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Abstract After data mining National Aeronautics and
Space Administration (NASA) independent verification and
validation (IV&V) data, we offer (a) an early life cycle pre-
dictor for project issue frequency and severity; (b) an IV&V
task selector (that used the predictor to find the appropriate
IV&V tasks); and (c) pruning heuristics describing what tasks
to ignore, if the budget cannot accommodate all selected
tasks. In ten-way cross-validation experiments, the predic-
tor performs very well indeed: the average f -measure for
predicting four classes of issue severity was over 0.9. This
predictor is built using public-domain data and software. To
the best of our knowledge, this is the first reproducible report
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1 Introduction

All software has defect issues, some of which are seen by
developers. We seek a predictor for the number and severity
of issues that a project will produce. If applied early in the
life cycle then such a predictor could check if extra funding
is required for project verification and validation (V&V).

Wallace and Fujii [1] distinguish:

• Embedded V&V, performed in-house by developers;
• Independent V&V (IV&V), performed by an external

team that, potentially, explores very different issues to
the embedded V&V team.1

Previously, we have offered guidance to IV&V teams via
issue predictors learned from static code measures [3]. Such
predictors can be used only after the code has been written.
Since it is much cheaper to fix errors before code generation
[1,4–7], this article seeks early life cycle issue predictors.

We show here that a predictor for issue frequency and
severity can be built in a reproducible way from public-
domain data2 and software.3 The predictor is operational,

1 Annex C of the IEEE 1012-2004 [2] standard offers a more detailed
definition of IV&V, which retains Wallace & Fujii’s essential distinction
between internal (embedded) and external (independent) V&V.
2 http://promisedata.org/repository/data/mb2.
3 The Waikato environment for knowledge analysis (WEKA) data
mining workbench [8].
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i.e., it can be executed to generate precise statistics on its
performance. For example, we show below that for National
Aeronautics and Space Administration (NASA) independent
verification and validation (IV&V) data, the model is remar-
kably effective at distinguishing between projects that will
or will not produce numerous high-severity risks. Since the
features used in our predictor can be collected early in a pro-
ject’s life cycle, this method can be quickly applied to new
projects. To the best of our knowledge, this is the first report
of an issue frequency and severity predictor that:

• is based on public domain data
• has a precise operational implementation
• has a demonstrably useful performance
• can be tuned to local data
• most importantly, can be applied early in the life cycle

Our proposed method extends the software integrity level
assessment process (SILAP), an existing NASA IV&V task
selection method [9,10]. As shown in Fig. 1, SILAP2 requires
some local knowledge of a project: specifically, (a) the total
budget; (b) the costs associated with applying various IV&V
tasks which depends on domain details such as the skills and
fees of subcontractor, etc.; and (c) the project components,
i.e., large sections of the project that are often treated separa-
tely to the whole. This local knowledge is then mapped into
the general knowledge described in this paper. Each project
component is described using the features described in Fig. 2.

Derived Raw features
co = Consequence am =Artifact Maturity
dv = Development as =Asset Safety
ep = Error Potential cl =CMM Level
pr = Process cx =Complexity
sc = Software Characteristic di =Degree of Innovation

do =Development Organization
dt =Use of Defect Tracking System
ex =Experience
fr =Use of Formal Reviews
hs =Human Safety
pf =Performance
ra =Re-use Approach

rm =Use of Risk Management System
ss =Size of System
uc =Use of Configuration Management
us =Use of Standards

Fig. 2 SILAP turns raw features into derived features

Each feature is scored using the scales described in the appen-
dix. The features are then converted to error potential and
consequence scores using SILAP and the rules found by this
paper. These scores are then passed to the task selection table
of Fig. 3, which proposes a set of tasks for each component.
Each proposed task can be costed (via local knowledge) and
ranked (via historical records of task cost effectiveness). If
the available budget is insufficient to complete all the tasks,
then some can be pruned away.

The rest of this paper is structured as follows. Before pre-
senting methods for tuning IV&V to particular projects, we
make two digressions. First, using a wide range of formal
and informal evidence, we make the case that IV&V is wor-
thy of study. Second, a literature review will explore what
little is known of current IV&V tasks. This will be followed
by a general discussion of data mining methods for software
engineering (SE) data and a specific discussion of what was
learned by those data miners from NASA IV&V data. The
paper ends with some comments on external validity.

2 Benefits of IV&V

There is much formal and informal evidence for the value of
IV&V (by informal evidence, we mean that evidence that is
not published in sources that other researchers can verify).
Interviews with NASA IV&V personnel has yielded the fol-
lowing informal evidence for the benefits of IV&V:

• “Even when developers assess their own products, they
focus on a very small part of a much larger system. IV&V
workers, on the other hand, can explore a larger area.”

• “IV&V has become NASA’s corporate memory for
software-related issues. Development teams can change
personnel faster than the IV&V team so IV&V can come
to understand the software as well or better than the deve-
lopment team. For example, in several NASA multi-year
projects, most of the issues were found by the IV&V
team, and not the developers. Also, in numerous cases,
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Fig. 3 SILAP’s IV&V tasks. For definitions of each task, see [11].
For example, task 2.3 (System Requirements Review) is selected if
consequence is greater than 2 or the error potential is greater than 3.
Tasks marked with “Z” are only for human-rated flights. The asterisk
on task 2.1 denotes a task that it selected when RA (reuse approach)

is greater than 1. Software phases are numbered according to a NASA
convention, according to which phase 1 is reserved for management
tasks conducted across the life cycle, whereas phases 2, 3, 4, 5, and
6 represent concept, requirements, design, implementation, and test,
respectively. FQT formal qualification tests

the IV&V team can recall why (e.g.) 3 years ago, some
crucial decision was made.”

• “The technical skill of NASA’s IV&V’s teams are ack-
nowledged by (some) of NASA’s contractors. In one case,
the prime contractor voluntarily gave up funding within
its own budget so that the NASA project office could pay
for more IV&V, over and above the amount originally
planned for IV&V.”

More formal evidence for the benefit of IV&V comes from
the literature and NASA technical reports. Zelkowitz and Rus
discuss the Space Shuttle IV&V program in the 1990s [12].
They report a large decrease in major flight defects once
IV&V was introduced, and that IV&V uncovered and resol-
ved certain shortcomings in the shuttle’s testing program.
Almost half the issues found by IV&V were found very early
in the life cycle of shuttle software upgrades.

Figure 4 shows the issues found in recent NASA missions
by the IV&V team. Note that (a) most of the issues are found
early in the life cycle (in the concept and requirements phase)
and (b) many of the issues were of high criticality (severity 1
and 2), especially for the human-rated missions.

Economically, it is useful to find errors early. Boehm and
Papaccio advise that reworking software is far cheaper earlier
in the life cycle than later “by factors of 50–200” [4].

This effect has been widely documented in other research.
A panel at IEEE Metrics 2002 concluded that finding and
fixing severe software problems after delivery is often 100
times more expensive than finding and fixing it during the
requirements and design phase. [6]. Also, Arthur et al. [7]
conducted a small controlled experiment where a dozen engi-
neers at NASA’s Langley Research Center were split into
development and IV&V teams. The same application was
written with and without IV&V. Figure 5 shows the results:
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Fig. 4 A sample of issues
found by NASA’s IV&V team

FS = number of issues found of severity S
phase S = severity 9 robotic missions 7 human-rated missions

2. concept 1 0 59
2 7 81
3 54 168
4 11 0
5 2 0

β2 = 5
S=1 FS · 105−S 12,521 687,800

3. requirements 1 1 291
2 70 313
3 874 430
4 435 0
5 133 0

β3 = 5
S=1 FS · 105−S 171,883 3,266,000

4. design 1 0 11
2 18 16
3 275 96
4 129 0
5 25 0

β4 = 5
S=1 FS · 105−S 46,815 135,600

5. implement 1 1 51
2 59 78
3 364 333
4 282 0
5 76 0

β5 = 5
S=1 FS · 105−S 108,296 621,300

6. test 1 1 15
2 10 27
3 361 77
4 271 0
5 41 0

β6 = 5
S=1 FS · 105−S 58,851 184,700

phase IV&V no IV&V
requirements 16 0

high-level design 20 2
low-level design 31 8

coding & user testing 24 34
integration & testing 6 14

totals 97 58

Fig. 5 Defects found with and without IV&V, from [7]

(a) more issues were found using IV&V than without; (b) the
issues were found much earlier. This is a compelling argu-
ment for IV&V. Even if the IV&V team found the same bugs
as the development team, but found them earlier, the cost-
to-fix would be reduced by a significant factor.

Similarly, Wallace and Fujii [1] discuss studies on IV&V
started at different phases. Starting at the coding phase saves
20% of the V&V costs. However, starting earlier at the requi-
rements phase saves 92–180% of the V&V costs.

Finally, Fig. 6 shows the cost of quickly fixing an issue
relative to leaving it for a later phase (data from four NASA
projects [5]). The last line of that table shows that delaying
issue resolution even by one phase increases the cost-to-fix
of ! = 2, . . . , 5. Using this data, Dabney et al. [5] calculates
a dollar spent on IV&V returns to NASA $1.21, $1.59, $5.53,
and $10.10 (on four NASA projects).

3 Related work

Having documented the benefits of IV&V, the next question a
manager might ask is how to do it? This is a difficult question
to answer. The literature describes nearly a 100 V&V and
IV&V tasks:

Phase issue found
Phase issue f=1 f=2 f=3 f=4 f=5 f=6

i introduced Requirements Design Code Test Int Operations
1 Requirements 1 5 10 50 130 368
2 Design 1 2 10 26 74
3 Code 1 5 13 37
4 Test 1 3 7
5 Integration 1

∆ = mean C[f, i]
C[f, i−1]

5 2 5 2.7 2.8

3

Fig. 6 C[ f, i]: the cost-to-fix escalation factors, relative to fixing an
issue in the phase where it was found ( f ) versus in the phase where
it was introduced (i). Last row shows the cost-to-fix delta if the issue
introduced in phase i is fixed immediately afterwards in phase f = i+1,
from [5]

• Wallace and Fujii offer 20 essential and 36 optional tasks
for software V&V [1].

• Table 2 of the IEEE-1012 standard for software V&V
offers a list of 52 minimal tasks for IV&V. Each task
is selected by a combination of development phase and
estimated severity in project errors [2].

• Figure 3 offers 40 predeployment IV&V tasks.

In the literature, there are very few attempts to assess
the relative cost-effectiveness of this broad range of IV&V
techniques empirically. Most of the reports take the form
of (e.g.) Easterbrook et al. [13] who discuss the merits of
using a single lightweight formal method for IV&V require-
ments models on one NASA project. Another study worthy
of mention is that of Hayes et al., who explore the relative
merits of different tools for finding links between require-
ments documents [14]. That analysis includes a comparison
of human expert and state-of-the-art commercial tools and
a new research prototype. For more examples of singleton
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evaluations of one method on one project, see the procee-
dings of the annual symposium program4 and the repository
of NASA’s software assurance research.5

Several researchers offer detailed taxonomies of standard
NASA faults [15,16], but do not address what tasks are most
cost-effective at finding the faults. For example, Lutz reports
studies on the most frequent kind of faults seen in deep-space
NASA missions but does not fully address the issue of what
V&V and IV&V tasks are best at removing faults [17].

Leveson talks in general terms about how to increase the
safety of software [18]. Her preferred methods would signi-
ficantly change current IV&V practice [19] so it is difficult
to map that advice into selecting the IV&V tasks of Fig. 3.

In a limited number of publications, some attempt is made
to generalize over multiple projects, multiple methods, or
projects extending over many years. Those publications
include:

• Madachy’s heuristic software risk model that alerts when
certain observations are seen in a project [20];

• Boehm and Basili’s top-10 defect reduction list [6,21];
• The Dabney study, based on four NASA projects [5];
• Menzies et al.’s discussion of learning predictors for soft-

ware defects using data from five NASA projects [22,23];
or methods for generating cost models from 25 software
projects, including 11 NASA developments [24];

• Glass’s list of six factors seen in 16 runaway software pro-
jects; i.e., projects where “schedule, cost, or functionality
that was twice as bad as the original estimates” [25];

• Raffo et al.’s software process of a standard waterfall
model, modified to handle IV&V tasks [26].

• Jiang et al.’s table of the connection of 40 project features
to the software risks seen in 83 projects [27].

• Ropponen and Lyytinen analysis of questionnaires from
83 project managers and 1,110 projects that identifies 26
software risk components [28, p110];

• Takagi and Abe et al.’s study of 31 projects that identifies
features that predict for software runaways [29,30].

For our purposes, these studies are incomplete. Some of this
research bases its conclusions on just a few projects [5,22,23,
25]; Others use a Delphi-style analysis were the authority of
the conclusions rests on the authority of the author [6,20,21].
Alternatively, they may base their conclusions on extensive
data collection but, for confidentiality reasons, cannot make
that data available for public scrutiny [26–28]. It is hard
to make critical audit conclusions based on a Delphi-style
analysis or inaccessible data. In general, only a minority of
SE researchers can publish the data used to make their conclu-
sions (for example, [22–24,29,30]).

4 http://sas.ivv.nasa.gov/conclusions/index.php.
5 http://sarpresults.ivv.nasa.gov.

Also, several of the these papers [27,28] only offer gene-
ral advice about how to avoid problems in software develop-
ment. The subjective nature of this advice makes it difficult
to consistently deploy them over a national software deve-
lopment program. Only a few [23,24,29,30] offer public-
domain versions of their data and models.

Note that, even in combination, the above publications
cover a small fraction of the (I)V&V tasks listed in the lite-
rature.

4 Data mining

Since existing sources were not informative, this study
applied data mining to 40 IV&V tasks used in 211 NASA
components from six projects.

4.1 Issues with data collection

It may surprise the reader that after 19 years, this study could
only access 211 components. After all, as shown in Fig. 7,
NASA has a 19-year history of IV&V.

What must be understood is that NASA is similar to many
other large organizations that constantly adapt their practices
and their databases as their business changes. Various factors
have resulted in a steady pace of change at NASA:

• In the 1990s, NASA moved to a “faster, better, cheaper”
paradigm that led to massive changes in NASA’s develop-
ment practices. For example, prior to 1990, NASA’s Jet
Propulsion Laboratory launched (on average) five spa-
cecraft a year, all of which were built internally. In the
1990s, JPL launched dozens of craft, most of which were
built by external contractors. This policy led to certain
high-profile errors which were attributed to production
haste, poor communications, and mistakes in engineering
management [31]. Accordingly, NASA terminated “fas-
ter, better, cheaper” and changed development methods.

• In 2003, the loss of the Columbia orbiter during re-entry
prompted another major agency reorganization. Develop-
ment budgets were significantly altered to fund the “return
to flight” program that led to the successful relaunch, in
2005, of the Space Shuttle program.

• Currently, NASA is significantly reorganizing (again)
around the new “vision for space exploration”.

NASA’s numerous national reorganizations have been reflec-
ted in the IV&V program. Figure 7 shows that, four times,
the oversight for IV&V has passed between various NASA
centers and NASA headquarters. Also, in 1996, NASA deve-
loped new contractual methods that allowed IV&V to be
applied to a wide range of projects. These new methods resul-
ted in a large change to IV&V management practices as the
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year #IV&V project at Fairmont IV&V notes oversight
1988 n/a Space shuttle begins IV&V Johnson Space Flight Center (Texas)
1991 n/a Congress pass bill creating the IV&V facility in Fairmont, West

Virginia
NASA headquarters (east coast)

1994 1 International space station IV&V at Fairmont begins
1995 1
1996 2 NASA Ames (west coast)
1996 3 New contracts enables IV&V for all NASA projects (but projects must

fund IV&V from their own line items)
1997 3
1998 3
1999 12 NASA mandates that IV&V be considered for all NASA software
2000 15 Facility oversight moves to Goddard Space Flight Center GSFC (east coast)
2001 20
2002 36
2003 42 IV&V now funded from a central agency source.
2004 37
2005 24 SILAP data collection begins
2006 26
2007 24

Fig. 7 History of NASA IV&V

focus expanded from a few ongoing projects to dozens of
smaller projects.

In 1999, after over a decade of success, IV&V was man-
dated to be considered for all NASA software. But a pro-
blem remained: projects had to find funds for IV&V from
within their own budgets. This often slowed IV&V work
since managers were forced to juggle the demands of deve-
lopment with the demands of IV&V. It took four more years
of successful IV&V before NASA could solve this problem.
In 2003, NASA reaffirmed and strengthened its support for
IV&V by establishing IV&V as an agency-level program
funded by the agency rather than by each individual project
separately.

The above changes meant that more projects could receive
the benefits of IV&V. However, the same changes that benefi-
ted NASA also complicated the twin goals of data collection
and analysis. In nearly all projects, the schema of IV&V’s
issue tracking systems was modified to better address some
specific requirement. While some data fields were required,
most were not suitable for comparing the cost-effectiveness
of IV&V across projects. Where possible, database schemas
are standardized across multiple projects and multiple years
(e.g., SILAP data has been collected since 2005). However,
no data is collected consistently across all projects and all
years.

Consequently, this study had to make do with the available
data, none of which was collected especially for this purpose.
Hence, it contains much noise (spurious signals not necessa-
rily connected to the target of predicting issue frequency and
severity).

4.2 Handling noisy data

When learning from noisy sources, it is important to use
methods that aggressively prune noisy signals such as:

• The RIPPER [32] rule learner
• The WRAPPER algorithm [33], which explores subsets

of the available features

Both methods are standard techniques for removing noise
and generating succinct, easily explainable, models from
data. RIPPER takes a particularly aggressive approach to
pruning away superfluous parts of a model:

• After building a rule, RIPPER performs a back-select to
see what rule conditions can be deleted, without degra-
ding the performance of the rule.

• Similarly, after building a set of rules, RIPPER performs
a back-select to see what rules can be deleted, without
degrading the performance of the rule set. The learned
rules are built while minimizing their description length.
This is an information-theoretic measure computed from
the size of the learned rules, as well as its errors. If a rule
set is overfitted, the error rate increases, the description
length grows, and RIPPER applies rule set pruning.

• RIPPER also employs a novel rule set optimization algo-
rithm that tries replacing rules with some straw-man alter-
natives (i.e., rules grown very quickly).

RIPPER is one of the fastest rule learners currently known
in the literature. In its haste, it may miss parts of the model
that can be pruned. Hence, a much slower and more tho-
rough feature pruner was also employed. Kohavi and Johns’
RAPPER algorithm [33] explores subsets of the available
features. Each subset is assessed by asking some target lear-
ner (in our case, RIPPER) to build a model using just that
subset. The WRAPPER grows the feature set until the tar-
get learner reports that larger sets do no better than subsets.
The algorithm stops when there are no variables left, or there
has been no significant improvement in after the last five
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1: Prevent the accomplishment of an essential capability; or jeop-
ardize safety, security, or other requirement designated critical.

2: Adversely affect the accomplishment of an essential capability
(no work-around solution is known); or adversely affect tech-
nical, cost or schedule risks to the project or life cycle support
of the system, and no work-around solution is known.

3: Adversely affect the accomplishment of an essential capability
but a work-around solution is known; or adversely affect
technical, cost, or schedule risks to the project or life cycle
support of the system, but a work-around solution is known.

4: Results in user/operator inconvenience but does not affect a
required operational or mission essential capability; or results
in inconvenience for development or maintenance personnel, but
does not affect the accomplishment of these responsibilities.

5: Any other issues.

Fig. 8 Severities for robotic missions

1: A failure which could result in the loss of the human-rated
system, the loss of flight or ground personnel, or a permanently
disabling personnel injury.

1N: A severity 1 issue where a mission procedure precludes any
operational scenario in which the problem might occur, or the
number of detectable failures necessary to result in the problem
exceeds requirements.

2: A cause loss of critical mission support capability.
2N: A severity 2 issue, where an established mission procedure

precludes any operational scenario in which the problem might
occur or the number of detectable failures necessary to result
in the problem exceeds requirements.

3: A failure which is perceivable by an operator and is neither
Severity 1 nor 2.

4: A failure which is not perceivable by an operator and is neither
Severity 1 nor 2.

5: A problem which is not a failure but needs to be corrected such
as standards violations or maintenance issues.

Fig. 9 Severities for human-rated missions

additions (in which case, those last five additions are dele-
ted). Technically, this is a hill-climbing forward-select with
a stale value of 5. Empirically, WRAPPER is known to be
slower than other feature pruners, but yields best results [34].

4.3 Modeling the dependent feature

RIPPER inputs feature vectors, i.e., sets of independent fea-
tures plus one dependent feature called the class. The goal of
the learning is to find some combination of the independent
features that predict for the dependent class feature.

In this study, the dependent feature was the number of
issues found in a component, weighted by the severity. NASA
now uses a standard five-point scale to score issue severity.
A slightly different scale is used for robotic and human-rated
missions (see Figs. 8 and 9) but the interpretation of the scales
is same across all missions: severity 1 issues imply total disas-
ter while severity five issues are ignorable.

For the purposes of analysis, the severity counts were sum-
marized as follows. Let si, j be the frequency of severity issue
i in component j . If Maxi is the maximum number of issues

of severity i , totaled across all components, then W j is a
weighted sum of all the severities.

The modeling intent of W 1 j was that any higher-level
severity report is more important than any number of lower-
level severities. In this interpretation, issue reports are
thresholds that must be reached in order to trigger different
activities. To implement this, the severity counts si, j is divi-
ded by the maximum count for severity i :

W 1 j = 1 +
5∑

i=1

(
si, j

1 + Maxi

)
×106−i (1)

(The “plus one” parts of these equations were added to
avoid numeric errors. In this data, the severity frequency
counts were large enough to make the “plus one” contri-
butions negligible.)

4.4 Modeling the independent features

A learned model predicts for the dependent feature using
some combination of independent features. The independent
features used in this study came from NASA’s SILAP model
[9,10].

Since 2005, NASA IV&V has been collecting a standard
set of project features at the start of every IV&V project.
SILAP uses these features to predicts for error potential (also
known as likelihood) and consequence of error (also known
as criticality).

SILAP was built via Delphi-sessions amongst NASA civil
servants experienced with IV&V. This model holds the
group’s consensus belief on what affects the quality of NASA
projects. Figure 2 showed the SILAP derived factors that are
computed from the raw factors using the functions of Fig. 10.
These computed error potentials and consequences were then
used to select IV&V tasks, using Fig. 3.

SILAP grew into an early life cycle project assessment
methodology for IV&V. NASA civil servants report that
SILAP has greatly clarified their discussions with projects
regarding what IV&V tasks are/are not to be performed.
Since SILAP was built locally at IV&V, it is understood

Fig. 10 SILAP.awk: computes the derived features from the raw
features of Fig. 2
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weight* contribution
goal feature weight filter filter to goal
consequence hs 0.35 1 0.350 35%
(co) pf 0.65 1 0.650 65%
error ex 0.828 0.579 0.479 47%
potential cx 0.547 0.172 0.094 9%
(ep) do 0.172 0.579 0.100 9%

di 0.351 0.172 0.060 6%
am 0.242 0.249 0.060 6%
ra 0.226 0.249 0.056 5%
us 0.0955 0.249 0.024 2%
uc 0.0962 0.249 0.024 2%
fr 0.119 0.249 0.030 2%
dt 0.0873 0.249 0.022 2%
ss 0.102 0.172 0.018 1%
cl 0.0764 0.249 0.019 1%

rm 0.0647 0.249 0.016 1%

Fig. 11 Relative contribution of Fig. 10 factors to the goals of conse-
quence and error potential. The percentages shown on the right are
normalized values for the weight×filter column

locally. Previous risk models, which had been developed
elsewhere, were to a degree black-box models that were
poorly understood. Hence, it was harder to defend their
conclusions to clients lobbying for less IV&V oversight.

Each raw SILAP factor is weighted and, usually, filtered
by a second numeric to derive the consequence and error
potential values. The weight×filter column of Fig. 11 shows
the relative contribution of each raw factor, as found by the
Delphi sessions amongst the NASA civil servants.

This study could access SILAP descriptions of 280 com-
ponents from 11 NASA projects. All these projects recei-
ved IV&V in the period 2005–2007. Of these, only six of
those projects had an issue tracking data schema that could
generate a consistent set of issue data. Therefore this study
was based on data from 211 components taken from six pro-
jects. None of these projects were human-rated missions. It
was hoped that more data would be available but, given the
pace of change within NASA databases, this was not the
case.

Each component was described using:

• the 16 raw SILAP features of Fig. 2
• five issue severity counts s1, . . . , s5
• the project name: L1
• the component type: L2; i.e., GNC (guidance, navigation,

and control); PAYLOAD (specialized payloads); CDH
(command & data handling), and GROUND (ground sys-
tems).

Note that the relationship of projects to components is one
to many; i.e., the 211 components exist in one, and only one,
of the six projects. Also, the relationship of components to
component types is many to one, i.e., the 211 components
are each assigned one, and only one, of the four component
types.

4.5 Data quirks

Before applying automatic data mining, it is good practice to
inspect the data distributions for any obvious anomalies. In
the independent data, for example, all the data ranges over
1 ≤ x ≤ 5 and there were no instances with uc ∈ {4, 5} or
us ∈ {4} or am ∈ {4, 5}. Also, there were only 4

211 examples
of ra ∈ {2}. We can use this knowledge to rewrite rule condi-
tions like uc ≤ 1 ∧ ra < 3 ∧ am ≥ 3 into a more simplified
form such as uc = 1 ∧ ra = 1 ∧ am = 3.

Also, in the dependent data, there are very few reports
of severity 1 issues. In that project, the managers of that
system were highly concerned about quality. Hence, they
employed numerous best practices including high capabi-
lity maturity model (CMM) practices (cl), extensive use of
standards (us), and hiring very experienced developers (ex).
That is, these practices did not cause the severity 1 issues in
that project. Rather, practices were adopted in response to
perceived issues with the project.

5 Learning SILAP2

5.1 Preprocessing

RIPPER’s rules predict for discrete classes so, prior to lear-
ning, the Eq. 1 results for the 211 components were sorted and
divided into five classes (“_1, _2, _3, _4, _5”) with (roughly)
equal population size (equal frequency discretization [35]);
see Fig. 12. The quirks in the severity 1 data (discussed above)
led to the following modeling decision: fuse together the top
two classes, i.e., class “_12 = _1 ∪ _2”.

5.2 Feature pruning

Figure 13 shows the WRAPPER results from ten experiments
using RIPPER as the target learner. Each run used a randomly

 0.1

 25

 563
 1558

 20807
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all instances, sorted by W1 

Fig. 12 Sorted values for Eq. 1 seen in 211 NASA software compo-
nents. The y-axis shows the breaks b1, b2, b3, b4, b5 that divide the data
into five classes. Each class x comprises the data bx < x ≤ bx+1 or,
for the top class, b5 < x ≤ max
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number of times
group feature notes selected

1 us use of standards 10
2 uc config management 9

ra reuse approach 9
am artifact maturity 9

3 fr formal reviews
ex experience 8

4 ss size of system 7
5 rm risk management 6
6 cl CMM level

dt defect tracking 5
do development organization
di degree of innovation
hs human safety
as asset safety
cx complexity 2
pf performance 1

4
4

2
3

8

5

Fig. 13 Number of times a feature was selected in ten-way experiments
where features were assessed using 90% of the data (selected at random)

selected 90% sample of the data. This figure is divided into
groups:

• Group 1 are those features that were always selected in
all ten pruning experiments. This group contains only one
feature: use of standards (us).

• Groups 2 and 3 contain features that were often selected.
• Groups 4 and 5 contain features that were selected in the

majority of experiments.
• Group 6 are those features that were not selected in the

majority of the pruning experiments.

Group 6 raises some questions about the current version of
SILAP. For example, the top five features of SILAP (measu-
red in terms of contribution to goal, see Fig. 11) are hs, ex ,
p f , cx , and do. All but one of these (ex), appear in Group 6
of Fig. 13; i.e., are usually not selected by the WRAPPER.
That is, empirically, these features are far less influential than
suggested by SILAP. This result motivated us to develop a
second version of SILAP.

To learn SILAP2, experiments were then conducted with
RIPPER, using various feature subsets:

• The subsets of selected features found in the groups of
Fig. 13;

• All the raw SILAP features;
• The project name (L1) or the component type (L2);
• Combinations of the top-most derived SILAP model: co,

ep, and co × ep.

5.3 Performance measures

The learned rules were assessed using F ; i.e., the average
f -measure seen in all the target classes. F is defined as fol-
lows. Let {Ax , Bx , Cx , Dx } denote the true negatives, false

negatives, false positives, and true positives, respectively, for
class x . Recall (or pd) is:

pdx = recallx = Dx/ (Bx + Dx ) . (2)

Also precision (or prec) is:

precx = precisionx = Dx/ (Dx + Cx ) . (3)

The f -measure is the harmonic mean of precision and recall.
If either precision or recall is low, then the f -measure is
decreased. The f -measure is useful for dual assessments that
include both precision and recall.

fx = (2 · precx · pdx )/(precx + pdx ). (4)

Given n target classes, then one measure of the total perfor-
mance is F , i.e., the average fx measure seen in all classes:

F = 1
n

∑
fx ; (5)

F ranges over 0 ≤ F ≤ 1, and larger F values are better.
The F measures were collected in ten-way cross-

validation experiments. To conduct such an experiment, the
available data is divided into N buckets. For each bucket in
a N = 10-way cross-validation, a model is learned on nine
of the buckets, then tested on the remaining bucket. Cross-
validation is the preferred method when testing predictors
intended for predicting future events [8].

5.4 Results

Figure 14 sorts the F values found in ten-way cross-validation
experiments on various feature subsets using RIPPER. The
highest performing predictors used just 8

16 of the SILAP fea-
tures (see Treatment A). Also, nearly equivalent performance
was found using just 4

16 of the features (see treatment E).
One interesting aspect of Fig. 14 is that the derived featu-

res from the current version of SILAP (Treatment F) perfor-
med relatively poorly. This result is evidence that the current
version of SILAP needs modification.

Also, using just the project name (L1) performed poorly.
If this were otherwise, a project’s name would be a good
predictor for issue severity. It this were generally the case,
then there would be no generality in NASA’s issue reports.

Further, the component type (L2) proved to be a poor pre-
dictor of issue severity. That is, there was no evidence from
this data that any of GNC, GROUND, CDH, or PAYLOAD
are inherently more risky that any of the others.

Treatment E is very simple (using just four features) and
performs nearly as well as anything else. Hence, the rest of
this article will focus on treatment E.

The rules learned by treatment E using 100% of the trai-
ning data are shown in Fig. 15. SILAP2 replaces the error
potential calculations of Fig. 10 with Fig. 15. The issue
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f -measures (from Equation 5)
treatment features #features 12 3 4 5 F = ( f ) / 4

A all - L1 - L2 - group(6) 8 0.97 0.95 0.97 0.99 0.97
B all - L1 - L2 - group(5 + 6) 7 0.95 0.94 0.97 0.96 0.96
C all - L1 - L2 - group(4 + 5 + 6) 6 0.93 0.95 0.98 0.93 0.95
D all - L1 - L2 16 0.94 0.94 0.93 0.96 0.94
E all - L1 - L2 - group(3 + 4 + 5 + 6) 4 0.93 0.97 0.90 0.87 0.92 ⇒ see Figure 15
F {co*ep, co, ep} 3 0.94 0.84 0.55 0.70 0.76
G L1 1 0.67 0.69 0.00 0.46 0.45
H just î us” 1 0.64 0.60 0.00 0.00 0.31
I L2 1 0.57 0.00 0.32 0.00 0.22

Fig. 14 Results from treatments. For a definition of the groups used in the second column, see Fig. 13

rule 1 if uc ≥ 2 ∧ us = 1 then 5
rule 2 else if am = 3 then 5
rule 3 else if uc ≥ 2 ∧ am = 1 ∧ us ≤ 2 then 5
rule 4 else if am = 1 ∧ us = 2 then 4
rule 5 else if us = 3 ∧ ra ≥ 4 then 4
rule 6 else if us = 1 then 3
rule 7 else if ra = 3 then 3
rule 8 else if true then 12

Fig. 15 The eight rules found by treatment E

severity classes _5, _4, _3, _12 can be mapped to error poten-
tial 1, 2, 3, (4 or 5) of Fig. 3, respectively.

SILAP2 does not change the consequence calculation of
Fig. 10. Human safety (hs) should always be more impor-
tant that asset safety (as) or performance issues (p f ) that
compromise system goals. Otherwise, consequence can be
modeled as a linear combination of as and p f .

6 Task pruning

Figure 3 can use SILAP2’s calculation of error potential and
SILAP’s calculation of consequence to select a list of IV&V
tasks. In two situations, that list should be pruned:

• If the tasks costs more than the available budget.
• If SILAP2’s combining of _1 and _2 into _12 means that

too many tasks are selected.

This last situation can occur with eight tasks of Fig. 3. With
tasks 2.4, 2.5, 2.6, 4.7, 5.6, 5.8, 5.10, and 6.1, the tasks selec-
ted by error potential = 5 would not be selected when error
potential = 4. This is not an ideal situation but, our current
data has too few examples of severity 1 issues to support the
generation of good level _1 predictors.

To support pruning, Fig. 16 sorts the IV&V tasks accor-
ding to phase effectiveness, then effort expended. These sorts
are explained below. Note that, if pruning is required, tasks
lower in the sort should be pruned first.

Phase effectiveness was calculated using data from the
nine robotic missions of Fig. 4. The data from the human-
rated missions was ignored since launching humans into

sort order:
best=1

worst=27 p=phase task cost frequency frequency*cost
1 3. requirements 3.5 0.77 5 4
2 3.4 1.62 50 81
3 3.3 1.6 53 85
4 3.1 1.46 90 131
5 3.2 3.89 54 210

sub-total α3 = 512
6 2. concept 2.5 0.15 13 2
7 2.6 0.36 13 5
8 2.4 0.86 13 11
9 2.2 1.28 50 63

10 2.3 1.67 54 90
11 2.1 1.53 71 109

sub-total α2 = 281
12 4. design 4.5 1.43 5 7
13 4.6 0.63 35 22
14 4.3 2.50 9 23
15 4.2 4.31 31 134
16 4.1 2.71 81 220
17 4.4 2.84 88 250

sub-total α4 = 655
18 5. implement 5.11 1.82 3 5
19 5.4 1.16 26 30
20 5.5 2.34 26 61
21 5.3 5.06 53 268
22 5.1 3.49 81 283
23 5.2 10.28 53 545

sub-total α5 = 1192
24 6. test 6.4 2.08 26 54
25 6.3 20.93 3 63
26 6.5 3.20 26 83
27 6.1 2.30 88 202

sub-total α6 = 402

Fig. 16 Sort order of IV&V tasks: top to bottom, best to worst. Tasks
are only listed if both “cost to apply task” and “frequency of applying
that task” data is available. Costs frequency data is based on historical
records at NASA IV&V. For proprietary reasons, cost numbers are nor-
malized to 100. αp is the sum of the frequency×cost figures for each
phase

space is a highly specialized activity that may not be rele-
vant to the broader field of software engineering.

An ideal set of IV&V tasks finds many issues, early in the
life cycle, at low cost, after performing just a few tasks. This
could be modeled as:

γ (!) = issues found early
effort expended

= βp · !(6−p)

αp
(6)

In this expression, γ is phase effectiveness and αp (from
Fig. 16) is total effort expended per phase. The βp term
(from Fig. 4) sums the issues found in phase p times a factor
that weights high-severity issues exponentially more than
low-severity issues. Finally, the !6−p term (from Fig. 6)
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p phase γ(∆ = 2) γ(∆ = 5)
2 concept 713 :18% 27,867 :39%
3 requirements 2,688 :67% 41,993 :58%
4 design 286 :7% 1,788 :2%
5 implement 182 :4% 454 :1%
6 test 146 :4% 146 :0%

totals γ = 4 015, γ = 72,248

Fig. 17 Heuristic assessment of the relative merits of IV&V tasks at
different phases. The αp , betap and ! values come from and Figs. 16,
4, and 6

rewards issues found earlier in the life cycle at phase p ∈
2, 3, 4, 6.

Figure 17 shows the γ calculated from our data. Each
column shows the Eq. 6 values as a percentage of the totals
for that column. The phases of Fig. 16 are sorted according
to their γ values. To obtain a more fine-grained ordering,
Fig. 16 sorts tasks within a phase by effort expended, i.e., α.

Note that, according to Fig. 16, most of the cost benefit of
IV&V is seen in the early life cycle phases of requirements
(first) and concept phase (second). Later life cycle IV&V
tasks add very little to IV&V effectiveness (in Fig. 16, only
3–15%). This informs the problem of the eight cases where
the rules of SILAP2 can overspecify the IV&V tasks. Note
that five of those eight cases are late life cycle tasks, i.e. can
be pruned without degrading much of the value of IV&V.

As to the remaining three problem cases (the concept
phase tasks of 2.4, 2.5, 2.6), as shown by the “Z” notation in
Fig. 3, these tasks are only for NASA-specific human-rated
space missions. That is, software engineers using SILAP2
outside of NASA will rarely see task overspecification on
tasks 2.4,2.5, and 2.6, and even if they do the net effect many
be minimal. Figure 16 lists these tasks as having the smallest
effort expended values of any of the concept phase IV&V
tasks. Hence, if they are selected inappropriately, these tasks
will add little to the total IV&V cost.

As an aside, we note that the sort ordering of phases in
Fig. 16 is not without precedent. Writing over a decade ago,
Higuera and Haimes [36] reviewed classes of risk associa-
ted with the Software Engineering Institute’s risk taxonomy.
They concluded that the risks associated with product engi-
neering, development environments, and the general deve-
lopment program were roughly evenly distributed (30%,
33%, and 37%). However, Fig. 18 shows the risk within pro-
duct engineering (i.e., the region usually studied by IV&V).
Note that their risk distribution matches the general pattern of
Fig. 17: late life cycle activities offer very little to the overall
risk.

requirements 53%
design 27%

integration & test 14%
engineering specialties 4%

coding & unit test 2%

Fig. 18 Patterns of risk within product engineering; from [36]

6.1 Alternate sorting orders

In certain circumstances, the above pruning criteria should
be changed. First, for mission- and safety-critical projects,
pruning IV&V tasks is not recommended (to say the least).

Second, different organizations have different cost struc-
tures and, hence, different αp values. If such data is available,
then Fig. 16 could be sorted differently.

Third, the current version of SILAP offers some coarse-
grained pruning heuristics that are different to Fig. 16. For
example, to achieve slight pruning, all projects have a conse-
quence co score of one unless p f > 2 ∨ as > 3 (in which
case, the co calculation of Fig. 10 is applied). SILAP2’s pru-
ning order (in Fig. 16) is more fine-grained than the pruning
in the current version of SILAP.

7 External validity

7.1 Evaluation bias

The rules of SILAP2 were based on the issue/severity sum-
mation of W 1 j seen in Eq. 1. To check the external validity
of that sum, we explored the effects of a very different cal-
culation. Recall that, according to W 1 j , issue reports are
thresholds that must be reached in order to trigger different
activities. An alternate interpretation, called W 2 j , is that
many lower-level severities can become more important than
higher-level severities. In this interpretation, issue reports
are votes that can accumulate. W 2 j can be implemented as
follows:

W 2 j = 1 +
5∑

i=1

si, j × 106−i (7)

The 211 W 2 j scores generated from our data are shown
in Fig. 19. After dividing the scores into five approximately
equal buckets, five new classes are generated: _1′, _2′, _3′,
_4′, _5′ representing least to most severe issues (respecti-
vely).

The confusion matrix of Fig. 20 compares the classes
generated from Fig. 19 and those found in Fig. 12 (from
Eq. 7): off-diagonal entries denote when the same class is
assigned different classes by Eqs. 1 and 7. Note that, except
for class _1 and _2, the classifications are nearly identi-
cal. Since the severity 1 issue data is quirky (see above),
this study combined the classes _1 and _2 into their union
_12 = _1 ∪ _2. Consequently, the region of confusion bet-
ween Eqs. 1 and 7 disappears and the rules shown above
are valid across a range of evaluation biases (from Eqs. 1
to 7).
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Fig. 19 Sorted values for Eq. 1 seen in the 211 NASA software com-
ponents. The y-axis shows the breaks b1, b2, b3, b4, b5 that divide the
data into five classes

W2
1’ 2’ 3’ 4’ 5’

1 19 12
2 27 20

W1 3 50 1
4 42
5 40

Fig. 20 Comparison of classifications offered by Eqs. 1 and 7 from
Figs. 12 and 19. Each cell (x, y) counts how many components have
class(W 1) = x and class(W 2) = y

7.2 Language and search bias

All learners have a language and search bias. For example,
linear regression often searches the Euclidean distance of
actual to predicted values. The learned theory can only be
reported in the language of a linear model, i.e., y = K +∑

ci xi . Other learners search information-theoretic
measures of the data and their learned models are only repor-
ted in the language of decision trees or rules (e.g., RIPPER).
Other learners have other search and language biases and will
yield different models.

We must therefore defend the choice of learner used in
this experiment. The case for RIPPER and WRAPPER was
made above: our results are based on data not collected for
the purposes of this study. Such data may contain signals not
connected to our target function (Eq. 1). Hence, tools like
RIPPER and WRAPPER that remove superfluous parts of
the data or learned model are required.

As to other kinds of data miners, decision tree learners
such as C4.5 [37] or CART [38] execute in local top-down
search, with no memory between different branches. Hence,
the same concept can be needlessly repeated many times
within the tree. Consequently, such trees can be needlessly
complex.

Also, linear regression may not be indicated in this domain
since there is some evidence of nonlinearity in our data.
Consider Fig. 15 and the situation where rules 1–6 have
failed. In that case, the prediction falls to rules 7 and 8. If
we change ra from 2 to 3 to 4, then the severity prediction
changes in a nonlinear manner from _12, to _3, then back to
_12 again. Such an effect cannot be modeled using the single
linear model generated by standard linear regression.

Similarly, we would caution against learners that learn
models containing a single feature; e.g., a study that reports
that feature X has the strongest correlation to Eq. 1 and is the-
refore the most important indicator of issue severity. In all
these experiments (Figs. 13 and 14) any single feature per-
formed worse than those that used combinations of features.
This is an encouraging result since, otherwise, experiments
with data miners that explore combinations of features (such
as RIPPER) would be superfluous.

There are more data mining methods besides RIPPER,
WRAPPER, C4.5, CART, and linear regression. The impro-
vement offered by those learners could only ever be 0.92 ≤
F ≤ 1 (i.e., above the performance of treatment E). Hence,
we are not motivated to move from RIPPER+WRAPPER.

7.3 Sampling bias

Apart from language and search bias, the results of any
data mining experiment suffer from a sampling bias; i.e.,
the conclusions may be local to the data used in training and
not be relevant to other populations. For example:

• All our conclusions were drawn from 211 NASA com-
ponents and, as detailed above, that data has numerous
quirks, i.e., missing ranges for uc ∈ {4, 5}, us ∈ {4},
am ∈ {4, 5}, ra ∈ {2}. SILAP2 should be used with
caution in projects that fall into these missing ranges.

• This study reports that IV&V tasks performed in the
concept phase are less useful than in the requirements
phase. This result may be a result of current NASA deve-
lopment practices where more IV&V effort is devoted to
requirements that concept analysis.

• The data used here comes from NASA and some of NASA
works in a particularly unique market niche: human-rated
missions to outer space. To minimize this concern, data
from human-rated missions was not used to learn the rules
of Fig. 15 or the sort order of Fig. 16.

Basili et al. [39] have argued that conclusions from NASA
data are relevant to the general software engineering indus-
try. NASA makes extensive use of contractors and these
contractors service many other industries. Such contractors
are contractually obliged (ISO 9001) to demonstrate their
understanding and usage of current industrial best practices.
For these reasons, we believe that the IV&V tasks proposed

123



Learning better IV&V practices

by SILAP2 would have general applicability across the
industry. As evidence that this claim, we note that NASA
did not invent Fig. 3 from scratch. Rather, it adapted it from
IEEE standard V&V practices; one of us (K.S.) serves on the
committee that defines and extends that standard [2].

8 Conclusions

Early detection of project issues can significantly reduce the
cost-to-fix defects. Numerous prior studies have reported the
effectiveness of such external IV&V teams at finding project
issues early in the life cycle [1,4–7],

Nearly 100 (I)V&V tasks are known in the literature [1,2,
9]. However, with respect to the cost-effectiveness of those
tasks, the literature is incomplete. We can only access cost
and effectiveness data on 27 of these tasks (see Fig. 16).
Further, except in certain circumstances (see Sect. 6.1), we
can only recommend 11 of those tasks for the purposes of
IV&V. Perhaps it is time to spend less effort on the creation
of new tasks and more effort on the assessment of existing
tasks.

In order to assess the cost-effectiveness of IV&V tasks,
we applied data miners to historical logs from NASA IV&V
to find selection and ranking rules for IV&V tasks. Due to
large-scale ongoing organizational changes within NASA,
the data available to this study was potentially noisy; i.e., it
contains signals not necessarily connected to the target of
predicting for issue severity and frequency. Despite this, our
data mining found rules (see Fig. 15) with very high precision
and recall values (see Fig. 14) for predicting for different
classes of issue frequency and severity (F values close to 1,
in a ten-way cross-validation). This excellent performance
persists across a range of summarization methods for issues
and severities (from Eqs. 1 to 7). Other data miners might do
better than on this data but that improvement could only ever
be slight (0.92 ≤ F ≤ 1).

We attribute the success of the data mining to some careful
choices regarding modeling and learning:

• WRAPPER [33] removes unnecessary or noisy features.
• RIPPER [32] also handles noise by aggressively pruning

spurious parts of a learned model.
• High F values were achieved with WRAPPER+RIPPER

after combining the severity 1 and 2 issue reports. This
combination was necessary due to quirks in the relatively
infrequent severity one issue reports in our data.

The RIPPER results comment on the merits of using linear
models on these domain. The rules learned by RIPPER exhi-
bit some nonlinearities; i.e., standard modeling methods such
as linear regression would not be appropriate in this domain.

The WRAPPER results comment on SILAP, the current
NASA IV&V task selection model. Comparing Figs. 11 and
13, it is clear that many of the features in the current version of
SILAP are not useful for predicting issue and severity. Hence,
a new version of SILAP was created. SILAP2 (in Fig. 1) uses
the consequence calculations of the current version of SILAP,
and replaces the old error potential calculations with the rules
learned from WRAPPER+RIPPER. Since SILAP2 uses only
a quarter of the SILAP, it is faster to apply.

When SILAP2 selects too many tasks, the selected tasks
can be pruned (but note that IV&V task pruning is not recom-
mend for mission- or safety-critical applications). The cur-
rent version of SILAP has some coarse-grained pruning rules
while SILAP2 offers a more detailed pruning criteria, using
historical logs of expended effort and effectiveness (see
Fig. 16).

The analysis of this report is based on public-domain data
and software. To the best of our knowledge, this is the first
reproducible report of a demonstrably useful issue frequency
and severity predictor that can be quickly applied early in a
project’s life cycle. Reproducibility is an important pragmatic
and methodological principle:

• Pragmatically, it allows industrial practitioners to tune
our model to their local data regarding IV&V task cost-
effectiveness (if such data was available).

• Methodologically, it allows researchers to confirm, refute,
or even improve prior results.

In our view, in the field of software engineering, there are all
too few examples of reproduced, and extended, results.6 We
hope that this report encourages more reproducible experi-
ments in software engineering.

Finally, this analysis has used historical records of pre-
viously found issues to rank the IV&V tasks used to find
them. A broader concern is what percentage of issues are
missed by all IV&V tasks. Unfortunately, we have no data
on this important concern. The goal of complete software
assurance is illusive, e.g., the state-space explosion problem
prevents model checkers from rigorously checking all but
small mission-critical portions of a system [40]. The best we
can do currently is to rank sets of candidate tasks according
to their past cost-effectiveness and number of issues found.
In the future, we can certainly do better than this, but only
after corporations recognize the value in keeping consistent
records, across multiple projects, across many years.

6 Exception: see the reports of the PROMISE workshop http://
promisedata.org/repository/papers.html.
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• am: Artifact Maturity
5: The project’s development artifacts are more than 80% incomplete for the

current stage of development based upon the project’s selected software
development life cycle.

3: The project’s development artifacts are less than 50% incomplete for the
current stage of development based upon the project’s selected software
development life cycle.

1: The project has the appropriate artifacts (less than 10% incomplete) for the
current stage of development based upon the project’s selected software
development life cycle.

• as: Asset Safety
5: complete loss of system.
4: complete loss of primary subsystem.
3: complete loss of other critical asset.
2: partial loss of other critical asset.
1: short-term partial loss of other critical asset.

• cl: CMM level
1,2,3,4,5= CMM level 5,4,3,2,1. For a fast guide to assigning CMM levels, see
the discussion on pmat and “key process areas” in [41].

• cx: Complexity
5: Complex scheduling, dynamic priorities, performance critical embedded

system, complex parallelization, noisy stochastic data.
3: Simple nesting, inter-module control using decision tables, message pass-

ing, middle-ware, simple i/0 processing (status checks and error process-
ing), minimal structural changes to input files, functions behave differently
in different models of system operation.

1: Straight=line code, no nested structures, simple composition via procedure
calls or some scripts, functions operate in only one mode, simple COTS-
DB queries and updates.

• di: Degree of Innovation
5: Basic principle being explored. Proof of concept exploration
4: Component validation in lab or relevant environment.
3: System prototype demonstration in relevant environment.
2: System prototype demonstration
1: Proven system concept via several successful prior projects.

• do: Development Organization
5: Geographically disperse, multiple managers/ developers/ sub-contractors.
4: As above, but one sub-contractor.
3: As above, but no sub-contractors.
2: All personnel co-located, sub-contractors used.
1: All personnel co-located, no sub-contractors.

• dt: Use of Defect Tracking
5: The project has no or a minimal defect tracking system.
3: The project has a defect tracking system that is not consistent across the

project. The defect tracking system is implemented in a manual means
(e.g. a spreadsheet).

1: The project has an integrated defect tracking system that allows defects to
be assigned and corrected along with identifying root causes of the defects

• ex: Experience
5,4: less than 5,10 years minimal domain or related experience (respectively).

3: 10+ nominal domain or related experience.
2: developed one like system.
1: developed more than one like system or current incumbent.

• fr: Use of Formal Reviews
5: The project has no planned formal reviews.
3: The project has planned formal reviews, but no documented entrance and

exit criteria.
1: The project has planned formal reviews throughout the s/w life cycle that

include entrance and exit criteria for the review
• hs: Human Safety

5: Loss of life; i.e. a component receiving this rating is linked to an immediate
and direct loss of life.

3: Injury or potential for injury; a component receiving this rating has the
potential to harm or injure a human. It can not directly be linked to a
direct loss of life.

1: Discomfort or nuisance: a component receiving this rating does not cause
injury but may make a human uncomfortable (e.g. some aspects of
environmental control) or be a nuisance.

• pf: Performance
5: Unable to achieve minimum objectives/success criteria.
4: Unable to achieve many objectives/success criteria.
3: Unable to achieve a primary objective/success criteria.
2: Unable to achieve a secondary objective/success criteria.
1: None of the above

• ra: Reuse Approach
5: Re-use approach is ad hoc and based on similarities between projects with

no specific analysis of the item being re-used in terms of applicability to
the current project.

3: Re-use approach makes use of software artifacts that have been designed
for other projects but not with re-use in mind. These artifacts are ana-
lyzed for applicability to the new development effort and the analysis is
documented.

1: Project has a documented re-use approach that is drawing from an establish
re-use repository of software artifacts.

• ss: Size of System Measured in KSLOC. 1,2,3,4 = under 10K,50K, 400K, 850K.
Otherwise, 5.

• uc: Use of Configuration Management
5: Configuration management process is not documented/ not integrated into

the software engineering process
3: The project’s approach to configuration management is not consistent

across the project. Implementation is through manual methods.
1: Project has a well-defined and documented process that maintains the

integrity of the development artifacts through out the software life cycle
through the use of a tried configuration management tool set.

• us: Use of Standards
5: Ad hoc development, minimal documentation and planning and manage-

ment.
3: Using a documented standard and can demonstrate partial compliance to

that standard.
1: Integrated approach to sw/ development using a industry wide or locally

proven process, documentation that explains modifications to that standard
(if any). demonstration of compliance with the stated standard or modified
standard.

Fig. 21 Ranges for SILAP and SILAP2 raw features

Appendix

The raw SILAP features are scored 5,4,3,2,1 representing
what the SILAP authors [9] believed were the worst to best
cases (respectively). Figure 21 offers some notes on how to
select the right range for a particular component.
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