
Data Mining with WEKA

Original author: unknown. ? The WEKA team
Additional material: Tim Menzies, 2010

WEKA
  Machine learning/data mining software written

 in Java
  Used for research, education, and applications
  Complements “Data Mining” by Witten & Frank

  Main features
  Comprehensive set of data pre-processing tools, learning alg

orithms and evaluation methods
  Graphical user interfaces (incl. data visualization)
  Environment for comparing learning algorithms

Access
  WEKA is available at
 http://www.cs.waikato.ac.nz/ml/weka
 Also has a list of projects based on WEKA
 WEKA contributors:
 Abdelaziz Mahoui, Alexander K. Seewald, Ashraf M. Kibriya, Bern

hard Pfahringer , Brent Martin, Peter Flach, Eibe Frank ,Gabi Schmidb
erger ,Ian H. Witten , J. Lindgren, Janice Boughton, Jason Wells, Len
Trigg, Lucio de Souza Coelho, Malcolm Ware, Mark Hall ,Remco Bou
ckaert , Richard Kirkby, Shane Butler, Shane Legg, Stuart Inglis, Sylva
in Roy, Tony Voyle, Xin Xu, Yong Wang, Zhihai Wang

@relation heart-disease-simplified

@attribute age numeric
@attribute sex { female, male}
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angi

na}
@attribute cholesterol numeric
@attribute exercise_induced_angina { no, yes}
@attribute class { present, not_present}

@data
63,male,typ_angina,233,no,not_present
67,male,asympt,286,yes,present
67,male,asympt,229,yes,present
38,female,non_anginal,?,no,not_present
...

Data Files

Explorer: pre-processing
  Source

  Data can be imported from a file in various formats: ARFF, C
SV, C4.5, binary

  Data can also be read from a URL or from an SQL database
(using JDBC)

  Pre-processing tools
  Called “filters”
  Discretization, normalization, resampling, attribute selection,

transforming and combining attributes, …

Explorer: building “classifiers”
  Classifiers in WEKA are models for predicting

 nominal or numeric quantities
  Implemented learning schemes include:

  Decision trees and lists, instance-based classifiers, support v
ector machines, multi-layer perceptrons, logistic regression,
Bayes’ nets, …

  “Meta”-classifiers include:
  Bagging, boosting, stacking, error-correcting output codes, lo

cally weighted learning, …

Collect separately for each class.
Repeat 10 times (re-ordering data) * 10-way
Repeat for each learner * discretizer * x * y * ….

Explorer: clustering data
  WEKA contains “clusterers” for finding groups

 of similar instances in a dataset
  Implemented schemes are:

  k-Means, EM, Cobweb, X-means, FarthestFirst

  Clusters can be visualized and compared to “t
rue” clusters (if given)

  Evaluation based on loglikelihood if clustering
 scheme produces a probability distribution

Explorer: finding associations
  WEKA contains an implementation of the Apri

ori algorithm for learning association rules
  Works only with discrete data

  Can identify statistical dependencies between
 groups of attributes:
  milk, butter ⇒ bread, eggs (with confidence 0.9 and support

2000)

  Apriori can compute all rules that have a give
n minimum support and exceed a given confi
dence

Explorer: attribute selection
  Panel that can be used to investigate which (s

ubsets of) attributes are the most predictive o
nes

  Attribute selection methods contain two parts:
  A search method: best-first, forward selection, random, exha

ustive, genetic algorithm, ranking
  An evaluation method: correlation-based, wrapper, informati

on gain, chi-squared, …

  Very flexible: WEKA allows (almost) arbitrary
combinations of these two

Which attribute selector?
  Best: WRAPPER

  Slow: O(2^N) search through all attribute combinations
  The “wrapped” learner called to assess each combination
  Some heuristics to prune the search; but does not scale

  If not WRAPPER
  Use InfoGain / OneR for very big datasets
  Use CFS otherwise

  Don’t use PCA
  This is an unsupervised selector
  So it is uninformed on how dimensions help classification

Explorer: data visualization
  Visualization very useful in practice: e.g. help

s to determine difficulty of the learning proble
m

  WEKA can visualize single attributes (1-d) an
d pairs of attributes (2-d)
  To do: rotating 3-d visualizations (Xgobi-style)

  Color-coded class values
  “Jitter” option to deal with nominal attributes (

and to detect “hidden” data points)
  “Zoom-in” function

Evaluation

Limitations
  Loads all data into ram prior to learning

  Problem for large data sets

  Not good for complex experiments
  IMHO, discourages experimentation with new

 learners
  The “WEKA effect”

  Try every learner till something works

  Still, very useful for
  Initial investigations
  Learning data mining
  Or as a sub-routine of other systems

Alternate tools: Orange

Written in Python

Simpler specification (but see
WEKA’s KnowledgeFlow
Environment).

Also, less community support/
debugging. So sometimes
frustrated by random bugs

Alternate tools: RapidMiner

Experiments specified in an XML tree syntax

In theory, possible to share experimental descriptions

Alternate tools: OurMine

Forget the visuals.

Make WEKA a sub-routine
inside Bash script

Now you can mix WEKA’s JAV
A with learners written in your
favorite language.

But how do you find the magic
command strings?

Java=$Base/lib/java
Weka="java -Xmx2048M -cp $Java/weka.jar ”
Clusterers="java -Xmx1024M -jar $Java/Clusterers.jar ”
Reducers="java -Xmx1024M -jar $Java/Reduce.jar ”

nb() {
 local learner=weka.classifiers.bayes.NaiveBayes
 $Weka $learner -p 0 -t $1 -T $2
}

nb10() {
 local learner=weka.classifiers.bayes.NaiveBayes
 $Weka $learner -i -t $1
}

j48() {
 local learner=weka.classifiers.trees.J48
 $Weka $learner -p 0 -C 0.25 -M 2 -t $1 -T $2
}

analysis1(){
 local origdata=$1
 local outstats=$2
 local nattrs="2 4 6 8 10 12 14 16 18 20"
 local learners="nb10 j4810 zeror10 oner10 adtree10"
 local reducers="infogain chisquared oneR"
 local tmpred=$Tmp/red
 echo "n,reducer,learner,accuracy" > $outstats

 for n in $nattrs; do
 for reducer in $reducers; do
 $reducer $origdata $n $tmpred
 for learner in $learners; do
 accur=`$learner $tmpred.arff | acc
 out="$n,$reducer,$learner,$accur"
 blabln $out
 echo $out >> $outstats
 done
 done
 done
}

Why go to all that trouble?

Complex experiments, specifie
d succinctly.

Experiments can now be revie
wed, audited, by others.

Also, in 12 months time when
Reviewer2 wants a tiny
extension to the old paper, you
don’t have to remember all
that clicking you did: just rerun
the script.

