EMPIRICAL SOFTWARE ENGINEERING

(VERSION 2.0) AND DATA MINING

LASER SUMMER SCHOOL , EMPIRICAL SE

SEPT 5-11, 2010, ELBA ISLAND, ITALY

Version history

V1: Aug18 '10 V1a: Aug28 '10 V1b: Sept02 '10 V1c: Sept11'10

Tim Menzies, WVU, USA, tim@menzies.us, http://menzies.us

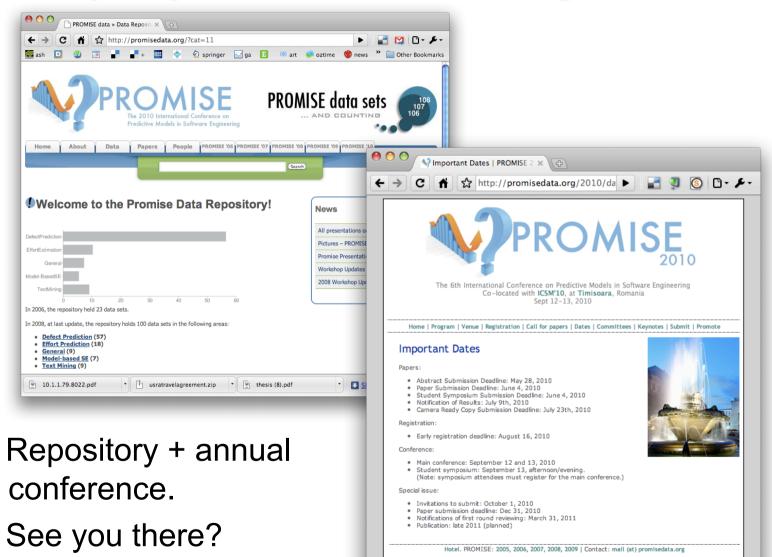
Download from http://unbox.org/wisp/var/timm/10/laser

Road map

- I. Data mining & SE (overview)
- 2. Data mining tools (guided tour of "WEKA")
- 3. Data "carving" (core operators of DM)
- 4. Generality (or not)
- 5. Bias (is your friend)
- 6. Evaluation (does it really work?)

Change log

- Version I:Aug 18, 2010
 - Version Ia: Aug 28, 2010
 - 2 more slides on "why empirical SE v2.0"
 - Version Ib: Sept 2: minor edits
 - Version Ic: minor edits
 - Version Id: mew conclusion



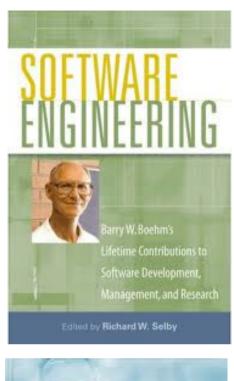
About the author

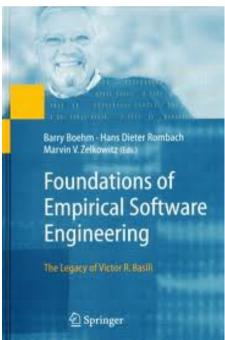
- Dr.Tim Menzies (tim@menzies.us) has worked on advanced modeling + AI since 1986.
 - PhD from Uni. New South Wales, Sydney, Oz
 - Assoc/prof at WVU CS &EE
- Former research chair for NASA
- Author of I 90 refereed papers: http://menzies.us/papers.php
- Co-founder and organizer of the PROMISE conferences on repeatable experiments in SE
- For more, see http://menzies.us

http://promisedata.org/data

New trend

- Ph.D. students, finishing up their studies, using PROMISE to archive their data
 - E.g. 30 new OO data sets from Marian Jureczko
- Are you next?




Digressions

- References and further reading:
 - shown in blue.

Or

- The following material has more Barry Boehm references than Victor Basili
 - Only cause I've been working with Barry on effort estimation & valuebased SE.
 - To redress that imbalance, see
 - Forrest Shull, Carolyn Seaman, Marvin Zelkowitz, "Victor R. Basili's Contributions to Software Quality," *IEEE Software, vol. 23, no. 1,* pp. 16-18, Jan./Feb. 2006,

For other view on DM + SE

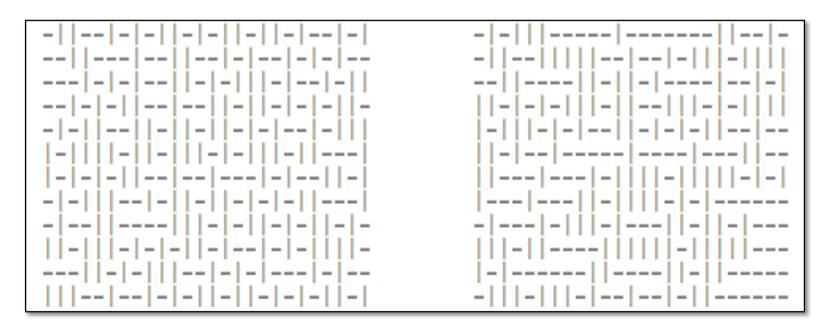
- ICSE 2010 Tutorial T18 Tuesday, 4 May 2010 (afternoon)
- Mining Software Engineering Data
 - Ahmed E. Hassan: Queen's University, Canada
 - Tao Xie: North Carolina State University, USA

- Tutorial Slides:
 - https://sites.google.com/site/asergrp/dmse/dmse-icse08-tutorial.ppt?attredirects=0

[°] DATA MINING & SE (OVERVIEW)

Road map

- I. Data mining & SE (overview)
- 2. Data mining tools (guided tour of "WEKA")
- 3. Data "carving" (core operators of DM)
- 4. Generality (or not)
- 5. Bias (is your friend)
- 6. Evaluation (does it really work?)


Definition

- Finding patterns in (lots of) data
 - Diamonds in the dust
- Combines statistics, AI, visualization,
- Synonyms
 - Machine learning
 - Business intelligence
 - Predictive analytics
- The art of the approximate scalable analysis
 - Bigger is better
- Used for... anything
 - The review of current beliefs w.r.t. new data is the hallmark of human rationality.
 - It is irrational <u>NOT</u> to data mine.

Exercise #1

- One these these things is not like the other
 - One was generating by selecting "-" or "]" at random, 300 times.
- Which one?

Exercise #2

- A little experiment from http://www.youtube.com/v/ vJG698U2Mvo&hl=en_US&fs=1&rel=0
- Rules
 - No one talks for the next 4 minutes
 - If you know what is about to happen, see (1)
- This is a selective attention test
 - Count the number of times the team with the white shirt passes the ball.

What have we learned?

• Lesson #I:

- Algorithms can be pretty dumb
- If they don't focus on X, they see any Y, at random.

Lesson #2:

- Humans can be pretty dumb
- If they mono-focus on X, you can miss Y
- Maybe, any induction process is a guess
 - And while guessing can be useful
 - Guesses can also be wrong
- Lets us a create community of agents, each with novel insights and limitations
 - Data miners working with humans
 - Maybe in combination, we can see more that separately

Wikipedia: List of cognitive biases http://en.wikipedia.org/wiki/ List_of_cognitive_biases

- 38 decision making biases
- 30 biases in probability
- 18 social biases,
- 10 memory biases

Applications

- Effort estimation
- Defect prediction
- Optimization of discrete systems
- Test case generation
- Fault localization
- Text mining
- Temporal sequence mining
 - Learning software processes
 - Learning APIs
- Etc
- Welcome to Empirical SE, Version 2.0

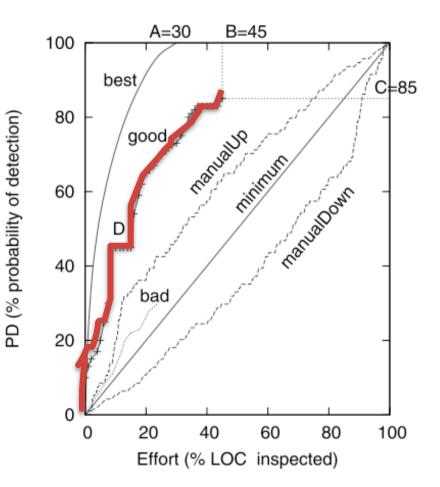
Applications

- Effort estimation
- Defect prediction
- Optimization of discrete systems
- Test case generation
- Fault localization

Text mining

- Temporal sequence mining
 - Learning software processes
 - Learning APIs
- Etc
- Welcome to Empirical SE, Version 2.0

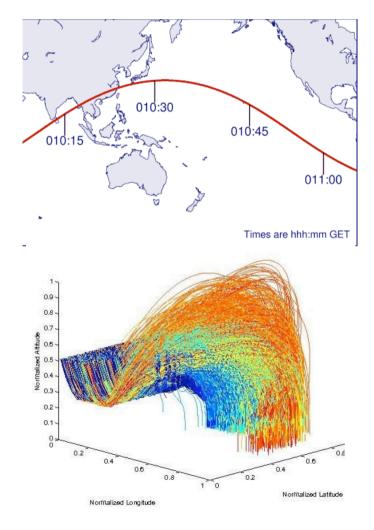
Data mining applications explored by me since 2007.


A career in data mining is a very diverse career, indeed

Application: Effort estimation

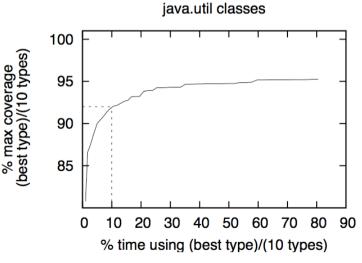
- Can we predict development effort (time * staff)?
- E.g. using linear regression; effort = a*KLOC^b c
 - Boehm, B.W. 1981 Software Engineering Economics
 - Boehm, B.W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., and Steece, B. 2000 Software Cost Estimation with Cocomo II
 - Sunita Chulani, Barry W. Boehm, Bert Steece: Bayesian Analysis of Empirical Software Engineering Cost Models IEEE Trans. Software Eng. 25(4): 573-583 (1999)
- E.g. using analogy
 - Describe past projects according to N dimensions
 - Float all known projects in an N-dimensional space
 - To estimate a project, insert into that space; query its nearest neighbors
 - For the classic estimation via analogy, see
 - Martin J. Shepperd, Chris Schofield: Estimating Software Project Effort Using Analogies IEEE Trans. Software Eng. 23(11): 736-743 (1997)
 - For 12,000+ variants to that process, see
 - Fig1 of http://menzies.us/pdf/10stable.pdf
- E.g. using other methods:
 - See 154 variants in http://menzies.us/pdf/10stable.pdf

Application: Defect Prediction


- Limited QA budgets, can't check everything.
 - Where should we place our inspection effort?
- For a review, see Section Two of
 - http://menzies.us/ pdf/10which.pdf
- Practical value:
 - How to inspect less, and find more bugs

Application: Optimizations of discrete systems

- Standard numeric optimizers assume continuous, possibly even linear, equations
- Data miners much happier to work in discrete spaces.
- What factors predict for landing closest to the target?
 - State-of-the-art optimizer
 - Simulated annealing
 - the TAR3 data miner
 - TAR3 45 times faster, found better solutions


http://menzies.us/pdf/10keys.pdf

Application: Test Case Generation

- NIGHTHAWK: A genetic algorithm that mutates sequences of method calls in order to maximize code coverage.
- RELIEF: a data mining technique to find "interesting features"
 - Same attribute same values in all classes?
 - Boring
 - Same Attribute, different values in different classes?
 - Interesting
- RELIEF found that 90% of NIGHTHAWK's mutators were "boring"
 - Order of magnitude speed up in test generation
- James H.Andrews, Tim Menzies, Felix C.H. Li, "Genetic Algorithms for Randomized Unit Testing," IEEE Transactions on Software Engineering, 25 Mar. 2010.

Rank	Gene type t	avgMerit
1	numberOfCalls	85
2 va	luePoolActivityBitSet	83
3	upperBound	64
4	chanceOfTrue	50
5	methodWeight	50
6	numberOfValuePools	49
7	lowerBound	44
8	chanceOfNull	40
9	numberOfValues	40
10	candidateBitSet	34

Application: Fault Localization

- 100,000 JAVA methods
 - In a matrix T*D
 - T = "terms" = all the method calls in each method
 - D = "documents" = all the methods
- Bug report
 - Replace text with just the method calls it mentions
 - Add edited report as row D+one in the matrix
 - Compute similarity of D+one to other rows (cosine similarity)
 - The actual buggy method is in the closest 100 methods
 - Use relevancy feedback to narrow down the search
- Gregory Gay, Sonia Haiduc, Andrian Marcus Tim Menzies: On the use of relevance feedback in IR-based concept location ICSM 2009: 351-360

Application: Text Mining

- 80% of data in organizations is unstructured
 - Not in databases, or XML schemas
 - But in the natural language of (say) Word documents
- Given enough of these seemingly unstructured documents, structures can be discovered
- E.g.
 - Thousands of natural language bug reports from NASA
 - Used "feature reduction" to find the top 100 most important words
 - Used standard data mining to learn predictors for defect severity from that top-100
 - Tim Menzies, Andrian Marcus: Automated severity assessment of software defect reports. ICSM 2008: 346-355

Application: Temporal Sequence Mining

- Learning software process descriptions
 - No more prescriptions of what we think goes on inside software projects
 - Lets look at see at what actually happens
 - Li, Mingshu and Boehm, Barry and Osterweil, Leon and Jensen, Chris and Scacchi, Walt "Experiences in Discovering, Modeling, and Reenacting Open Source Software Development Processes", Unifying the Software Process Spectrum, Lecture Notes in Computer Science, 2006, page 449 to 462

Learning APIs from method sequence calls

• Tao Xie and Jian Pei. MAPO: Mining API Usages from Open Source Repositories. In Proceedings of the 3rd International Workshop on Mining Software Repositories (MSR 2006), Shanghai, China, pp. 54-57, May 2006

• Learning patches from method sequence calls

- Suresh Thummalapenta and Tao Xie. Mining exception-handling rules as sequence association rules. In ICSE '09: Proceedings of the 31st International Conference on Software Engineering, pages 496–506, Washington, DC, USA, 2009. IEEE Computer Society.
- Obtaining sequence miners:
 - https://illimine.cs.uiuc.edu/
 - Another tool set is at http://himalaya-tools.sourceforge.net/
 - See more tools at https://sites.google.com/site/asergrp/dmse/resources

Application: etc etc etc

- Data mining + SE a very active area
 - PROMISE conference
 - Mining Software Repository conference
- See also
 - ESEM conference
 - Search-based software engineering
- Hint: to get ahead of the curve...
 - ... learn sequence mining
- Welcome to Empirical SE, version 2.0

Empirical SE, Version 2.0

- Open Science movement
 - Open Data
 - Everyone places their data on-line, all the time
 - Open Access publishing
 - Death to subscription-based services
- Shneiderman, B. (2008) "Science 2.0" Science 319(5868):1349-50
 - Science meets web 2.0
 - International team of researchers posting and analyzing data
 - Research at internet speed
- Anda, Markus et al (*) distinguish between
 - **Case studies:** that collect new context variables from project data
 - **Experiments**: that explore case study data
 - Currently, very few case studies generating publicly available data
 - But very many researchers wanting to experiment on that data
 - Perfect setting for data mining
- (*) Bente Anda Audris Mockus and Dag I.K. Sjoberg. Experiences from replicating a case study to investigate reproducibility of software development. In First International Workshop on Replication in Empirical Software Engineering Research, ICSE'09,

Q: Why Empirical SE 2.0?

A: Case study results may not generalize

- What is true at one site,
 - May not be true for another
 - E.g. local sites have different goals, different biases, that changes what is "best" for that site
 - II, P. G., Menzies, T., Williams, S., and El-Rawas, O. 2009. Understanding the Value of Software Engineering Technologies. In Proceedings of the 2009 IEEE/ACM international Conference on Automated Software Engineering(November 16 - 20, 2009)
 - E.g. general policies perform worse than locally generated policies

• Menzies, T., Williams, S., Boehm, B., and Hihn, J. 2009. How to avoid drastic software process change (using stochastic stability). In Proceedings of the 31st international Conference on Software Engineering (May 16 - 24, 2009

- So we need to audit the conclusions of one case study w.r.t. to data taken from other sites.
- Data mining is one technology that can (at least partially) automate that audit process

Q:Why Empirical SE 2.0? A: Sharing is a good thing

- WC=Within- company data
 - Locally collected, locally applied
- CC= Cross- company data
 - Collected elsewhere, applied here.
- Filtered CC works nearly as well as WC
 - Turhan, B., Menzies, T., Bener, A. B., and Di Stefano, J. 2009. On the relative value of cross-company and within-company data for defect prediction. *Empirical Softw. Engg. 14, 5 (Oct. 2009), 540-578*
 - Ekrem Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, Jacky Keung, When to Use Data from Other Projects for Effort Estimation, *IEEE ASE 2010*
- So if ever you are doing new work,
 - and lack local data,
 - you can apply other people's data
- But only if it is available
 - Open data !!!

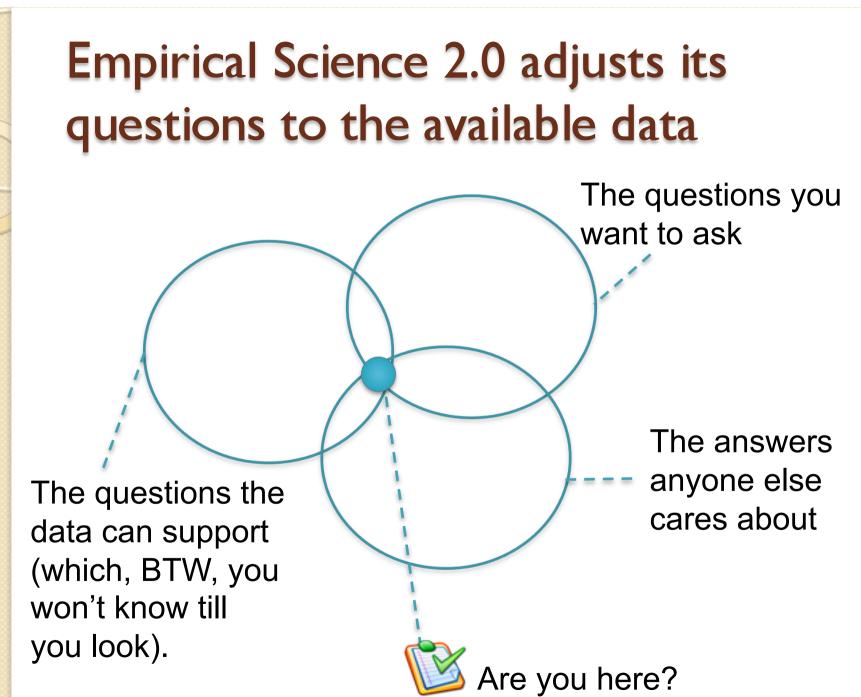
Q:Why Empirical SE 2.0 A: Changing nature of data

- In the 21st century
 - we can access more data collected by <u>others</u> than we can ever can collect by <u>ourselves</u>.
- In the 20th century,
 - research was focused on case studies where researchers collected special purpose data sets for their particular questions.
- In the 21st century,
 - much research is devoted to experimentation with the data generated by the case studies,
 - possibly investigating hypotheses not originally considered when the data was collected.
 - Data mining is one way to experiment with data.

Q:Why Empirical SE 2.0? A: Increasing pace of change

- New developments are radically changing SE: open source toolkits, agile development, cloud-based computing, etc.
- 20th century Empirical SE used "big science"
 - Research questions, data collection, analysis took years
 - Big science is too slow to keep up with changes to contemporary SE. e.g.
 - Increasing pace of organization change at NASA was fatal to the "big science" approach of Victor Basili's Software Engineering Laboratory (*)
 - V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz. Lessons learned from 25 years of process improvement: The rise and fall of the NASA software engineering laboratory. In Proceedings of the 24th International Conference on Software Engineering (ICSE) 2002, Orlando, Florida, 2002.
- Data mining is one response to the open and urgent issue of
 - how to reason <u>faster</u> about SE data.

Q:Why Empirical SE 2.0? A: Changing nature of SE theories


- 20th century SE: the struggle for the single theory
 - E.g. Boehm's COCOMO effort estimation project
 - E.g. SEI capability maturity model [130];
- 21st century: faster pace = more diversity
 - Less likely that there exists a single over-arching grand theory of SE
- Recent reports [1,2,3,4,5] say that while such generality may elude us, we can still find the special lessons that work best on the local projects
 - 1. Rombach A. Endres, H.D.A Handbook of Software and Systems Engineering: Empirical Observa- tions, Laws and Theories. Addison Wesley, 2003.
 - 2. B. Kitchenham D. Budgen, P. Brereton. Is evidence based software engineering mature enough for practice & policy? In 33rd Annual IEEE Software Engineering Workshop 2009 (SEW-33), Skvde, Sweden, 2009.
 - 3. B.A. Kitchenham, E. Mendes, and G. H. Travassos. Cross- vs. within-company cost estimation studies: A systematic review. IEEE Transactions on Software Engineering, pages 316–329, May 2007.
 - 4. Tim Menzies and Forrest Shull. The quest for convincing evidence. In A. Oram and G. Wilson, editors, Making Software: What Really Works, and Why We Believe It. O'Reilly, 2010.
 - 5. H. Gall E. Giger T. Zimmermann, N. Nagappan and B. Murphy. Cross-project defect prediction. In ESEC/FSE'09, August 2009.
- Data mining is one way to rapidly find and verify the special practices that best work on the local projects.

Q:Why Empirical SE 2.0? A: Changing nature of data analysis

- A contemporary empirical SE paper might explore gigabytes of core dumps looking for the method calls that lead to a crash.
- Faced with such large and complex data, analysis methods are becoming more intricate; e.g.
 - Model trees for multi-model data
 - Latent Dirichlet allocation (LDA) for document clustering
 - Mining sequences to learn exception handling rules
- It is now possible to find <u>new</u> insights in <u>old</u> data, just by applying a <u>new</u> analysis method.
 - E.g. see later, the "W" tool

Why Data Mining for SE?

- Natural tool to help a community:
 - racing to keep up with the pace of change in SE;
 - while finding and verifying the special theories that work best on local projects ...
 - ... from a new kind data sources ...
 - ... using a large menagerie of new data analysis tools.

Coming next...

- Enough generalities
- Details of using a data mining tool suite
 - The "WEKA"

o[°] DIGRESSION #I

Are we spending our time on things that matter?

11 6.

- Objects,
- Aspects,

. . . .

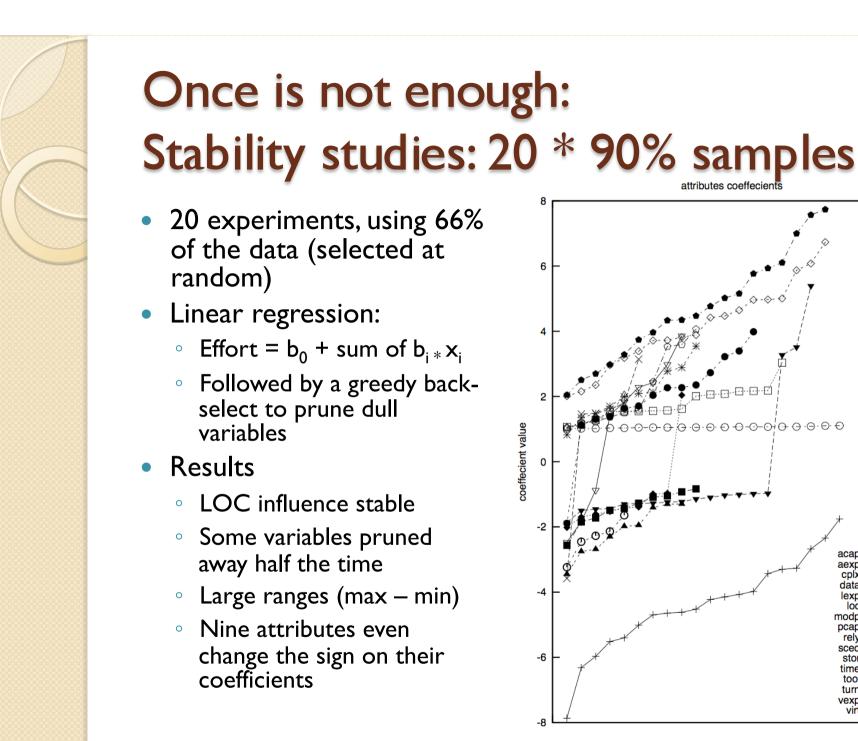
- Pair programming,
- Design patterns

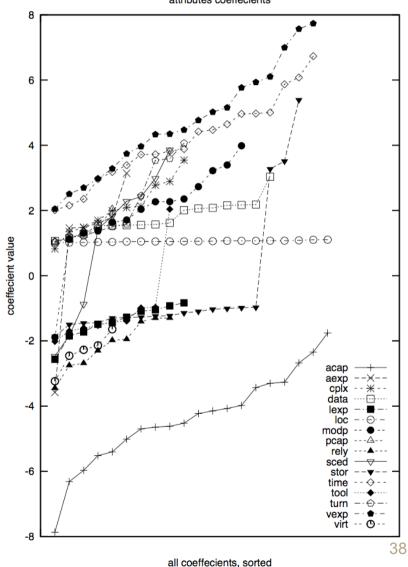
id	features	relative weight
1	Personnel/team capability	3.53
2	Product complexity	2.38
3	Time constraint	1.63
4	Required software reliability	1.54
5	Multi-site development	1.53
6	Doc. match to life cycle	1.52
7	Personnel continuity	1.51
8	Applications experience	1.51
9	Use of software tools	1.50
10	Platform volatility	1.49
11	Storage constraint	1.46
12		1.43
13	Language & tools experience	1.43
14	Required dev. schedule	1.43
15	Data base size	1.42
16	Platform experience	1.40
17	Arch. & risk resolution	1.39
18	Precedentedness	1.33
19	Developed for reuse	1.31
20	Team cohesion	1.29
21	Development mode	1.32
22	Development flexibility	1.26

Source: Boehm 2000. Regression results from 161 projects.

Are we spending our time on things that matter?

11 6.


- Objects,
- Aspects,

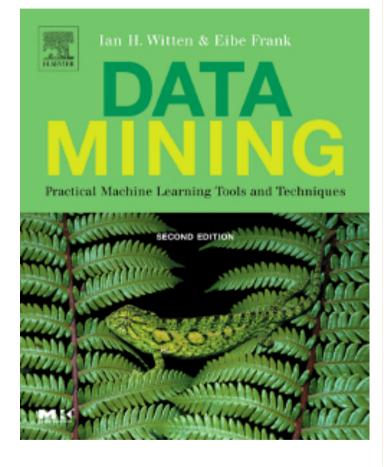

. . . .

- Pair programming,
- Design patterns

id	features	relative weight
1	Personnel/team capability	3.53
2	Product complexity	2.38
3	Time constraint	1.63
4	Required software reliability	1.54
5	Multi-site development	1.53
6	Doc. match to life cycle	1.52
7	Personnel continuity	1.51
8	Applications experience	1.51
9	Use of software tools	1.50
10	Platform volatility	1.49
11	Storage constraint	1.46
12	Process maturity	1.43
13	Language & tools experience	1.43
14	Required dev. schedule	1.43
15	Data base size	1.42
16	Platform experience	1.40
17	Arch. & risk resolution	1.39
18	Precedentedness	1.33
19	Developed for reuse	1.31
20	Team cohesion	1.29
21	Development mode	1.32
22	Development flexibility	1.26

Source: Boehm 2000. Regression results from 161 projects.

DATA MINING TOOLS (GUIDED TOUR OF "WEKA")


0

Road map

- I. Data mining & SE (overview)
- 2. Data mining tools (guided tour of "WEKA")
- 3. Data "carving" (core operators of DM)
- 4. Generality (or not)
- 5. Bias (is your friend)
- 6. Evaluation (does it really work?)

WEKA

- Machine learning/data mining software written in Java
 - Used for research, education, and applications
 - Complements Data Mining: Practical Machine Learning Tools and Techniques (Second Edition) Ian H. Witten, Eibe Frank, Morgan Kaufmann June 2005 525 pages ISBN 0-12-088407-0
- Main features
 - Comprehensive set of data preprocessing tools, learning algorithms and evaluation methods
 - Graphical user interfaces (incl. data visualization)
 - Environment for comparing learning algorithms

Access

• WEKA is available at

http://www.cs.waikato.ac.nz/ml/weka

Also has a list of projects based on WEKAWEKA contributors:

Abdelaziz Mahoui, Alexander K. Seewald, Ashraf M. Kibriya, Bernhard Pfahringer, Brent Martin, Peter Flach, Eibe Frank, Gabi Schmidberger, Jan H. Witten, J. Lindgren, Janice Boughton, Jason Wells, Len Trigg, Lucio de Souza Coelho, Malcolm Ware, Mark Hall, Remco Bouckaert, Richard Kirkby, Shane Butler, Shane Legg, Stuart Inglis, Sylvain Roy, Tony Voyle, Xin Xu, Yong Wang,

Zhihai Wang

Data Files

@relation heart-disease-simplified

numeric attribute nominal attribute @attribute age numeric @attribute sex { female, male} @attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina} @attribute cholesterol numeric @attribute exercise_induced_angina { no, yes} @attribute class { present, not_present}

@data

63,male,typ_angina,233,no,not_present 67, male, asympt, 286, yes, present 67, male, asympt, 229, yes, present 38, female, non_anginal, ?, no, not_present

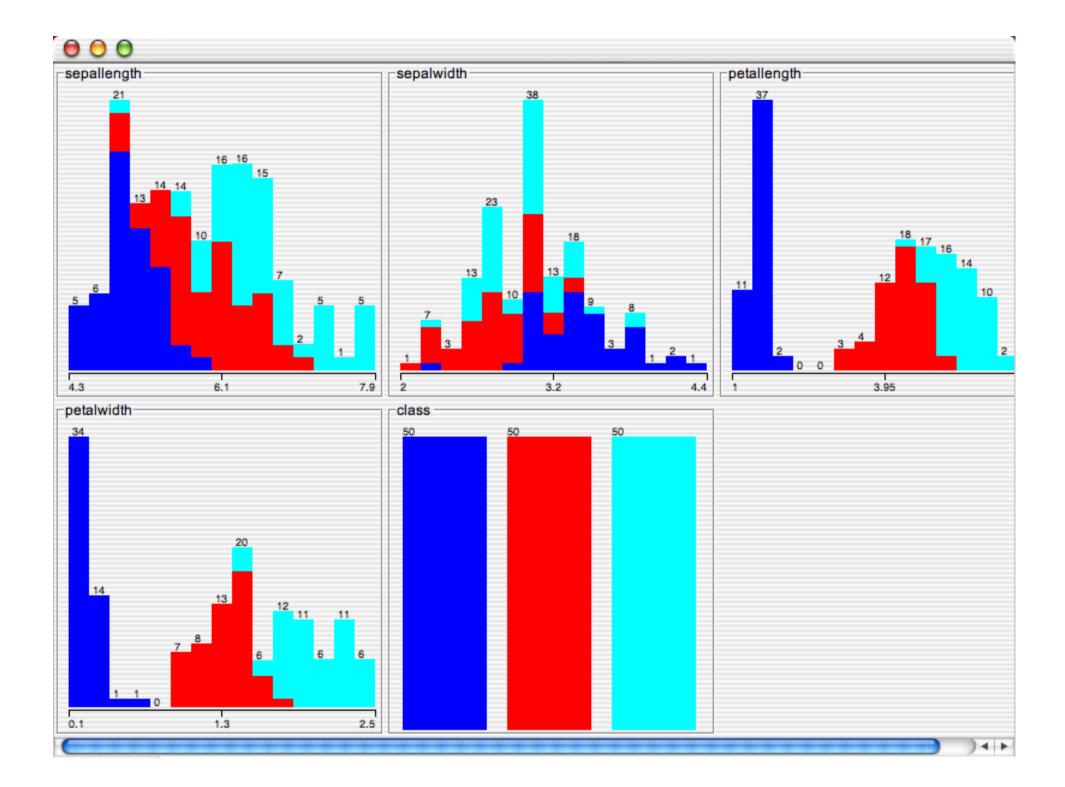
Flat file in **ARFF** format

...

Explorer: pre-processing

- Source
 - Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary
 - Data can also be read from a URL or from an SQL database (using JDBC)
- Pre-processing tools
 - Called "filters"
 - Discretization, normalization, resampling, attribute selection, transforming and combining attributes, ...

00	Weka Knowledge Explorer			
	Preprocess Classify Cluster As	sociate Select att	ributes Visualize	
Open file	Open URL Oper	DB	Undo	Save
Filter				
Choose None				Apply
Current relation Relation: None Instances: None	Attributes: None	Selected attribute Name: None Missing: None	Distinct: None	Type: None Unique: None
Attributes				
Status				Visualize All
Status Welcome to the Wek	a Knowledge Explorer		C	Log 💉 x 0

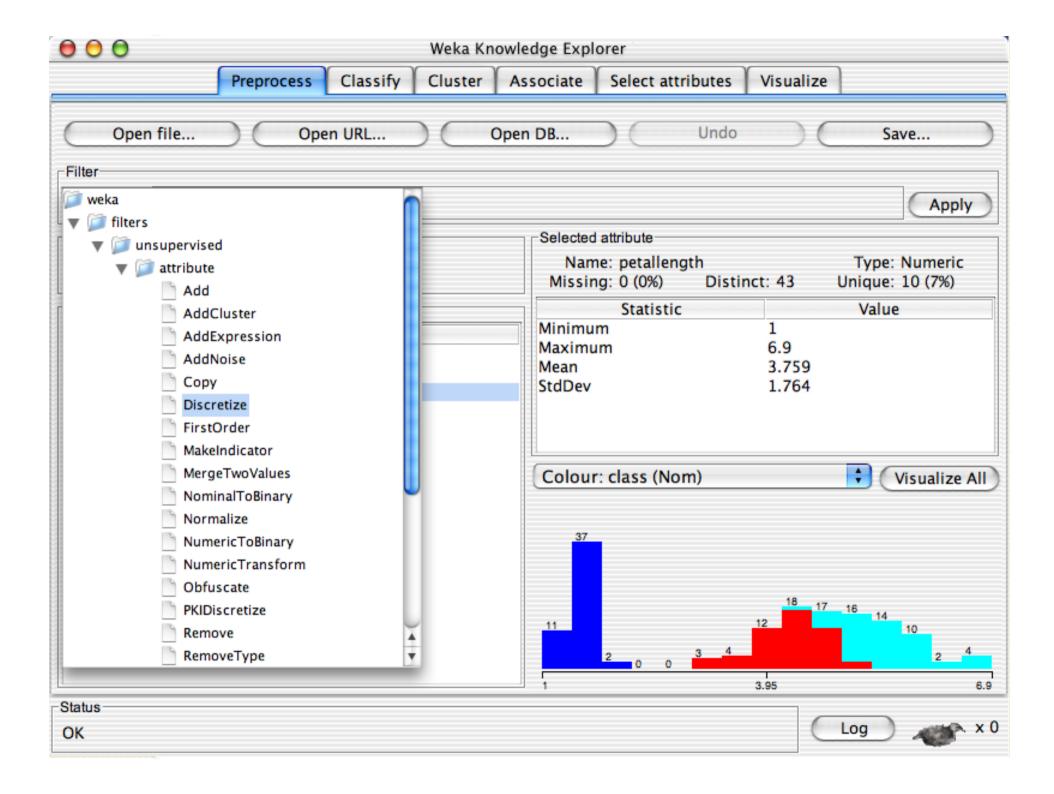

00	Weka Knowledge Explorer			
Pr	reprocess Classify Cluster As	sociate Select att	ributes Visualize	
Open file	Open URL Open	DB	Undo C	Save
Filter Choose None				Apply
Current relation Relation: None Instances: None	Attributes: None	Selected attribute Name: None Missing: None	Distinct: None	Type: None Unique: None
Attributes				
				Visualize All
Status Welcome to the Weka Kn	owledge Explorer		C	Log 💉 🔊
Welcome to the werd Ki				

😑 🖯 😌 Weka Knowledge Explorer					
Preprocess Classify Cluster A	Associate Select attributes Visualize				
Open file Open URL Ope	en DB Undo Save				
Filter Choose None Apply					
Current relation	Selected attribute				
Relation: iris Instances: 150 Attributes: 5	Name: sepallengthType: NumericMissing: 0 (0%)Distinct: 35Unique: 9 (6%)				
Attributes	Statistic Value Minimum 4.3				
No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	Maximum 7.9 Mean 5.843 StdDev 0.828				
	Colour: class (Nom) Visualize All				
OK Log x 0					

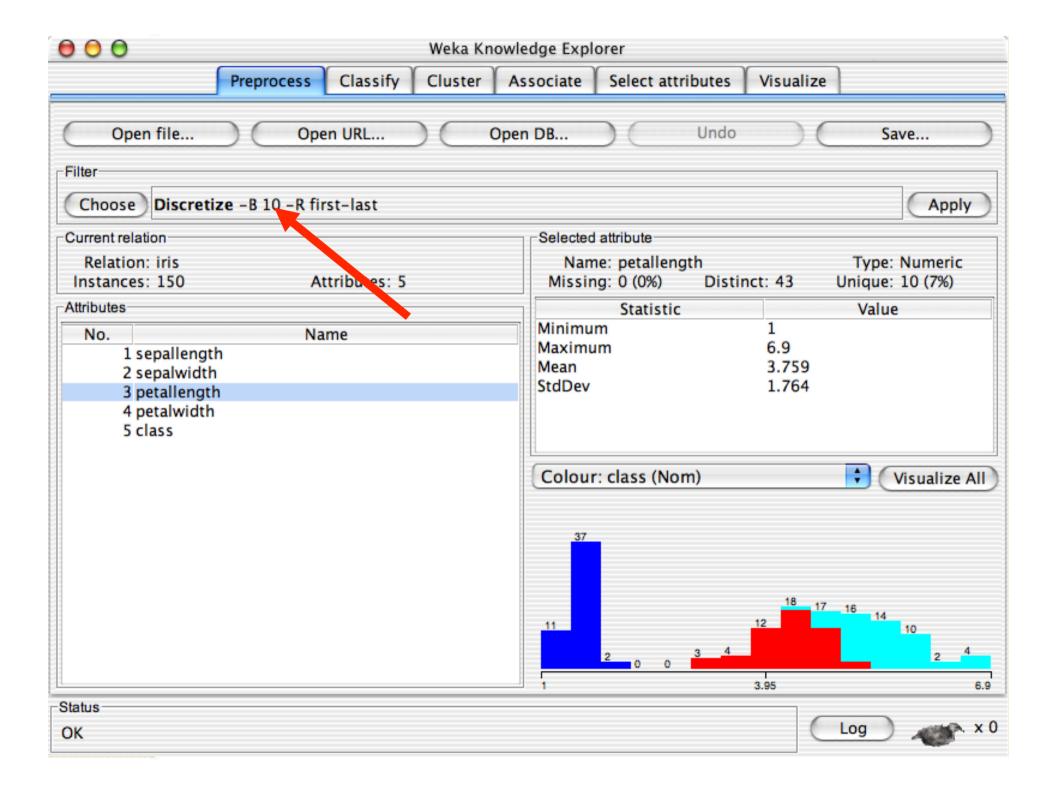
😑 🖯 💮 Weka Knowledge Explorer					
Preprocess Classify Cluster A	ssociate Select attributes Visualize				
	n DB Undo Save				
Filter Choose None Apply					
Current relation Relation: iris Instances: 150 Attributes: 5	Selected attribute Name: sepallength Type: Numeric Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)				
Attributes No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	StatisticValueMinimum4.3Maximum7.9Mean5.843StdDev0.828				
	Colour: class (Nom) Visualize All				
OK	Log 💉 X 0				

🖯 🖯 Weka Knowledge Explorer				
Preprocess Classify Cluster As	ssociate Select attributes Visua	lize		
	n DB Undo	Save		
Filter Choose None Apply				
Current relation Selected attribute Relation: iris Name: class Type: Nominal Instances: 150 Attributes: 5 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)				
Attributes No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class 5	Label Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50	Count		
	Colour: class (Nom)	Visualize All		
	50 50	50		
OK		Log 💉 X O		

🖯 🖯 Weka Knowledge Explorer				
Preprocess Classify Cluster As	ssociate Select attributes Visualize			
Open file Open URL Open	n DB Undo Save			
Filter Choose None Apply				
Current relation Selected attribute Relation: iris Name: class Type: Nominal Instances: 150 Attributes: 5 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)				
Attributes	Label Count			
No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50 Colour: class (Nom) Visualize All			
OK	Log 💉 0			



\varTheta 🖯 🕤 🛛 Weka Knowledge Explorer					
Preprocess Classify Cluster A	ssociate Select attributes Visualize				
	n DB Undo Save				
Filter Choose None Apply					
Current relation Relation: iris Instances: 150 Attributes: 5	Selected attribute Type: Numeric Name: petallength Type: Numeric Missing: 0 (0%) Distinct: 43 Unique: 10 (7%)				
Attributes No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	StatisticValueMinimum1Maximum6.9Mean3.759StdDev1.764				
	Colour: class (Nom) Visualize All				
OK	Log 💉 x 0				


😑 🖯 🔿 Weka Knowledge Explorer				
Preprocess Class	ify Cluster Associate Select at	ttributes Visualize		
Open file Open URL.	Open DB	Undo Save		
Choose None		Apply		
Current relation Relation: iris Instances: 150 Attribute	s: 5 Selected attribute Name: petalle Missing: 0 (0%)	ngth Type: Numeric Distinct: 43 Unique: 10 (7%)		
Attributes No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	Statist Minimum Maximum Mean StdDev	ic Value 1 6.9 3.759 1.764		
	Colour: class (N	18 17 16 14 12 10		
OK		Log 💉 🗴 🖉		

00	🖯 🔿 Weka Knowledge Explorer				
	Preprocess Classify	Cluster As	sociate Select attri	butes Visuali	ze
Open file	Open URL	Oper	DB	Undo	Save
Filter					Apply
v p inters	1		Selected attribute		
 instance 			Name: petallengt Missing: 0 (0%)	th Distinct: 43	Type: Numeric Unique: 10 (7%)
	-		Statistic Minimum Maximum Mean StdDev	1 6.9 3.759 1.764	
			Colour: class (Nor	1)	Visualize All
			37 11 20 1	12 3 4 3.95	17 16 14 10 2 4 6.9
Status OK					Log x 0

00	Weka Knowledge Explorer				
	Preprocess Classify	Cluster As	sociate Select attr	ibutes Visualia	ze
Open file	Open URL	Oper	DB	Undo	Save
Filter					Apply
 Insupervised Image: provide the provided state of the provided			Selected attribute Name: petalleng Missing: 0 (0%)	th Distinct: 43	Type: Numeric Unique: 10 (7%)
			Statistic Minimum Maximum Mean StdDev	1 6.9 3.759 1.764	Value
			Colour: class (Nor	n)	Visualize All
Status			11 2_0_0 1		17 16 14 10 2 4 6.9
OK				(Log 💉 🗴 V

😑 🖯 😁 Weka Knowledge Explorer				
Preprocess Classify Cluster A	Associate Select attributes Visualize			
Open file Open URL Ope	en DB Undo Save			
Filter				
Choose Discretize -B 10 -R first-last	Apply			
Current relation	Selected attribute			
Relation: iris Instances: 150 Attributes: 5	Name: petallength Type: Numeric Missing: 0 (0%) Distinct: 43 Unique: 10 (7%)			
Attributes	Statistic Value			
No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	Minimum1Maximum6.9Mean3.759StdDev1.764			
	Colour: class (Nom) \checkmark Visualize All			
Status				
ОК	Log 💉 X O			

\varTheta 🖯 🕤 Weka Knowledge Explorer								
Preprocess Classify	Cluster Associa	ate Select attributes Visualize						
Open file Open URL	Open DB	. Undo	Save					
Choose Discretize -B 10 -R first-last	\varTheta 🖯 🔿 🛛 weka	a.gui.GenericObjectEditor	Apply					
Current relation	weka.filters.unsuperv	vised.attribute.Discretize						
Relation: iris Instances: 150 Attributes:		liscretizes a range of numeric More	: Numeric : 10 (7%)					
Attributes	attributes in the datase	et into nominal attributes.	e					
No. Name 1 sepallength 2 sepalwidth	attributeIndices	first-last]					
3 petallength	bins	10						
4 petalwidth 5 class	findNumBins	False	•					
	invertSelection	False	Visualize All					
	makeBinary	False	•					
	useEqualFrequency	False	•					
		Save OK Cancel	\supset					
		2 0 0 3 4 3.95	10 2 4					
_ Status		3.85	6.9					
ОК		Lo	g) 🐠 x 0					

🖯 🖯 Weka Knowledge Explorer								
Preprocess Classify	fy Cluster Associate Select attributes Visualize							
Open file Open URL	Open DB Undo Sav	e						
Choose Discretize -B 10 -R first-last	\varTheta 🖯 🕤 weka.gui.GenericObjectEditor	Apply						
Current relation Relation: iris Instances: 150 Attributes: Attributes		lumeric .0 (7%)						
No. Name 1 sepallength 2 sepalwidth	attributeIndices first-last							
3 petallength 4 petalwidth 5 class	bins 10 findNumBins False							
	invertSelection False Vi makeBinary False Vi	sualize All						
	2 0 0 3 4	10 2 ⁴						
Status	1 3.95	6.9						
ок	Log							

\varTheta 🖯 🕤 Weka Knowledge Explorer								
Preprocess Classify	Cluster Associa	te Select attributes Visualize						
Open file Open URL	Open DB	Undo	Save					
Choose Discretize -B 10 -R first-last	😑 🖯 🔿 🛛 weka	a.gui.GenericObjectEditor	Apply					
Current relation	weka.filters.unsuperv	vised.attribute.Discretize						
Relation: iris Instances: 150 Attributes:		liscretizes a range of numeric Mo	: Numeric : 10 (7%)					
Attributes	attributes in the datase	et into nominal attributes.	e					
No. Name 1 sepallength 2 sepalwidth	attributeIndices	first-last						
3 petallength	bins	10						
4 petalwidth 5 class	findNumBins	False	•					
	invertSelection	False	Visualize All					
	makeBinary	False	•					
	useEqualFrequency	True	•					
		Save OK Can	cel					
		2 0 0 3 4 3.95	10					
_ Status	- 1	3.95	6.9					
ОК		C	Log 💉 X O					

🖯 🖯 Weka Knowledge Explorer									
Preprocess Classify	/ Cluster Associa	ate Select attributes Visualize	,						
Open file Open URL	Open DB	. Undo	Save						
Choose Discretize -B 10 -R first-last	😑 🔿 🔿 🛛 weka	a.gui.GenericObjectEditor	Apply						
Current relation Relation: iris Instances: 150 Attributes: Attributes	About An instance filter that d								
No. Name 1 sepallength 2 sepalwidth	attributeIndices]						
3 petallength 4 petalwidth 5 class	bins findNumBins	10 False							
	invertSelection	False	Visualize All						
	makeBinary	False)						
	useEqualFrequency	True 🛟)						
	Open 9	Save OK Cancel	10 2 4 6.9						
Status OK		Log) 🛷 × 0						

😑 🖯 🖯 Weka Knowl	edge Explorer	
Preprocess Classify Cluster A	ssociate Select attributes Visualize	
Open file Open URL Ope	n DB Undo	Save
Choose Discretize -F -B 10 -R first-last		Apply
Current relation	Selected attribute	
Relation: iris Instances: 150 Attributes: 5	Name: petallength Missing: 0 (0%) Distinct: 43	Type: Numeric Unique: 10 (7%)
Attributes	Statistic	Value
No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	Minimum1Maximum6.9Mean3.759StdDev1.764	
	Colour: class (Nom)	* Visualize All
OK	(Log x 0

🖯 🖯 Weka Knowledge Explorer								
	ssociate Select attributes Visualize							
Open file Open URL Open	n DB Undo	Save						
Choose Discretize -F -B 10 -R first-last		Apply						
Current relation	Selected attribute							
Relation: iris Instances: 150 Attributes: 5	Name: petallength Missing: 0 (0%) Distinct: 43	Type: Numeric nique: 10 (7%)						
Attributes	Statistic	Value						
No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	Minimum1Maximum6.9Mean3.759StdDev1.764							
	Colour: class (Nom)	Visualize All						
OK	\subset	Log 💉 x 0						

000	🖯 🖯 Weka Knowledge Explorer									
	Pr	eprocess	Classify Cluster	r As	sociate Select att	tributes Visual	ize			
	pen file	Оре	n URL	Oper	1 DB	Undo	Save			
Filter										
Choo	se Discretize -	F -B 10 -R	first-last				Apply			
Current	elation				Selected attribute					
	ion: iris-weka.fi ces: 150		ervised.attribute.Dis tributes: 5	sc	Name: petallen Missing: 0 (0%)	gth Distinct: 10	Type: Nominal Unique: 0 (0%)			
Attributes	S				Label	23	Count			
	No. Name 1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class			'(-inf-1.45]' '(1.45-1.55]' '(1.55-1.8]' '(1.8-3.95]' '(3.95-4.35]' '(4.35-4.65]' '(4.65-5.05]' Colour: class (No	14 11 13 14 15 18	Visualize All				
					14	13 14 15				
Status										
ОК							Log 💉 X O			

Explorer: building "classifiers"

- Classifiers in WEKA are models for predicting nominal or numeric quantities
- Implemented learning schemes include:
 - Decision trees and lists, instance-based classifiers, support vector machines, multilayer perceptrons, logistic regression, Bayes' nets, ...
- "Meta"-classifiers include:
 - Bagging, boosting, stacking, error-correcting output codes, locally weighted learning, ...

000	Weka Knowledge Explorer								
Pre	process	Classify	Cluster	Associate	Select attributes	Visualiz	e		
Classifier									
Choose ZeroR									
Test options		Clas	sifier output						
Use training set									
O Supplied test set	Set								
Cross-validation For the second se	lds 10								
Percentage split	% 66								
More option	s	\supset							
(Nom) class									
(nom) class									
Start	Stop								
Result list (right-click for optio	ns)								
⊡ ⊤Status		1 ft							
ОК						(Log	×0	

000			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attributes	Visualiz	ze	
Classifier								
Choose ZeroR								
Test options		Clas	sifier output					
O Use training set								
O Supplied test set	t Set							
Cross-validation	n Folds 10							
O Percentage split	% 66							
More op	otions							
(
(Nom) class		+						
Start	Stop							
Result list (right-click for	options)							
Status						1	Log	× 0
ОК							LUG	

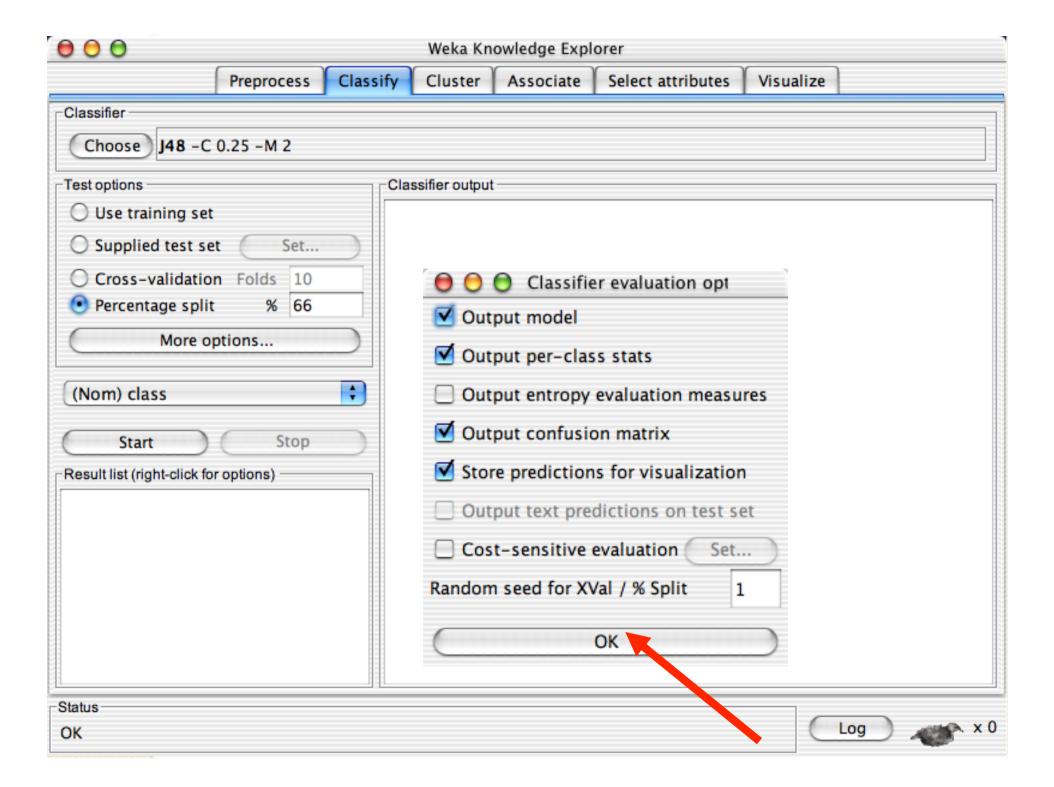
000			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attributes	Visualiz	e	
Classifier								
📁 weka								
📃 🔻 🧊 classifiers								
📄 🕨 🧊 bayes			ifier output					
functions								
🕨 🧊 lazy								
🕨 🧊 meta								
🕨 🧊 misc								
🔻 🧊 trees								
🕨 📁 🔰 adtree								
Decision	Stump							
Id3								
🔻 河 j48								
J48								
📔 🕨 📔 İmt								
▶ 📁 m5	_							
Random								
Random								
REPTree								
UserCla	ssifier							
Image: Provide the second s								
		111						
Status								
ОК						(Log	× 0

000			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attribute	s Visua	lize	
Classifier								
Choose J48 -C	0.25 -M 2							
Test options		Clas	sifier output					
🔘 Use training set								
O Supplied test set	Set							
Cross-validation	Folds 10							
Percentage split	% 66							
More op	tions	\supset						
C								
(Nom) class		•						
Start	Stop							
Result list (right-click for	options)							
Status OK							Log) ×0
UK								

000	Weka Knowledge Explorer							
	Preprocess Cla	ssify Cluster	Associate	Select attributes	Visualize			
Classifier								
Choose J48 -C	0.25 -M 2							
Test options		Classifier outpu	t					
O Use training set								
O Supplied test set	t Set							
Cross-validation	n Folds 10							
Percentage split	% 66							
More op	otions							
(Nom) class	\$)						
Start	Stop							
Result list (right-click for	options)							
Status								
ОК					Log) 🔊 🔊		

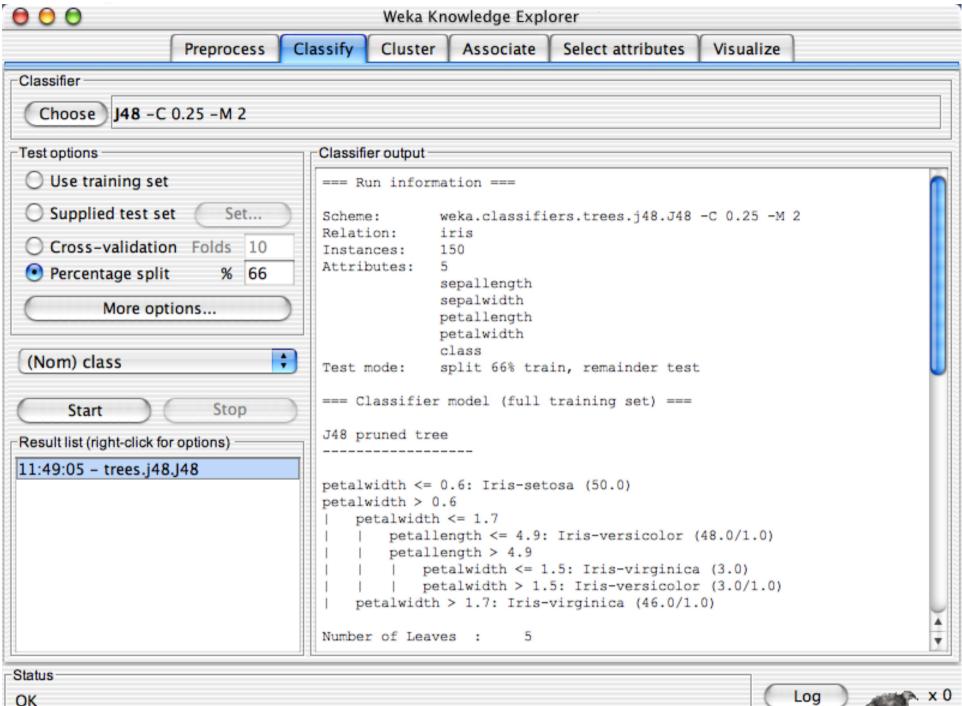
000		Weka Knowledge Explorer		
Prepr	ocess	Classify Cluster	Associate Select attributes Visua	alize
Classifier				
Choose J48 - C 0.25 - M 2 😝 😌 😌 weka.gui.GenericObjectEditor				
Test options		weka.classifiers.trees.	.j48.J48	
O Use training set		binarySplits	False	
O Supplied test set Set		confidenceFactor	0.25	
• Cross-validation Fold	s 10			
O Percentage split	66	minNumObj	2	
More options		numFolds	3	
(Nom) class		reducedErrorPruning	False	
Start Stop		saveInstanceData	False 🛟	
		subtreeRaising	True	
		unpruned	False 🛟	
		useLaplace	False 🗧	
Open Save OK Cancel				
Status				
OK				Log 💉 X O

00			Weka Knov	vledge Expl	orer		
	Preproce	ss	Classify Cluster	Associate	Select attributes	Visua	lize
Classifier							
Choose J48 -C 0).25 –M 2		😝 🖯 🖯 weka.gui.C	GenericObje	ectEditor		
Test options			weka.classifiers.trees.	j48.J48			
O Use training set			binarySplits	False	;		
Supplied test set	Se	et	confidenceFactor	0.25			
Cross-validation		10					
O Percentage split	%	66	minNumObj				
More opt	tions		numFolds	3			
(Nom) class			reducedErrorPruning	False	•		
			saveInstanceData	False	•		
CResult list (right-click for o	Sto	р	subtreeRaising	True	•		
	, ,		unpruned	False	•		
			useLaplace	False	•		
			Open Save	ОК	Cancel		
Status							
ОК							Log 💉 X O

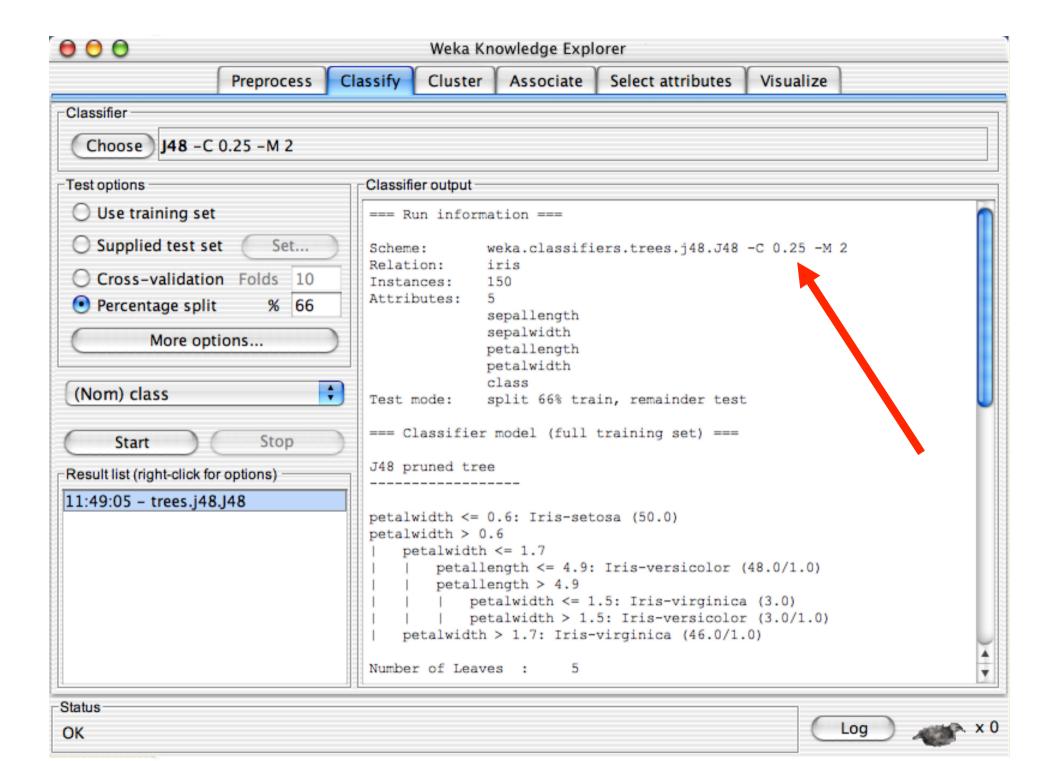

000			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attribute	s Visua	lize	
Classifier								
Choose J48 -C	0.25 -M 2							
Test options		Clas	sifier output					
🔘 Use training set								
O Supplied test set	Set							
Cross-validation	Folds 10							
Percentage split	% 66							
More op	tions	\supset						
C								
(Nom) class		•						
Start	Stop							
Result list (right-click for	options)							
Status OK							Log) ×0
UK								

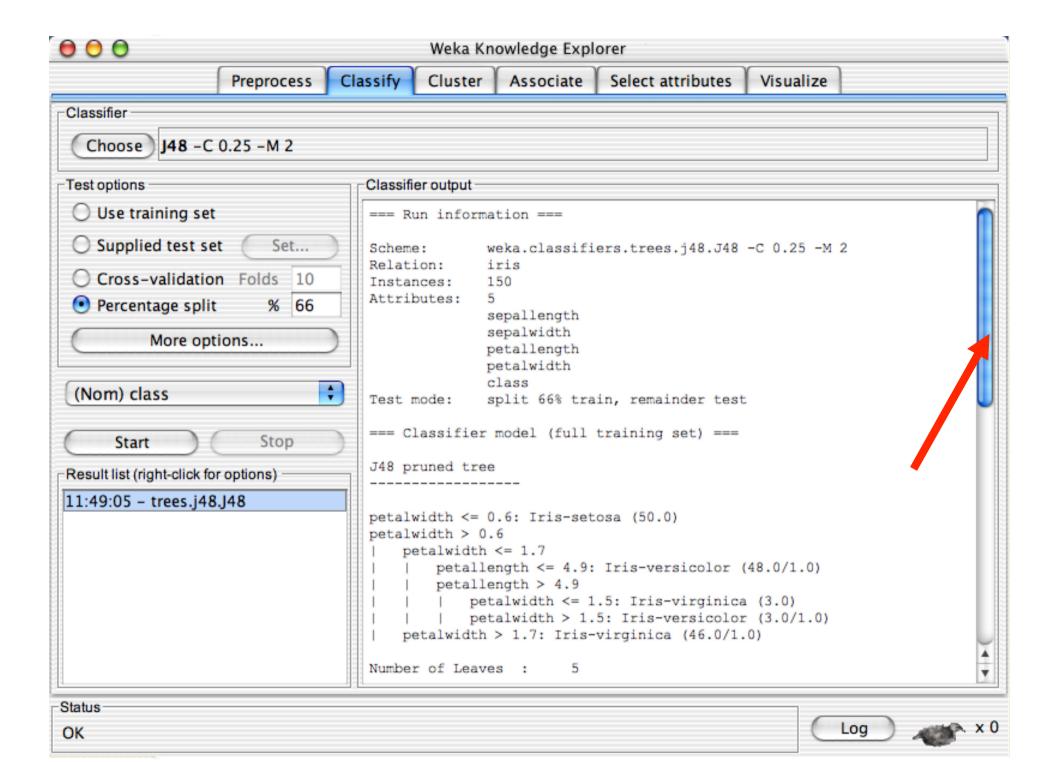
00			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attributes	Visual	ize	
Classifier								
Choose J48 -C	0.25 -M 2							
Test options		Clas	sifier output					
O Use training set								
O Supplied test set	t Set							
Cross-validation	n Folds 10							
Percentage split	% 66							
More op	otions							
(Nom) class		•						
Start	Stop							
Result list (right-click for	options)							
Status		11						1
OK							Log	× 0

00			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attribute	s Visu	alize	
Classifier								
Choose J48 -C	0.25 –M 2							
Test options		Clas	sifier output					
🔘 Use training set								
O Supplied test set	Set							
Cross-validation	Folds 10							
Percentage split	% 66							
More op	tions							
C								
(Nom) class		+						
Start	Stop							
Result list (right-click for	options)							
0								
Status OK							Log	x 0
ON								


00			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attributes	Visualize		
Classifier								1
Choose J48 -C	0.25 -M 2							
Test options		Clas	sifier output					1
🔘 Use training set								
O Supplied test set	Set							
O Cross-validation	Folds 10							
Percentage split	% 66							
More op	tions							
(Nom) class		÷						
Start	Stop							
Result list (right-click for	options)							
Status						6		0
ОК						C	Log 💉 🖈	,

000		Weka Knowledge Explorer	
	Preprocess C	lassify Cluster Associate Select attributes N	/isualize
Classifier Choose J48 - C (Test options Use training set Supplied test set Cross-validation Percentage split More op	0.25 -M 2 Set Folds 10 % 66	Classifier output Classifier output Classifier output Output model Output per-class stats Output entropy evaluation measures	
Start Result list (right-click for	Stop	 Output entropy evaluation measures Output confusion matrix Store predictions for visualization Output text predictions on test set Cost-sensitive evaluation Set Random seed for XVal / % Split 1 	
Status OK			Log 💉 x 0

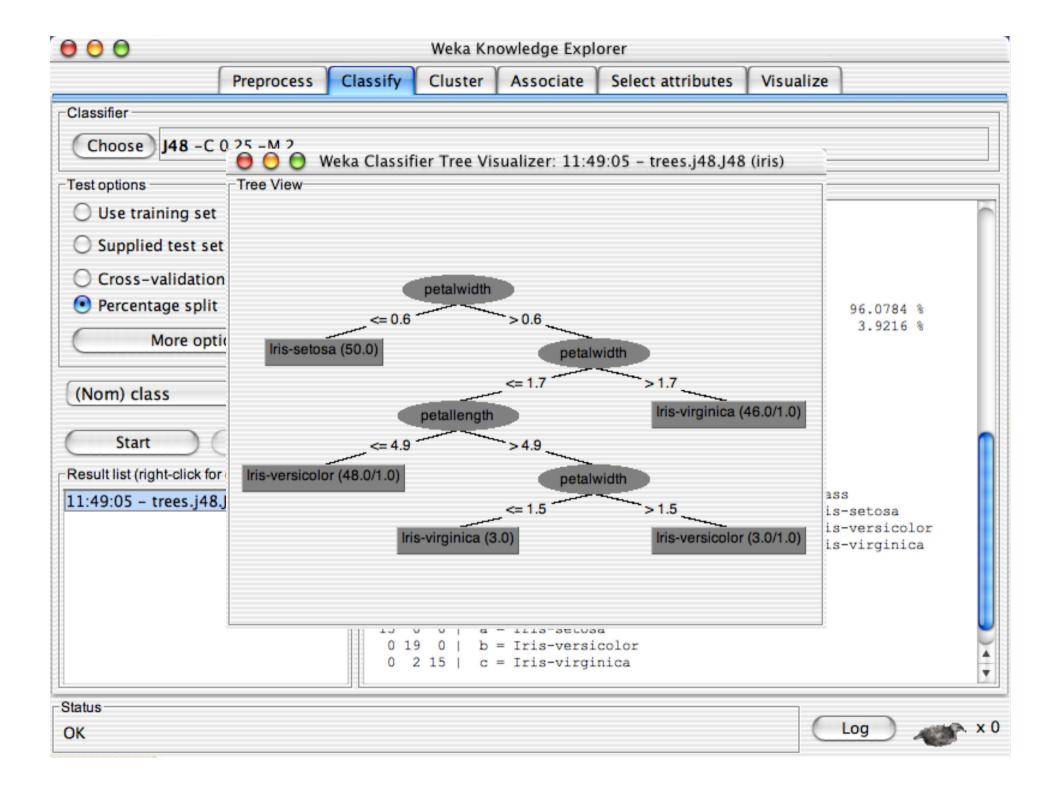



00			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attribute	s Visu	alize	
Classifier								
Choose J48 -C	0.25 –M 2							
Test options		Clas	sifier output					
🔘 Use training set								
O Supplied test set	Set							
Cross-validation	Folds 10							
Percentage split	% 66							
More op	tions							
C								
(Nom) class		+						
Start	Stop							
Result list (right-click for	options)							
0								
Status OK							Log	x 0
ON								

00			Weka Kn	owledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attributes	Visualize	2	
Classifier								
Choose J48 -C	0.25 –M 2							
Test options		Clas	sifier output					
O Use training set								
O Supplied test set	t Set							
Cross-validation	Folds 10							
Percentage split	% 66							
More op	otions	\supset						
(Nom) class		•						
Start	Stop							
Result list (right-click for	options)							
	•							
Status						6	Log	×0
ОК						C	LUG	

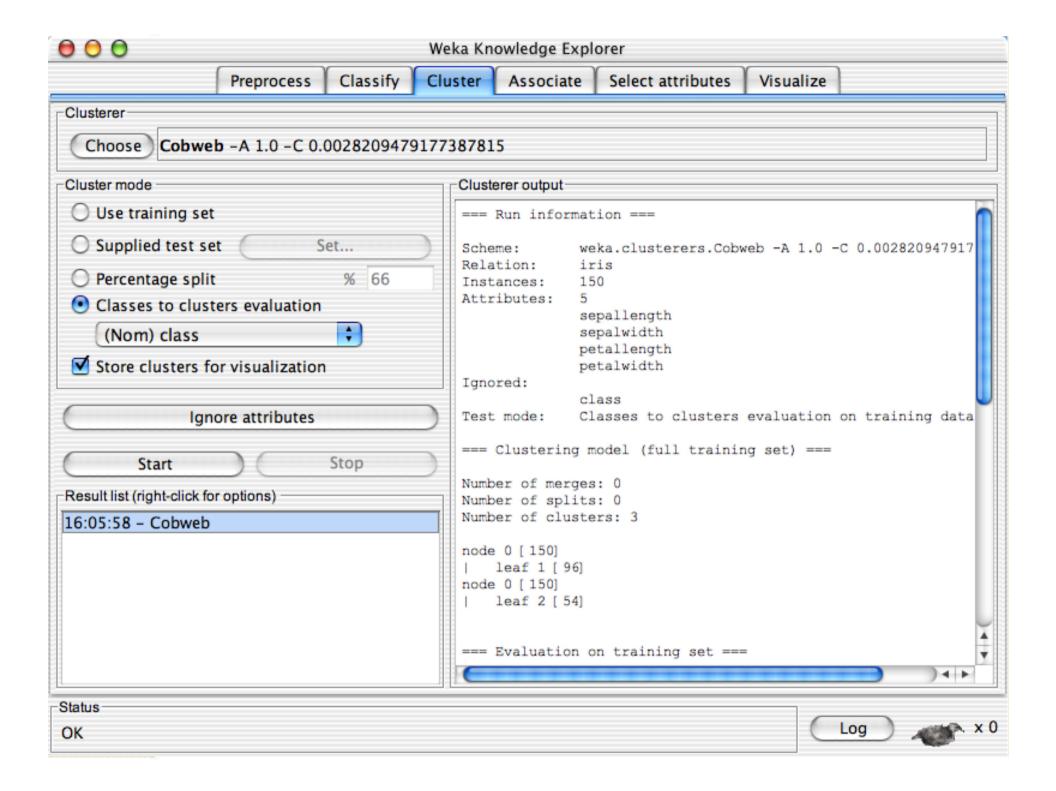
OK

00			Weka Kn	owledge Expl	orer				
Preproc	cess	Classify	Cluster	Associate	Select attrib	outes	Visualize		
Classifier									
Choose J48 -C 0.25 -M	2								
Test options		Classifi	er output						
O Use training set		Time t	taken to b	uild model: (0.24 seconds				
O Supplied test set	et		valuation	on test split	- ===				
O Cross-validation Folds	10		mmary ===	on coor opri-	-				
Percentage split % More options	66) Incorr Kappa Mean a	statistic	rror		49 2 0.9408 0.0396	5	96.0784 % 3.9216 %	
(Nom) class		Relat:				0.1579 8.8979 33.4091 51	8		
Result list (right-click for options)		De	etailed Ac	curacy By Cla	ass ===				
11:49:05 - trees.j48.J48		TP Rat 1 0.88	0.0	1	1	0.95	Iris Iris	s -setosa -versicolor -virginica	
		a 1 15 (0 1	0 c < 0 0 a: 9 0 b:	classified a = Iris-setosa = Iris-versio = Iris-virgin	color				
Status									


Log 💉 X O

ОК

000			Weka Kno	owledge Expl	orer				
	Preprocess	Classify	Cluster	Associate	Select attrib	outes	Visualize		
Classifier									
Choose J48 -C 0.	25 -M 2								
Test options		Classifi	er output						
🔘 Use training set		Time	taken to bi	ild model.	0.24 seconds				ŕ
Supplied test set	Set					,			- 1
Cross-validation	Folds 10		ummary ===	on test spli	t ===				- 1
Percentage split	% 66	Corre	ctly Classi	ified Instan	ces	49		96.0784 %	- 1
More option	ns		rectly Clas statistic	ssified Inst	ances	2 0.940	18	3.9216 %	- 1
		Mean	absolute en mean square			0.039			- 1
(Nom) class		Relat	ive absolut			8.897	19 %		- 1
	Cton		Number of			53.409 51	1 2		
Start	Stop	D	etailed Acc	curacy By Cl	ass ===				
Result list (right-click for o		TP Ra	te FP Rat	te Precisi	on Recall	F-Meas	sure Clas	35	
11:49:05 - trees.j48.J4	FO CONTRACTOR	1	0	1 53 0.90	1 5 1	1		s-setosa s-versicolor	
		0.8		1	0.882			s-versicolor s-virginica	
		c	onfusion Ma	atrix ===					
		a	b c <	classified	ag				
		15	0 0 a=	= Iris-setos	a				U
				= Iris-versi = Iris-virgi					×
Status							C	100	
OK							0	Log 🧳	<u>^</u> ^

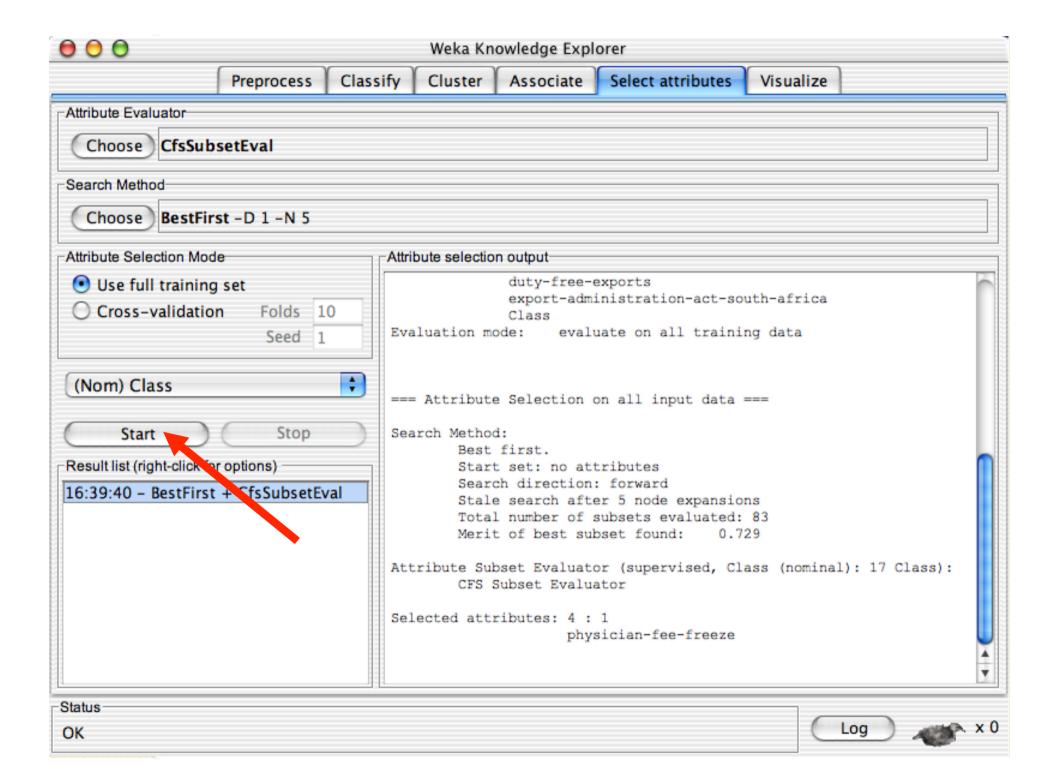

00	Weka	Knowledge Expl	orer			
Preprocess CI	assify Cluste	r Associate	Select attrib	utes Visu	ualize	
Classifier						
Choose J48 -C 0.25 -M 2						
Test options	Classifier output					
O Use training set	Time taken to	build model:	0.24 seconds			ŕ
O Supplied test set Set O Cross-validation Folds 10	=== Evaluatio === Summary =	n on test spli ==	t ===			
Percentage split % 66 More options				49 2 0.9408 0.0396	96.0784 % 3.9216 %	
(Nom) class	Root mean squ Relative abso	ared error lute error squared error		0.1579 8.8979 % 33.4091 % 51		
Result list (right-click for options)	=== Detailed	Accuracy By Cl	ass ===			
11:49:05 - trees.j48.J48	1 0	.063 0.90	1	F-Measure 1 0.95 0.938	Class Iris-setosa Iris-versicolo Iris-virginica	
	15 0 0 0 19 0	Matrix === classified a = Iris-setos b = Iris-versi c = Iris-virgi	color			
Status OK	1,				Log	

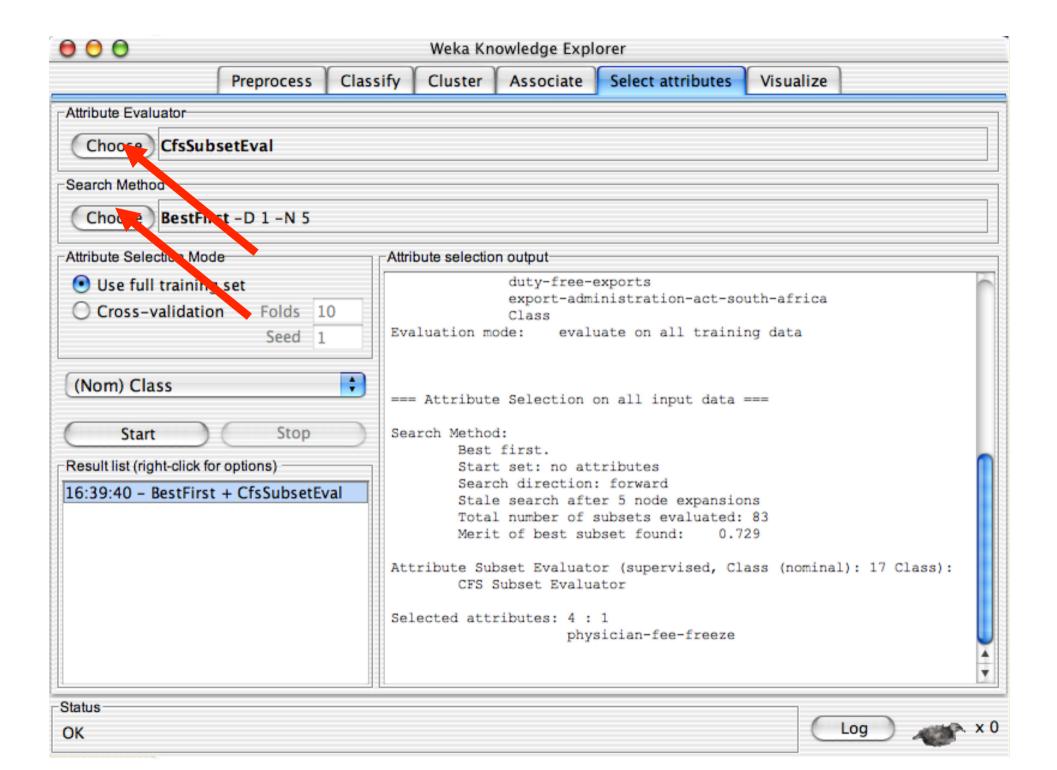
00		Weka Kr	nowledge Explo	orer				
	Preprocess	Classify Cluster	Associate	Select attrib	outes Vi	sualize		
Classifier								
Choose J48 -C 0	0.25 -M 2							
Test options		Classifier output -						
🔘 Use training set		Time taken to h	audild model. (24 cocorde				Ô
Supplied test set	Set							
O Cross-validation	Folds 10	=== Evaluation === Summary ===	-					
Percentage split More opti (Nom) class		Correctly Class Incorrectly Cla Kappa statistic Mean absolute of Root mean squar Relative absolut Root relative of Total Number of	assified Insta c error red error ute error squared error		49 2 0.9408 0.0396 0.1579 8.8979 33.4091 51	8	96.0784 % 3.9216 %	
Result list (right-click for	Stop	Detailed Ad	ccuracy By Cla	ISS ===				
11:49:05 - trees.j48.	J48 View View	in main window in separate windo result buffer	w	Recall 1 1 0.882	F-Measure 1 0.95 0.938	Iris- Iris-	setosa versicolor virginica	
	Save	model model valuate model on	current test s	et			-	
		alize classifer erro alize tree	rs					▲▼
Status OK	Visua	alize margin curve alize threshold cur alize cost curve		• •			.og 💉	× × 0

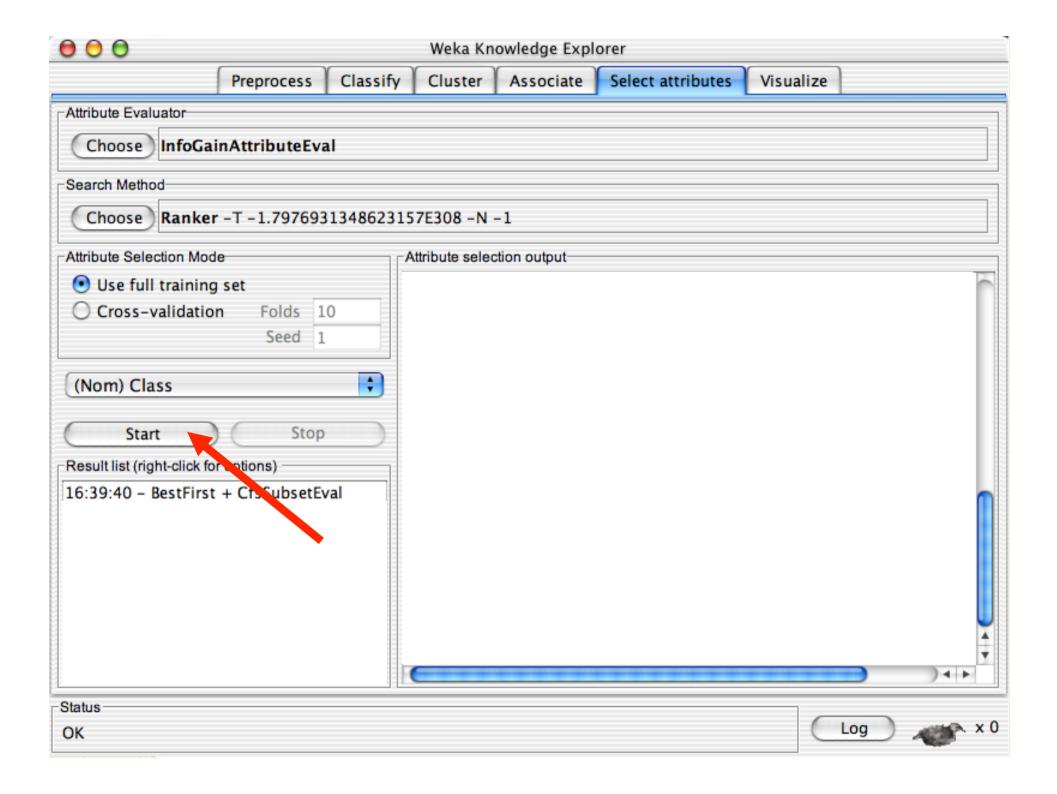
Explorer: clustering data

- WEKA contains "clusterers" for finding groups of similar instances in a dataset
- Implemented schemes are:
 - k-Means, EM, Cobweb, X-means, FarthestFirst
- Clusters can be visualized and compared to "true" clusters (if given)
- Evaluation based on loglikelihood if clustering scheme produces a probability distribution

Explorer: finding associations


- WEKA contains an implementation of the Apriori algorithm for learning association rules
 - Works only with discrete data
- Can identify statistical dependencies between groups of attributes:
 - milk, butter ⇒ bread, eggs (with confidence 0.9 and support 2000)
- Apriori can compute all rules that have a given minimum support and exceed a given confidence


😝 🖯 🕤 Weka Knowledge Explorer				
	Preprocess Classify Cluster	Associate Select att	ributes Visualiz	e
Open file	Open URL Op	pen DB	Undo (Save
Filter Choose None				Apply
Current relation		Selected attribute		
Relation: vote Instances: 435 Attributes: 17		Name: handicapped-infantsType: NominalMissing: 12 (3%)Distinct: 2Unique: 0 (0%)		
Attributes		Label		Count
No.Name1handicapped-infants2water-project-cost-sharing3adoption-of-the-budget-resolution4physician-fee-freeze5el-salvador-aid6religious-groups-in-schools7anti-satellite-test-ban8aid-to-nicaraguan-contras9mx-missile10immigration11synfuels-corporation-cutback12education-spending13superfund-right-to-sue14crime15duty-free-exports16export-administration-act-south-africa17Class		n 236 y 187 Colour: Class (Nom) Visualize All		
Status OK			(Log 💉 x 0


00	Weka Knowledge Explorer			
	Preprocess Classify Cluster Associate Select attributes Visualize			
Associator				
Choose Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0				
Start Stop	Start Stop Associator output			
Result list (right-click for	Minimum metric <confidence>: 0.9 tic Number of cycles performed: 11</confidence>			
16:29:37 - Apriori	Generated sets of large itemsets:			
	Size of set of large itemsets L(1): 20			
	Size of set of large itemsets L(2): 17			
	Size of set of large itemsets L(3): 6			
	Size of set of large itemsets L(4): 1			
	Best rules found:			
	<pre>1. adoption-of-the-budget-resolution=y physician-fee-freeze=n 219 =>> Class=democrat 2. adoption-of-the-budget-resolution=y physician-fee-freeze=n aid-to-nicaraguan-cont 3. physician-fee-freeze=n aid-to-nicaraguan-contras=y 211 =>> Class=democrat 210 4. physician-fee-freeze=n education-spending=n 202 =>> Class=democrat 201 conf:(1 5. physician-fee-freeze=n 247 =>> Class=democrat 245 conf:(0.99) 6. el-salvador-aid=n Class=democrat 200 =>> aid-to-nicaraguan-contras=y 197 conf: 7. el-salvador-aid=n 208 ==> aid-to-nicaraguan-contras=y 204 conf:(0.98) 8. adoption-of-the-budget-resolution=y aid-to-nicaraguan-contras=y Class=democrat 20 9. el-salvador-aid=n aid-to-nicaraguan-contras=y 204 =>> Class=democrat 197 conf: 10. aid-to-nicaraguan-contras=y Class=democrat 218 ==> physician-fee-freeze=n 210</pre>			
Status	Log x0			
ОК				

Explorer: attribute selection

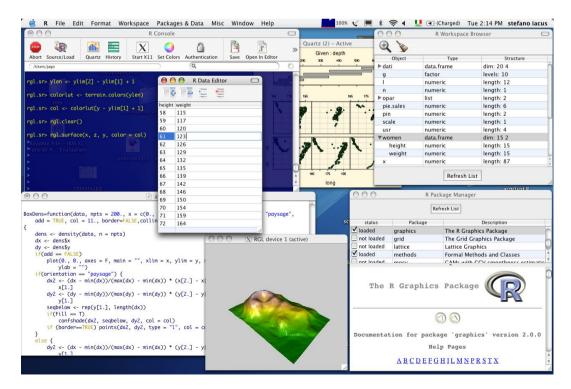
- Panel that can be used to investigate which (subsets of) attributes are the most predictive ones
- Attribute selection methods contain two parts:
 - A search method: best-first, forward selection, random, exhaustive, genetic algorithm, ranking
 - An evaluation method: correlation-based, wrapper, information gain, chi-squared, ...
- Very flexible:WEKA allows (almost) arbitrary combinations of these two

000	Weka Knowledge Explorer					
Preprocess	Classify Cluster Associate Select attributes Visualize					
Attribute Evaluator						
Choose InfoGainAttributeEval						
Search Method						
Choose Ranker -T -1.7976931348623157E308 -N -1						
Attribute Selection Mode	Attribute selection output					
💿 Use full training set	Information Gain Ranking Filter					
Cross-validation Folds 10 Seed 1 (Nom) Class	Ranked attributes: 0.7078541 4 physician-fee-freeze 0.4185726 3 adoption-of-the-budget-resolution 0.4028397 5 el-salvador-aid 0.34036 12 education-spending					
Start Stop	0.3123121 14 crime 0.3095576 8 aid-to-nicaraguan-contras 0.2856444 9 mx-missile 0.2121705 13 superfund-right-to-sue					
Result list (right-click for options) 16:39:40 – BestFirst + CfsSubsetEval 16:43:05 – Ranker + InfoGainAttribut	eEval 0.2013666 15 duty-free-exports 0.1902427 7 anti-satellite-test-ban 0.1404643 6 religious-groups-in-schools 0.1211834 1 handicapped-infants 0.1007458 11 synfuels-corporation-cutback 0.0529956 16 export-administration-act-south-africa 0.0049097 10 immigration 0.0000117 2 water-project-cost-sharing					
	Selected attributes: 4,3,5,12,14,8,9,13,15,7,6,1,11,16,10,2 : 16					
Status						
OK Log 📣 x 0						

Which attribute selector?

- Best:WRAPPER
 - Slow: O(2^N) search through all attribute combinations
 - The "wrapped" learner called to assess each combination
 - Some heuristics to prune the search; but does not scale

• If not WRAPPER

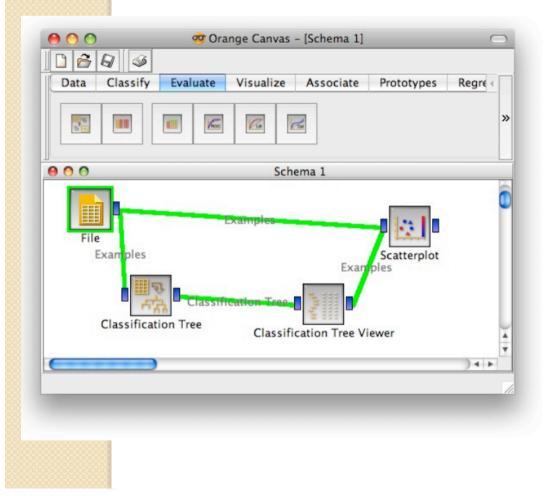

- Use InfoGain / OneR for very big datasets
- Use CFS otherwise
- Don't use PCA
 - This is an unsupervised selector
 - So it is uninformed on how dimensions help classification

Limitations

- Loads all data into ram prior to learning
 - Problem for large data sets
- Not good for complex experiments
- IMHO, discourages experimentation with new learners
 - The "WEKA effect"
 - Try every learner till something works
- Still, very useful for
 - Initial investigations
 - Learning data mining
 - Or as a sub-routine of other systems

Alternate tools:"R"

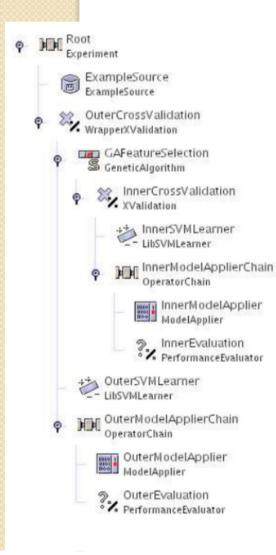
- Leading open-source system for statistical computing and graphics,
- http://www.r-project.org/



Alternate tools: Matlab

- For me: just say no
- Open science, open tools

Alternate tools: Orange



Written in Python

Simpler specification (but see WEKA's KnowledgeFlow Environment).

Also, less community support/debugging. So sometimes frustrated by random bugs

Alternate tools: RapidMiner

Experiments specified in an XML tree syntax

In theory, possible to share experimental descriptions

Alternate tools: OurMine

Forget the visuals.

Java=\$Base/lib/java

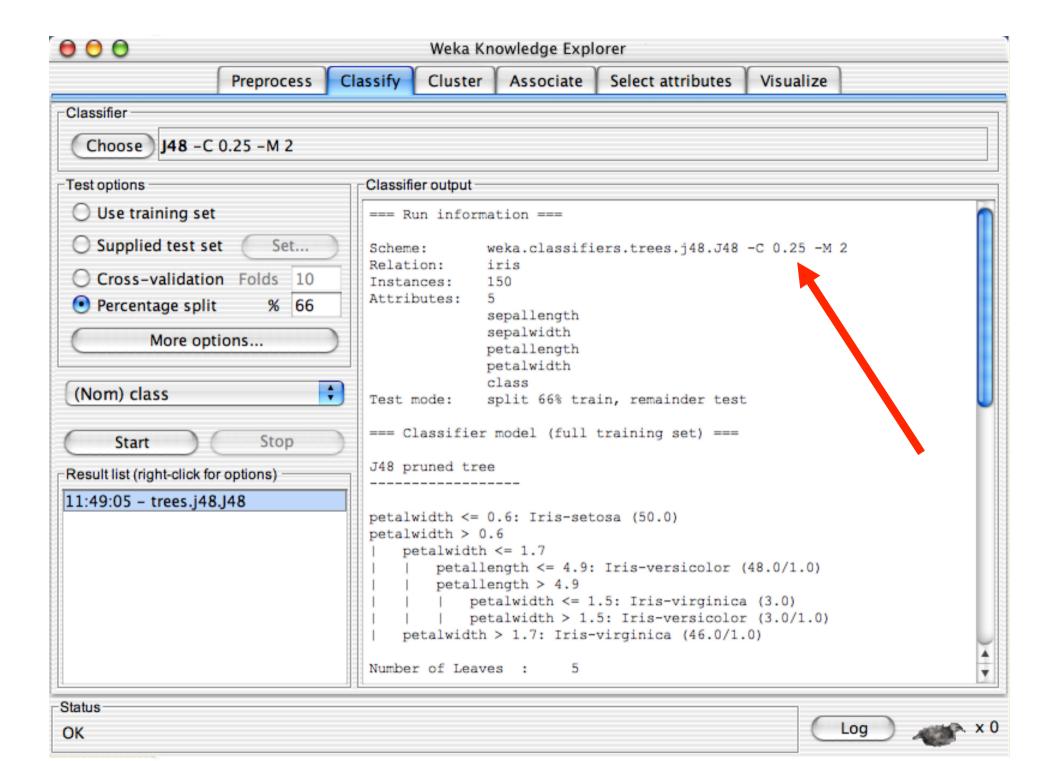
Weka="java -Xmx2048M -cp \$Java/weka.jar " Clusterers="java -Xmx1024M -jar \$Java/Clusterers.jar " Reducers="java -Xmx1024M -jar \$Java/Reduce.jar "

```
nb() {
```

local learner=weka.classifiers.bayes.NaiveBayes \$Weka \$learner -p 0 -t \$1 -T \$2

```
}
```

nb10() { local learner=weka.classifiers.bayes.NaiveBayes \$Weka \$learner -i -t \$1


```
-
```

j48() { local learner=weka.classifiers.trees.J48 \$Weka \$learner -p 0 -C 0.25 -M 2 -t \$1 -T \$2

Adam Nelson, Tim Menzies, Gregory Gay, Sharing Experiments Using Open Source Software, Softw. Pract. Exper. 2011 Make WEKA a subroutine inside Bash script

Now you can mix WEKA's JAVA with learners written in your favorite language.

But how do you find the magic command strings?

Why go to all that trouble?

analysis1(){ local origdata=\$1 local outstats=\$2 local nattrs="2 4 6 8 10 12 14 16 18 20" local learners="nb10 j4810 zeror10 oner10 adtree10" local reducers="infogain chisquared oneR" local tmpred=\$Tmp/red echo "n,reducer,learner,accuracy" > \$outstats

for n in \$nattrs; do for reducer in \$reducers; do \$reducer \$origdata \$n \$tmpred for learner in \$learners; do accur=`\$learner \$tmpred.arff | acc out="\$n,\$reducer,\$learner,\$accur" blabln \$out echo \$out >> \$outstats done done

}

Complex experiments, specified succinctly.

Experiments can now be reviewed, audited, by others.

Also, in 12 months time when Reviewer2 wants a tiny extension to the old paper, you don't have to remember all that clicking you did: just rerun the script.

Coming next...

- Enough details
- So many tools in WEKA, R, Rapid-Miner, Orange, OURMINE...
- The great secret
 - All those "different" tools do the same thing.
 - Carve up vector space.

DATA CARVING (THE CORE OPERATORS OF DM)

0

Road map

- I. Data mining & SE (overview)
- 2. Data mining tools (guided tour of "WEKA")
- 3. Data "carving" (core operators of DM)
- 4. Generality (or not)
- 5. Bias (is your friend)
- 6. Evaluation (does it really work?)

"Data Carving": A geometric view of data mining

- Data is like a block of marble,
 waiting for a sculptor (that's you)
 to find the shape within
- So "data mining" is really "data carving"
 - chipping away the irrelevancies
 - To find what lies beneath.

Four operators of data carving

 @attribute outlook {sunny, overcast, rainy} @attribute temperature real @attribute humidity real @attribute windy {TRUE, FALSE} @attribute play {yes, no} @data 							
sunny,	85,85,FALSE,	no					
sunny,	80,90,TRUE,	no					
overcast,	83,86,FALSE,	yes					
rainy,	70,96,FALSE,	no					
rainy,	68,80,FALSE,	yes					
rainy,	65,70,TRUE,	no					
overcast,	64,65,TRUE,	yes					
sunny,	72,95,FALSE,	no					
sunny,	69,70,FALSE,	yes					
rainy,	75,80,FALSE,	yes					
sunny,	75,70,TRUE,	yes					
overcast,	72,90,TRUE,	yes					
overcast,	81,75,FALSE,	yes					
rainy,	71,91,TRUE,	no					

- Each example is a row in a table
- What can can we do change the table geometry?
- I. Clump
- 2. Select columns
- ┿╋┿ ╋╋
- 3. Select rows

- **₩→**###
- 4. Rotate (add new columns)

113

5. Clump columns

The field is called "data mining", not "algorithm mining"

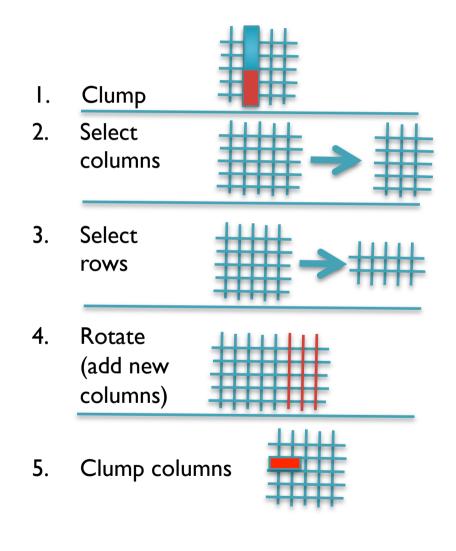
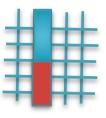

- To understand data mining, look at the <u>data</u>, not the <u>algorithms</u>
- Why? We do data mining not to study algorithms.
 But to study data
- Our results should be insights about data,
 - not trivia about (say) decision tree algorithms
- Besides, the thing that most predicts for performance is the data, not the algorithm,
 - Pedro Domingos and Michael J. Pazzani, On the Optimality of the Simple Bayesian Classifier under Zero-One Loss, Machine Learning, Volume 29, number 2-3, pages 103-130, 1997

Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test splits. "Bayes" is the Bayesian classifier with discretization and "Gauss" is the Bayesian classifier with Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the Bayesian classifier and the corresponding algorithm, using a one-tailed paired t test: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%.

Data Set	Bayes	Gauss	C4.5	PEBLS	CN2	Def.
Audiology	73.0±6.1	73.0 ± 6.1^{6}	72.5 ± 5.8^{6}	75.8 ± 5.4^{3}	71.0 ± 5.1^{5}	21.3
Annealing	95.3±1.2	84.3 ± 3.8^{1}	90.5 ± 2.2^{1}	98.8 ± 0.8^{1}	81.2 ± 5.4^{1}	76.4
Breast cancer	71.6±4.7	71.3±4.36	70.1±6.8 ⁵	65.6±4.7 ¹	67.9 ± 7.1^{1}	67.6
Credit	84.5±1.8	78.9 ± 2.5^{1}	85.9 ± 2.1^{3}	82.2 ± 1.9^{1}	82.0 ± 2.2^{1}	57.4
Chess endgames	88.0 ± 1.4	88.0 ± 1.4^{6}	99.2±0.11	96.9±0.7 ¹	98.1 ± 1.0^{1}	52.0
Diabetes	74.5±2.4	75.2 ± 2.1^{6}	73.5 ± 3.4^{5}	71.1 ± 2.4^{1}	73.8 ± 2.7^{6}	66.0
Echocardiogram	69.1±5.4	73.4±4.9 ¹	64.7±6.3 ¹	61.7 ± 6.4^{1}	68.2 ± 7.2^{6}	67.8
Glass	61.9±6.2	50.6 ± 8.2^{1}	63.9±8.7 ⁶	62.0 ± 7.4^{6}	63.8 ± 5.5^{6}	31.7
Heart disease	81.9±3.4	84.1 ± 2.8^{1}	77.5±4.3 ¹	78.9 ± 4.0^{1}	79.7 ± 2.9^3	55.0
Hepatitis	85.3±3.7	85.2 ± 4.0^{6}	79.2±4.31	79.0 ± 5.1^{1}	80.3 ± 4.2^{1}	78.1
Horse colic	80.7±3.7	79.3±3.71	85.1±3.8 ¹	75.7±5.0 ¹	82.5 ± 4.2^{2}	63.6
Hypothyroid	97.5±0.3	97.9 ± 0.4^{1}	99.1±0.2 ¹	95.9±0.7 ¹	98.8 ± 0.4^{1}	95.3
Iris	93.2±3.5	93.9±1.96	92.6±2.76	93.5±3.0 ⁶	93.3 ± 3.6^{6}	26.5
Labor	91.3±4.9	88.7 ± 10.6^{6}	78.1±7.91	89.7±5.06	82.1 ± 6.9^{1}	65.0
Lung cancer	46.8±13.3	46.8±13.36	40.9±16.3 ⁵	42.3±17.36	38.6 ± 13.5^3	26.8
Liver disease	63.0±3.3	54.8 ± 5.5^{1}	65.9±4.4 ¹	61.3±4.3 ⁶	65.0 ± 3.8^{3}	58.1
LED	62.9 ± 6.5	62.9 ± 6.5^{6}	61.2 ± 8.4^{6}	55.3 ± 6.1^{1}	58.6 ± 8.1^2	8.0
Lymphography	81.6±5.9	81.1 ± 4.8^{6}	75.0 ± 4.2^{1}	82.9 ± 5.6^{6}	78.8 ± 4.9^{3}	57.3
Post-operative	64.7±6.8	67.2 ± 5.0^{3}	70.0 ± 5.2^{1}	59.2 ± 8.0^{2}	60.8 ± 8.2^4	71.2
Promoters	87.9±7.0	87.9 ± 7.0^{6}	74.3 ± 7.8^{1}	91.7 ± 5.9^{3}	75.9 ± 8.8^{1}	43.1
Primary tumor	44.2±5.5	44.2 ± 5.5^{6}	35.9 ± 5.8^{1}	30.9 ± 4.7^{1}	39.8 ± 5.2^{1}	24.6
Solar flare	68.5±3.0	68.2 ± 3.7^{6}	70.6 ± 2.9^{1}	67.6±3.56	70.4 ± 3.0^2	25.2
Sonar	69.4±7.6	63.0 ± 8.3^{1}	69.1±7.4 ⁶	73.8 ± 7.4^{1}	66.2 ± 7.5^{5}	50.8
Soybean	100.0 ± 0.0	100.0 ± 0.0^{6}	95.0 ± 9.0^3	100.0 ± 0.0^{6}	96.9±5.9 ³	30.0
Splice junctions	95.4±0.6	95.4±0.6 ⁶	93.4±0.8 ¹	94.3±0.5 ¹	81.5 ± 5.5^{1}	52.4
Voting records	91.2±1.7	91.2±1.76	96.3±1.31	94.9 ± 1.2^{1}	95.8 ± 1.6^{1}	60.5
Wine	96.4±2.2	97.8 ± 1.2^{3}	92.4±5.61	97.2 ± 1.8^{6}	90.8 ± 4.7^{1}	36.4
Zoology	94.4±4.1	94.1±3.86	89.6 ± 4.7^{1}	94.6±4.36	90.6 ± 5.0^{1}	39.4

The rest of this hour


Carving can be dangerous

- While carving the training data is recommended
 - It is a methodological error to carve the test data
- Whatever is learned from the training data
 - Should be assessed on "raw" (i.e. uncarved) test data

Cl	ump	oing	co	lumn	data
a .	k.a.	disc	ret	izatio	on)

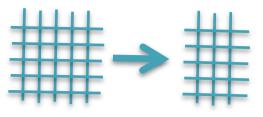
overcast,	64,	65	TRUE, yes
Rainy,	65,	70	,TRUE, no
sunny,	69,	70	,FALSE,yes
sunny,			,TRUE, yes
overcast,			FALSE,yes
rainy,	68,	80,	FALSE,yes
rainy,	75 ,	80,	FALSE,yes
sunny,	85,	85,	FALSE,no
overcast,	83,	86,	FALSE,yes
overcast,			TRUE, yes
sunny,	80,	90,	TRUE, no
rainy,	71,	91,	TRUE, no
sunny,	72,	95,	FALSE,no
rainy,	70,	96,	FALSE,no

- Learning = compression
 - Take a target concept that is spread out across all the data
 - Squeeze it together till it is dense enough to be visible.
- Discretization: clump together observations taken over a continuous range
 - into a small number of regions.
- E.g. "toddlers" If age =1,2,3
- Discretization improves the performance of a learner
 - Gives a learner a smaller space to reason about,
 - With more examples in each part of the space

Supervised Discretization

overcast,	64,	65,	TRUE, yes
Rainy,	65,	70,	TRUE, no
sunny,			FALSE,yes
sunny,	75 ,	70,	TRUE, yes
overcast,			FALSE,yes
rainy,			FALSE,yes
rainy,			FALSE,yes
sunny,			FALSE,no
overcast,	83,	86,	FALSE,yes
overcast,			TRUE, yes
sunny,	80,	90,	TRUE, no
rainy,			TRUE, no
sunny,	72,	95,	FALSE,no
rainy,	70,	96,	FALSE,no
		L	

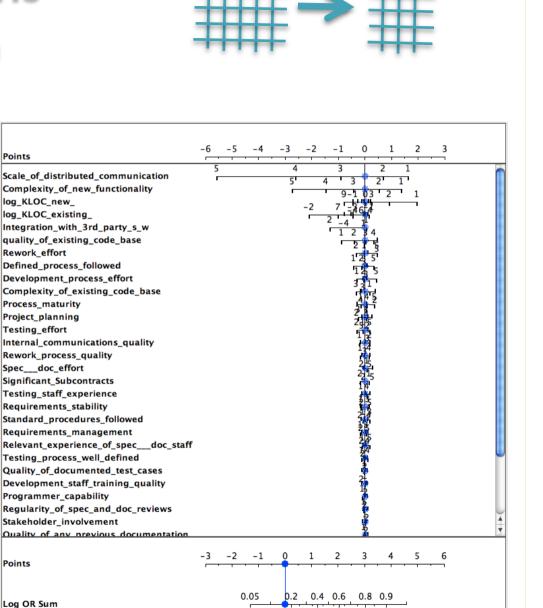
- Standard method:
 - Find a break that most reduces class diversity either side of the break
 - Recurse on data:
 - above break,
 - below break
 - Fayyad and Irani, Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning IJCAI'93, pp1022-1027



Unsupervised Discretization

- Divide into "B" bins
 - (X Min) / ((Max Min)/ B)
 - B=3 or 10 very common
- Divide into P percentile groups
 - Each bins contains (say) 25% of the rows
- For Bayesian methods
 - Divide into groups of N items
 - Ying and Webb recommends N= sqrt(rows)
 - Ying Yang and Geoff Webb, Weighted Proportional k-Interval Discretization of Naïve Bayes classifeirs, PAKADD'03, p501-512, 2003

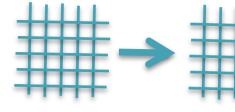
Select columns



- Occam's Razor Entia non sunt multiplicanda praeter necessitatem.
 ("Entities should not be multiplied more than necessary").
 - the fewer features used to explain something, the better
- Log(OR):
 - Discrete every feature. For all pairs of target / other of size C1, C2 count frequency of range N1, N2 in each class
 - Log(odds ratio) = log((N1/C1) / (N2/C2)) > 0 if more frequent in target
 - "Pivots" are the ranges with high Log (OR)
 - Možina, M., Demšar, J., Kattan, M., and Zupan, B. 2004. Nomograms for visualization of naive Bayesian classifier. InProceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (Pisa, Italy, September 20 - 24, 2004)
- InfoGain:
 - Use Fayyad Irani trick: assses each column by how well it divides up the data
 - Takes linear time : O(C)
- Wrapper:
 - Explore 2^C subsets of C columns: takes time O(2^C)
 - Call a learner on each subset
 - Use the columns that maximize learner performance
 - Not practical for large data sets
- For more, see Hall, M. and Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering. 15(3), November/December 2003

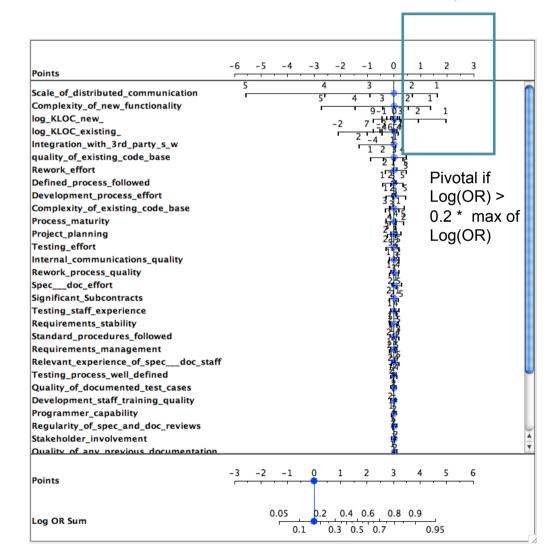
Select columns with log(OR)

- Data from Norman Fenton's Bayes Net
 - Project Data Incorporating Qualitative Factors for Improved Software Defect Prediction Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Lukasz Radlinski and Paul Krause., PROMISE 2008
- Target class. worse defects
- Only a few features matter
- Only a few ranges of those features matter

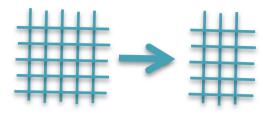

0.1

0.3 0.5 0.7

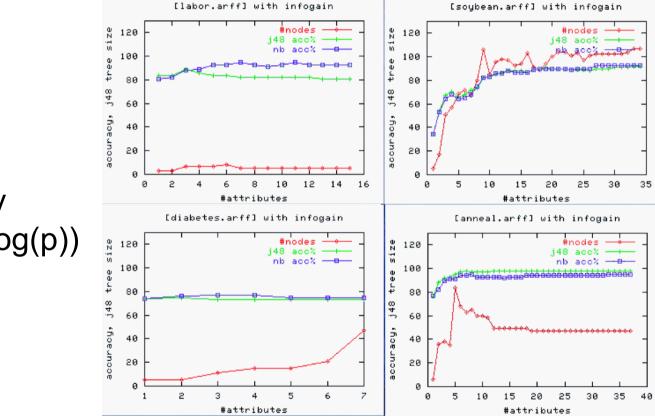
0.95



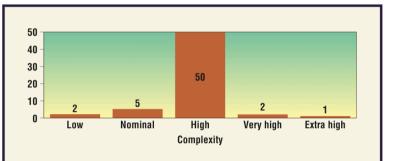
Select columns with log(OR)

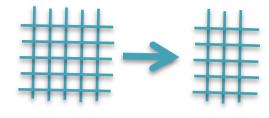

Data from Norman Fenton's Bayes Net

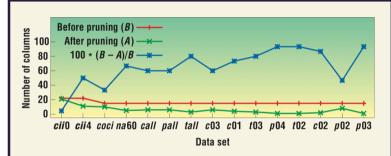
- Project Data Incorporating Qualitative Factors for Improved Software Defect Prediction Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Lukasz Radlinski and Paul Krause., PROMISE 2008
- Target class. worse defects
- Only a few features matter
- Only a few ranges of those features matter

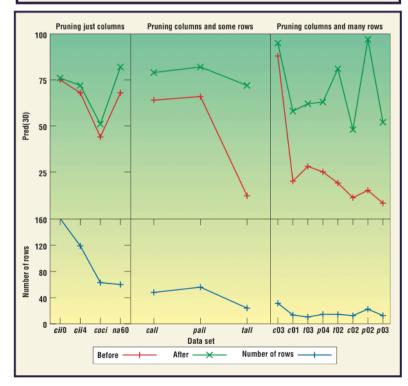


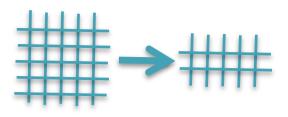
Select columns with InfoGain


X-axis sorted by sum(-p*log(p))




Simpler theories after column selection, work just as well as using everything


Select columns with WRAPPER

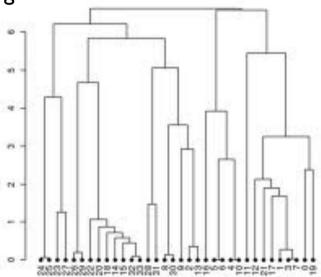


 Finding the Right Data for Software Cost Modeling Chen, Menzies, Port, Boehm, IEEE Software Nov/Dec 2005

Select rows

- Replace N rows
 - with M < N rows
 - that best exemplify the data
- Typical result:
 - Can throw out 80 to 90% of the rows without lossing accuracy

• C. Chang, "Finding prototypes for nearest neighbor classifiers," IEEE Trans. on Computers, pp. 1179–1185, 1974.


- Benefits:
 - Outlier removal
 - Any downstream processing is faster
 - E.g. any $O(N^2)$ process is 100 times faster on N/10 of the data
 - Less errors in conclusions
 - Instance learner: classify according to nearest neighbors
 - If nearest neighbors further away, harder for data collection errors to cause wrong classifications
 - Easier to visualize
 - Fewer things to look at

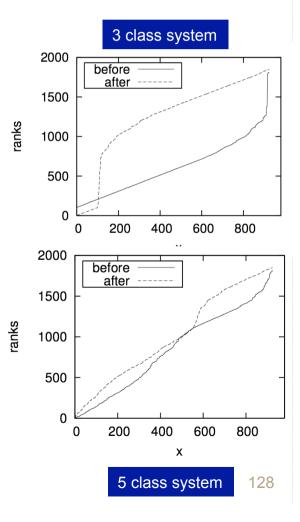
Select rows

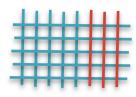
Exponential time

- Genetic algorithm to explore the 2^R subsets of rows.
 - When more rows than columns, even slower than the WRAPPER's $O(2^{C})$ search
 - Y.Li, M.Xie, and T.Goh, "A study of project selection and feature weighting for analogy based software cost estimation," Journal of Systems and Software, vol. 82, pp. 241–252, 2009.
- Polynomial time: Greedy agglomerative clustering
 - Push every instance to its closest neighbor.
 - Build a synthetic example at each pair's median
 - Repeat for the synthetic points.
 - Prototypes are all nodes at level X of GAC tree
 - For R rows, O(R²)
 - TEAK = GAC plus ...
 - Prune sub-trees with large variance
 - When to Use Data from Other Projects for Effort Estimation Ekrem Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, Jacky W. Keung , ASE 2010
- Linear-time
 - Rank ranges by frequency delta in different classes
 - Discard all rows that do not have the top R pivots

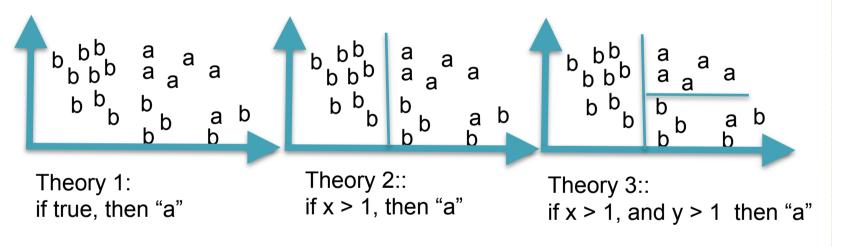
Select rows (with TEAK)

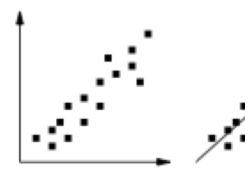
- To effort estimate a test instance, start at root of GAC tree
 - Move to nearest child
 - Stop at leaf or when sub-tree variance greater than super-tree
 - Estimate = median of instances in that subtree
- Compared with
 - linear regression,
 - neural nets,
 - analogy methods that use K=1,2,4 nearest neighbors (no variance pruning)
- Compared using
 - 20 * {shuffle rows, 3-way cross-val)
 - #wins # losses (in a Wilcoxon, 95%)
 - Count number of times ranked first by this procedure
- Conclusion: row-selection using clustering
 + variance pruning is a good thing


			_	>	#		Ħ		
	TEAK	LR	NNet	Best(K)	k=1	k=16	k=2	k=4	k=8
MRE Cocomo81 Cocomo81e Cocomo81o Nasa93 Nasa93c2 Nasa93c5 Desharnais Sdr ISBSG-Banking Count		▲ ▲ 3	0	0	0	0	0	0	0
Pred(25) Cocomo81 Cocomo81e Cocomo81o Nasa93 Nasa93c2 Nasa93c5 Desharnais Sdr ISBSG-Banking Count	▲ ▲ ▲ 5	▲ ▲ 3	1	0	0	0	0	0	0
<u>AR</u> Cocomo81 Cocomo81e Cocomo81o Nasa93 Nasa93c2 Nasa93c5 Desharnais Sdr ISBSG-Banking <i>Count</i>	▲ ▲ ▲ 6	▲ ▲ 3	0	1	0	0	0	0	0

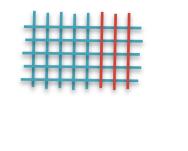

Select rows (with range pruning)

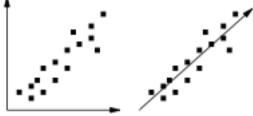
→


- For K in Klasses
 - Let NotK = Klasses K
 - Let NI, N2 be number of rows with K and NotK classes
 - For C in columns
 - For R in range of column C
 - Let FI, F2 = frequency of C.R in K and NotK
 - Let x = FI / NI and y = F2 / N2
 - Let R.score = x² / (x + y)
 ;;; pivotal if R far more frequent in K than NotK
- Remove all rows without the top five pivots
 - If accuracy of reduced set decreases, then ABORT.
- For each instance, find distance needed to travel before a K=5 nearest neighbor algorithm changes the classification.
 - In the full data set
 - In the reduced data set
- Result:
 - Much charger to change classification in reduced data set
- Conclusion: if concerned about errors in data collection, use row selection (and less classes)


Rotate (add columns)

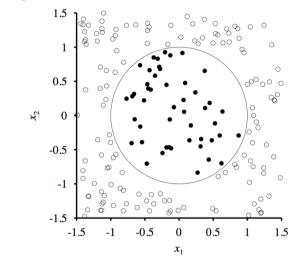
 Sometimes, the data's raw dimensions suffice for isolating the target concept..

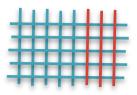


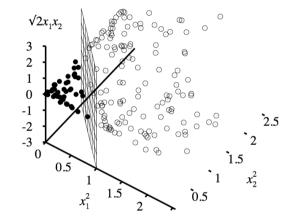

 But what if the target concept falls across and not along, the raw dimensions?

Rotate (add columns)

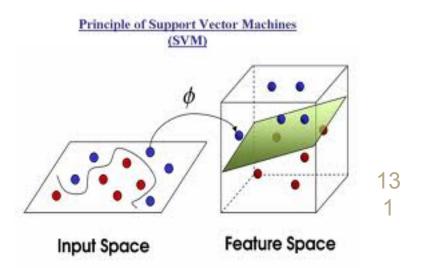
- Synthesize a new dimension that combines the raw into something new
- Apply single-valued decomposition (SVD) to
 - the covariance matrix (principal component analysis, or PCA)
 - or the data table (latent semantic indexing, or LSI)
- PCA that produces a set of orthogonal "components"
 - Transforms C correlated variables into fewer uncorrelated "components".
 - Component[i] accounts for as much variability as possible.
 - Component[i+1] accounts for as much of the remaining variability as possible.


- Much easier to learn rules when dimensions match the data. E.g. a defect predictor:
- if comp[1] ≤ 0.180 then NoDefects else if comp[1] > 0.180 then if comp[1] ≤ 0.371 then NoDefects else if com[1] > 0.371 then Defects
- But it can be hard to explain that predictor:


Comp[1] = 0.236*v(g) +0.222*ev(g)+0.236*iv (g) +0.241*n +0.238*v -0.086*l +0.199*d +0.216*i +0.225*e +0.236*b +0.221*t +0.241*lOCode +0.179*lOComment +0.221*lOBlank +0.158*lOCodeAndComment +0.163*uniq_Op +0.234*uniq_Opnd +0.241*total_Op +0.241*total_Opnd +0.236*branchCount



Rotate (add columns)


• Special transforms

 Support vector machines: construct a hyper-plane that separates classes

Clump rows (a.k.a. generalize)

- Ever notice that rows and rules have (nearly) the same syntax?
 - Age=young and wealth=rich and iq=high and class=happy
 - If age=old and wealth=rich and iq=high then happy
- But when we write rules, we only do it for frequently occurring patterns in the other rows
- "Clump rows" : replace them with a rule that covers many rows, but many only mention some of the columns
 - **If** age=old and wealth=rich **then** happy
- If you do this after clumping columns and selecting good rows and selecting good columns and (maybe) adding in good columns
 - Then the search space is very small
 - The exploring can be heavily biased by the other steps (e.g. look at great rows before dull ones)
 - And, hey presto, you've got a working data miner

Hints and tips (note: only my view)

- Always try clumping with discretization
 - So very simple
 - So experiment with / without discretization
- Always try column selection
 - Usually, massive reduction in the columns
- If the data won't fit in RAM,
 - try column selection first (use a linear-time approach)
 - then you can explore row selection by (say)
 - Eral: read first 1000 instances and apply row selection
 - Era[i+1]: read next 1000 records and ignore instances that fall close to the instances selected at Era[i]
- Try these last: PCA / Support vector machines
 - Benefits of PCA often achieved, or beaten by other column selectors
 - Hall, M. and Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans on Knowledge and Data Engineering. 15(3), November/December 2003
 - The FASTMAP heuristic FASTMAP, can do what PCA does, faster, scalable.
 - Faloutsos, C. and Lin, K. 1995. FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In *Proceedings of the 1995 ACM SIGMOD international Conference on Management of Data*
 - For text mining (PCA / LDA) vs TF*IDF never benchmarked

Coming next...

- Enough geeking
- What have you learned, that is useful, at the business level?
 - What can you <u>say</u> about how to do better SE?

GENERALITY (OR NOT)

O°

Road map

- I. Data mining & SE (overview)
- 2. Data mining tools (guided tour of "WEKA")
- 3. Data "carving" (core operators of DM)
- 4. Generality (or not)
- 5. Bias (is your friend)
- 6. Evaluation (does it really work?)

This hour

- Claim:
 - Current SE empirical practice asks for conclusions that are are external valid
 - apply to more than one domain
 - So far, such external valid conclusions are illusive
 - Despite decades of research.
- Implications:
 - The goal is wrong
 - Seek not for general theories
 - Only for the special lessons that work best on local projects.

• "W"

- a baseline tool for generating those special lessons
- Case-Based Reasoning vs Parametric Models Software Quality Optimization, Adam Brady, Tim Menzies, PROMISE 2010

What general lessons have we learned from all this data mining?

Only a small minority of PROMISE papers (11/64) discuss results that repeated in data sets from multiple projects

E.g. Ostrand, Weyuker, Bell PROMISE '08, '09 Same functional form Predicts defects for generations of AT&T software E.g. Turhan, Menzies, Bener PROMISE '08, '09 10 projects Learn on 9 Apply to the 10th Defect models learned from NASA projects work for Turkish white goods software Caveat: need to filter irrelevant training examples. See also

•When to Use Data from Other Projects for Effort Estimation Ekrem Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, Jacky W. Keung, ASE 2010

•B. Turhan, T. Menzies, A. Bener, and J. Distefano. On the relative value of cross-company and within- company data for defect prediction. Empirical Software Engineering, 68(2):278–290, 2009

What general lessons have we learned from all this data mining?

• The usual conclusion is that we learn that we can learn very little

File system

Printing

Clustering

Tomcat

- FSE'09: Zimmerman et Firefox
 - Defect models not generalizable
 - Learn "there", apply "here" only works in 4 of their 600+ experiment
 - Opposite to Turhan'09
 - ?add relevancy filter

- Al search for better software project options
- Conclusions highly dependent on local business value proposition
- And others
 - TSE '01, '05: Shepperd et al
 - Any conclusion regarding "best" effort estimator varies by data sets, performance criteria, random selection train/test set
 - TSE'06: Menzies, Greenwald:
 - attributes selected by column selection vary wildly across projects

Derby

Kernel

Eclipse


The gods are angry

- Fenton at PROMISE' 07 (invited talk)
 - "... much of the current software metrics research is inherently irrelevant to the industrial mix ..."
 - "... any software metrics program that depends on some extensive metrics collection is doomed to failure ..."
- Budgen & Kitchenham:
 - "Is Evidence Based Software Engineering mature enough for Practice & Policy?
 - Need for better reporting: more reviews.
 - Empirical SE results too immature for making policy.
 - B. Kitchenham D. Budgen, P. Brereton. Is evidence based software engineering mature enough for practice & policy? In 33rd Annual IEEE Software Engineering Workshop 2009 (SEW-33), Skvde, Sweden, 2009.
- Basili : still far to go
 - But we should celebrate the progress made over the last 30 years.
 - And we are turning the corner

A new hope (actually, quite old)

- Experience factories
 - Method for find the special lessons that work for the local projects
- Basili'09 (pers. comm.):
 - "All my papers have the same form.
 - "For the project being studied, we find that changing X improved Y."
- Translation (mine):
 - Even if we can't find general models (which seem to be quite rare)....
 - ... we can still research general methods for finding the special lessons that work best on the local projects

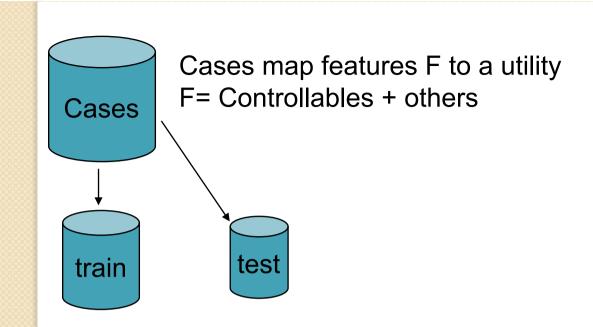
"W" + CBR: Preliminaries

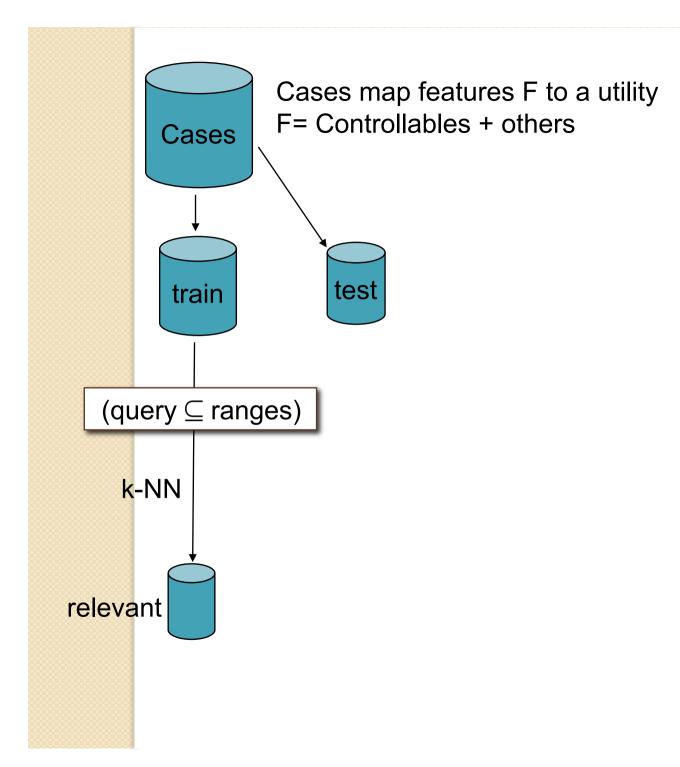
•"Query"

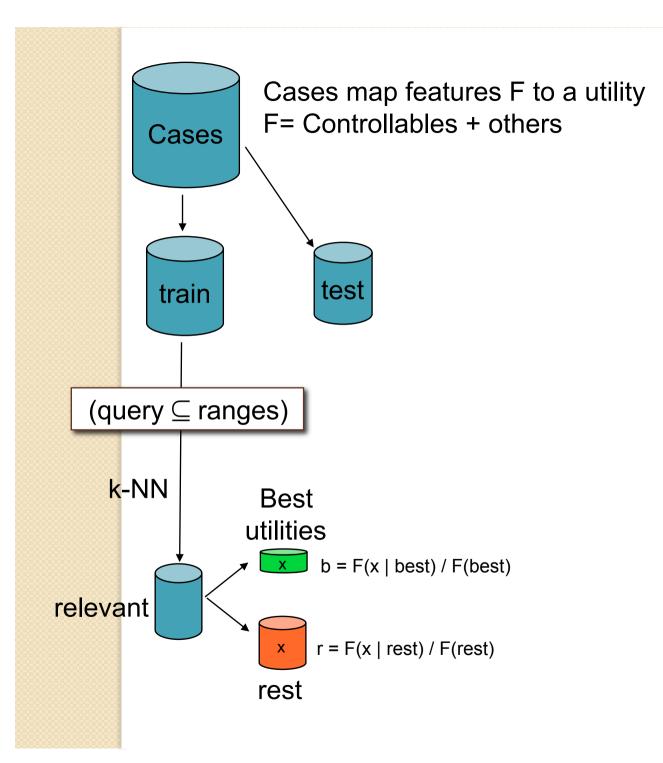
• What kind of project you want to analyze; e.g.

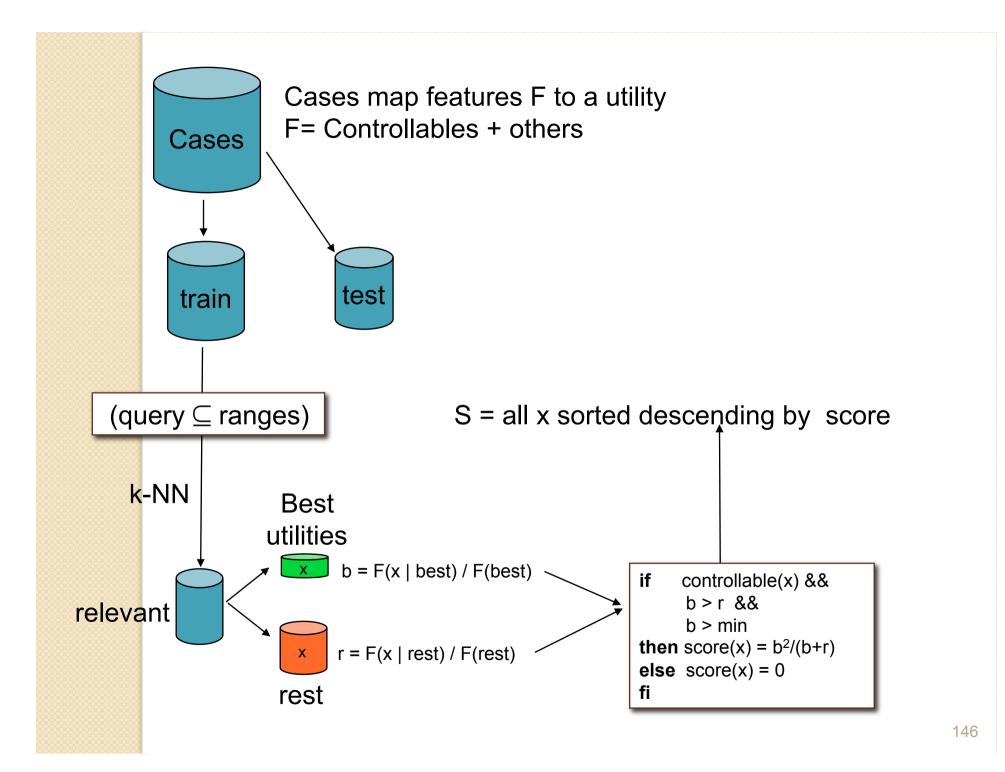
•Analysts not so clever,

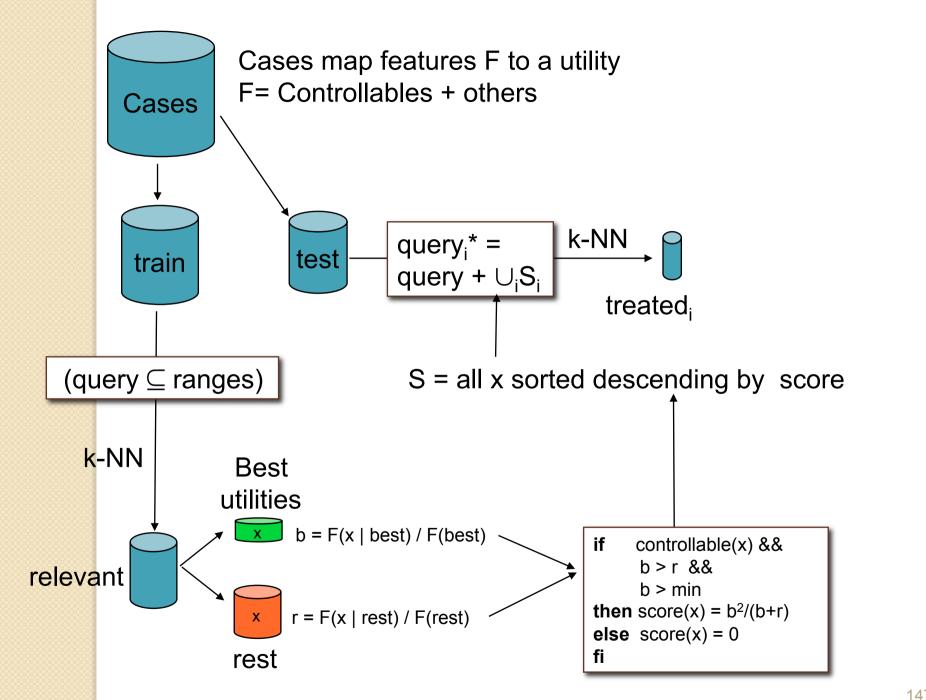
•High reliability system

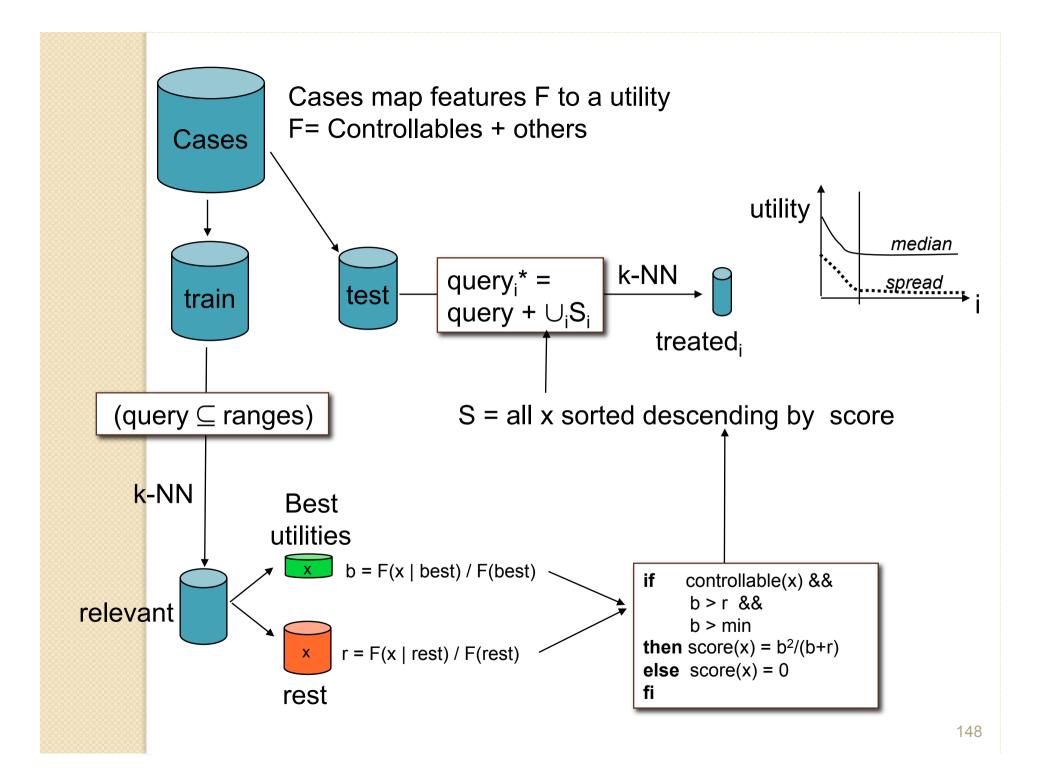

•Small KLOC

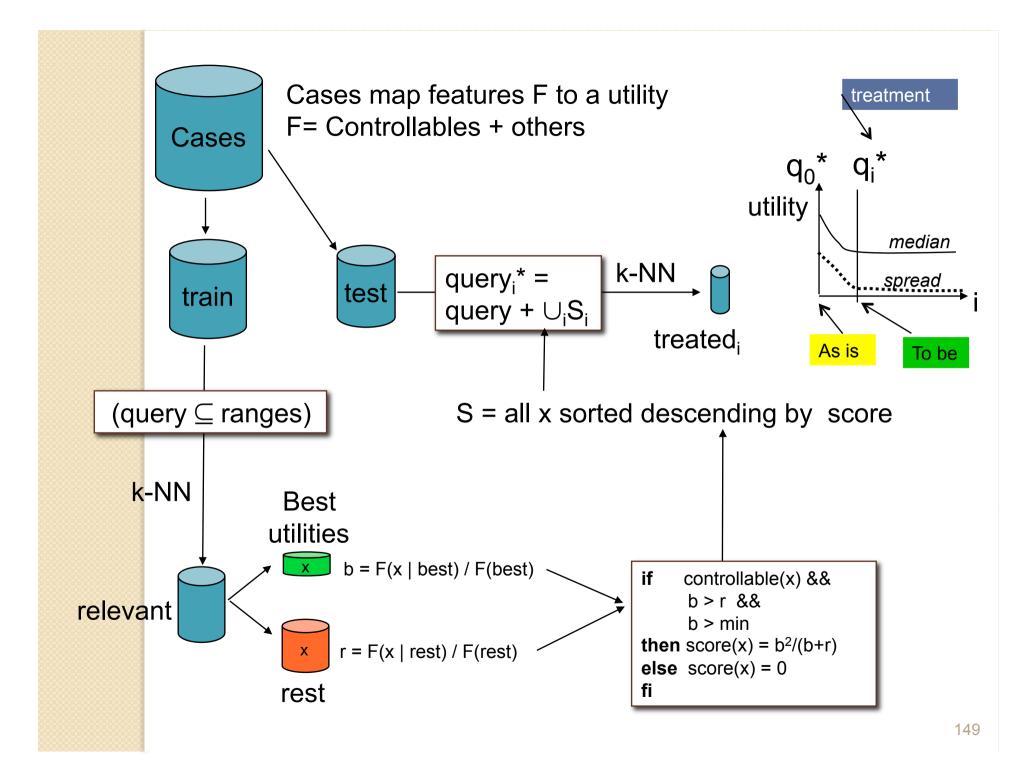

•"Cases"


•Historical records, with their development effort


•Output:


•A recommendation on how to change our projects in order to reduce development effort





Results (distribution of development efforts in q_i*)

	X = a	as is	Y = t	o be	(X-Y) / X
cases query	median	spread	median	spread	median	spread
nasa93ground	162	349	99	80	61%	23%
nasa93flight	215	398	131	100	61%	25%
nasa93osp	117.6	396	68	79	58%	20%
nasa93osp2	170	409	95	94	56%	23%
coc81flight	88	205	34	156	39%	76%
Spread Improvement % 90% 70% 60% 50% 40% 30% 20% 10% 0%	10%	20% 30	• • • • • • • • • • • • • • • • • • •	× 50%	60%	70%
		Mediar	n Improven	nent %		

Cases from promisedata.org/data

Median = 50% percentile Spread = 75% - 25% percentile

Improvement = (X - Y) / X

- X = as is
- Y = to be
- <u>more</u> is better

Usually:

- spread reduced to 25% of "as is"
- median reduction to 45% of "as is"

But that was so easy

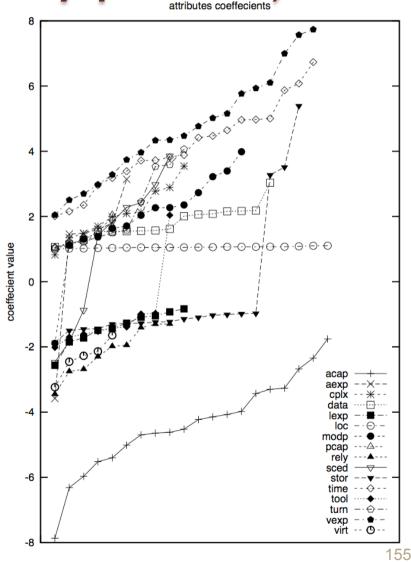
- And that's the whole point
- Yes, finding the special lessons that work best on the local projects need not be difficult
- Strange to say...
 - There are no references in the CBR effort estimation literature for anything else than estimate
 = nearest neighbors
 - No steps beyond into planning , etc
 - Even though that next steps is easy

What should change? (**q**_j* - **q**_•*)

		асар	арех	ltex	ltex	plex	pmat	pmat	sced	sced	stor	time	tool		# of	
cases	query	3	3	3	4	3	3	4	2	3	3	3	3	С	hange	s
	-															
nasa93	ground					100%	55%				85%				3	
nasa93	flight					95%	70%				100%				3	
nasa93	osp	95%	90%										100%		3	
nasa93	osp2				100%			80%	85%						3	
coc81	flight						60%					65%			2	
coc81	osp2			55%	55%		65%			100%					4	
coc81	ground						80%					100%			2	
coc81	osp						65%			65%					2	
Ove	erall:	12%	11%	7%	19%	24%	49%	10%	11%	21%	23%	21%	13%	Γ		

Good news: improving estimates requires very few changes

	-	асар	apex	ltex	ltex	plex	pmat	pmat	sced	sced	stor	time	tool	# (of
cases	query	3	3	3	4	3	3	4	2	3	3	3	3	Char	iges
															1
nasa93	ground					100%	55%				85%			3	
nasa93	flight					95%	70%				100%			3	
nasa93	osp	95%	90%										100%	3	
nasa93	osp2				100%			80%	85%					3	
coc81	flight						60%					65%		2	
coc81	osp2			55%	55%		65%			100%				4	
coc81	ground						80%					100%		2	
coc81	osp						65%			65%				5	
Ove	erall:	12%	11%	7%	19%	24%	49%	10%	11%	21%	23%	21%	13%	5	



Not-so-good news: special lessons very local

		асар	apex	ltex	ltex	plex	pmat	pmat	sced	sced	stor	time	tool	# of
cases	query	3	3	3	4	3	3	4	2	3	3	3	3	Changes
nasa93	ground					100%	55%				85%			3
nasa93	flight					95%	70%				100%			3
nasa93	osp	95%	90%										100%	3
nasa93	osp2				100%			80%	85%					3
coc81	flight						60%					65%		2
coc81	osp2			55%	55%		65%			100%				4
coc81	ground						80%					100%		2
coc81	osp 🗲						05%			05%				2
	rall:	12%	11%	7%	19%	24%	49%	10%	11%	21%	23%	21%	13%	

Better than model-based approach (conclusion instability problem)

- 20 experiments, using 66% of the data (selected at random)
- Linear regression:
 - Effort = b_0 + sum of $b_{i*} x_{i}$
 - Followed by a greedy backselect to prune dull variables
- Results
 - LOC influence stable
 - Some variables pruned 0 away half the time
 - Large ranges (max min) 0
 - Nine attributes even change the sign on their coefficients

all coeffecients, sorted

Q: Can we do better than "W"? A: Most certainly!

- "W" contains at least a dozen arbitrary design decisions
 - Which is best?
- But the algorithm is so simple
 - It should least be a baseline tool
 - Against which we compare supposedly more sophisticated methods.
 - The straw man
- Methodological advice
 - Before getting complex, get simple
 - Warning: often: my straw men don't burn

Certainly, we should always strive for generality

- But don't be alarmed if you can't find it.
- The experience to date is that,
 - with rare exceptions,
 - SE research does not lead to general models
- But that's ok
 - Very few others have found general models (in SE)
 - E.g. Turhan, Menzies, Ayse ESE journal '09
 - B. Turhan, T. Menzies, A. Bener, and J. Distefano. On the relative value of cross-company and within- company data for defect prediction. Empirical Software Engineering, 68(2): 278–290, 2009
 - E.g. Menzies et al ASE conference, 2010
 - When to Use Data from Other Projects for Effort Estimation Ekrem Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, Jacky W. Keung , ASE 2010

• Anyway

- If there are few general results, there may be general methods to find the special lessons that work best on the local projects
 - Seek not "models as products"
 - But general "models to generate products"

Two definitions of "model"

- A hypothetical description of a complex entity or process.
 - Model as output from research machine
 - The "product" of research

- A plan to create, according to a model or models
 - Model of the research machine
 - The "generator" of products

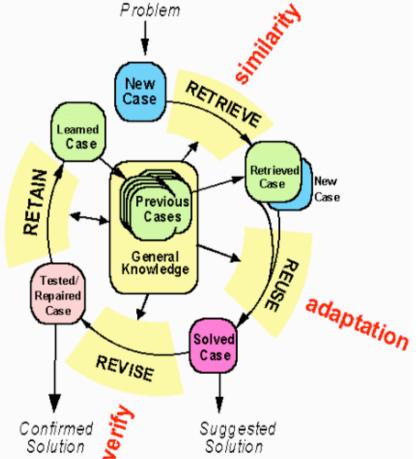
"W" is a general model generator.

If we can't find general models, is it science?

Popper '60: Everything is a "hypothesis"

- And the good ones have weathered the most attack
- SE "theories" aren't even "hypotheses"
- Karl Popper, Conjectures and Refutations, London: Routledge and Keagan Paul, 1963

Endres & Rombach '03: Distinguish "observations", "laws", "theory"


- Laws predict repeatable observations
- Theories explain laws
- Laws are either hypotheses (tentatively accepted) or conjectures (guesses)
- Rombach A. Endres, H.D.A Handbook of Software and Systems Engineering: Empirical Observa- tions, Laws and Theories. Addison Wesley, 2003.

Sjoberg '08 : 5 types of "theory":

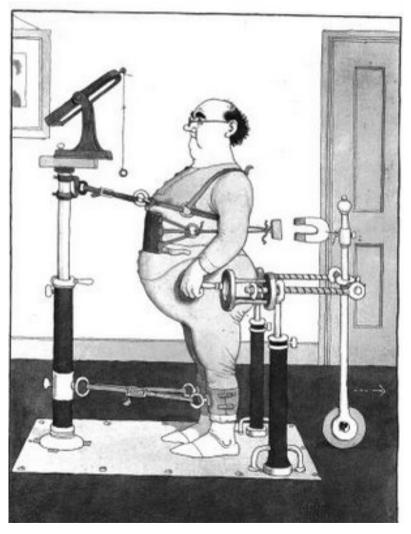
- Building Theories in Software Engineering Dag I. K. Sjøberg, Tore Dyba Bente C. D. Anda and Jo E. Hannay, GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING2008,
- I. Analysis (e.g. ontologies, taxonomies)
- 2. Explanation (but it is hard to explain "explanation")
- 3. Prediction (some predictors do not explain)
- 4. Explanation and prediction
- 5. "models" for design + action
 - Don't have to be "right"
 - Just "useful"
 - A.k.a. Endres & Rombach's "laws"?

Btw, constantly (re)building the special local models is a general model

- Case-based reasoning
 - learning
- Kolodner's theory of reconstructive memory
 - Janet Kolodner, "Reconstructive Memory: A Computer Model," Cognitive Science 7 (1983)
- The Yale group
 - Shank & Riesbeck et al.
 - Riesbeck, Christopher, and Roger Schank. Inside Case-based Reasoning. Northvale, NJ: Erlbaum, 1989.
 - Memory, not models
 - Don't "think", remember

Kludges: they work

Ask some good old fashioned AI types


- Minsky'86: "Society of Mind"
 The brain is a set of 1000+ kludges
 Minsky, Marvin The Society of Mind, Simon and
 - Schuster, New York, 1988.

Feigenbaum'83

- Don't take your heart attack to the Maths Dept.
 - Were they will diagnose and treat you using first principles
- Instead, go to the E.R room
 - Staffed by doctors who spent decades learning the quirks of drugs, organs, diseases, people, etc 0
 - Edward Feigenbaum and Pamela McCorduck The Fifth Generation: 0 Artificial Intelligence and Japan's Computer Challenge to the World, Addison-Wesley (1983)

Seek out those that study kludges.You'll be treated faster

- You'll live longer

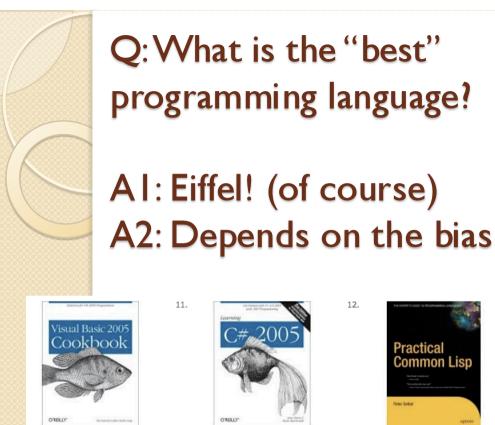
Disagree with me?

- Want to find some general conclusions on SE?
- Need to go somewhere to get a lot of data from different projects?

http://promisedata.org/data

Repository + annual conference. See you there?

Coming next...


- If all SE conclusions are biased by local conditions....
 - ... Is this an enormous problem?
 - ... Or a way to generate new insights?

BIAS (ISYOUR FRIEND)

o°

Road map

- I. Data mining & SE (overview)
- 2. Data mining tools (guided tour of "WEKA")
- 3. Data "carving" (core operators of DM)
- 4. Generality (or not)
- 5. Bias (is your friend)
- 6. Evaluation (does it really work?)

Visual Basic 2005 Cookbook by Tim Patrick (Paperback)


Buy new: \$32.99 57 used and new from \$24.43

Ruby by Example by Kevin Baird (Paperback)

11.

14.

Learning C# 2005 by Jesse Liberty (Paperback)

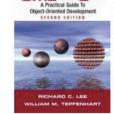
Buy new: \$26.39 56 used and new from \$21.91

(+) Tag Score: 1 (-)

Learn to Program with

Java by John Smiley

(Denerheeld)



Practical Common Lisp by Peter Seibel (Hardcover)

Buy new: \$34.75 47 used and new from \$30.27

15.

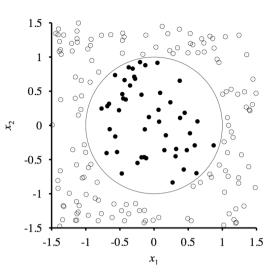
UML and C++ by Richard C. Lee (Paperback)

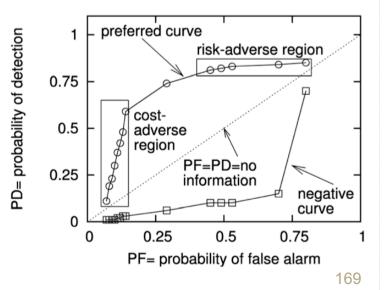
Calculate	Reset
multipliers	
II CPU Time	1
emory Use	0
Zip Bytes	1
benchmark	weight
nary-trees	1
ameneos	0
eap-concurrency	0
nnkuch	1
sta	1
nucleotide	1
andelbrot	1
eteor-contest	0
body	1
ieve	1
sieve-bits	1
artial-sums	1
digits	1
cursive	1
gex-dna	1
verse-complement	1
ectral-norm	1
artup	0
ım-file	1

Bias is unavoidable

- Without bias
 - we can't assess relevance / irrelevance
- Without irrelevance,
 - we can't prune the data
- Without pruning,
 - we can't summarize
- Without summarization,
 - we can't generalize
- Without generalizing past experience
 - we can't predict the future
- So bias makes us blind (to some things)
 - But also, it lets us see (the future)

YOU WRITE WHAT YOU'RE TOLD!





Sources of bias

- Sampling:
 - what data do you select in the pre-process?
- Language
 - E.g. if propositional, can't learn linear equations
- Search
 - When growing a model, what do you look at next?
- Over-fitting avoidance
 - When pruning a model, what is chopped first?
- Evaluation
 - Do you seek high accuracy? high support? What?

e.g. language bias. Hard to describe a circle if your language ls restricted to "Z op Value"

Different
learners
use different
biases

- 48 learners, 320 combinations of biases
 - **48/320 = 15%**
- Separate-and-conquer rule learningJ. FurnkranzArtificial Intelligence Review, 13, pages 3--54, 1999. http:// citeseerx.ist.psu.edu/ viewdoc/summary? doi=10.1.1.33.4894

			Lang	uage	e Bias	5					rch l					erfitt	
		1	Stati	с		Dy	/n.			rithn	1	St	rate	gy		oida	nce
Algorithm	Selectors	Literals	Synt. Restr.	Rel. Clichés	Rule Models	Lang. Hier.	Constr. Ind.	Hill-Climbing	Beam Search	Best First	Stochastic	Top-Down	Bottom-Up	Bidirectional	Pre-Pruning	Post-Pruning	Integrated
AQ	×							×	Х			×					
AQ15	×							×	×			×				×	
AQ17	×						×	×	×			×				~	
ATRIS	×						^	×	^		×	^		×		×	
BEXA	x							x	×		\sim	×		\sim	×	x	
CHAMP	×	×	×				~	×	×			×			×	^	
CIPF	Â	\sim	^				×	×	^			x				×	
CN2							^									^	
CN2-MCI	×							×	×			×			×		
CLASS	×						×	×	×	~		×			×		
DLG	×								~	×		×	~				
FOCL	×							×	×				×				
	×	×		×				×				×			×		
FOIL	×	×	×					×				×			×		
FOSSIL	×	×	\times	×				×				×			×		
GA-SMART	×	×		\times	×						\times	×			\times		
GOLEM		\times	\times					×					\times				
GREEDY3	×							×				×				×	
GRENDEL					×			×				×					
GROW	×							×				×				\times	
HYDRA	×	\times						×				×					
IBL-SMART	×	\times		\times						\times				\times	×		
INDUCE	\times	\times						\times	\times			\times					
I-REP, I ² -REP	\times	\times	\times	\times				\times				\times					\times
JoJo	\times	\times						\times						\times			
m-FOIL	\times	\times	\times					\times	\times			\times			\times		
MILP	\times	\times	\times								\times	\times			\times		
ML-SMART	\times	\times		\times				\times	\times	\times		\times			\times		
NINA					\times	\times		\times					\times				
POSEIDON	\times							\times	\times			\times				\times	
PREPEND	\times							\times				\times					
PRISM	\times							\times				\times					
PROGOL	\times	\times	\times							\times		\times					
REP	×	\times		\times				×				×				\times	
RIPPER	×							\times				×				\times	\times
RDT					\times			×				×					
SFOIL	×										\times	×			×		
SIA	×										\times		\times			×	
SMART+	×	×		×	×			×	×	×	×	×			×		
SWAP-1	×							×						×		×	
TDP	×	×	×	×				×				×			×	×	

Bias can change conclusions

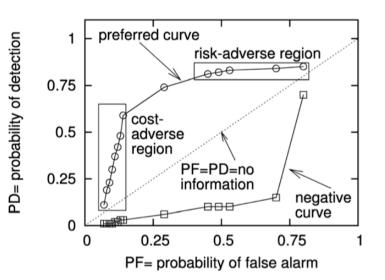
- Every data miner has its own bias
- Same data, different data miners, different conclusions
 - Changing biases changes what we best believe
- So, relativistic soup?
 - No basis to make policies, to plan for the future?
 - Data mining is a pack of lies?
 - No more than any other inductive generalization process

Nothing is "right", but some things are "useful"

- Sure, one data set supports many theories.
 - But there are many many more theories that are unsupported.
- No model is *right*, but some things are *useful*
 - (perform well on test data)
 - George Box
- And many many many more ideas are useless
 - Can't make predictions
 - Not defined enough to support (possible) refutation

Embrace bias

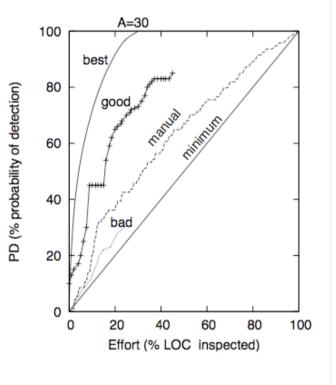
- When reporting a conclusion, report the biases that generated it.
- Make it a first class modeling construct
- Example #I:"W"
 - Recall the sampling bias of "W"
 - Different biases (the query "q") lead to different conclusions
 - Case-Based Reasoning vs Parametric Models Software Quality Optimization, Adam Brady, Tim Menzies, PROMISE 2010


Example #2: "WHICH"

Defect prediction from static code features: current results, limitations, new approaches. Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang and Ayşe Bener Automated Software Engineering (2010) 17: 375-407, July 23, 2010. http://menzies.us/pdf/ 10which.pdf

Evaluation Bias #1 : AUC(Pd, Pf)

- Much research
- Little recent improvement:
 - Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng. (2008)
- A shallow well?
 - And we've reached the bottom?



Evaluation Bias #2 : AUC(Pd, effort)

Inspect <u>fewest LOC</u> to find the <u>most bugs</u>.

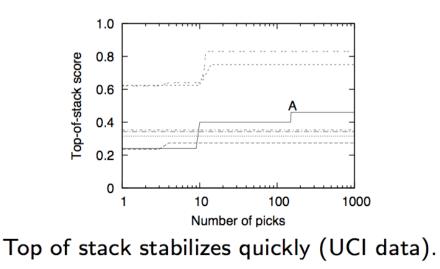
• Arisholm and Briand[2006]

- E.Arisholm and L. Briand. Predicting fault-prone components in a java legacy system. In 5th ACM-IEEE International Symposium on Empirical Software Engineering (ISESE), Rio de Janeiro, Brazil, September 21-22, 2006. Available from http://simula.no/research/engineering/ publications/Arisholm.2006.4.
- For a budget-conscious team,
- if X% of modules predicted to be faulty
- But they contain $\leq X\%$ of the defects,
- Then that defect predictor is not useful
- i.e. their bias is pd>effort
- Operationalizing their bias:
 - Find modules triggered by the learner
 - Sort them in ascending order of size
 - $^\circ~$ Assume human inspectors find Δ of the defects in the triggered modules
 - Use ratoos of "best" effort-vs-pd curve
 - "best" only triggers on defective modules
 - Note: Δ cancels out

"bad" : worse than manual "good" : beats manual

0

Implementing a bias-specific learner


- All learners have an search bias S and an evaluation bias E . e.g. C4.5:
 - S = infogain
 - E = pd, pf, accuracy, etc
- Note: usually, not(S = E)

- Question: What if we make S = E ?
 - Answer: "WHICH"

Implementing a bias-specific learner (more)

- Fuzzy beam search
- I. Discretize all numeric features.
- 2. Sort all ranges using E on to a stack
- 3. Pick any 2 items near top-of-stack
- 4. Combine items, score them with E, insert them into the sorted stack.
- 5. Goto 3
- Note: no S and E is customizable
- But when to stop? (Use 200 picks)

Results: 10 random orderings * 3-way cross-val

- 10 sets of static code features from NASA, Turkish whitegoods
- "Rank" computed using Mann-Whitney U test (95%)
- E = AUC(effort, pd)
- Micro20: training on 20 defective + 20 non-defective

ra	ank treatment	median "best" %	2nd quartile, median, 3rd quartile
1	WHICH	87.3	
2	micro20	76.3	│
3	NB	64.2	│
3	manual	64.2	│
4	C4.5	23.1	_●
4	jRip	17.7	-●-
			50%

WHICH destroys classic learners

- Which were built to optimize accuracy
- So bias changes everything
- BTW, once again a shallow well
 - we do not need much data to do it (40 examples).

Discussion

- Bias changes everything
- But this is not a problem
 - It is a research opportunity
- What biases are current in industrial SE?
 - How do they effect our conclusions?

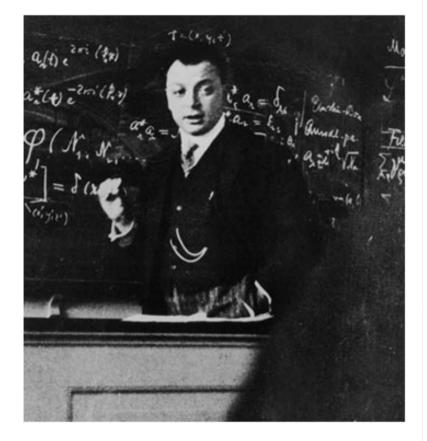
Coming up...

• Let's focus on one particular bias

• Evaluation

EVALUATION (DOES IT REALLY WORK?)

 \bigcirc°


Road map

- I. Data mining & SE (overview)
- 2. Data mining tools (guided tour of "WEKA")
- 3. Data "carving" (core operators of DM)
- 4. Generality (or not)
- 5. Bias (is your friend)
- 6. Evaluation (does it really work?)

Wolfgang Pauli: the conscience of physics

- The critic to whom his colleagues were accountable.
- Scathing in his dismissal of poor theories
 - often labeling it ganz falsch, utterly false.
- But "ganz falsch" was not his most severe criticism,
 - He hated theories so unclearly presented as to be
 - untestable
 - unevaluatable,
 - Worse than wrong
 - because they could not be proven wrong.
 - Not properly belonging within the realm of science,
 - even though posing as such.
 - Famously, he wrote of of such unclear paper:
 - "This paper is right. It is not even wrong."

So evaluation is important

- We saw above how "evaluation" actually became "the learning algorithm"
 - The "WHICH" experiment
- So evaluation is not some post hoc bolt,
 - Only to be explored as an after-thought once the work is done
 - Rather, it is an integral part of the work
 - Best to be get continual feedback from your algorithms as you go along
- BTW: to fail at a data mining Ph.D.
 - Plan to start evaluation in year3

Lesson: build the evaluation rig FIRST

Performance measures for continuous classes

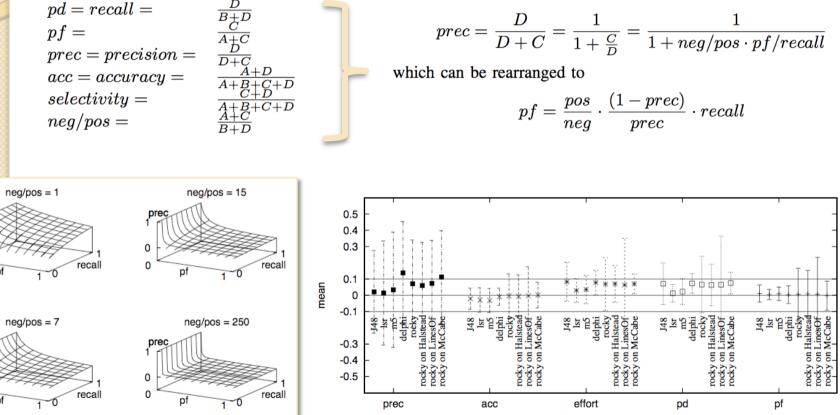
- Absolute residual = AR = (actual predicted)
- Relative error = RE = AR/actual
- Magnitude of relative error = MRE = abs(RE)
 - Can be surprisingly large (see next slide)
- MER = AR / predicted
- Median MRE, Median MER
- Mean MRE (severely deprecated)
 - Tron Foss, Erik Stensrud, Barbara Kitchenham, Ingunn Myrtveit, "A Simulation Study of the Model Evaluation Criterion MMRE," *IEEE Transactions on Software Engineering*, vol. 29, no. 11, pp. 985-995, Nov. 2003
- Pred(X) = percents of RE within X% of actual
 - E.g. if 80% of the predictions are with 30% of actual then Pred(30) = 80
 - Note Pred will not notice if a small number of predictions are really bad

Performance measures for discrete classes

а	b	С	< classified as
15	0	0	a= Iris-setosa
0	19	0	b=Iris-versicolor
0	2	15	c=Iris-virginica

consider "TRUE" = iris-virginica and FALSE = everything else

	Ground tru	uth
	FALSE	TRUE
detector silent	A =34	B = 2
detector loud	C= 0	D = 15


accuracy	(A+D)/(A+B+C+D)	(34+15)/51	96%
recall (pd)	D/(B+D)	15/(2+15)	88%
false alarm (pf)	C/(A+C)	0/34	0%
precision	D/(C+D)	15/(15+0)	100%
f-measure	2*prec*pd/	2*1*0.88/	
	(prec+pd)	(1+0.88)	94%

Collect separately for each class. Repeat 10 times (re-ordering data) * 10-way Repeat for each learner * discretizer * x * y *

Instability and Precision

 Tim Menzies, Alex Dekhtyar, Justin S. Di Stefano, Jeremy Greenwald: Problems with Precision: A Response to "Comments on 'Data Mining Static Code Attributes to Learn Defect Predors", IEEE Transactions on Software Engineering, Volume 33, Number 9, September 2007

Lesson: avoid precision when target class is rare

Strange tales of performance measures

<u>Truth</u> 0 1	
Detector 0 A B	Prec = D/(C+D) $Acc = (A+D) / (A+B+C+D)$
1 C D	PD = D/(B+D) PF = C / (A+C)
<u>Detector</u> 0 0 0	PF = PD = 1 (so detection does not preclude
1 10 10	bad false alarm rates)
<u>Detector</u> 0 80 15 1 0 5	Acc = 85%(so when target is comparativelyPD = 33%rare, Acc does not predict for PD)
Detector 0 100 0 1 0 0	Acc = 100% (so highly accurate predictors can PD = 0 miss everything)
<u>Detector</u> 0 0 10	PD = 80% (so PD does not predict
1 50 40	Prec = 44% for precision)

Lesson: avoid Accuracy; consider both PD and Pf

Evaluation is time-consuming

analysis1(){ local origdata=\$1 local outstats=\$2 local nattrs="2 4 6 8 10 12 14 16 18 20" local learners="nb10 j4810 zeror10 oner10 adtree10" local reducers="infogain chisquared oneR" local tmpred=\$Tmp/red echo "n,reducer,learner,accuracy" > \$outstats

for n in \$nattrs; do for reducer in \$reducers; do \$reducer \$origdata \$n \$tmpred for learner in \$learners; do accur=`\$learner \$tmpred.arff | acc out="\$n,\$reducer,\$learner,\$accur" blabln \$out echo \$out >> \$outstats done done

}

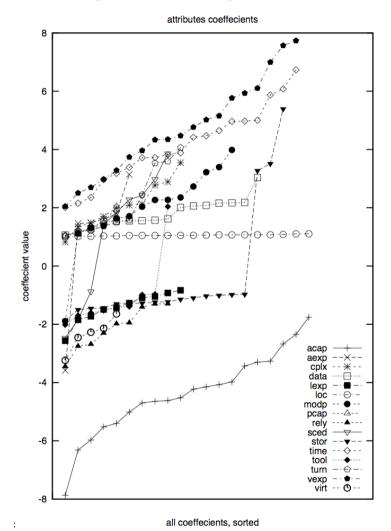
Learners * data sets * preprocessors

 Repeated 30 – 100 times for statistical validity

Time to run experiments

• Hours to days (first time)

Then comes the "oh dear moment"


• Do it all again

1 masters = 20 days of CPU (for evaluation)

Lesson: start your evaluations ASAP

Variance problems (more)

- "Simple Software Cost Estimation: Safe or Unsafe?" by Tim Menzies and Zhihao Chen and Dan Port and Jairus Hihn. Proceedings, PROMISE workshop, ICSE 2005 2005 .Available fromhttp://menzies.us/pdf/ 05safewhen.pdf .
- 20 experiments, using 66% of the data (selected at random)
- Linear regression:
 - Effort = b_0 + sum of $b_{i*}x_i$
 - Followed by a greedy back-select to prune dull variables
- Results
 - LOC influence stable
 - Some variables pruned away half the time
 - Large ranges (max min)
 - Nine attributes even change the sign on their coefficients

Lesson: avoid Accuracy; consider both PD and Pf

Evaluation (using hypothesis testing) is contentious

- Statistical significance tests of the form (H0 vs H1) are a 'potent but sterile intellectual rake who leaves ... no viable scientific offspring'.
 - Cohen J. 1988. The earth is round (p < .05). American Psychologist 49: 997 1003.
- Consider one study showing that, using significance testing, estimates from multiple sources are no better than those from a single source.
- How to explain 31 other studies where multiple sources out-performed single source by 3.4 to 23.4% (average = 12.5%).
- Odds of that happening at random?
 - 2^31 < less than a billionth
 - Armstrong JS. 2007. Significance tests harm progress in forecasting. International Journal of Forecasting 23: 21 – 327.

Table: Error	Reductions	from	Combining	Ex	Ante	Forecast	ŝ

Makridakis & Winkler (1983)	intentions " " expert " "	2 2 4 4 4 to 6	MAPE " MAE RAE Brier	annual " "	capital expenditures housing starts plant & equipment consumer products	6 6 11	1 1	18.0 7.0
Landereld & Seskin (1986) Armstrong et al. (2000) Winkler & Poses (1993) Thorndike (1938) Makridakis et al. (1993) Richards & Fraser (1977) Batchelor & Dua (1995) Kaplan et al. (1950) Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)	expert "	2 4 4 to 6	MAE RAE	"	plant & equipment		1	7.0
Armstrong et al. (2000) Winkler & Poses (1993) Thorndike (1938) Makridakis et al. (1993) Richards & Fraser (1977) Batchelor & Dua (1995) Kaplan et al. (1950) Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)	expert "	4 4 4 to 6	RAE			11		
Winkler & Poses (1993) Thorndike (1938) Makridakis et al. (1993) Richards & Fraser (1977) Batchelor & Dua (1995) Kaplan et al. (1950) Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)	expert "	4 4 to 6		**	consumer products		1	20.0
Thorndike (1938) Makridakis et al. (1993) Richards & Fraser (1977) Batchelor & Dua (1995) Kaplan et al. (1950) Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)		4 to 6	Brier			65	varied	5.5
Makridakis et al. (1993) Richards & Fraser (1977) Batchelor & Dua (1995) Kaplan et al. (1950) Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)				cross-section	survival of patients	231	varied	12.2
Richards & Fraser (1977) Batchelor & Dua (1995) Kaplan et al. (1950) Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)			% wrong	**	knowledge questions	30	varied	6.6
Batchelor & Dua (1995) Kaplan et al. (1950) Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)		5	MAPE	monthly	economic time series	322	1 thru 14	19.0
Kaplan et al. (1950) Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)	**	5	**	annual	company earnings	213	1	8.1
Zarnowitz (1984) Sanders & Ritzman (1989) Makridakis & Winkler (1983)		10	MSE	**	macroeconomic	40	1	16.4
Sanders & Ritzman (1989) Makridakis & Winkler (1983)	**	26	% wrong	cross-section	technology events	16	varied	13.0
Makridakis & Winkler (1983)	**	79	RMSE	quarterly	macroeconomic	288	1	10.0
	extrapolation	3	MAPE	daily	public warehouse	260	1	15.1
	**	5	**	monthly	economic time series	617	18	24.2
Makridakis et al. (1993)	**	5	**	**	**	322	1 thru 14	4.3
Lobo (1992)	**	5	**	quarterly	company earnings	6,560	1 thru 4	13.6
Schnaars (1986)	**	7	**	annual	consumer products	1,412	1 thru 5	20.0
	econometric	2	MAE	annual	plant & equipment	7	1	21.0
Clemen & Winkler (1986)	**	4	MAD	quarterly	GNP (real & nominal)	45	1 thru 4	3.4
Shamseldin et al. (1997)	**	5	MAPE	annual	rainfall runoff	22	1	9.4
Lobo (1992) e	expert/extrap	2	MAPE		company earnings	6,560	1 thru 4	11.0
Lawrence et al. (1986)	66	3	**	annual monthly	economic time series	1,224	1 thru 18	10.7
Sanders & Ritzman (1989)	**	3	**	daily	public warehouse	260	1	15.5
Lobo & Nair (1990)	**	4	**	annual	company earnings	768	1	6.4
Landefeld & Seskin (1986) in	intentions/econ	2	MAE	annual	plant & equipment	11	1	11.5
Vandome (1963)	extrap/econ	2	MAPE	quarterly	macroeconomic	20	1	10.1
Armstrong (1985)	**	2	**	annual	photo sales by country	17	6	4.2
Weinberg (1986)	expert/econ	2	**	cross-section	performing arts	15	varied	12.5
Bessler & Brandt (1981) exp	xprt/extrap/econ	3	**	quarterly	cattle & chicken prices	48	1	13.6
Fildes (1991)	**	3	MAE	annual	construction	72	1&2	8.0
Brandt & Bessler (1983)						14	1002	0.0

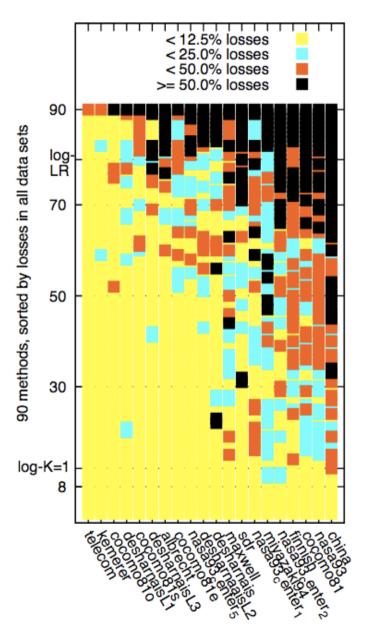
Lesson: Don't base conclusions on just hypothesis testing

Evaluation is humbling

- All that clever programming, then...
 - Then simpler ideas do as well, or better, than the more sophisticated
- Example
 - E.g. "Bayes" = simple correlation unaware learner
 - C4.5 = more sophisticated method, correlation aware
 - And no evidence here that the added complexity of C4.5 is better than dumb Bayes
 - Pedro Domingos and Michael J. Pazzani, On the Optimality of the Simple Bayesian Classifier under Zero-One Loss, Machine Learning, Volume 29, number 2-3, pages 103-130, 1997

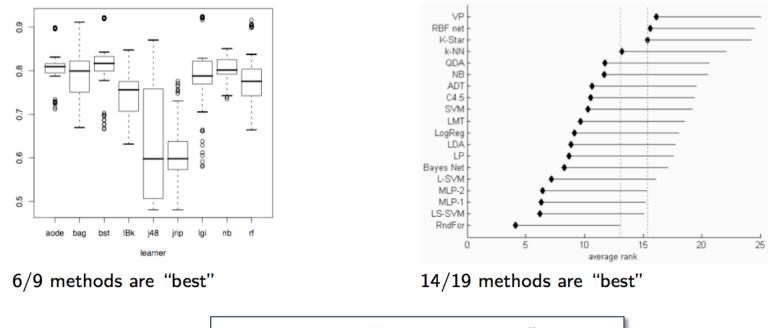
Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test splits. "Bayes" is the Bayesian classifier with discretization and "Gauss" is the Bayesian classifier with Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the Bayesian classifier and the corresponding algorithm, using a one-tailed paired t test: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%.

Data Set	Bayes	Gauss	C4.5	PEBLS	CN2	Def
Audiology	73.0±6.1	73.0 ± 6.1^{6}	72.5 ± 5.8^{6}	75.8 ± 5.4^{3}	71.0 ± 5.1^{5}	21.3
Annealing	95.3±1.2	84.3 ± 3.8^{1}	90.5 ± 2.2^{1}	98.8 ± 0.8^{1}	81.2 ± 5.4^{1}	76.4
Breast cancer	71.6 ± 4.7	71.3 ± 4.3^{6}	70.1 ± 6.8^5	65.6±4.7 ¹	67.9±7.1 ¹	67.6
Credit	84.5±1.8	78.9 ± 2.5^{1}	85.9 ± 2.1^{3}	82.2 ± 1.9^{1}	82.0 ± 2.2^{1}	57.A
Chess endgames	88.0 ± 1.4	88.0 ± 1.4^{6}	99.2±0.11	96.9±0.7 ¹	98.1 ± 1.0^{1}	52.0
Diabetes	74.5±2.4	75.2±2.16	73.5 ± 3.4^{5}	71.1 ± 2.4^{1}	73.8 ± 2.7^{6}	66.0
Echocardiogram	69.1±5.4	73.4 ± 4.9^{1}	64.7±6.31	61.7 ± 6.4^{1}	68.2 ± 7.2^{6}	67.8
Glass	61.9 ± 6.2	50.6 ± 8.2^{1}	63.9±8.7 ⁶	62.0 ± 7.4^{6}	63.8±5.56	31.7
Heart disease	81.9 ± 3.4	84.1 ± 2.8^{1}	77.5 ± 4.3^{1}	78.9 ± 4.0^{1}	79.7 ± 2.9^3	55.0
Hepatitis	85.3±3.7	85.2 ± 4.0^{6}	79.2±4.31	79.0±5.11	80.3 ± 4.2^{1}	78.1
Horse colic	80.7±3.7	79.3±3.71	85.1±3.8 ¹	75.7±5.01	82.5 ± 4.2^{2}	63.6
Hypothyroid	97.5±0.3	97.9 ± 0.4^{1}	99.1±0.21	95.9±0.71	98.8 ± 0.4^{1}	95.3
Iris	93.2±3.5	93.9±1.96	92.6±2.76	93.5±3.0 ⁶	93.3±3.66	26.5
Labor	91.3±4.9	88.7±10.66	78.1±7.91	89.7±5.06	82.1±6.91	65.0
Lung cancer	46.8±13.3	46.8 ± 13.3^{6}	40.9±16.3 ⁵	42.3±17.36	38.6 ± 13.5^3	26.8
Liver disease	63.0±3.3	54.8 ± 5.5^{1}	65.9 ± 4.4^{1}	61.3 ± 4.3^{6}	65.0 ± 3.8^{3}	58.1
LED	62.9±6.5	62.9 ± 6.5^{6}	61.2 ± 8.4^{6}	55.3 ± 6.1^{1}	58.6 ± 8.1^{2}	8.0
Lymphography	81.6±5.9	81.1 ± 4.8^{6}	75.0 ± 4.2^{1}	82.9 ± 5.6^{6}	78.8 ± 4.9^{3}	57.3
Post-operative	64.7±6.8	67.2 ± 5.0^3	70.0 ± 5.2^{1}	59.2 ± 8.0^{2}	60.8 ± 8.2^4	71.2
Promoters	87.9±7.0	87.9±7.0 ⁶	74.3±7.81	91.7 ± 5.9^{3}	75.9 ± 8.8^{1}	43.1
Primary tumor	44.2±5.5	44.2 ± 5.5^{6}	35.9 ± 5.8^{1}	30.9 ± 4.7^{1}	39.8 ± 5.2^{1}	24.6
Solar flare	68.5±3.0	68.2±3.76	70.6 ± 2.9^{1}	67.6±3.56	70.4 ± 3.0^{2}	25.2
Sonar	69.4±7.6	63.0 ± 8.3^{1}	69.1±7.46	73.8 ± 7.4^{1}	66.2±7.5 ⁵	50.8
Soybean	100.0 ± 0.0	100.0 ± 0.0^{6}	95.0 ± 9.0^3	100.0 ± 0.0^{6}	96.9 ± 5.9^{3}	30.0
Splice junctions	95.4±0.6	95.4 ± 0.6^{6}	93.4±0.81	94.3±0.51	81.5 ± 5.5^{1}	52.4
Voting records	91.2±1.7	91.2±1.76	96.3±1.31	94.9 ± 1.2^{1}	95.8 ± 1.6^{1}	60.5
Wine	96.4±2.2	97.8 ± 1.2^{3}	92.4±5.61	97.2 ± 1.8^{6}	90.8 ± 4.7^{1}	36.4
Zoology	94.4±4.1	94.1 ± 3.8^{6}	89.6 ± 4.7^{1}	94.6 ± 4.3^{6}	90.6 ± 5.0^{1}	39.4


Lesson: baseline your new method against a simpler alternative

Evaluation is humbling (2)

- 90 data miners
 - 9 learners with
 - I0 pre-processors
- 20 datasets
- (Win Loss) results when one miner is compared to 89 others.
- Sum of five different performance measures
- And most miners perform about the


Evaluation is humbling (3)

• Left:

• Y. Jiang, B. Cukic, and T. Menzies. Fault prediction using early lifecycle data. In ISSRE'07, 2007. Available from http://menzies.us/pdf/07issre.pdf.

• Right:

 Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng. (2008)

Lesson: most "improvements", aren't

No consensus on the "best" evaluation

	1999	2000	2001	2002	2003
Total number of papers	54	152	80	87	118
Total number of papers		45		31	54
Relevant papers for our study	19	45	25	31	54
Sampling method [%]					
cross validation, leave-one-out	22	49	44	42	56
random resampling	11	29	44	32	54
separate subset	5	11	0	13	9
Score function [%]					
classification accuracy	74	67	84	84	70
classification accuracy - exclusively	68	60	80	58	67
recall, precision	21	18	16	25	19
ROC, AUC	0	4	4	13	9
deviations, confidence intervals	32	42	48	42	19
Overall comparison of classifiers [%]	53	44	44	26	45
averages over the data sets	0	4	6	0	10
t-test to compare two algorithms	16	11	4	6	7
pairwise t-test one vs. others	5	11	16	3	7
pairwise t-test each vs. each	16	13	4	6	4
counts of wins/ties/losses	5	4	0	6	9
counts of significant wins/ties/losses	16	4	8	16	6

An overview of the papers accepted to International Conference on Machine Learning in years 1999-2003. The reported percentages (the third line and below) apply to the number of papers relevant for our study.

Janez Demsar: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7: 1-30 (2006)

- No global standard
- Advice:
 - I. Study evaluation methods in current state-of-the-art papers
 - Copy them
 - 2. Avoid t-tests and their simplistic Gaussian assumptions
 - 3. Don't bother with results that report a (say) 4% improvement
 - 4. Be prepared to change the evaluation to make the reviewers happy
 - 5. Favor informative visualizations,
 - Use statistical tests as sanity checks on the conclusions form the visualization

Visualizations need not be elaborate

				==	PERC	ENTILES ===
Rank	Treatment 0%	50%	100%	10	30	50 70 90
====	======= ==	===	====	==	==	== == ==
1	(M 3 K 3)	I	*	81	88	94 100 100
1	(M 3 K 2)	I	*	76	88	94 100 100
1	(M 3 K 1)	I	*	76	82	94 100 100
1	(M 3 K 0)	I	*	81	88	94 100 100
1	(M 2 K 3)	I	*	81	82	94 100 100
1	(M 2 K 2)	I	*	76	88	94 100 100
1	(M 2 K 1)	I	*	76	82	94 100 100
1	(M 1 K 3)	I	*	76	88	94 100 100
1	(M 1 K 2)	I	*	76	88	94 100 100
1	(M 1 K 1)	I	*	76	85	94 100 100
1	(M 1 K 0)	I	*	76	88	94 100 100
1	(M 2 K 0)	I	*	76	85	88 100 100
2	(МОКО)	*	I	41	49	65 100 100
3	(M O K 3)	*	1	35	50	59 100 100
4	(МОК2)	*	I	38	50	59 100 100
5	(M O K 1)	*	I	35	47	59 100 100

M,K: two magic params inside a NaiveBayes classifier handling low frequency counts PD measurements in a 10*3 cross-val on IRIS Rank set by a Mann-Whintey (95% (comparing each row to proceeding rows of the same rank 196 tim@menzies.us

WHAT HAVE WE LEARNED?

Fatal flaws in data mining for SE?

• Barbara Kitchenham et al, ESE journal, 2008

• Replications can replicate stupid errors

- Vic Basili, LASER, 2010
 - If we give people our data, they can make stupid mistakes, cause they don't understand our context
- Well get back to this....

Data mining =

a diverse and lucrative career

- Effort estimation
- Defect prediction
- Optimization of discrete systems
- Test case generation
- Fault localization
 - Text mining
- Temporal sequence mining
 - Learning software processes
 - Learning APIs
- Etc

Data mining applications explored by me since 2007.

A career in data mining is a very diverse career, indeed

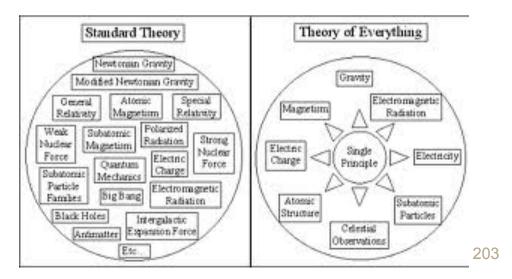
We need help

- A little experiment from http://www.youtube.com/v/ vJG698U2Mvo&hl=en_US&fs=1&rel=0
- Rules
 - No one talks for the next 4 minutes
 - If you know what is about to happen, see (1)
- This is a selective attention test
 - Count the number of times the team with the white shirt passes the ball.

Data analysis deserves (much) more than zero pages

Easterbrook et al. (2007)

- 9 pages: selecting methods
- 3 pages: research questions
- 2 pages: empirical validity
- 2 pages: different forms of "empirical truth"
- I page: role of theory building
- I page: conclusions
- I page: data collection techniques
- 0 pages: data analysis
 - and then a miracle happens


"I think you should be more explicit here in step two."

Don't just do data mining

- Be of the empirical research community
 - Go to LASER, ICSE, etc
 - Talk
- Find current hypothesis that of interest
 - E.g. max AUC(effort,pdf)
 - E.g. cross-vs-within data
 - E.g.TOE
 - E.g. text mining for structured reviews
 - Juristo, Menzies, 2011

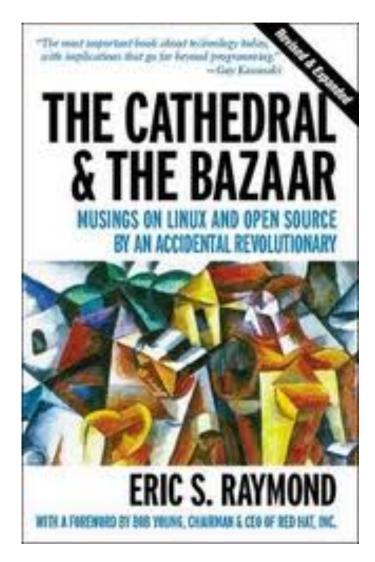
Don't do data mining <u>once</u>

- Continuous process monitoring
 - I. Learn expectations
 - 2. Stale smell policy: when good ideas go bad
 - 3. Repair policies: how to modify old ideas (more mining)
 - 4. Escalation policy: recognize when you need to call for help
- Bt the way,
 - 1,2,3,4 can all be implemented by data miners.
- Welcome to TOE

Other Do-s and Don'ts

- Do <u>learn</u> about data mining
 - People make mistakes
 - Need communities of agents (human and otherwise)
 - New algorithms, old data, new insights
- Don't used <u>dumb</u> data mining:
 - o correlation, PCA??
 - Forgettaboutit
- Don't quote old <u>dumb studies</u>:
 - E.g. Mccabe
- Do study <u>stability</u>:
 - 20 * 66% of the data
- Do model <u>bias</u>
 - Bias is where the business meets the learning

Exploit the crowd source advantage



- Crowd source
 - Join the community of people studying the data
 - Be there for them
- Lead, follow, or get out of the way
 - What's fair got to do with it? Its going to happen
 - Wolfgang Grieskamp from Microsoft, at Dagstuhl 2010

Open data initiatives

- Open source?
 That'll never work
- Menzies = bazaar!
- Are you the high priest in a cathedral?

Lighten up!

- Do put data on the web
- Do collect data with "sunset clauses" (when it can go public)
 - The COCOMO experience
- Do collect data that joins
 - performance indicators
 - with things you can change
- Much inaccessible empirical data:
 - Data from the 152/154 MSR papers
 - ISERN 2007, ISERN 2008, ISERN 200
 - COCOMO-II
 - SEL
 - CeBase.org
- No propriety software
 - Static pages (no code that needs maintaining)
 - Password free sites (after the sunset)

÷ → C ff ☆ http://promisedata.org/?cat=11 ash D D T = F + E > 2 springer ⊡ ga B ⊗	e art 🌟 oztime 🌍 news 🤔 🗋 🗸 🌶
PROMISE The 2010 International Conference on Predictive Models in Software Engineering	OMISE data sets
Home About Data Papers People PROMISE OF PRO	IISE VB PROMISE VO PROMISE 10
Welcome to the Promise Data Repository!	News
	News All presentations online
lectPrediction	
NetPrediction TortEstimation	All presentations online
ResPrediction TortEstimation General	All presentations online Pictures - PROMISE 2008
Net-Prediction Intel®imation General	All presentations online Pictures – PROMISE 2008 Promise Presentations Online
ResPrediction TortEstimation General	All presentations online Pictures – PROMISE 2008 Promise Presentations Online Workshop Updates
MetPrediction forEstimation General odel-BasedSE	All presentations online Pictures – PROMISE 2008 Promise Presentations Online Workshop Updates
tectPrediction General deli-BasedE TextMining 0 10 20 30 40 50 60 2006, the repository held 23 data sets.	All presentations online Pictures – PROMISE 2008 Promise Presentations Online Workshop Updates
ter:Prediction General doi:-BasedSE TextMining 2006, the repository held 23 data sets. 2008, at last update, the repository holds 100 data sets in the following areas: • Defect Prediction (57)	All presentations online Pictures – PROMISE 2008 Promise Presentations Online Workshop Updates
hter:Prediction General Didl:Bates/SE TextMining 0 10 20 50 40 50 60 2005, the repository held 23 data sets. 2008, at last update, the repository holds 100 data sets in the following areas:	All presentations online Pictures – PROMISE 2008 Promise Presentations Online Workshop Updates

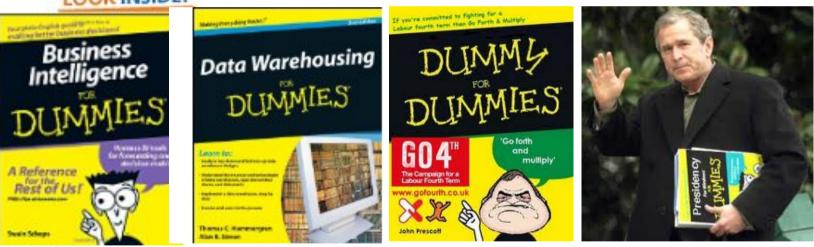
Generate better results, faster

- Empirical SE results greatly lag the pace of innovation in the field.
- In too many cases
 - A trusted body of empirical results....
 - ...Only appears after the innovative is already well on their way to obsolescence or standard practice.
- The generality of a result from any one case study is highly questioned. We urgently need:
 - Faster ways to learn local lessons
 - Faster ways to study data from multiple sources
- Can't always afford N people*Y years
 - Managers need answers yesterday
 - Funding bodies want progress
- Every time someone says "it depends"...
 - A grad student dies.

If a tree falls in a forest....

- Pooh and Piglet were walking together in the Thousand Acre Wood.
- The wind was blowing ferociously and the treetops were swaying.
- Somewhat disconcerted, Piglet asked Pooh, "What if a tree falls on us?"
- Pooh considered for a moment, before replying "What if it doesn't?"
- Barbara Kitchenham et al, ESEj, 2008
 - Replications can replicate stupid errors
 - Me: and sometimes, they don't
- Vic Basili, LASER, 2010
 - If we give people our data, they can make stupid mistakes, cause they don't understand the context
 - Me: and sometimes, they won't

Dude! Chill out!



By the way....

I am happy to report that there is no book called "data mining for dummies"

LOOK INSIDE!

