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Sound Bites

Static code features can be used to build software
quality predictors.

But they are a shallow well.

We can easily get to the bottom.
But further effort will not take us deeper.

Unless we change the rules of the game.
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What is “Defect Prediction”?

Problem

100% quality assurance (QA) is infinitely expensive

Tests(Conf , ErrRate) = log(1−Conf )
log(1−ErrRate)

Test engineers, skew QA towards what is most critical:

e.g. model checking restricted to the kernel of the
guidance system

But if we only look at {A,B,C}....

... what hides in the blind spot of {E,F,G,...}?

Proposal:

Augment focused expensive QA methods with cheaper
faster methods

But how to sampling methods blind spots?

quickly
cheaply

6 / 40



Learning Defect Predictors:Lessons from the Trenches

What is “Defect Prediction”?

One Solution: Data Mining

Input: rows of data

features class
name age shoeSize mood
tim 48 11 happy
tim 12 5 sad
tim 28 9 happy
tim 100 11 happy

Learners:

Naive Bayes: statistical feature combinations for class prediction
RIPPER : learns rules
C4.5 : decision tree learner
Random Forests : learn 100s of trees
etc

Output: combinations of features that predict for the class
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What is “Defect Prediction”?

Solution: the Details

Using data mining: explore the “modules”

smallest functional unit ∈ {function,method , class, ...}

Take logs of modules described as static code modules:

Lines of code and comment measures
Counts of intra-module symbols (Halstead [1977]);
Measures of intra-module call graphs (McCabe [1976]);

Join the logs to number of defects seen in each module

often, discretized to {yes, no};

Find feature combinations that predict for defective ∈ {yes, no};
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What is “Defect Prediction”?

Examples of Static Code Features

m = Mccabe v(g) cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to closing brack-
ets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2
V volume: V = N ∗ log2µ
L level: L = V∗/V where

V∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L
I content: I = L̂ ∗ V where

L̂ = 2
µ1

∗ µ2
N2

E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds
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What is “Defect Prediction”?

Why Do That?

Useful: out-performs known industrial
baselines at defect detection:

IEEE Metrics’02 panel: manual
software reviews finds ≈60%
(Shull et al. [2002]);

Raffo (pers. comm.): industrial
review methods find
pd = TR(35, 50, 65)%

Data mining static code features
finds (median) 71%
(Menzies et al. [2007]).

Easy to use:

Automatic, cheap and fast to
collect, scales to large systems.

Manual methods: 8-20
LOC/minute for manual code
reviews.

Widely used:

Hundreds of research papers.
Earliest: Porter and Selby [1990]?

Recommended by numerous texts

Large government contractors:
only review modules that trigger a
static code analyzer
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What is “Defect Prediction”?

Why Use Static Code Features?

Why not use...

knowledge of the developers (Nagappan et al. [2008])
Or history of runtime defectives (Musa et al. [1987])
Or XYZ?

A: Use whatever is available

And that changes from site to site

I dream of the day that I work with an organization with stable
products and practices.

Meanwhile, in the real world...
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What is “Defect Prediction”?

Menzies et al. [2008a]

Dealing with Organizational Change

year #IV&V project notes oversight
1988 n/a Space shuttle begins IV&V Johnson (Texas)
1991 n/a New the IV&V facility Headquarters (east coast)
1994 1 International space station IV&V begins
1995 1
1996 2 NASA Ames (west coast)
1996 3 IV&V funded from project budgets
1997 3
1998 3
1999 12 IV&V now considered on all software
2000 15 GSFC (east coast)
2001 20
2002 36
2003 42 IV&V funded from central agency source.
2004 37
2005 24 SILAP data collection begins
2006 26
2007 24 SILAP data collection ends

2003: Loss of Columbia ⇒ “return to flight” reorganization

2004: Bush’s new vision for space exploration

Always: layers of contractors; so “oversight”, not “insight”
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What is “Defect Prediction”?

The Real Question

Not what features “are right”;

But what features are available “right now”.

Particularly when you can not control data collection

Agile
Out-source
Open source
Sub-contractors
Your current project?

Sometimes, all you can access “right now” is source code.
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Value of Defect Prediction

Fenton and Pfleeger [1997], Shepperd and Ince [1994]

Aren’t Static Code Features.... Stupid?

m = Mccabe v(g) cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to closing brack-
ets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2
V volume: V = N ∗ log2µ
L level: L = V∗/V where

V∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L
I content: I = L̂ ∗ V where

L̂ = 2
µ1

∗ µ2
N2

E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

v(g) correlated to LOC

“For a large class of
software ((v(g)) is no
more than a proxy for,
and in many cases
outperformed by, lines
of code”
– Shepperd & Ince
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Value of Defect Prediction

Turhan et al. [2008]

So What Would Happen if...

We learned defect predictors from NASA aerospace applications

Then applied them to software developed for Turkish whitegoods?

(Caveat: in both studies, same data dictionary but different data.)

source project language description
NASA cm1 C++ Spacecraft instrument
NASA pc1 C++ Flight software for earth orbiting satellite
NASA mc2 C++ Video guidance system
NASA mw1 C++ A zero gravity experiment related to combustion
NASA kc1 C++ Storage management for ground data
NASA kc2 C++ Storage management for ground data
NASA kc3 JAVA Storage management for ground data
SOFTLAB ar5 C Washing machine
SOFTLAB ar3 C Dishwasher
SOFTLAB ar4 C Refrigerator

Begin digression: how do we measure performance?
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Value of Defect Prediction

Turhan et al. [2008]

Performance Measures

{A, B, C , D} = true negatives, false
negatives, false positives, and true
positives (respectively) found by a
binary detector.

pd = recall = D
B+D

pf = C
A+C

prec = precision = D
D+C

acc = accuracy = A+D
A+B+C+D

neg/pos = A+C
B+D

For large neg/pos values: can be accurate and still
miss most things

module found in defect logs?
no yes

signal no A = 395 B = 67
detected? yes C = 19 D = 39

Acc = accuracy = 83%

pf = Prob.falseAlarm = 5%

pd = Prop.detected = 37%

End digression.
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Value of Defect Prediction

Turhan et al. [2008]

Results

For learner=Naive Bayes (why? see later), try “round robin” or “self-” learning

RR= “Round robin” : train on them, test on me.

‘Self” : train and test on me

Probability
False

Data source Train Test Detection Alarm
RR Imported data all X - Xi Xi 94 ( ! ) 68
self Local data 90% of Xi 10% of Xi 75 29
RR Filtered imported data k-nearest of (all X - Xi ) Xi 69 27

Best data source: local data

Adequate: using imported data (filtered with nearest neighbor)

Recommendations:

If no data, start local collection

Meanwhile, use imported data, filtered with nearest neighbor

Question: how much data is needed to build local detectors?
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Variance and Ceiling Effects

Menzies et al. [2007]

What is “The” Best Feature?

Experiments with Näive Bayes:

While performance improved, add features.

index of
selected

data pd pf feature
pc1 48 17 3, 35, 37
mw1 52 15 23, 31, 35
kc3 69 28 16, 24, 26
cm1 71 27 5, 35, 36
pc2 72 14 5, 39
kc4 79 32 3, 13, 31
pc3 80 35 1, 20, 37
pc4 98 29 1, 4, 39
all 71 25

ID used in what type
1 2 loc blanks locs
3 2 call pairs misc
4 1 loc code and command locs
5 2 loc comments locs
13 1 edge count misc
16 1 loc executable locs
20 1 I H’
23 1 B H’
24 1 L H’
26 1 T H’
31 2 node count misc
35 3 µ2 h
36 1 µ1 h
37 2 number of lines locs
39 2 percent comments misc

H’ = derived Halstead
h = raw Halstead

Why no single most valuable feature?
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Variance and Ceiling Effects

Menzies et al. [2007]

Feature Information Variance

10 * { 90% sample, compute “info gain” of each feature}
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Attributes Ai, sorted by InfoGain

High left-hand-side plateau (multiple candidate “best” features)

Low right-hand-side valley (small set of “always worst” features)

Never again: v(g) > 10.
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Variance and Ceiling Effects

Jiang et al. [2007]; Lessmann et al. [2008]

Value of Better Data Miners?

Ceiling effects: an inherent upper bound on the performance of our data miners

Have yet to improve our mid-2006 defect predictors: Menzies et al. [2007]

6/9 methods are “best” 14/19 methods are “best”

Note: evaluation bias- area under the curve of a detection vs false alarm plot

AUC(PD, PF)
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Variance and Ceiling Effects

Menzies et al. [2008b]

Value of More Data?

Learner = NB Randomized order ; train on “X”; test on next 100
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Micro-sampling: N defective + N non-defective, N ∈ {25, 50, 75, ...}
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Statistically, little gain after 100 (random) or 50 (micro-sampling)

23 / 40

Learning Defect Predictors:Lessons from the Trenches

Variance and Ceiling Effects

Lessmann et al. [2008]

End of the Line?

“...the importance of the (learner) is less than generally
assumed and practitioners are free to choose from a broad set
of candidate models when building defect predictors.”
– Lessmann et al.

No value in new algorithms for defect prediction?

Not unless we change the rules of the game
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Changing the Rules

Menzies et al. [2007a]

Generalized Evaluation Bias
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pd pf effort#

Risk adverse (e.g. airport bomb detection, morning sickness) hi hi
Cost adverse (e.g. budget conscious) med lo
Arisholm and Briand [2006] < pd

#effort = LOC in the modules predicted to be faulty
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Changing the Rules

Milton [2008]

Evaluation-aware Learners

All learners have an search bias S and an evaluation bias E . e.g. C4.5:

S = infogain

E = pd,pf,accuracy, etc

Note: usually, S #= E

Question: What if we make S = E ?

Answer: Milton [2008]
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Changing the Rules

Milton [2008]

Evaluation-aware Learning with “WHICH”

1 Discretize all numeric features.

2 Sort all ranges using E onto a stack

3 Pick any 2 items near top-of-stack

4 Combine items, score them with E ,
insert them into the sorted stack.

5 Goto 3
Note: no S ; E is customizable.
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Top of stack stabilizes quickly (UCI data).

Other methods can bias learner predictions:

Apply E during decision tree splitting

Elkan [2001]: cost-sensitive learning (*)

Fawcett [2001]: ROC ensemble combinations (*)

(*) But what work if search criteria is orthogonal to the evaluation criteria?
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Changing the Rules

Milton [2008]

Experiments with “WHICH”

Arisholm and Briand [2006]
For a budget-conscious team,

if X% of modules predicted to be faulty

but they contain ≤ X% of the detects,

then that defect predictor is not useful

i.e. they prefer pd > effort

Operationalizing their bias:

Find modules triggered by the learner

Sort them in ascending order of size

Assume human inspectors find ∆ of the defects in
the triggered modules

Score learner as ratio of “best” effort-vs-pd curve

“best” only triggers on defective modules
Note : ∆ cancels out
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“bad” : worse than manual
“good” : beats manual
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Changing the Rules

Milton [2008]

Experiments with “WHICH”

10 random orderings * 3-way cross-val

10 sets of static code features from NASA, Turkish whitegoods

“Rank” computed using Mann-Whitney U test (95%)

Micro20: training on 20 defective + 20 non-defective

rank treatment median “best”% 2nd quartile, median, 3rd quartile

1 WHICH 87.3
!

2 micro20 76.3
!

3 NB 64.2
!

3 manual 64.2
!

4 C4.5 23.1
!

4 jRip 17.7
!

50%

Shallow well: we do not need much data to do it (40 examples).
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Conclusions & Next Steps

But Why does it Work so Well?

Related question:

Why does IR work so well?

Same answer for both questions?

Is our technical work constrained by:

compilers,

languages,

target domains,

human short-term memory,

etc

What is this invisible hand?
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Conclusions & Next Steps

F.A.Q.

Are defect predictors useful?

As a method to reduce the cost of more expensive QA, yes.

Are defect predictors general?

Yes: after NN, NASA & SOFTLAB’s predictors work on each
other’s site

But learning from local data is best.

How much data is needed?

Dozens to under 100 for micro-sampling to random sampling
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Conclusions & Next Steps

F.A.Q. (more)

Which learner is best for building defect predictors?

When maximizing PD-vs-PF, there are many choices.

Otherwise, tune learner to local evaluation bias (e.g. WHICH)

What is the “best” feature?

Wrong question. “Best” is domain-specific.

Collect everything that is readily and cheaply available
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Conclusions & Next Steps

Research Directions: NSF CCF funding

We have seen above that the “best” features are data set dependent.

Due to feature information variance

So lets look harder at exploiting local knowledge.

Microsoft example

Given the small samples needed for learning detectors (dozens to 100)

Augment (? replace) data mining

... with human-in-the-loop case-based-reasoning

Do you think that with your domain expertise you can do better than
stupid static features?

Then lets talk some.
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Conclusions & Next Steps

And Finally..

Static code features can be used to build software
quality predictors.

But they are a shallow well.

Easily get to the bottom
With ≤ 100 examples.
Further effort will not take us deeper
Ceiling effects on AUC(Pd,Pf).

Unless we change the rules of the game:

Using evaluation aware learning
Augment data mining with human-in-the-loop
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