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Data Mining with WEKA 

Original author:  unknown. ? The WEKA team 
Additional material: Tim Menzies, 2010 

WEKA 
  Machine learning/data mining software written

 in Java 
  Used for research, education, and applications 
  Complements “Data Mining” by Witten & Frank 

  Main features 
  Comprehensive set of data pre-processing tools, learning alg

orithms and evaluation methods 
  Graphical user interfaces (incl. data visualization) 
  Environment for comparing learning algorithms 
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Access 
  WEKA is available at 
  http://www.cs.waikato.ac.nz/ml/weka 
 Also has a list of projects based on WEKA 
 WEKA contributors: 
 Abdelaziz Mahoui, Alexander K. Seewald, Ashraf M. Kibriya, Bern

hard Pfahringer , Brent Martin, Peter Flach, Eibe Frank ,Gabi Schmidb
erger ,Ian H. Witten , J. Lindgren, Janice Boughton,  Jason Wells, Len 
Trigg, Lucio de Souza Coelho, Malcolm Ware, Mark Hall ,Remco Bou
ckaert , Richard Kirkby, Shane Butler, Shane Legg, Stuart Inglis, Sylva
in Roy, Tony Voyle, Xin Xu, Yong Wang, Zhihai Wang 


@relation heart-disease-simplified 

@attribute age numeric 
@attribute sex { female, male} 
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angi

na} 
@attribute cholesterol numeric 
@attribute exercise_induced_angina { no, yes} 
@attribute class { present, not_present} 

@data 
63,male,typ_angina,233,no,not_present 
67,male,asympt,286,yes,present 
67,male,asympt,229,yes,present 
38,female,non_anginal,?,no,not_present 
... 

Data Files 
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Explorer: pre-processing 
  Source 

  Data can be imported from a file in various formats: ARFF, C
SV, C4.5, binary 

  Data can also be read from a URL or from an SQL database 
(using JDBC) 

  Pre-processing tools  
  Called “filters” 
  Discretization, normalization, resampling, attribute selection, 

transforming and combining attributes, … 
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Explorer: building “classifiers” 
  Classifiers in WEKA are models for predicting

 nominal or numeric quantities 
  Implemented learning schemes include: 

  Decision trees and lists, instance-based classifiers, support v
ector machines, multi-layer perceptrons, logistic regression, 
Bayes’ nets, … 

  “Meta”-classifiers include: 
  Bagging, boosting, stacking, error-correcting output codes, lo

cally weighted learning, …  
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Collect separately for each class. 
Repeat 10 times (re-ordering data) * 10-way 
Repeat for each learner * discretizer * x * y * ….  
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Explorer: clustering data 
  WEKA contains “clusterers” for finding groups

 of similar instances in a dataset 
  Implemented schemes are: 

  k-Means, EM, Cobweb, X-means, FarthestFirst 

  Clusters can be visualized and compared to “t
rue” clusters (if given) 

  Evaluation based on loglikelihood if clustering
 scheme produces a probability distribution 
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Explorer: finding associations 
  WEKA contains an implementation of the Apri

ori algorithm for learning association rules 
  Works only with discrete data 

  Can identify statistical dependencies between
 groups of attributes: 
  milk, butter ⇒ bread, eggs (with confidence 0.9 and support 

2000) 

  Apriori can compute all rules that have a give
n minimum support and exceed a given confi
dence 
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Explorer: attribute selection 
  Panel that can be used to investigate which (s

ubsets of) attributes are the most predictive o
nes 

  Attribute selection methods contain two parts: 
  A search method: best-first, forward selection, random, exha

ustive, genetic algorithm, ranking 
  An evaluation method: correlation-based, wrapper, informati

on gain, chi-squared, … 

  Very flexible: WEKA allows (almost) arbitrary 
combinations of these two 
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Which attribute selector? 
  Best: WRAPPER 

  Slow: O(2^N) search through all attribute combinations 
  The “wrapped” learner called to assess each combination 
  Some heuristics to prune the search; but does not scale 

  If not WRAPPER 
  Use InfoGain / OneR for very big datasets 
  Use CFS otherwise 

  Don’t use PCA  
  This is an unsupervised selector 
  So it is uninformed on how dimensions help classification 

Explorer: data visualization 
  Visualization very useful in practice: e.g. help

s to determine difficulty of the learning proble
m 

  WEKA can visualize single attributes (1-d) an
d pairs of attributes (2-d) 
  To do: rotating 3-d visualizations (Xgobi-style) 

  Color-coded class values 
  “Jitter” option to deal with nominal attributes (

and to detect “hidden” data points) 
  “Zoom-in” function 
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Evaluation 
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Limitations 
  Loads all data into ram prior to learning 

  Problem for large data sets 

  Not good for complex experiments 
  IMHO, discourages experimentation with new

 learners 
  The “WEKA effect” 

  Try every learner till something works 

  Still, very useful for 
  Initial investigations 
  Learning data mining  
  Or as a sub-routine of other systems 

Alternate tools: Orange 

Written in Python 

Simpler specification (but see 
WEKA’s KnowledgeFlow  
Environment). 

Also, less community support/
debugging. So sometimes  
frustrated by random bugs 
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Alternate tools: RapidMiner 

Experiments specified in an XML tree syntax 

In theory, possible to share experimental descriptions  

Alternate tools: OurMine 

Forget the visuals. 

Make WEKA a sub-routine  
inside Bash script 

Now you can mix WEKA’s JAV
A with learners written in your  
favorite language. 

But how do you find the magic 
command strings?  

Java=$Base/lib/java 
Weka="java -Xmx2048M -cp $Java/weka.jar ” 
Clusterers="java -Xmx1024M -jar $Java/Clusterers.jar ” 
Reducers="java -Xmx1024M -jar $Java/Reduce.jar ” 

nb() { 
    local learner=weka.classifiers.bayes.NaiveBayes 
    $Weka $learner -p 0 -t $1 -T $2   
} 

nb10() { 
    local learner=weka.classifiers.bayes.NaiveBayes 
    $Weka $learner -i -t $1    
} 

j48() { 
    local learner=weka.classifiers.trees.J48 
    $Weka $learner -p 0 -C 0.25 -M 2 -t $1 -T $2 
} 
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analysis1(){ 
    local origdata=$1 
    local outstats=$2 
    local nattrs="2 4 6 8 10 12 14 16 18 20" 
    local learners="nb10 j4810 zeror10 oner10 adtree10" 
    local reducers="infogain chisquared oneR" 
    local tmpred=$Tmp/red 
    echo "n,reducer,learner,accuracy" > $outstats 

    for n in $nattrs; do 
        for reducer in $reducers; do 
              $reducer $origdata $n $tmpred  
              for learner in $learners; do 
                 accur=`$learner $tmpred.arff | acc        
                 out="$n,$reducer,$learner,$accur" 
                 blabln $out 
                echo $out >> $outstats 
             done 
        done 
    done 
}  

Why go to all that trouble? 

Complex experiments, specifie
d succinctly. 

Experiments can now be revie
wed, audited, by others. 

Also, in 12 months time when 
Reviewer2 wants a tiny  
extension to the old paper, you
don’t have to remember all  
that clicking you did: just rerun 
the script.  


