L =V*/V where
V¥ = Q2+ pu2*)logy 2+ p2*)

D difficulty: D=1/L

1 content: / = L  V where
P=2ei2

E effort: E=V/L

B error_est

T prog_time: T = E /18 seconds

— Rows describe data from one module. Depending on the language, modules may
be called “functions”, “methods”, “procedures” or “files”.
— Columns describe one of the static code features of Fig. 1. The Appendix of this

paper offers further details on these features.

These static code features are collected from prior development work. The defective
class summarizes the results of a whole host of QA methods that were applied to that
historical data. If any manual or automatic technique registered a problem with this
module, then it was marked “defective = true”. For these data sets, the data mining
goal is to learn a binary prediction for defective from past projects that can be applied
to future projects.

This paper argues that such defect predictors are useful and describes a novel
method for improving their performance. Just in case we overstate our case, it is
important to note that defect predictors learned from static code features can only
augment, but never replace, standard QA methods. Given a limited budget for QA, the
manager’s task is to decide which set of QA methods M1, M>, ... thatcost Cq, Ca, ...
should be applied. Sometimes, domain knowledge is available that can indicate that
certain modules deserve the most costly QA methods. If so, then some subset of the
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Fig. 2 Sample of percentage of
defects seen in different

modules. Note that only a very cml kel ke3 mwl pel
small percentage of modules

N defects Percentage of modules with N defects

have more than one defect. For 1 10.67 6.50 1.96 5.69 4.15
more details on these data sets, 2 02.17 3.04 1.53 0.74 1.53
see Fig. 3 3 01.19 218 2.83 045
4 00.99 0.76 0.25 0.09
5 00.40 0.33 0.09
6 00.20 043 0.09
7 00.40 0.28 0.09
8 0.24
9 0.05 0.09
10 0.05
11
12 0.05
Totals 16.01 13.90 6.32 6.68 6.58

system may receive more attention by the QA team. We propose defect predictors as
a rapid and cost effective lightweight sampling policy for checking if the rest of the
system deserves additional attention. As argued above, such a sampling method is
essential for generating high-quality systems under the constraint of limited budgets.

2.3 Frequently asked questions
2.3.1 Why binary classifications?

The reader may wonder why we pursue such a simple binary classification scheme
(defective € {true, false}) and not, say, number of defects or severity of defects. In
reply, we say:

e We do not use severity of defects since in large scale data collections, such as those
used below, it is hard to distinguish defect “severity” from defect “priority”. All too
often, we have found that developers will declare a defect “severe” when they are
really only stating a preference on what bugs they wish to fix next. Other authors
have the same reservations:

— Nikora cautions that “without a widely agreed upon definition of severity, we
can not reason about it” (Nikora 2004).

— Ostrand et al. make a similar conclusion: “(severity) ratings were highly sub-
jective and also sometimes inaccurate because of political considerations not
related to the importance of the change to be made. We also learned that they
could be inaccurate in inconsistent ways” (Ostrand et al. 2004).

e We do not use number of defects as our target variable since, as shown in Fig. 2,
only a vanishingly small percent of our modules have more than one issue report.
That is, our data has insufficient examples to utilize (say) one method in the kcl
data set with a dozen defects.
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2.3.2 Why not use regression?

Other researchers (e.g. Mockus et al. 2005; Zimmermann and Nagappan 2009), use a
logistic regression model to predict software quality features. Such models have the
general form

elctaiXi+ax Xo+-)
Probability(Y) =

1+ elctarX1+axXo+-)

where ag; are the logistic regression predicted constants and the X; are the independent
variables used for building the logistic regression model. For example, in the case of
Zimmermann et al.’s work, those variables are measures of code change, complexity,
and pre-release bugs. These are used to predict number of defects.

Another regression variant is the negative binomial regression (NBM) model used
by Ostrand et al. (2004) to predict defects in AT&T software. Let y; equal the number
of faults observed in file i and x; be a vector of characteristics for that file. NBM
assumes that y; given x; has a Poisson distribution with mean A; computed from
Ai = y;eP where y; is the gamma distribution with mean 1 and variance o> > 0
(Ostrand et al. compute o> and 8 using a maximum likelihood procedure).

Logistic regression and NBM fit one model to the data. When data is multi-modal,
it is useful to fit multiple models. A common method for handling arbitrary distrib-
utions to approximate complex distributions is via a set of piecewise linear models.
Model tree learners, such as Quinlan’s M5’ algorithm (Quinlan 1992a), can learn
such piecewise linear models. M5’ also generates a decision tree describing when to
use which linear model.

We do not use regression for several reasons:

— Regression assumes a continuous target variable and, as discussed above, our target
variable is binary and discrete.

— There is no definitive result showing that regression methods are better/worse than
the data miners used in this study. In one of the more elaborate recent studies,
Lessmann et al. found no statistically significant advantage of logistic regression
over a large range of other algorithms (Lessmann et al. 2008) (the Lessmann et al.
result is discussed, at length, below).

— Inprevious work, we have assessed various learning methods (including regression
methods and model trees) in terms of their ability be guided by various business
considerations. Specifically, we sought learners that could tune their conclusions
to user-supplied utility weights about false alarms, probability of detection, etc. Of
the fifteen defect prediction methods used in that study, regression and model trees
were remarkably worst at being able to be guided in this way (Menzies and Stefano
2003). The last section of this paper discusses a new learner, called WHICH, that
was specially designed to support simple tuning to user-specific criteria.

2.3.3 Why static code features?
Another common question is why just use static code features? Fenton (1994) divides

software metrics into process, product, and personnel and uses these to collect infor-
mation on how the software was built, what was built, and who built it. Static code
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measures are just product metrics and, hence, do not reflect process and personnel
details. For this reason, other researchers use more that just static code measures. For
example:

— Reliability engineers use knowledge of how the frequency of faults seen in a run-
ning system changes over time (Musa et al. 1987; Littlewood and Wright 1997).

— Other researchers explore churn; i.e. the rate at which the code base changes (Hall
and Munson 2000).

— Other researchers reason about the development team. For example, Nagappan et
al. comment on how organizational structure effects software quality (Nagappan
and Murphy 2008) while Weyuker et al. document how large team sizes change
defect rates (Weyuker et al. 2008).

When replying to this question, we say that static code features are one of the few
measures we can collect in a consistent manner across many projects. Ideally, data
mining occurs in some CMM level 5 company where processes and data collection
is precisely defined. In that ideal case, there exists extensive data sets collected over
many projects and many years. These data sets are in a consistent format and there
is no ambiguity in the terminology of the data (e.g. no confusion between “severity”
and “priority”).

We do not work in that ideal situation. Since 1998, two of the authors (Menzies and
Cukic) have been research consultants to NASA. Working with NASA’s Independent
Software Verification and Validation Facility IV&V), we have tried various methods
to add value to the QA methods of that organization. As we have come to learn,
NASA is a very dynamic organization. The NASA enterprise has undergone major
upheavals following the 2003 loss of the Columbia shuttle, then President Bush’s new
vision for interplanetary space exploration in 2004, and now (2010) the cancellation
of that program. As research consultants, we cannot precisely define data collection
in such a dynamic environment. Hence, we do not ask “what are the right features to
collect?”. Instead, we can only ask “what features can we access, right now?” This
question is relevant to NASA as well as any organization where data collection is not
controlled by a centralized authority such as:

— agile software projects;

out-sourced projects;

— open-sourced projects;

and organizations that make extensive use of sub-contractors and sub-sub contrac-
tors.

In our experience, the one artifact that can be accessed in a consistent manner across
multiple different projects is the source code (this is particularly true in large projects
staffed by contractors, sub-contractors, and sub-sub contractors). Static code features
can be automatically and cheaply extracted from source code, even for very large
systems (Nagappan and Ball 2005a). By contrast, other methods such as manual code
reviews are labor-intensive. Depending on the review methods, 8 to 20 LOC/minute
can be inspected and this effort repeats for all members of the review team, which
can be as large as four or six (Menzies et al. 2002).

For all the above reasons, many industrial practitioners and researchers (includ-
ing ourselves) use static attributes to guide software quality predictions (see the list
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shown in the introduction). Verification and validation (V&V) textbooks (Rakitin
2001) advise using static code complexity attributes to decide which modules are
worthy of manual inspections. At the NASA IV&V facility, we know of several large
government software contractors that will not review software modules unless tools
like McCabe predict that some of them might be fault prone.

2.3.4 What can be learned from static code features?

The previous section argued that, for pragmatic reasons, all we can often collect are
static code measures. This is not to say that if we use those features, then they yield
useful or interesting results. Hence, a very common question we hear about is “what
evidence is there that anything useful can be learned from static code measures?”.

There is a large body of literature arguing that static code features are an inade-
quate characterization of the internals of a function:

— Fenton offers an insightful example where the same functionality is achieved via
different language constructs resulting in different static measurements for that
module (Fenton and Pfleeger 1997). Using this example, Fenton argues against
the use of static code features.

— Shepperd and Ince present empirical evidence that the McCabe static attributes
offer nothing more than uninformative attributes like lines of code. They comment
“for a large class of software it (cyclomatic complexity) is no more than a proxy
for, and in many cases outperformed by, lines of code” (Shepperd and Ince 1994).

— In a similar result, Fenton and Pfleeger note that the main McCabe attributes (cy-
clomatic complexity, or v(g)) are highly correlated with lines of code (Fenton and
Pfleeger 1997).

If static code features were truly useless, then the defect predictors learned from them
would satisfy two predictions:

Prediction 1: They would perform badly (not predict for defects);
Prediction 2: They would have no generality (predictors learned from one data set
would not be insightful on another).

At least in our experiences, these predictions do not hold. This evidence falls into two
groups: field studies and a controlled laboratory study. In the field studies:

— Our prediction technology was commercialized in the Predictive tool and sold
across the United States to customers in the telecom, energy, technology, and gov-
ernment markets, including organizations such as Compagnie Financiere Alcatel
(Alcatel); Chevron Corporation; LogLogic, Inc.; and Northrop Grumman Corpo-
ration. As an example of the use of Predictive, one company (GB Tech, Inc.) used
it to manage safety critical software for a United States manned strike fighter. This
code had to be tested extensively to ensure safety (the software controlled a lithium
ion battery, which can overcharge and possibly explode). First, a more expensive
tool for structural code coverage was applied. Later, the company ran that tool and
Predictive on the same code. Predictive produced consistent results with the more
expensive tools while being able to faster process a larger code base than the more
expensive tool (Turner 2006).
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— We took the defect prediction technology of this paper (which was developed at
NASA in the USA) and applied it to a software development company from an-
other country (a Turkish software company). The results were very encouraging:
when inspection teams focused on the modules that trigger our defect predictors,
they found up to 70% of the defects using 40% of the effort (measured in staff
hours). Based on those results, we were subsequently invited by two companies
to build tools to incorporate our defect prediction methods into their routine daily
processes (Tosun et al. 2009).

— A subsequent, more detailed, study on the Turkish software compared how much
code needs to be inspected using a random selection process vs selection via our
defect predictors. Using the random testing strategy, 87% of the files would have
to be inspected in order to detect 87% of the defects. However, if the inspection
process was restricted to the 25% of the files that trigger our defect predictors,
then 88% of the defects could be found. That is, the same level of defect detection
(after inspection) can be achieved using 878_725 = 71% less effort (Tosun and Bener
2010).

The results of these field studies run counter to Prediction 1. However, they are not
reproducible results. In order to make a claim that other researchers can verify, we
designed a controlled experiment to assess Predictions 1 and 2 in a reproducible man-
ner (Turhan et al. 2009). That experiment was based on the public domain data sets
of Fig. 3. These data sets are quite diverse and are written in different languages (C,
C++, JAVA); written in different countries (United Stated and Turkey); and written
for different purposes (control and monitoring of white goods, NASA flight systems,
ground-based software).

Before we can show that experiment, we must first digress to define performance
measures for defect prediction. When such a predictor fires then {A, B, C, D} denotes
the true negatives, false negatives, false positives, and true positives (respectively).
From these measures we can compute:

D
pd = recall = ——
B+D

C
o=z

A+4+C
In the above, pd is the probability of detecting a faulty module while pf is the prob-

ability of false alarm. Other performance measures are accuracy = % and

precision = C%). Figure 4 shows an example of the calculation of these measures.

Elsewhere (Menzies et al. 2007a), we show that accuracy and precision are highly
unstable performance indicators for data sets like Fig. 3 where the target concept
occurs with relative infrequency: in Fig. 3, only %th (median value) of the modules
are marked as defective. Therefore, for the rest of this paper, we will not refer to
accuracy or precision.

Having defined performance measures, we can now check Predictions 1 & 2; i.e.
static defect features lead to poor fault predictors and defect predictors have no gen-
erality between data sets. If D denotes all the data in Fig. 3, and D; denote one
particular data set D; € D, then we can conduct two kinds of experiments:
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Project  Source Language  Description # modules Features  %defective
pecl NASA C++ Flight software 1,109 21 6.94
for earth orbiting
satellites
kel NASA C++ Storage 845 21 15.45
management for
ground data
ke2 NASA C++ Storage 522 21 20.49
management for
ground data
cml NASA C++ Spacecraft 498 21 9.83
instrument
ke3 NASA JAVA Storage 458 39 9.38
management for
ground data
mwl NASA C++ A zero gravity 403 37 7.69
experiment
related to
combustion
ar4 Turkish white C Refrigerator 107 30 18.69
goods
manufacturer
ar3 Turkish white C Dishwasher 63 30 12.70
goods
manufacturer
mc2 NASA C++ Video guidance 61 39 32.29
system
ard Turkish white C ‘Washing machine 36 30 22.22
goods
manufacturer
Total: 4,102

Fig. 3 Tables of data, sorted in order of number of examples, from http:/promisedata.org/data. The rows
labeled “NASA” come from NASA aerospace projects while the other rows come from a Turkish software
company writing applications for domestic appliances. All this data conforms to the format of Sect. 2.2.2

Fig. 4 Performance measures

Signal
detected?

no

yes

Module found in defect logs?

no
A =395
C=19

yes
B =67
D=39

pf = Prob.falseAlarm = 5%
pd = Prop.detected = 37%

acc = accuracy = 83%

prec = precision = 67%

@ Springer


http://promisedata.org/data

Autom Softw Eng

Fig. 5 Results of round-robin

and self experiments. Experiment Notes Median

From Turhan et al. (2009). All pd% pf%

the pd and pf results are

statistically d.ifferent at the 95% RR round-robin 94 68

level (according to a . .

Mann-Whitney test) RR2 round-robin + relevancy filtering 69 27
SELF self test 75 29

SELF: Self-learning experiments where we train on 90% of D; then test on the re-
maining 10%. Note that such self-learning experiments will let us comment
on Prediction 1.

RR:  Round-robin experiments where we test on 10% (randomly selected) of data
set D; after training on the remaining nine data sets D — D;. Note that such
round-robin experiments will let us comment on Prediction 2.

It turns out that the round-robin results are unimpressive due to an irrelevancy effect,
discussed below. Hence, it is also useful to conduct:

RR2: Round-robin experiments where a relevancy filter is used to filter away irrele-
vant parts of the training data.

After repeating experiments RR, SELF, RR2 twenty times for each data set
D; € D, the median results are shown in Fig. 5. At first glance, the round-robin results
of RR seem quite impressive: a 98% probability of detection. Sadly, these high detec-
tion probabilities are associated with an unacceptably high false alarm rate of 68%.

In retrospect, this high false alarm rate might have been anticipated. A median
sized data set from Fig. 3 (e.g. mwl) has around 450 modules. In a round-robin ex-
periment, the median size of the training set is over 3600 modules taken from nine
other projects. In such an experiment, it is highly likely that the defect predictor will
be learned from numerous irrelevant details from other projects.

To counter the problem of irrelevant training data, the second set of round-robin
experiments constructed training sets for D; from the union of the 10 nearest neigh-
bors within D — D;. The RR2 results of Fig. 5 show the beneficial effects of relevancy
filtering: false alarm rates reduced by g—g = 252% with only a much smaller reduction

in pd of %5 = 136%.
Returning now to Prediction 1, the SELF and RR2 pd > 69% results are much

larger than those seen in industrial practice:

— A panel at IEEE Metrics 2002 (Shull et al. 2002) concluded that manual software
reviews can find ~60% of defects.*

— Raffo found that the defect detection capability of industrial review methods
can vary from pd = TR(35, 50, 65)%" for full Fagan inspections (Fagan 1976) to
pd =TR(13, 21, 30)% for less-structured inspections (Raffo 2005).

4That panel supported neither Fagan claim (Fagan 1986) that inspections can find 95% of defects before
testing or Shull’s claim that specialized directed inspection methods can catch 35% more defects that other
methods (Shull et al. 2000).

5TR(a, b, c) is a triangular distribution with min/mode/max of a, b, c.
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That is, contrary to Prediction 1, defect predictors learned from static code features
perform well, relative to standard industrial methods.

Turning now to Prediction 2, note that the RR2 round-robin results (with relevancy
filtering) are close to the SELF:

— The pd results are only 1 — g—g = 8% different;
— The pf results are only % — 1 =7% different.

That is, contrary to Prediction 2, there is generality in the defect predictions learned
from static code features. Learning from local data is clearly best (SELF’s pd results
are better than RR2), however, nearly the same performance results as seen in SELF
can be achieved by applying defect data from one site (e.g. NASA fight systems) to
another (e.g. Turkish white good software).

2.4 Summary

For all the above reasons, we research defect predictors based on static code features.
Such predictors are:

— Useful: they out-perform standard industrial methods. Also, just from our own
experience, we can report that they have been successfully applied in software
companies in the United States and Turkey.

— Generalizable: as the RR2 results show, the predictions of these models generalize
across data sets taken from different organizations working in different countries.

— Easy to use: they can automatically process thousands of modules in a matter of
seconds. Alternative methods such as manual inspections are much slower (8 to 20
LOC per minute).

— Widely-used: We can trace their use as far back as 1990 (Porter and Selby 1990).
We are also aware of hundreds of publications that explore this method (for a
partial sample, see the list shown in the introduction).

3 Ceiling effects in defect predictors

Despite several years of exploring different learners and data pre-processing methods,
the performance of our learners has not improved. This section documents that ceiling
effect and the rest of this paper explores methods to break through the ceiling effect.

In 2006 (Menzies et al. 2007b), we defined a repeatable defect prediction exper-
iment which, we hoped, others could improve upon. That experiment used public
domain data sets and open source data miners. Surprisingly, a simple nédive Bayes
classifier (with some basic pre-processor for the numerics) out-performed the other
studied methods. For details on nédive Bayes classifiers, see the Appendix.

We made the experiment repeatable in the hope that other researchers could im-
prove or refute our results. So far, to the best of our knowledge, no study using just
static code features has out-performed our 2006 result. Our own experiments (Jiang
et al. 2008b) found little or no improvement from the application of numerous data
mining methods. Figure 6 shows some of those results using (in order, left to right)
aode average one-dependence estimators (Yang et al. 2006); bag bagging (Brieman
1996); bst boosting (Freund and Schapire 1997); IBk instance-based learning (Cover
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Fig. 6 Box plot for AUC(pf,
pd) seen with 9 learners when, o _| ° -
100 times, a random 90% ©
selection of the data is used for
training and the remaining data
is used for testing. The
rectangles show the
inter-quartile range (the 25% to X
75% quartile range). The line ' o '
shows the minimum to ks E 5 ' '

I
1]

H
| ww

T}

AUC
0.7

maximum range, unless that e
range extends beyond 1.5 times —_ 8
the inter-quartile range (in > | [ Q 8
which case dots are used to 8

mark these extreme outliers).
From Jiang et al. (2008b)

0.6

_L —te
T T T T T T T T T
aode bag bst Bk j48 jrip Igi nb rf

'
)
'
)
l
'

0.5

learner

and Hart 1967); C4.5 C4.5 (Quinlan 1992b); jrip RIPPER (Cohen 1995b); Igi logis-
tic regression (Breiman et al. 1984); nb ndive Bayes (second from the right); and 7f
random forests (Breimann 2001). These histograms show area under the curve (AUC)
of a pf-vs-pd curve. To generate such a “AUC(pf, pd)” curve:

— A learner is executed multiple times on different subsets of data;

The pd, pf results are collected from each execution;

The results are sorted on increasing order of pf’;

The results are plotted on a 2-D graph using pf for the x-axis and pd for the y-axis.

A statistical analysis of Fig. 6 results showed that only boosting on discretized data
offers a statistically better result than nédive Bayes. However, we cannot recommend
boosting: boosting is orders of magnitudes slower than ndive Bayes; and the median
improvement over nidive Bayes is negligible.

Other researchers have also failed to improve our results. For example, Fig. 7
shows results from a study by Lessmann et al. on statistical differences between 19
learners used for defect prediction (Lessmann et al. 2008). At first glance, our pre-
ferred nidive Bayes method (shown as “NB” on the sixth line of Fig. 7) seems to
perform poorly: it is ranked in the lower third of all 19 methods. However, as with
all statistical analysis, it is important to examine not only central tendencies but also
the variance in the performance measure. The vertical dotted lines in Fig. 7 show
Lessmann et al.’s statistical analysis that divided the results into regions where all the
results are significantly different: the performance of the top 16 methods are statisti-
cally insignificantly different from each other (including our preferred “NB”” method).
Lessmann et al. comment:

Only four competitors are significantly inferior to the overall winner (k-NN,
K-start, BBF net, VP). The empirical data does not provide sufficient evidence
to judge whether RndFor (Random Forest), performs significantly better than
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Classifiers’ mean ranks across the NASA MDP datasets

Fig. 7 Range of AUC(pf, pd) ranks seen in 19 learners building defect predictors when, 10 times, a ran-
dom 66% selection of the data is used for training and the remaining data is used for testing. In ranked data,
values from one method are replaced by their rank in space of all sorted values (so smaller ranks means
better performance). In this case, the performance value was area under the false positive vs true-positive
curve (and larger values are better). Vertical lines divide the results into regions where the results are sta-
tically similar. For example, all the methods whose top ranks are 4 to 12 are statistically insignificantly
different. From Lessmann et al. (2008)

QDA (Quadratic Discriminant Analysis) or any classifier with better average
rank.

In other words, Lessmann et al. are reporting a ceiling effect where a large number of
learners exhibit performance results that are indistinguishable.

4 Breaking through the ceiling

This section discusses methods for breaking through the ceiling effects documented
above.

One constant in the results of Figs. 6 and 7 is the performance goal used in those
studies: both those results assumed the goal of the learning was to maximize AUC(pf,
pd), i.e. the area under a pf-vs-pd curve. As shown below, if we change the goal of
the learning, then we can break the ceiling effect and find better (and worse) methods
for learning defect predictors from static code measures.

Depending on the business case that funded the data mining study, different goals
may be most appropriate. To see this, consider the typical pf-vs-pd-vs-effort curve of
Fig. 8:

— The pf, pd performance measures were defined above.

— Effort is the percentage of the code base found in the modules predicted to be
faulty (so if all modules are predicted to be faulty, the 100% of the code base must
be processed by some other, slower, more expensive QA method).
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Fig. 8 Pf-vs-pd-vs-effort /ideal (pd=1, pf=0)

risk adverse

adverse

For the moment, we will just focus on the pf, pd plane of Fig. 8. A perfect detector
has no false alarm rates and finds all fault modules; i.e. pf, pd = 0, 1. As shown in
Fig. 8, the AUC(pf, pd) can bend towards this ideal point but may never reach there:

— Detectors learned from past experience have to make some inductive leaps and,
in doing so, make some mistakes. That is, the only way to achieve high pds is to
accept some level of pfs.

— The only way to avoid false alarms is to decrease the probability that the detector
will trigger. That is, the only way to achieve low pf's is to decrease pd.

Different businesses prefer different regions of Fig. 8 curve:

— Mission-critical systems are risk averse and may accept very high false alarm rates,
just as long as they catch any life-threatening possibility.

— For less critical software, cost averse managers may accept lower probabilities of
detection, just as long as they do not waste budgets on false alarms.

That is, different businesses have different goals:

Goal 1: Risk averse developments prefer high pd;
Goal 2: Cost averse developments accept mid-range pd, provided they get low pf.

Arisholm and Briand (2006) propose yet another goal:

Goal 3: A budget-conscious team wants to know that if X % of the modules are pre-
dicted to be defective, then modules contain more than X% of the defects. Other-
wise, they argue, the cost of generating the defect predictor is not worth the effort.

The effort-based evaluation of Goal 3 uses a dimension not explored by the prior
work that reported ceiling effects (Lessmann et al. or our work Jiang et al. 2008a;
Menzies et al. 2007b). Hence, for the rest of this paper, we will assess the impacts of
the Arisholm and Briand goal of maximizing the “AUC(effort, pd)”.

4.1 Experimental set up
4.1.1 Operationalizing AUC(effort, pd)

To operationalize Goal 3 from Arisholm and Briand evaluation, we assume that:

— After a data miner predicts a module is defective, it is inspected by a team of human
experts.

— This team correctly recognize some subset A of the truly defective modules, (and
A =1 means that the inspection teams are perfect at their task).
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Fig. 9 Effort-vs-PD
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— Our goal is to find learners that find the most number of defective modules in the
smallest number of modules (measured in terms of LOC).

For Arisholm and Briand to approve of a data miner, it must fall in the region
pd > effort. The minimum curve in Fig. 9 shows the lower boundary of this region and
a “good” detector (according to AUC(effort, pd)) must fall above this line. Regarding
the x-axis and y-axis of this figure:

— The x-axis shows all the modules, sorted on size. For example, if we had 100
modules of 10 LOC, 10 modules of 15 LOC, and 1 module of 20 LOC then the
x-axis would be 111 items long with the 10 LOC modules on the left-hand side
and the 20LOC module on the right-hand side.

— Note that the y-axis of this figure assumes A = 1; i.e. inspection teams correctly
recognizes all defective modules. Other values of A are discussed below.

4.1.2 Upper and lower bounds on performance

It is good practice to compare the performance of some technique against theoretical
upper and lower bounds (Cohen 1995a). Automatic data mining methods are interest-
ing if they out-perform manual methods. Therefore, for a lower-bound on expected
performance, we compare them against some manual methods proposed by Koru et
al. (2007, 2008, 2009):

— They argue that the relationship between module size and number of defects is not
linear, but logarithmic; i.e. smaller modules are proportionally more troublesome.

— The manualUp and manualDown curves of Fig. 9 show the results expected by
Koru et al. from inspecting modules in increasing/decreasing order of size (respec-
tively).

— With manualUp, all modules are selected and sorted in increasing order of size, so
that curve runs from 0 to 100% of the LOC.
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In a result consistent with Koru et al., our experiments show manualUp usually de-
feating manualDown. As shown in Fig. 9, manualUp scores higher on effort-vs-PD
than manualDown. Hence, we define an upper bound on our performance as follows.
Consider an optimal oracle that restricts module inspections to just the modules that
are truly defective. If manualUp is applied to just these modules, then this would
show the upper-bound on detector performance. For example, Fig. 9 shows this best
curve where 30% of the LOC are in defective modules.

In our experiments, we ask our learners to make a binary decision (defective,
nonDefective). All the modules identified as defective are then sorted in order of
increasing size (LOC). We then assess their performance by AUC(effort, pd). For ex-
ample, the bad learner in Fig. 9 performs worse than the good learner since the latter
has a larger area under its curve.

In order to provide an upper-bound on our AUC, we report them as a ratio of the
area under the best curve. All the performance scores mentioned in the rest of this
paper are hence normalized AUC(effort, pd) values ranging from 0% to 100% of the
best curve.

Note that normalization simplifies our assessment criteria. If the effectiveness of
the inspection team is independent of the method used to select the modules that
they inspect, then A is the same across all data miners. By expressing the value of a
defect predictor as a ratio of the area under the best curve, this A cancels out so we
can assess the relative merits of different defect predictors independently of A.

4.1.3 Details

Three more details will complete our discussion of Fig. 9. Defect detectors usually
do not trigger on all modules. For example, the good curve of Fig. 9 triggers on
B = 43% of the code while only detecting 85% of the defective modules. Similarly,
the bad curve stops after finding 30% of the defective modules in 24% of the code.
To complete the effort-vs-PD curve, we must fill in the gap between the termination
point and X = 100. Later in this article, we will assume that test engineers inspect the
modules referred to by the data miner. Visually, for the good curve, this assumption
would correspond to a flat line running to the right from point C = 85 (i.e. the 85%
of the code triggered by the learner that generated the good curve).

Secondly, the following observation will become significant when we tune a
learner to AUC(effort, pd). Even though Fig. 9 shows effort-vs-PD, it can also in-
directly show false alarms. Consider the plateau in the good curve of Fig. 9, marked
with “D”, at around effort = 10, PD = 45. Such plateaus mark false alarms where the
detectors are selecting modules that have no defects. That is, to maximize the area
under an effort-vs-PD, we could assign a heavy penalty against false alarms that lead
to plateaus.

Thirdly, Fig. 9 assumes that inspection effort is linear on size of module. We make
this assumption since a previous literature review reported that current inspection
models all report linear effort models (Menzies et al. 2002). Nevertheless, Fig. 9
could be extended to other effort models as follows: stretch the x-axis to handle, say,
non-linear effects such as longer modules that take exponentially more time to read
and understand.
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4.2 Initial results

Figure 9’s bad and manualUp curves show our first attempt at applying this new eval-
uation bias. These curves were generated by applying manualUp and the C4.5 tree
learner (Quinlan 1992b) to one of the data sets studied by Lessmann et al. Observe
how the automatic method performed far worse than a manual one. To explain this
poor performance, we comment that data miners grow their models using a search
bias By, then we assess them using a different evaluation bias B;. For example:

— During training, a decision-tree learner may stop branching if the diversity of the
instances in a leaf of a branch® falls below some heuristic threshold.

— During festing, the learned decision-tree might be tested on a variety of criteria
such as Lessmann et al.’s AUC measure or our operationalization of AUC(effort,
pd).

It is hardly surprising that C4.5 performed so poorly in Fig. 9. C4.5 was not de-
signed to optimize AUC(effort, pdf) (since By was so different to B). Some learning
schemes support biasing the learning according to the overall goal of the system; for
example:

— The cost-sensitive learners discussed by Elkan (2001).

— The ROC ensembles discussed by Fawcett (2001) where the conclusion is a
summation of the conclusions of the ensemble of ROC curves,’ proportionally
weighted, to yield a new learner.

— Our cost curve meta-learning scheme permits an understanding of the performance
of a learner across the entire space of pd-vs-pf trade-offs (Jiang et al. 2008a).

At best, such biasing only indirectly controls the search criteria. If the search crite-
ria is orthogonal to the success criteria of, say, maximizing effort-vs-pd, then cost-
sensitive learning or ensemble combinations or cost curve meta-learning will not be
able to generate a learner that supports that business application. Accordingly, we de-
cided to experiment with a new learner, called WHICH, whose internal search criteria
can be tuned to a range of goals such as AUC(effort, pd).

5 WHICH

The previous section argued for a change in the goals of data miners. WHICH (Milton
2008) is a meta-learning scheme that uses a configurable search bias to grow its mod-
els. This section describes WHICH, how to customize it, and what happened when
we applied those customizations to the data of Fig. 3.

For numeric classes, this diversity measure might be the standard deviation of the class feature. For
discrete classes, the diversity measure might be the entropy measure used in C4.5.

7ROC = receiver-operator characteristic curves such as Lessmann et al.’s plots of PD-vs-PF or PD-vs-
precision.
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5.1 Details

WHICH loops over the space of possible feature ranges, evaluating various combina-
tions of features:

(1) Data from continuous features is discretized into “N” equal width bins. We tried
various bin sizes and, for this study, best results were seen using N € {2, 4, 8}
bins of width (max —min)/N.

(2) WHICH maintains a stack of feature combinations, sorted by a customizable
search bias Bj. For this study, WHICH used the AUC(effort, pd) criteria, dis-
cussed below.

(3) Initially, WHICH’s “combinations” are just each range of each feature. Subse-
quently, they can grow to two or more features.

(4) Two combinations are picked at random, favoring those combinations that are
ranked highly by B;.

(5) The two combinations are themselves combined, scored, then sorted into the
stacked population of prior combinations.

(6) Go to step 4.

For the reader aware of the artificial intelligence (AI) literature, we remark that
WHICH is a variant of beam search. Rather than use a fixed beam size, WHICH
uses a fuzzy beam where combinations deeper in the stack are exponentially less
likely to be selected. Also, while a standard beam search just adds child states to
the current frontier, WHICH can add entire sibling branches in the search tree (these
sibling branches are represented as other combinations on the stack).

After numerous loops, WHICH returns the highest ranked combination of fea-
tures. During testing, modules that satisfy this combination are predicted as being
“defective”. These modules are sorted on increasing order of size and the statistics of
Fig. 9 are collected.

The looping termination criteria was set using our engineering judgment. In stud-
ies with UCI data sets (Blake and Merz 1998), Milton showed that the score of top-of-
stack condition usually stabilizes in less than 100 picks (Milton 2008) (those results
are shown in Fig. 10). Hence, to be cautious, we looped 200 times.

The following expression guides WHICH’s search:

B 1 VPDYsxa + (1 —PF)2 % B+ (1 — effort)2 x y 0
1=1-

Ja+B+y
The (PD, PF, effort) values are normalized to fall between zero and one. The
(o, B, y) terms in (1) model the relative utility of PD, PF, effort respectively. These
values range 0 < (¢, B, ¥) < 1. Hence:

-0<B1=1;

— larger values of B are better;

— increasing (effort, PF, PD) leads to (decreases, decreases, increases) in By (re-
spectively).

Initially, we gave PD and effort equal weights and ignored PF;ie.a =1, 8 =0,
y = 1. This yielded disappointing results: the performance of the learned detectors
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Fig. 10 Top-of-stack scores of the WHICH stack seen after multiple “picks” (selection and scoring of
two conditions picked at random, then combined) for seven data sets from the UCI data mining repository
(Blake and Merz 1998). Usually, top-of-stack stabilizes after just a dozen pick. However, occasionally,
modest improvements are seen after a few hundred “picks” (see the plot marked with an “A”)

varied wildly across our cross-validation experiments. An examination of our data
revealed why: there exists a small number of modules with very large LOCs. For
example, in one data set with 126 modules, most have under 100 lines of code but
a few of them are over 1000 lines of code long. The presence of small numbers of
very large modules means that y = 1 is not recommended. If the very large modules
fall into a particular subset of some cross-validation, then the performance associated
with WHICH’s rule can vary unpredictably from one run to another.

Accordingly, we had to use PF as a surrogate measure for effort. Recall from the
above discussion that we can restrain decreases in PD by assigning a heavy penalty
to the false alarms that lead to plateaus in an effort-vs-PD curve. In the following
experiments, we used a By equation that disables effort but places a very large penalty
on PF;i.e.

a=1, p=1000, y=0 ()

We acknowledge that the choice (1) and (2) is somewhat arbitrary. In defense of these
decisions, we note that in the following results, these decisions lead to a learner that
significantly out-performed standard learning methods.

5.2 Results

Figure 11 shows results from experimental runs with different learners on the data
sets of Fig. 3. Each run randomized the order of the data ten times, then performed a
N = 3-way cross-val study (N = 3 was used since some of our data sets were quite
small). For each part of the cross-val study, pd-vs-effort curves were generated using:

— Manual methods: manualUp and manualDown;

— Using standard data miners: the C4.5 decision tree learner, the RIPPER rule
learner, and our previously recommended nidive Bayes method. For more details
on these learners, see Appendix. Note that these standard miners included meth-
ods that we have advocated in prior publications.
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2nd quartile, median

data rank treatment median Q' and 3rd quartile
all 1  WHICH-2 70.9 [—e—

1 MICRO-20 67.0 —e—

2 manualUp 61.1 |—o—

3 naive Bayes 56.8 1o

4 manualDown 49.5 -

5  WHICH-4 49.2 ——

6  WHICH-8 312 ———— |

6 C45 27.6 —— |

7  RIPPER 219 —— |

50%

Fig. 11 Results from all data sets of Fig. 3, combined from 10 repeats of a 3-way cross-val, sorted by
median Q’. Each row shows 25 to 75% percentile range of the normalized AUC(effort, pdf) results (and the
large black dot indicates the median score). Two rows have different ranks (in the left-hand-side column)
if their median AUC scores are different and a Mann-Whitney test (95% confidence) indicates that the two
rows have a different wins + ties results. Note that we do not recommend WHICH-4 and WHICH-8 since
these discretization policies performed much worse than WHICH-2

— Three versions of WHICH: This study applied several variants of WHICH.
WHICH-2, WHICH-4, and WHICH-8 discretize numeric ranges into 2, 4, and
8 bins (respectively).

— MICRO-20: MICRO-20 was another variant motivated by the central limit theo-
rem. According to the central limit theorem, the sum of a large enough sample
will be approximately normally distributed (the theorem explains the prevalence
of the normal probability distribution). The sample can be quite small, sometimes
even as low as 20. Accordingly, MICRO-20 was a variant of WHICH-2 that learns
from just 20 4 20 examples of defective and non-defective modules (selected at
random).

5.2.1 Overall results

Figure 11 shows the results for all the data sets of Fig. 3, combined:

— Each row shows the normalized AUC(effort, pdf) results for a particular learner
over 30 experiments (10 repeats of a three-way). These results are shown as a 25%
to 75% quartile range (and the large black dot indicates the median score).

— The left-hand-side column of each row shows the results of a Mann-Whitney (95%
confidence test) of each row. Row i has a different rank to row i + 1 if their median
scores are different and the Mann-Whitney test indicates that the two rows have a
different wins + ties results. See the appendix for a discussion on why the Mann-
Whitney test was used on these results.

In Fig. 11, WHICH performs relatively and absolutely better than all of the other
methods studied in this paper:

— Relative performance: WHICH-2 and the MICRO-20 learner have the highest
ranks;

— Absolute performance: In our discussion of Fig. 9, the best curve was presented
as the upper bound in performance for any learner tackling AUC(effort, pd).
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WHICH’s performance rises close to this upper bound, rising to 70.9 and 80%
(median and 75% percentile range) of the best possible performance.

Several other results from Fig. 11 are noteworthy.

— There is no apparent benefit in detailed discretization: WHICH-2 outperforms
WHICH-4 and WHICH-8.

— In a result consistent with our prior publications (Menzies et al. 2007b), our niive
Bayes classifier out-performs other standard data miners (C4.5 and RIPPER).

— In a result consistent with Koru et al.’s logarithmic defect hypothesis, manualUp
defeats manualDown.

— In Fig. 11, standard data miners are defeated by manual method (manualUp). The
size of the defeat is very large: median values of 61.1% to 27.6% from manualUp
to C4.5.

This last result is very sobering. In Fig. 11, two widely used methods (C4.5 and
RIPPER) are defeated by manualDown; i.e. by a manual inspection method that Koru
et al. would argue is the worst possible inspection policy. These results calls into
question the numerous prior defect prediction results, including several papers written
by the authors.

5.2.2 Individual results

Figure 11 combines results from all data sets. Figures 12, 13, 14, and 15 look at each
data set in isolation. The results divide into three patterns:

— In the eight data sets of pattern #1 (shown in Figs. 12 and 13), WHICH-2 has
both the highest median Q’ performance and is found to be in the top rank by the
Mann-Whitney statistical analysis.

— In the two data sets of pattern #2 (shown in Fig. 14), WHICH-2 does not score the
highest median performance, but still is found in the top-rank.

— In the one data set that shows pattern #3 (shown in Fig. 15), WHICH-2 is soundly
defeated by manual methods (manualUp). However, in this case, the WHICH-2
variant MICRO-20 falls into the second rank.

In summary, when looking at each data set in isolation, WHICH performs very well
in 19—0 of the data sets.

5.3 External validity

We argue that the data sets used in this paper are far broader (and hence, more exter-
nally valid) than seen in prior defect prediction papers. All the data sets explored by
Lessmann et al. (2008) and our prior work (Menzies et al. 2007b) come from NASA
aerospace applications. Here, we use that data, plus three extra data sets from a Turk-
ish company writing software controllers for dishwashers (ar3), washing machines
(ar4) and refrigerators (ar5). The development practices from these two organizations
are very different:

— The Turkish software was built in a profit- and revenue-driven commercial organi-
zation, whereas NASA is a cost-driven government entity.
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Fig. 12 Four examples of pattern #1: WHICH-2 ranked #1 and has highest median. This figure is reported
in the same format as Fig. 11

— The Turkish software was developed by very small teams (2-3 people) working
in the same physical location while the NASA software was built by much larger
team spread around the United States.

— The Turkish development was carried out in an ad-hoc, informal way rather than
the formal, process oriented approach used at NASA.

Our general conclusion, that WHICH is preferred to other methods when optimzing
for AUC(effort, pd), holds for % of the NASA data sets and % of the Turkish sets. The
fact that the same result holds for such radically different organizations is a strong

argument for the external validity of our results.
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2nd quartile, median

data rank treatment median Q' and 3rd quartile
ke3 1  WHICH-2 87.3 [ -
2 MICRO-20 76.3 \ —o-
3 naive Bayes 64.2 | -o-
3 manualUp 64.2 | —o
4  WHICH-4 47.8 —o—
4 manualDown 47.6 _.’_
4  WHICH-8 46.7 —ef
5 C4.5 231  —& \
5 RIPPER 177 \
mwl 1l  WHICH-2 62.4 [ o—
1 manualDown 60.2 |—o
1 MICRO-20 55.7 —+o—
2 manualUp 47.8 -
3 WHICH-4 42.7 —e
3 naive Bayes 41.7 —o—|
4  WHICH-8 39.3 |
5  C4.5 200 — \
5  RIPPER 158 —&— \
pcl 1 WHICH-2 65.0 —e
1 MICRO-20 64.4 |—e-
1 manualUp 60.6 | &
2 naive Bayes 51.5 -
3 manualDown 44.6 Ad ‘
4  WHICH-8 226 —— \
4 €45 19.2 \
4 RIPPER 15.1 ®— \
4  WHICH-4 0.0
50%

Fig. 13 Three examples of pattern #1: WHICH-2 ranked #1 and has the highest median. This figure is
reported in the same format as Fig. 11

While the above results, based on ten data sets, are no promise of the efficacy of
WHICH on future data sets, these results are strong evidence that, when a learner is
assessed using AUC(effort, pd), then:

— Of all the learners studied here, WHICH or MICRO-20 is preferred over other
learners.

— Standard learners such as ndive Bayes, the RIPPER rule learner, and the C4.5 de-
cision tree learner perform much worse than simple manual methods. Hence, we
must strongly deprecate their use when optimizing for AUC(effort, pd).

6 Discussion

This goal of this paper was to comment on Lessmann et al.’s results by offering one
example where knowledge of the evaluation biases alters which learner “wins” a
comparative evaluation study. The current version of WHICH offers that example.

While that goal was reached, there are many open issues that could be fruitfully
explored, in future work. Those issues divide into methodological issues and algo-
rithmic issues.
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2nd quartile, median

data rank treatment median Q’ and 3rd quartile
ard 1 manualDown 54.7 —fo—
1 manualUp 52.6 —t—
1 C4.5 478 ——
1 WHICH-8 47— &+—
1 WHICH-2 40.4 —e—
2 WHICH-4 41.8 —e—
2 MICRO-20 38.0 ———&—+
3 naive Bayes 34.4 —&— |
4 RIPPER 0.20— |
ar5 1  MICRO-20 77.6 e
1 WHICH-4 71.4 [—e—
1 manualDown 69.6 ‘_._
1 WHICH-2 67.6 —+——
1 C45 56.1 —t—
1 RIPPER 55.0 te
1 naive Bayes 54.1 —fo—
2 manualUp 56.5 —t
3  WHICH-8 0.0— \
50%

Fig. 14 Two examples of pattern #2: While WHICH-2 did not achieve the highest medians, it was still
ranked #1 compared to eight other methods. This figure is reported in the same format as Fig. 11

2nd quartile, median

data rank treatment median Q’ and 3rd quartile
mc2 1 manualUp 74.3 [ A

2 MICRO-20 571 —————————®—

2 naive Bayes 55.9 +e

3 C4.5 43.7 —

3 manualDown 42.8 g ‘

4 RIPPER 28.5 —— |

5  WHICH-8 219 —& \

6  WHICH-4 5.6 & —— \

6  WHICH-2 0.00— |

50%

Fig. 15 The only example of pattern #3: WHICH-2 loses (badly) but MICRO-20 still ranks high. This
figure is reported in the same format as Fig. 11

6.1 Methodological issues

This paper has commented that the use of a new goal (AUC(effort, pd)) resulted in
improved performance for certain learners tuned to that new goal. It should be noted
that trying different goals for learners randomly is perhaps too expensive. Such an
analysis may never terminate since the space of possible goals is very large.

We do not recommend random goal selection. Quite the reverse, in fact. We would
propose that:

— Before commencing data mining, there must be some domain analysis with the
goal of determining the success criteria that most interests the user population.
(For a sample of such goals, recall the discussion at the start of Sect. 4 regarding
mission-critical and other systems.)
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— Once the business goals have been modeled, then the data miners should be cus-
tomized to those goals.

That is, rather than conduct studies with randomized business goals, we argue that it
is better to let business considerations guide the goal exploration. Of course, such an
analysis would be pointless unless the learning tool can be adapted to the business
goals. WHICH was specially designed to enable the rapid customization of the learner
to different goals. For example, while the current version supports AUC(effort, pd),
that can be easily changed to other goals.

6.2 Algorithmic issues

The algorithmic issues concerning the inner details of WHICH:

— Are there better values for (¢, 8, ) than (2)?

— The above study only explored AUC(effort, pd) and this is only one possible goal
of a defect predictor. It could be insightful to explore other goals (e.g. how to skew
a learner to maximize precision; or how to choose an evaluation criteria that leads
to least variance in the performance of the learner).

— It is possible to restrict the size of the stack to some maximum depth (and new
combinations that score less than bottom-of-stack are discarded). For the study
shown here, we used an unrestricted stack size.

— Currently, WHICH sorts new items into the stack using a linear time search from
top-of-stack. This is simple to implement via a linked list structure but a faster
alternative would be a binary-search over skip lists (Pugh 1990).

— Other rule learners employ a greedy back-select to prune conditions. To implement
such a search, check if removing any part of the combined condition improves the
score. If not, terminate the back select. Otherwise, remove that part and recurse on
the shorter condition. Such a back-select is coded in the current version of WHICH,
but the above results were obtained with back-select disabled.

— Currently our default value for MaxLoops is 200. This may be an overly cautious
setting. Given the results of Fig. 10, MaxLoops might be safely initialized to 20
and only increased if no dramatic improvement seen in the first loop. For most
domains, this would yield a ten-fold speed up of our current implementation.

We encourage further experimentation with WHICH. The current release is released
under the GPL3.0 license and can be downloaded from http://unbox.org/wisp/tags/
which.

7 Conclusion

Given limited QA budgets, it is not possible to apply the most effective QA method to
all parts of a system. The manager’s job is to decide what needs to be tested most, or
tested least. Static code defect predictors are one method for auditing those decisions.
Learned from historical data, these detectors can check which parts of the system
deserve more QA effort. As discussed in Sect. 2.4, defect predictors learned from
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static code measures are useful and easy to use. Hence, as shown by a list offered in
the introduction, they are very widely-used.

Based on our own results, and those of Lessmann et al., it seems natural to con-
clude that many learning methods have equal effectiveness at learning defect pre-
dictors from static code features. In this paper, we have shown that this ceiling effect
does not necessarily hold when studying performance criteria other than AUC(pf, pd).
When defect predictors are assessed by other criteria such as “read less, see more de-
fects” (i.e. AUC(effort, pd)), then the selection of the appropriate learner becomes
critical:

— A learner tuned to “read less, see more defects” performs best.

— A simple manual analysis out-performs certain standard learners such as NB, C4.5,
RIPPER. The use of these learners is therefore deprecate for “read less, see more
defects”.

Our conclusion is that knowledge of the goal of the learning can and should be used to
select a preferred learner for a particular domain. The WHICH meta-learning frame-
work is one method for quickly customizing a learner to different goals.

We hope that this paper prompts a new cycle of defect prediction research focused
on selecting the best learner(s) for particular business goals. In particular, based on
this paper, we now caution that it the following is an open and urgent question: “which
learners perform better than simple manual method?”

Appendix
Learners used in this study

WHICH, manualUp, and manualDown was described above. The other learners used
in this study come from the WEKA toolkit (Witten and Frank 2005) and are described
below.

Naive Bayes classifiers, or NB, offer a relationship between fragments of evi-
dence E;, a prior probability for a posteriori probability an hypothesis given some
evidence P(H|E); and a class hypothesis P(H) probability (in our case, we have
two hypotheses: H € {defective, nonDefective}). The relationship comes from Bayes
Theorem: P(HI|E) =[]; P(E; |H)%. For numeric features, a feature’s mean u

and standard deviation o are used in a Gaussian probability function (Witten and
@-w?

Frank 2005): f(x) = 1/(+/27. a)e_za—g. Simple naive Bayes classifiers are called
“naive” since they assume independence of each feature. Potentially, this is a sig-
nificant problem for data sets where the static code measures are highly correlated
(e.g. the number of symbols in a module increases linearly with the module’s lines
of code). However, Domingos and Pazzini have shown theoretically that the indepen-
dence assumption is a problem in a vanishingly small percent of cases (Domingos and
Pazzani 1997). This result explains (a) the repeated empirical result that, on average,
seemingly ndive Bayes classifiers perform as well as other seemingly more sophisti-
cated schemes (e.g. see Table 1 in Domingos and Pazzani (1997)); and (b) our prior
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experiments where naive Bayes did not perform worse than other learners that con-
tinually re-sample the data for dependent instances (e.g. decision-tree learners like
C4.5 that recurse on each “split” of the data (Quinlan 1992b)).

This study used J48 (Witten and Frank 2005), a JAVA port of Quinlan’s C4.5 deci-
sion tree learner C4.5, release 8 (Quinlan 1992b). C4.5 is an iterative dichotomization
algorithm that seeks the best attribute value splitter that most simplifies the data that
falls into the different splits. Each such splitter becomes a root of a tree. Sub-trees are
generated by calling iterative dichotomization recursively on each of the splits. C4.5
is defined for discrete class classification and uses an information-theoretic measure
to describe the diversity of classes within a data set. A leaf generated by C4.5 stores
the most frequent class seen during training. During test, an example falls into one
of the branches in the decision tree and is assigned the class from the leaf of that
branch. C4.5 tends to produce big “bushy” trees so the algorithm includes a pruning
step. Sub-trees are eliminated if their removal does not greatly change the error rate
of the tree.

JRip is a JAVA port of the RIPPER (Cohen 1995b) rule-covering algorithm. One
rule is learned at each pass for one class. All the examples that satisfy the rule con-
dition are marked as covered and are removed from the data set. The algorithm then
recurses on the remaining data. JRip takes a rather unique stance to rule generation
and has operators for pruning, description length and rule-set optimization. For a full
description of these techniques, see Dietterich (1997). In summary, after building a
rule, RIPPER performs a back-select to see what parts of a condition can be pruned,
without degrading the performance of the rule. Similarly, after building a set of rules,
RIPPER tries pruning away some of the rules. The learned rules are built while min-
imizing their description length; the size of the learned rules, as well as a measure
of the rule errors. Finally, after building rules, RIPPER tries replacing straw-man
alternatives (i.e. rules grown very quickly by some naive method).

Details on static code features

This section offers some details on the Halstead and McCabe features.

The Halstead features were derived by Maurice Halstead in 1977. He argued that
modules that are hard to read are more likely to be fault prone (Halstead 1977). Hal-
stead estimates reading complexity by counting the number of operators and operands
in a module: see the & features of Fig. 1. These three raw & Halstead features were
then used to compute the H: the eight derived Halstead features using the equations
shown in Fig. 1. In between the raw and derived Halstead features are certain inter-
mediaries:

- k= prtps
— minimum operator count: 1} = 2;
— w3 is the minimum operand count (number of module parameters).

An alternative to the Halstead features are the complexity features proposed by
Thomas McCabe in 1976. Unlike Halstead, McCabe argued that the complexity of
pathways between module symbols are more insightful than just a count of the sym-
bols (McCabe 1976). The McCabe measures are defined as follows.
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— A module is said to have a flow graph; i.e. a directed graph where each node cor-
responds to a program statement, and each arc indicates the flow of control from
one statement to another.

— The cyclomatic complexity of amodule is v(G) = e —n +2 where G is a program’s
flow graph, e is the number of arcs in the flow graph, and » is the number of nodes
in the flow graph (Fenton and Pfleeger 1995).

— The essential complexity, (ev(G)) of a module is the extent to which a flow graph
can be “reduced” by decomposing all the subflowgraphs of G that are D-structured
primes (also sometimes referred to as “proper one-entry one-exit subflowgraphs”
(Fenton and Pfleeger 1995)). ev(G) = v(G) — m where m is the number of sub-
flowgraphs of G that are D-structured primes (Fenton and Pfleeger 1995).

— Finally, the design complexity (iv(G)) of a module is the cyclomatic complexity of
a module’s reduced flow graph.

Choice of statistical test

For several reasons, this study uses the Mann Whitney test. Firstly, many authors,
including Demsar (2006), remark that ranked statistical tests such as Mann-Whitney
are not susceptible to errors caused by non-Gaussian performance distributions. Ac-
cordingly, we do not use t-tests since they make a Gaussian assumption.

Also, recall that Fig. 9 shows the results of a two-stage process: first, select some
detectors; second, rank them and watch the effort-vs-pd curve grow as we sweep
right across Fig. 9 (this two-stage process is necessary to baseline the learners against
manualUp and manualDown, as well as allowing us to express the results as the ratio
of a best curve). The second stage of this process violates the paired assumptions
of, say, the Wilcoxon tests since different test cases may appear depending on which
modules are predicted to be defective. Accordingly, we require a non-paired test like
Mann Whitney to compare distributions (rather than pairs of treatments applied to the
same test case).

Further, while much has been written of the inadequacy of other statistical tests
(Demsar 2006; Huang and Ling 2005), to the best of our knowledge, there is no
current negative critique of Mann Whitney as a statistical test for data miners.

Lastly, unlike some other tests (e.g. Wilcoxon), Mann-Whitney does not demand
that the two compared populations are of the same size. Hence, it is possible to run
one test that compares each row of (e.g.) Fig. 12 to every other row in the same
division. This simplifies the presentation of the results (e.g. avoids the need for a
display of, say, the Bonferroni-Dunn test shown in Fig. 2 of Demsar (2006)).
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This hour

o Claim:

> Current SE empirical practice asks for conclusions
that are are external valid
apply to more than one domain

> So far, such external valid conclusions are illusive
Despite decades of research.

 Implications:
> The goal is wrong

> Seek not for general theories
Only for local lessons.

° “W”
> a baseline tool for generating local lessons
° Case-Based Reasoning vs Parametric Models Software Quality

Optimization,Adam Brady, Tim Menzies, PROMISE 2010



What general lessons have we
learned from all this data mining?

Only a small minority of PROMISE papers (1 1/64) discuss
results that repeated in data sets from multiple projects

E.g. Ostrand, Weyuker, Bell PROMISE ‘08, ‘09

Same functional form
Predicts defects for generations of AT&T software

E.g. Turhan, Menzies, Bener PROMISE ’08,°09
|0 projects
Learn on 9
Apply to the 10th

Defect models learned from NASA projects work for

Turkish white goods software

Caveat: need to filter irrelevant training examples. See also
*When to Use Data from Other Projects for Effort Estimation Ekrem
Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, Jacky W. Keung , ASE 2010

*B. Turhan, T. Menzies, A. Bener, and J. Distefano. On the relative value of cross-company

and within- company data for defect prediction. Empirical Software Engineering, 68(2):278—
290, 2009



What general lessons have we
learned from all this data mining?

The usual conclusion is that we learn that we can learn very little
FSE’09: Zimmerman eta

o Defect models
not generalizable

Learn “there”, apply
“here” only works in 4%
of their 600+ experiment:

> Opposite to Turhan’09 r¢

?add relevancy filter

ASE’09: Green, Menzies et al.

> Al search for better software project options

> Conclusions highly dependent on
local business value proposition

And others

o TSE‘Ol,’05: Shepperd et al

Any conclusion regarding “best” effort estimator varies by data sets,
performance criteria, random selection train/test set

o TSE’06: Menzies, Greenwald:
attributes selected by column selection vary wildly across projects

Direct-X



The gods are angry

DO NOT ANGER
THE GODS

Fenton at PROMISE’ 07 (invited talk)

"...much of the current software metrics research is
inherently irrelevant to the industrial mix ...”

"...any software metrics program that depends on some
extensive metrics collection is doomed to failure ...”

Budgen & Kitchenham:

“Is Evidence Based Software Engineering mature
enough for Practice & Policy?

Need for better reporting: more reviews.

Empirical SE results too immature for making
policy.

B. Kitchenham D. Budgen, P. Brereton. Is evidence based software

engineering mature enough for practice & policy? In 33rd Annual
IEEE Software Engineering Workshop 2009 (SEW-33), Skvde,
Sweden, 2009.

Basili : still far to go

But we should celebrate the progress made over
the last 30 years.

And we are turning the corner



A new hope
(actually, quite old)

» Experience factories

o Method for find local lessons

* Basili’'09 (pers. comm.):

> “All my papers have the same form.

> “For the project being studied, we find that changing X
improved Y.”

e Translation (mine):

> Even if we can’t find general models (which seem to be
quite rare)....

° ... we can still research general methods for
finding local lessons learned



"W’ + CBR:
Preliminaries

.“Query”
* What kind of project you want to analyze; e.g.
Analysts not so clever,
High reliability system
Small KLOC
““Cases”

*Historical records, with their development effort
-Output:

*A recommendation on how to change our
projects in order to reduce development effort



Cases map features F to a utility
F= Controllables + others




Cases map features F to a utility
F= Controllables + others
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Cases map features F to a utility
F= Controllables + others

Lﬂjery C ranges) |

kK-NN Best
utilities

v / = b = F(x | best) / F(best)
relevant i\

i r=F(x | rest) / F(rest)

rest




Cases map features F to a utility
F= Controllables + others

(query C ranges) S = all x sorted descending by score
NN Best
utilities

v
/ i b= F(X | beSt) / F(beSt) \ if Controllable(x) &&
relevant SIS\ b>r &
/ b > min
i r = F(x | rest) / F(rest) then score(x) = b?/(b+r)

else score(x)=0
rest fi




Cases map features F to a utility
F= Controllables + others

_ |query = [KNN
query + U;S

‘[7 treated.
(query C ranges) S = all x sorted descending by score
K-NN Best
utilities

v
/ i b= F(X | beSt) / F(beSt) \ if Controllable(x) &&
relevant SIS\ b>r &
/ b > min
i r = F(x | rest) / F(rest) then score(x) = b?/(b+r)

else score(x)=0
rest fi




query,” =
query + U;S

Cases map features F to a utility
F= Controllables + others

(query C ranges)

k-NN Best
utilities

- L B b = F(x | best)/ F(best) . |if controllable() &8
relevant \

i r=F(x | rest) / F(rest)

rest

|

utility
\ median
k-NN K seread
L T B L e sRread,, .
treated.

S = all x sorted descending by score

/ b > min
then score(x) = b?/(b+r)

b>r &&

else score(x)=0
fi




Cases map features F to a utility w
F= Controllables + others
qO‘* q;
utility
”\ median

i query;* = w, ) pread.... .
query + US, L AN '

]‘ treated, asis el
(query C ranges) S = all x sorted descending by score
K-NN Best
utilities

v
/ i b= F(X | beSt) / F(beSt) \ if Controllable(x) &&
relevant SIS\ b>r &
/ b > min
i r = F(x | rest) / F(rest) then score(x) = b?/(b+r)

else score(x)=0
rest fi




Results (distribution of
development efforts in g.*)

X=asis Y =to be (XY) /X

cases query median sgread median sgread median sgread
nasa93ground 162 349 99 80 61% 23%
nasa93flight 215 398 131 100 61% 25%
nasa93osp 117.6 396 68 79 58% 20%
nasa93osp2 170 409 95 94 56% 23%
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Cases from promisedata.org/data

Median = 50% percentile
Spread =75% - 25% percentile

Improvement = (X -Y)/ X
e« X=asis

* Y =to be

e more is better

Usually:
» spread reduced to 25% of “as is”
» median reduction to 45% of “as is”



But that was so easy

* And that’s the whole point

* Yes, finding local lessons learned need not be
difficult

 Strange to say...

> There are no references in the CBR effort
estimation literature for anything else than estimate
= nearest neighbors

> No steps beyond into planning , etc

> Even though that next steps is easy



What should change?
(qj* - qo*)

acap apex ltex Itex plex pmat pmat sced sced stor time tool # of
cases query 3 3 3 4 3 3 4 2 3 3 3 3 Changes
nasag3 ground 100% | 55% 85% 3
nasa93 flight 95% | 70% 100% 3
nasag3 osp 95% | 90% 100% 3
nasag3 osp2 100% 80% | 85% 3
coc81 flight 60% 65% 2
coc81 osp2 55% | 55% 65% 100% 4
coc81 ground 80% 100% 2
coc81 osp 65% 65%
Overall: 12% | 11% | 7% | 19% | 24% | 49% | 10% | 11% | 21% | 23% | 21% | 13%




Good news:
Improving estimates requires
very few changes

acap apex ltex Itex plex pmat pmat sced sced stor time tool # of
cases query 3 3 3 4 3 3 4 2 3 3 3 3 Changes
nasag3 ground 100% | 55% 85% 3
nasa93 flight 95% | 70% 100% 3
nasag3 osp 95% | 90% 100% 3
nasag3 osp2 100% 80% | 85% 3
coc81 flight 60% 65% 2
coc81 osp2 55% | 55% 65% 100% 4
coc81 ground 80% 100% 2
coc81 osp 65% 65%

Overall:

12%

11%

7%

19%

24%

49%

10%

11%

21%

23%

21%

13%




Not-so-good news:
local lessons very local

acap apex ltex Itex plex pmat pmat sced sced stor time tool # of
cases query 3 3 3 4 3 3 4 2 3 3 3 3 Changes

]
nasag3 ground 100% | 55% 85% 3
nasa93 flight 95% | 70% 100% 3
nasag3 osp 95% | 90% 100% 3
nasag3 osp2 100% 80% | 85% 3
coc81 flight 60% 65% 2
coc81 osp2 55% | 55% 65% 100% 4
coc81 ground 80% 100% 2
coc81 osp G 0 2

—

vgtall:

L

12%

11%

7%

19%

24%

49% | 10%

11%

21%

23%

21%

13%




Q: Can we do better than “W”?
A: Most certainly!

* “W?” contains at least a dozen
arbitrary design decisions

> Which is best!?

e But the algorithm is so simple
> It should least be a baseline tool

> Against which we compare supposedly
more sophisticated methods.

o The straw man

» Methodological advice
> Before getting complex, get simple
> WVarning: often: my straw men don’t burn




Certainly, we should always
strive for generality

* But don’t be alarmed if you can’t find it.

* The experience to date is that,
° with rare exceptions,
> SE research does not lead to general models

But that’s ok
> Very few others have found general models (in SE)
> E.g. Turhan, Menzies,Ayse ESE journal ’09

B.Turhan, T. Menzies, A. Bener, and |. Distefano. On the relative value of cross-company
and within- company data for defect prediction. Empirical Software Engineering, 68(2):
278-290, 2009

> E.g.Menzies et al ASE conference, 2010

When to Use Data from Other Projects for Effort Estimation Ekrem Kocaguneli,
Gregory Gay, Tim Menzies, Ye Yang, Jacky W. Keung ,ASE 2010

* Anyway
o If there are few general results, there may be general methods to find
local results
Seek not “models as products”
But general “models to generate products”



I”

Two definitions of “‘mode

* A hypothetical * A plan to create,
description of a according to a model
complex entity or or models
process. > Model of the research
> Model as output from machine

research machine > The “generator” of
> The “product” of products
research

* “W” is a general
model generator.



If we can't find general
models, is it science?

Popper ’60: Everything is a “hypothesis”

° And the good ones have weathered the most attack

o SE “theories” aren’t even “hypotheses”

o Karl Popper, Conjectures and Refutations, London: Routledge and Keagan Paul, 1963
Endres & Rombach ’03: Distinguish “observations”, “laws”, “theory”

° Laws predict repeatable observations

° Theories explain laws

° Laws are either hypotheses (tentatively accepted) or conjectures (guesses)

o Rombach A. Endres, H.D.A Handbook of Software and Systems Engineering: Empirical

Observa- tions, Laws and Theories. Addison Wesley, 2003.

S]oberg '08 : 5 types of “theory”:
Building Theories in Software Engineering Dag |. K. Sjeberg, Tore Dyba Bente C. D.Anda and Jo E. Hannay,
GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING2008,

Analysis (e.g. ontologies, taxonomies)
Explanation (but it is hard to explain “explanation”)
Prediction (some predictors do not explain)
Explanation and prediction
“models” for design + action

Don’t have to be “right”

Just “useful”
A.k.a. Endres & Rombach’s “laws’’?

vihwWwpn —



Btw, constantly (re)building local
models is a general model

» Case-based reasoning

=
learning <
» Kolodner’s theory of 3

reconstructive memory

o Janet Kolodner, "Reconstructive Memory:

A Computer Model," Cognitive Science 7 (1983) adap[
QA
» The Yale group n
> Shank & Riesbeck et al.
Riesbeck, Christopher, and Roger Schank. S
Inside Case-based Reasoning. Confirmed :': Suggested
Northvale, NJ: Erlbaum, 1989. Solution AQ’ Solution

> Memory, not models
> Don’t “think”, remember



Kludges: they work

Ask some good old fashioned Al types

Minsky’86:“Society of Mind”

e The brain is a set of 1000+ kludges
Minsky, Marvin The Society of Mind, Simon and

Schuster, New York. 1988.

Fei%nbaum’83
» Don't take your heart attack
to the Maths Dept.
> Were they will diagnose and treat you
using first principles

e Instead, go to the E.R room
o Staffed by doctors who spent decades
learning the qluirks of drugs, organs,
diseases, people, etc

o Edward Feigenbaum and Pamela
McCorduckThe Fifth Generation:
Artificial Intelligence and Japan's
Computer Challenge to the World,
Addison-Wesley (1983)

Seek out those that study kludges.
* You'll be treated faster
* You'll live longer




BIAS (ISYOUR FRIEND)



Road map

|. Data mining & SE (overview)
Data mining tools (guided tour of “WEKA”)
Data “carving” (core operators of DM)

Generality (or not)
Bias (is your friend)

o Uk WD

Evaluation (does it really work?)

157



Q:What is the “best”
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Bias is unavoidable

o

Without bias

o we can’t assess relevance / irrelevance

o

Without irrelevance,

° we can’t prune the data

o

Without pruning,

° we can’t summarize

o

Without summarization,

° we can’t generalize

o

Without generalizing past experience
we can’t predict the future

* So bias makes us blind (to some things)

o But also, it lets us see (the future)

YOU WRITE WHAT
YOU’'RE TOLD!

THANKS, CORPORATE NEWS!
We Couldn't Control The Peaple Without You

B OMBAAAE Tmas The MOn i ey O Modem b Aso Saenwy




Sources of bias

Sampling:

> what data do you select in the pre-process?

Language

> E.g.if propositional, can’t learn linear
equations

Search

> When growing a model, what do you look
at next!

Over-fitting avoidance

> When pruning a model, what is chopped
first?

Evaluation

> Do you seek high accuracy? high support?
What!

PD= probability of detection

Xy
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Different
learners

use different
biases

48 learners, 320

combinations of
biases

> 48/320 = 15%

Separate-and-conquer rule
learning]. FurnkranzArtificial
Intelligence Review, 13,
pages 3--54, 1999. http://
citeseerx.ist.psu.edu/
viewdoc/summary?

doi=10.1.1.33.4894

Language Bias

Search Bias

Overfitting

Static Dyn Algorithm Strategy Avoidance
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Bias can change conclusions

» Every data miner has its own bias

e Same data, different data miners, different
conclusions

> Changing biases changes what we best believe

* So, relativistic soup?
> No basis to make policies, to plan for the future?

> Data mining is a pack of lies?

No more than any other inductive generalization
process



Nothing is “right”,
but some things are “useful”

* Sure, one data set supports many theories.

° But there are many many more theories that are
unsupported.

* No model is right, but some things are useful

(perform well on test data)

George Box

* And many many many more ideas are useless

Can’t make predictions

Not defined enough to support (possible) refutation



Embrace bias

* When reporting a conclusion, report the
biases that generated it.

* Make it a first class modeling construct

* Example #1:"W”

> Recall the sampling bias of “W”

> Different biases (the query “q”) lead to
different conclusions

o Case-Based Reasoning vs Parametric Models Software Quality Optimization, Adam
Brady, Tim Menzies, PROMISE 2010

* Example #2: “WHICH”

Defect prediction from static code features: current results, limitations, new approaches.
Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic,Yue Jiang and Ayse Bener
Automated Software Engineering (2010) 17:375-407, July 23, 2010. http://menzies.us/pdf/
| Owhich.pdf
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Evaluation Bias #I| : AUC(Pd,Pf)

e Much research

. S 1+ preferreéj curve I I B
o L|tt| e recent 5 risk-adverse regicI)Q,__.‘*‘"
1 ° 8 0.75 = =1
improvement: 5
g cost-
° Lessmann, S, Baesens, B., Mues, C., 3 05T rag"ig'nse \ )
Pietsch, S.: Benchmarking classification -8 g e
= .~ PF=PD=no
models for software defect S 025 " information S~ A
prediction: a proposed framework o negative
and novel findings. IEEE Trans. Softw. 0 Lz I !  curve
Eng. (2008) 0 0.25 0.5 0.75 1

PF= probability of false alarm

e A shallow well?

> And we’ve
reached the
bottom!?




Evaluation Bias #2 :AUC(Pd,effort)

* Inspect fewest LOC to find the most bugs.

e Arisholm and Briand[2006]

E.Arisholm and L. Briand. Predicting fault-prone components in a java
legacy system. In 5th ACM-IEEE International Symposium on Empirical
Software Engineering (ISESE), Rio de Janeiro, Brazil, September 21-22,

2006.Available from http://simula.no/research/engineering/ 100 .A=30 T T .
publications/Arisholm.2006.4. best/
. est/
> For a budget-conscious team, ~ ol [/
> if X% of modules predicted to be faulty 2 [eood /T
. 2 ¥ &
> But they contain =X% of the defects, 3 ol ,f A |
> Then that defect predictor is not useful 2 [ 1 -9
> i.e.their bias is pd>effort g LU
S I 1
S | | /bad
. . . . . — ‘ | s
» Operationalizing their bias: S ol |
> Find modules triggered by the learner ¥/
> Sort them in ascending order of size o —

0 20 40 60 80 100

> Assume human inspectors find A of the Effort (% LOC inspected)

defects in the triggered modules

> Use ratoos of “best” effort-vs-pd curve “had"
“best”only triggers on defective modules
Note: A cancels out

: worse than manual
“good” : beats manual



Implementing a bias-specific learner

e All learners have an search bias S and an
evaluation bias E . e.g. C4.5:

> S = infogain
> E = pd, pf, accuracy, etc

* Note: usually, not(S = E)

e Question:What if we make S = E?
> Answer: “WHICH”

2




Implementing a bias-specific learner (more)

Fuzzy beam search

. Discretize all numeric features.

2. Sort all ranges using E on to a stack

3. Pick any 2 items near top-of-stack

4, Combine items, score them with E, insert them into the sorted stack.
5. Goto 3

Note: no S and E is customizable

But when to stop? (Use 200 picks)

1.0 ———rrrr e
08

0_6 S Rt

0.4

____________________________________

Top-of-stack score
>

0.2

o s a i aaal MR | ey
1 10 100 1000

Number of picks

Top of stack stabilizes quickly (UCI data).



Results:
|0 random orderings * 3-way cross-val

|0 sets of static code features from NASA, Turkish whitegoods
“Rank’” computed using Mann-Whitney U test (95%)

E = AUC(effort, pd)

Micro20: training on 20 defective + 20 non-defective

rank treatment | median “best” % 2nd quartile, median, 3rd quartile
1 WHICH 87.3 l -
2 micro20 76.3 | —-
3 NB 64.2 .
3 manual 64.2 e
4 C45 23.1 —e- |
4  jRip 17.7 - |
50%

WHICH destroys classic learners

> Which were built to optimize accuracy

> So bias changes everything

* BTW, once again a shallow well

> we do not need much data to do it (40 examples).




Discussion

» Bias changes everything
 But this is not a problem

° |t is a research opportunity

» What biases are current in industrial SE?

> How do they effect our conclusions?

2




Coming up...

* Let’s focus on one particular bias

> Evaluation



EVALUATION
(DOES IT REALLY WORK?)



Road map

I. Data mining & SE (overview)

Data mining tools (guided tour of “WEKA”)
Data “carving” (core operators of DM)
Generality (or not)

Bias (is your friend)

o Uk WD

Evaluation (does it really work?)

173



Wolfgang Pauli:
the conscience of physics

» The critic to whom his colleagues
were accountable.

a/1) tk': (4s)

» Scathing in his dismissal of poor
theories

o often labeling it ganz falsch, utterly false.

» But “ganz falsch” was not his most
severe criticism,

> He hated theories so unclearly
presented as to be

untestable
unevaluatable,

> Worse than wrong
because they could not be proven wrong.

> Not properly belonging within the realm
of science,
even though posing as such.
> Famously, he wrote of of such unclear
paper:
"This paper is right. It is not even wrong."

Lesson: evaluation is important




So evaluation is important

* We saw above how “evaluation” actually became “the
learning algorithm”

> The “WHICH” experiment

* So evaluation is not some post hoc bolt,
> Only to be explored as an after-thought once the work is done
> Rather it is an integral part of the work

> Best to be get continual feedback from your algorithms as you
go along

* BTW:to fail at a data mining Ph.D.

> Plan to start evaluation in year3

Lesson: build the evaluation rig FIRST




Performance measures
for continuous classes

* Absolute residual = AR = (actual — predicted)
* Relative error = RE = AR/actual

¢ Magnitude of relative error = MRE = abs(RE)

> Can be surprisingly large (see next slide)

 MER = AR / predicted
e Median MRE, Median MER
e Mean MRE (severely deprecated)

Tron Foss, Erik Stensrud, Barbara Kitchenham, Ingunn Myrtveit, "A Simulation Study of the
Model Evaluation Criterion MMRE," IEEE Transactions on Software Engineering, vol. 29, no. | |,
pp. 985-995, Nov. 2003

e Pred(X) = percents of RE within X% of actual
> E.g.if 80% of the predictions are with 30% of actual then Pred(30) = 80

> Note Pred will not notice if a small number of predictions are really bad



Performance measures
for discrete classes

<-- classified as
a= Iris-setosa

b=Iris-versicolor
c=Iris-virginica

consider "TRUE"= iris-virginica and FALSE= everything else

Ground truth
FALSE

TRUE

detector silent ANCT! B =
detector loud [eEK¢) D =15

Eleel[-To"l (A+D)/(A+B+C+D) | (34+15)/51 96%
recall (pd) D/(B+D) 15/(2+15) 88%
false alarm (pf) C/(A+C) 0/34 0%
precision D/(C+D) 15/(15+0) 100%
f-measure 2*prec*pd/ 2*%1*0.88/
(prec+pd) (1+0.88) 94%

Collect separately for each class.
Repeat 10 times (re-ordering data) * 10-way

Repeat for each learner * discretizer * x *y * ....



Instability and Precision

e Tim Menzies,Alex Dekhtyar, Justin S. Di Stefano, Jeremy Greenwald: Problems with Precision: A
Response to "Comments on 'Data Mining Static Code Attributes to Learn Defect Predors”,

IEEE Transactions on Software Engineering,Volume 33, Number 9, September 2007

d = recall = _D_
pf 53D D 1 1
e —_— p’r‘ec = = ==
P . AEC D+C 1+% 1+mneg/pos-pf/recall
prec = precision = pr&
acc = accuracy = A+g$g+D - which can be rearranged to
. . . D
selectivity = ATEL0TD o pos (1 — prec) - recall
— A+C p
neg/pos = 55D neg prec
neg/pos =1 neg/pos =15
05 | i
T
04 | T T |
0.3 -,—: ' ! T,T : ]
c 01 :;?;;;; ! 1 KT N % O, 0ppoo ]
§ oAt A 20— bii-
-0.1 :_:_' l’l 4 l—"i‘: ~.I ;u — " — ;
TERELE0L 2reERECS zaREYECS BEREIECE 229 5383
R - BEZES 3EZEg BEZEg BEZEg
03 4. opip= Zo= EAS EAS =05
04 | 558 g§868 §85 §E85 g 8 &
e FAR AR A Fa Rl N N PR AR
RO e e e R
051 gee cee cee cee €EE]
1 l 1 | 1
prec acc effort pd pf

Lesson: avoid precision when target class is rare




Strange tales of performance
measures

Detector

Detector

Detector

Detector

Detector

o

= O

o

o

Truth
0O 1

A B
C D

0O O
10 10

80 15
0O 5

100 O

0 10
50 40

Prec = D/(C+D) Acc = (A+D) / (A+B+C+D)
PD =D/B+D) PF =C/(A+C)

PF =PD =1 (so detection does not preclude
bad false alarm rates)

Acc = 85% (so when target is comparatively
PD =33% rare, Acc does not predict for PD)

Acc = 100% (so highly accurate predictors can
PD=0 miss everything)

PD =80% (so PD does not predict
Prec =44% for precision)

Lesson: avoid Accuracy; consider both PD and Pf




Evaluation is time-consuming

analysis1(){
local origdata=$1
local outstats=$2
local nattrs="246 8 10 12 14 16 18 20"
local learners="nb10 j4810 zeror10 oner10 adtree10"
local reducers="infogain chisquared oneR"
local tmpred=$Tmp/red
echo "n,reducer,learner,accuracy" > $outstats

for n in $nattrs; do
for reducer in $reducers; do
$reducer $origdata $n $tmpred
for learner in $learners; do
accur="$learner $tmpred.arff | acc
out="%n,$reducer,$learner,$accur"
blabln $out
echo $out >> $outstats
done
done
done

Learners * data sets * pre-
processors

* Repeated 30 — 100 times
for statistical validity

Time to run experiments
* Hours to days (first time)

Then comes the “oh dear
moment”
* Do it all again

1 masters = 20 days of
CPU (for evaluation)

Lesson: start your evaluations ASAP




Variance problems (more)

e "Simple Software Cost Estimation: Safe or Unsafe?"
by Tim Menzies and Zhihao Chen and Dan Port and
Jairus Hihn. Proceedings, PROMISE workshop, ICSE
2005 2005 .Available fromhttp://menzies.us/pdf/
05safewhen.pdf .

» 20 experiments, using 66% of
the data (selected at random)

e Linear regression:
> Effort = by + sum of b, . x,

> Followed by a greedy back-select
to prune dull variables

e Results
o LOC influence stable

> Some variables pruned away half
the time

° Large ranges (max — min)

> Nine attributes even change the
sign on their coefficients

coeffecient value

attributes coeffecients

acap —+—
aexp ——X--
cplx --%--
data E).
lexp — M-
loc --© -
modp -- @ --
pcap ---A--
rely ---A---
sced —v—
stor —-v-- -
time --<G--
tool &
turn — o —-
vexp - ® -
virt -- O--

all coeffecients, sorted

Lesson: avoid Accuracy; consider both PD and Pf




Evaluation (using hypothesis testing) is
contentious

sterile intellectual rake who leaves ... no viable scientific offspring’.
Cohen J. 1988.The earth is round (p < .05).American Psychologist 49: 997 — 1003.

* Consider one study
showing that, using
significance testing,
estimates from multiple
sources are no better than
those from a single source.

> How to explain 31 other
studies where multiple
sources out-performed
single source by 3.4 to
23.4% (average = 12.5%).

> Odds of that happening at

random?
273 |

of Forecasting 23:21 — 327.

Table: Error Reductions from Combining Ex Ante Forecasts

Statistical significance tests of the form (HO vs HI) are a ‘potent but

< less than a billionth

Armstrong JS. 2007. Significance
tests harm progress in
forecasting. International Journal

Percent
Validation Forecast error
Study Methods Components  Criterion Data Situation Forecasts Horizon reduction

Levine (1960) intentions 2 MAPE annual capital expenditures 6 1 18.0
Okun (1960) - 2 “ - housing starts 6 1 7.0
Landefeld & Seskin (1986) 2 MAE plant & equipment 11 1 200
Armstrong et al. (2000) 4 RAE consumer products 65 varied 55
Winkler & Poses (1993) expert 4 Brier cross-section  survival of patients 231 varied 12.2
Thorndike (1938) - 406 % wrong g knowledge questions 30 varied 6.6
Makridakis et al. (1993) 5 MAPE monthly economic time series 322 1 thru 14 19.0
Richards & Fraser (1977) 5 - annual company eamings 213 1 8.1
Batchelor & Dua (1995) 10 MSE MACTOECONOMIC 40 1 16.4
Kaplan et al. (1950) 26 % wrong cross-section  technology events 16 varied 13.0
Zamowitz (1984) 79 RMSE quarterly MACTOECONOmIc 288 1 10.0
Sanders & Ritzman (1989) extrapolation 3 MAPE daily public warchouse 260 1 15.1
Makridakis & Winkler (1983) - 5 “ monthly economic time series 617 18 242
Makridakis et al. (1993) 5 “ “ 322 1 thru 14 43
Lobo (1992) 5 quarterly company eamings 6,560 | thru4 13.6
Schnazars (1986) 7 annual consurmer products 1,412 I thru § 200
Landefeld & Seskin (1986) econometric 2 MAE annual plant & equipment 7 1 21.0
Clemen & Winkler (1986) - 4 MAD quarterly GNP (real & nominal) 45 | thru4 34
Shamseldin et al. (1997) 5 MAPE annual rainfall runoff 22 1 9.4
Lobo (1992) expert/extrap 2 MAPE company eamings 6,560 I thrud 11.0
Lawrence et al. (1986) - 3 “ annual monthly economic time series 1,224 I thru 18 10.7
Sanders & Ritzman (1989) 3 daily public warchouse 260 1 15.5
Lobo & Nair (1990) 4 annual company eamings 768 1 6.4
Landefeld & Seskin (1986) intentions/econ 2 MAE annual plant & equipment 11 1 11.5
Vandome (1963) extrap/econ 2 MAPE quarterly  macroeconomic 20 1 101
Armstrong (1985) “ 2 “ annual photo sales by country 17 6 42
Weinberg (1986) expert/econ 2 cross-section  performing arts 15 varied 12.5
Bessler & Brandt (1981) expri/extrap/econ 3 quarterly cattle & chicken prices 48 1 13.6
Fildes (1991) - 3 MAE annual construction 72 1&2 8.0
Brandt & Bessler (1983) 6 MAPE quarterly hog prices 24 1 235

Unweighted average 125

Lesson: Don'’t base conclusions on just hypothesis testing




Evaluation is humbling

o All that clever
programming, then...

> Then simpler ideas do
as well, or better, than
the more sophisticated

* Example
> E.g.“Bayes”= simple
correlation unaware

learner

o C4.5 = more
sophisticated method,
correlation aware

> And no evidence here
that the added
complexity of C4.5 is
better than dumb Bayes

o Pedro Domingos and Michael ]. Pazzani,
On the Optimality of the Simple
Bayesian Classifier under Zero-One

Loss, Machine Learning,Volume 29,
number 2-3, pages 103-130, 1997

Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test
splits. “Bayes” is the Bayesian classifier with discretization and “Gauss” is the Bayesian classifier with
Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the
Bayesian classifier and the corresponding algorithm, using a one-tailed paired £ test: 1 15 99.5%, 2 1s 99%,

315 97.5%, 4 1s 95%, 5 15 90%, and 6 is below 90%.

Data Set Bayes Gauss C45 PEBLS CN2 Def.
Audiology 73026.1 73.046.1° 7254585 7584543 71.045.15 213
Annealing 953412 84.343.8! 50.542.2" G8.84L0.8" 81.2454! 764
Breast cancer 716247 71.3443° 70.1:£6.87 65.6:4£4.7" 6792711 676
Credit 845418 78.9425! 85.942.1° 82.2:419* 8202221 574
Chess endgames 88014 88.04-1.4° 59.240.1° 56.940.7" 98.141.0! 520
Diabetes 745224 75242.1° 73.543.4° 711424} 7384279 660
Echocardiogram 651254 73.44409! 64.7463" 61.74+64" 6824728 678
Glass 619262 50.648.2" 63.9.48.7° 6204745 6384559 317
Heart disease 819:34 84.14-2.8! 775443 78.5.44.0 79.722.9° 550
Hepatitis 853437 852440 79.2:44 3" 79.045.1" 80.3+42! 78.1
Horse colic 80.74+37 7934371 85.143.8 757450 8254422 636
Hypothyroid 975203 97.9.404! 59.1.40.2" 95.9.40.7" 98.8:0.4! 953
Iris 932435 939419 92.6:42.7° 93.543.0° 9334369 265
Labor 913249 88.7410.65 78.1479! 89.7£5.06 82.1469! 650
Lung cancer 468+133 46.84133% 40641637 4234173% 38641357 268
Liver disease 630233 548455! 65.9.444" 61.3:443° 65.0:3.8° 58.1
LED 629265 62.946.5° 61.2:48.4° 55346.1° 58.648.1° 8.0
Lymphography 81.6+59 81.1448" 75044.2" 82.5.45.6° 788249 573
Post-operative 647268 7.2450° 70.045.2¢ 59.248.0°% 6084827 712
Promoters 879470 87.947.0° 743478 61.7459°% 75.9.8.8! 431
Primary tumor 442255 4424555 359458 30944.7" 39842521 246
Solar flare 685230 68.243.7% 706429 7.6:43.5° 70.44:3.02 252
Sonar 694:76 63.0483" 69.1:47.4° 738474 66.2:7.5° 508
Soybean 1000200 100.0-£0.0° 65.049.0° 100.0:£0.0° 96.9:59" 300
Splice junctions 954206 95.4-40.6° 53.4.408" 94.3:40.5* 81.5455! 524
Voling records 912217 91241.7% 66.3:41.3" 64.5.41.2" 95.841.6" 60.5
Wine 964222 97.8412% G2.4456" 67.2:418° 90.8+4.7" 364

944441 94.1438% 896447 946443% 906450 394

Zoology

Lesson: baseline your new method against a simpler alternative




Evaluation is
humbling (2)

e 90 data miners
° 9 learners with
> |0 pre-processors

o 20 datasets

* (Win — Loss) results
when one miner is
compared to 89
others.

* Sum of five different
performance measures

* And most miners
perform about the
same

Lesson: beware “ceiling effects”

90

log{
LR

70

50

30

90 methods, sorted by losses in all data sets

log-K=1

rrrrrrrrrrrr oot rirr
< 12.5% losses

< 25.0% losses

< 50.0% losses

>=50.0% losses
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Evaluation is humbling (3)

o Left:

> Y.Jiang, B. Cukic, and T. Menzies. Fault prediction using early lifecycle data. In ISSRE’07,2007. Available from
http://menzies.us/pdf/07issre.pdf.

* Right:

o Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect
prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng. (2008)
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6/9 methods are “best” 14/19 methods are “best”

Lesson: most “improvements”, aren’t




No consensus on the
“best” evaluation

* No global standard

1999 2000 2001 2002 2003 A d . .
Total number of papers 54 152 80 87 118 o vice:
Relevant papers for our study 19 45 25 31 54 . .
o l. Study evaluation methods in
Sampling method [ %] f h
cross validation, leave-one-out 22 49 44 42 56 current state-or-the-art PaPerS
random resampling 11 29 44 32 54 .
separate subset 5 11 0 13 9 COPY them
Score function [%] 2. Avoid t-tests and their
_ classification accuracy 74 67 B4 84 70 s|mpl|st|c Gaussian
classification accuracy - exclusively 68 60 80 58 67 .
recall, precision... 21 18 16 25 19 assumptions
ROC, AUC 0 4 < 13 9 .
3. Don’t bother with results that

deviations, confidence intervals 32 42 48 42 19

report a (say) 4% improvement
Overall comparison of classifiers [ %] 53 a4 44 26 45

averages over the data sets 0 4 6 0 10 4. Be prepared to Change the
t-test to compare two algorithms 16 11 < 6 7 eva|uati0n to make the
pairwise t-test one vs. others 5 11 16 3 7 .
pairwise t-test each vs. each 16 13 4 6 4 reviewers hap py
counts of wins/ties/losses 5 4 0 6 9 H H
counts of significant wins/ties/losses 16 4 8 16 6 5 F.aVO r' Inf? rmative
visualizations,
. Use statistical tests as
An overview of the papers accepted to International Conference on Machine Learning sanity checks on the
in years 1999 —2003. The reported percentages (the third line and below) apply to the conclusions form the
number of papers relevant for our study. visualization

Janez Demsar: Statistical Comparisons of
Classifiers over Multiple Data Sets.

Journal of Machine Learning Research 7:
1-30 (2006)



Visualizations need not be elaborate

Rank Treatment
1 (M 3 K 3)
1 (M 3K 2)
1 (M 3 K1)
1 (M 3 K 0)
1 (M 2 K 3)
1 (M 2 K 2)
1 (M2K1)
1 (M1K 3)
1 (M 1K 2)
1 (M 1K1)
1 (M 1K O0)
1 (M2KO0)
2 (M 0 K 0)
3 (M 0 K 3)
4 (M OK 2)
5 (M O0K1)

0

%

10

PERCENTILES
30 50 70
88 94 100
88 94 100
82 94 100
88 94 100
82 94 100
88 94 100
82 94 100
88 94 100
88 94 100
85 94 100
88 94 100
85 88 100
49 65 100
50 59 100
50 59 100
47 59 100

M,K: two magic params inside a NaiveBayes classifier handling low frequency counts

PD measurements in a 10*3 cross-val on IRIS

Rank set by a Mann-Whintey (95%( comparing each row to proceeding rows of the same rank




