
Data Mining with WEKA 

Original author:  unknown. ? The WEKA team 
Additional material: Tim Menzies, 2010 



WEKA 
  Machine learning/data mining software written

 in Java 
  Used for research, education, and applications 
  Complements “Data Mining” by Witten & Frank 

  Main features 
  Comprehensive set of data pre-processing tools, learning alg

orithms and evaluation methods 
  Graphical user interfaces (incl. data visualization) 
  Environment for comparing learning algorithms 



Access 
  WEKA is available at 
  http://www.cs.waikato.ac.nz/ml/weka 
 Also has a list of projects based on WEKA 
 WEKA contributors: 
 Abdelaziz Mahoui, Alexander K. Seewald, Ashraf M. Kibriya, Bern

hard Pfahringer , Brent Martin, Peter Flach, Eibe Frank ,Gabi Schmidb
erger ,Ian H. Witten , J. Lindgren, Janice Boughton,  Jason Wells, Len 
Trigg, Lucio de Souza Coelho, Malcolm Ware, Mark Hall ,Remco Bou
ckaert , Richard Kirkby, Shane Butler, Shane Legg, Stuart Inglis, Sylva
in Roy, Tony Voyle, Xin Xu, Yong Wang, Zhihai Wang 



@relation heart-disease-simplified 

@attribute age numeric 
@attribute sex { female, male} 
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angi

na} 
@attribute cholesterol numeric 
@attribute exercise_induced_angina { no, yes} 
@attribute class { present, not_present} 

@data 
63,male,typ_angina,233,no,not_present 
67,male,asympt,286,yes,present 
67,male,asympt,229,yes,present 
38,female,non_anginal,?,no,not_present 
... 

Data Files 







Explorer: pre-processing 
  Source 

  Data can be imported from a file in various formats: ARFF, C
SV, C4.5, binary 

  Data can also be read from a URL or from an SQL database 
(using JDBC) 

  Pre-processing tools  
  Called “filters” 
  Discretization, normalization, resampling, attribute selection, 

transforming and combining attributes, … 























































Explorer: building “classifiers” 
  Classifiers in WEKA are models for predicting

 nominal or numeric quantities 
  Implemented learning schemes include: 

  Decision trees and lists, instance-based classifiers, support v
ector machines, multi-layer perceptrons, logistic regression, 
Bayes’ nets, … 

  “Meta”-classifiers include: 
  Bagging, boosting, stacking, error-correcting output codes, lo

cally weighted learning, …  













































Collect separately for each class. 
Repeat 10 times (re-ordering data) * 10-way 
Repeat for each learner * discretizer * x * y * ….  






















































Explorer: clustering data 
  WEKA contains “clusterers” for finding groups

 of similar instances in a dataset 
  Implemented schemes are: 

  k-Means, EM, Cobweb, X-means, FarthestFirst 

  Clusters can be visualized and compared to “t
rue” clusters (if given) 

  Evaluation based on loglikelihood if clustering
 scheme produces a probability distribution 































Explorer: finding associations 
  WEKA contains an implementation of the Apri

ori algorithm for learning association rules 
  Works only with discrete data 

  Can identify statistical dependencies between
 groups of attributes: 
  milk, butter ⇒ bread, eggs (with confidence 0.9 and support 

2000) 

  Apriori can compute all rules that have a give
n minimum support and exceed a given confi
dence 

















Explorer: attribute selection 
  Panel that can be used to investigate which (s

ubsets of) attributes are the most predictive o
nes 

  Attribute selection methods contain two parts: 
  A search method: best-first, forward selection, random, exha

ustive, genetic algorithm, ranking 
  An evaluation method: correlation-based, wrapper, informati

on gain, chi-squared, … 

  Very flexible: WEKA allows (almost) arbitrary 
combinations of these two 



















Which attribute selector? 
  Best: WRAPPER 

  Slow: O(2^N) search through all attribute combinations 
  The “wrapped” learner called to assess each combination 
  Some heuristics to prune the search; but does not scale 

  If not WRAPPER 
  Use InfoGain / OneR for very big datasets 
  Use CFS otherwise 

  Don’t use PCA  
  This is an unsupervised selector 
  So it is uninformed on how dimensions help classification 



Explorer: data visualization 
  Visualization very useful in practice: e.g. help

s to determine difficulty of the learning proble
m 

  WEKA can visualize single attributes (1-d) an
d pairs of attributes (2-d) 
  To do: rotating 3-d visualizations (Xgobi-style) 

  Color-coded class values 
  “Jitter” option to deal with nominal attributes (

and to detect “hidden” data points) 
  “Zoom-in” function 













Evaluation 



Limitations 
  Loads all data into ram prior to learning 

  Problem for large data sets 

  Not good for complex experiments 
  IMHO, discourages experimentation with new

 learners 
  The “WEKA effect” 

  Try every learner till something works 

  Still, very useful for 
  Initial investigations 
  Learning data mining  
  Or as a sub-routine of other systems 



Alternate tools: Orange 

Written in Python 

Simpler specification (but see 
WEKA’s KnowledgeFlow  
Environment). 

Also, less community support/
debugging. So sometimes  
frustrated by random bugs 



Alternate tools: RapidMiner 

Experiments specified in an XML tree syntax 

In theory, possible to share experimental descriptions  



Alternate tools: OurMine 

Forget the visuals. 

Make WEKA a sub-routine  
inside Bash script 

Now you can mix WEKA’s JAV
A with learners written in your  
favorite language. 

But how do you find the magic 
command strings?  

Java=$Base/lib/java 
Weka="java -Xmx2048M -cp $Java/weka.jar ” 
Clusterers="java -Xmx1024M -jar $Java/Clusterers.jar ” 
Reducers="java -Xmx1024M -jar $Java/Reduce.jar ” 

nb() { 
    local learner=weka.classifiers.bayes.NaiveBayes 
    $Weka $learner -p 0 -t $1 -T $2   
} 

nb10() { 
    local learner=weka.classifiers.bayes.NaiveBayes 
    $Weka $learner -i -t $1    
} 

j48() { 
    local learner=weka.classifiers.trees.J48 
    $Weka $learner -p 0 -C 0.25 -M 2 -t $1 -T $2 
} 



analysis1(){ 
    local origdata=$1 
    local outstats=$2 
    local nattrs="2 4 6 8 10 12 14 16 18 20" 
    local learners="nb10 j4810 zeror10 oner10 adtree10" 
    local reducers="infogain chisquared oneR" 
    local tmpred=$Tmp/red 
    echo "n,reducer,learner,accuracy" > $outstats 

    for n in $nattrs; do 
        for reducer in $reducers; do 
              $reducer $origdata $n $tmpred  
              for learner in $learners; do 
                 accur=`$learner $tmpred.arff | acc        
                 out="$n,$reducer,$learner,$accur" 
                 blabln $out 
                echo $out >> $outstats 
             done 
        done 
    done 
}  

Why go to all that trouble? 

Complex experiments, specifie
d succinctly. 

Experiments can now be revie
wed, audited, by others. 

Also, in 12 months time when 
Reviewer2 wants a tiny  
extension to the old paper, you
don’t have to remember all  
that clicking you did: just rerun 
the script.  




