LectureNaiveBayes

NaiveBayes Classifiers 101

- Introduction
- Example
- <u>Bayes' rule</u>
 - <u>Numerical errors</u>
 - Missing values
 - The "low-frequencies problem"
- Pseudo-code
- Handling Numerics
- Not so "Naive" Bayes

Introduction

(This are some quick notes. For more details, see OURMINE.

A Bayes classifier is a simple statistical-based learning scheme.

Advantages:

- Tiny memory footprint
- Fast training, fast learning
- Simplicity
- Often works surprisingly well

Assumptions

- · Learning is done best via statistical modeling
- Attributes are
 - equally important
 - statistically independent (given the class value)
 - This means that knowledge about the value of a particular attribute doesn't tell us anything about the value of another attribute (if the class is known)
- Although based on assumptions that are almost never correct, this scheme works well in practice Domingos97

Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test splits. "Bayes" is the Bayesian classifier with Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the Bayesian classifier and the corresponding algorithm, using a one-tailed paired *t* test: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%.

Data Set	Bayes	Gauss	C4.5	PEBLS	CN2	Def
Audiology	73.0±6.1	73.0±6.16	72.5 ± 5.8^{6}	75.8±5.4 ³	71.0±5.15	21.3
Annealing	95.3±1.2	84.3 ± 3.8^{1}	90.5 ± 2.2^{1}	98.8±0.81	81.2 ± 5.4^{1}	76.4
Breast cancer	71.6±4.7	71.3±4.36	70.1±6.8 ⁵	65.6±4.7 ¹	67.9±7.1 ¹	67.6
Credit	84.5±1.8	78.9 ± 2.5^{1}	85.9 ± 2.1^3	82.2±1.9 ¹	82.0 ± 2.2^{1}	57.A
Chess endgames	88.0 ± 1.4	88.0 ± 1.4^{6}	99.2±0.1 ¹	96.9±0.71	98.1 ± 1.0^{1}	52.0
Diabetes	74.5±2.4	75.2 ± 2.1^{6}	73.5±3.4 ⁵	71.1 ± 2.4^{1}	73.8 ± 2.7^{6}	66.0
Echocardiogram	69.1±5.4	73.4±4.91	64.7±6.31	61.7±6.4 ¹	68.2 ± 7.2^{6}	67.8
Glass	61.9 ± 6.2	50.6 ± 8.2^{1}	63.9±8.7 ⁶	62.0±7.4 ⁶	63.8±5.56	31.7
Heart disease	81.9±3.4	84.1 ± 2.8^{1}	77.5±4.3 ¹	78.9 ± 4.0^{1}	79.7 ± 2.9^3	55.0
Hepatitis	85.3±3.7	85.2 ± 4.0^{6}	79.2±4.3 ¹	79.0±5.11	80.3 ± 4.2^{1}	78.1
Horse colic	80.7±3.7	79.3±3.71	85.1±3.8 ¹	75.7±5.0 ¹	82.5 ± 4.2^{2}	63.6
Hypothyroid	97.5±0.3	97.9 ± 0.4^{1}	99.1±0.2 ¹	95.9±0.7 ¹	98.8 ± 0.4^{1}	95.3
Iris	93.2±3.5	93.9 ± 1.9^{6}	92.6±2.76	93.5±3.0 ⁶	93.3 ± 3.6^{6}	26.5
Labor	91.3±4.9	88.7±10.66	78.1±7.91	89.7±5.06	82.1 ± 6.9^{1}	65.0
Lung cancer	46.8±13.3	46.8±13.3 ⁶	40.9±16.3 ⁵	42.3±17.36	38.6 ± 13.5^3	26.8
Liver disease	63.0±3.3	54.8 ± 5.5^{1}	65.9 ± 4.4^{1}	61.3±4.36	65.0 ± 3.8^{3}	58.1
LED	62.9 ± 6.5	62.9 ± 6.5^{6}	61.2 ± 8.4^{6}	55.3 ± 6.1^{1}	58.6 ± 8.1^2	8.0
Lymphography	81.6±5.9	81.1 ± 4.8^{6}	75.0 ± 4.2^{1}	82.9 ± 5.6^{6}	78.8 ± 4.9^{3}	57.3
Post-operative	64.7±6.8	67.2 ± 5.0^{3}	70.0 ± 5.2^{1}	59.2 ± 8.0^{2}	60.8 ± 8.2^4	71.2
Promoters	87.9±7.0	87.9 ± 7.0^{6}	74.3±7.8 ¹	91.7 ± 5.9^{3}	75.9 ± 8.8^{1}	43.1
Primary tumor	44.2±5.5	44.2 ± 5.5^{6}	35.9 ± 5.8^{1}	30.9 ± 4.7^{1}	39.8 ± 5.2^{1}	24.6
Solar flare	68.5±3.0	68.2±3.7 ⁶	70.6 ± 2.9^{1}	67.6±3.56	70.4 ± 3.0^2	25.2
Sonar	69.4±7.6	63.0 ± 8.3^{1}	69.1±7.46	73.8±7.4 ¹	66.2±7.5 ⁵	50.8
Soybean	100.0 ± 0.0	100.0 ± 0.0^{6}	95.0 ± 9.0^3	100.0 ± 0.0^{6}	96.9±5.9 ³	30.0
Splice junctions	95.4±0.6	95.4±0.6 ⁶	93.4±0.81	94.3±0.51	81.5 ± 5.5^{1}	52.4
Voting records	91.2±1.7	91.2±1.76	96.3±1.3 ¹	94.9 ± 1.2^{1}	95.8 ± 1.6^{1}	60.5
Wine	96.4±2.2	97.8 ± 1.2^{3}	92.4±5.61	97.2±1.86	90.8 ± 4.7^{1}	36.4
Zoology	94.4±4.1	94.1±3.86	89.6 ± 4.7^{1}	94.6±4.36	90.6 ± 5.0^{1}	39.4

It has some drawbacks: it can offer conclusions put it is poor at explaining how those conclusions were reached. But that is something we'll get back to below.

Example

weather.symbolic.arff

outlook	temperature	humidity	windy	play
rainy	cool	normal	TRUE	no
rainy	mild	high	TRUE	no
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
overcast	cool	normal	TRUE	yes
overcast	hot	high	FALSE	yes
overcast	hot	normal	FALSE	yes
overcast	mild	high	TRUE	yes
rainy	cool	normal	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

This data can be summarized as follows:

Outlook				Temperature			Humidit			
		Yes	No			Yes	No		Yes	NG
Sunny		2	3	Н	ot	2	2	High	3	4
Overca	ast	4	0	М	ild	4	2	Normal	6	
Rainy		3	2	C	ool	3	1			
-										
							2/5			
Overca							2/5	Normal	6/9	1/5
Rainy		3/9	2/5	C	ool	3/9	1/5			
		Wi	ndy		Play					
				====	====					
	Yes]	No	Yes	No					
False	6	2		9	5					
True	3	3								
False	6/	9 :	2/5	9/14	5/14	1				
True	3/		3/5							

So, what happens on a new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	288

First find the likelihood of the two classes

- For "yes" = 2/9 * 3/9 * 3/9 * 3/9 * 9/14 = 0.0053
- For "no" = 3/5 * 1/5 * 4/5 * 3/5 * 5/14 = 0.0206
- Conversion into a probability by normalization:
 - P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205
 - P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

So, we aren't playing golf today.

Bayes' rule

More generally, the above is just an application of Bayes' Theorem.

Probability of event H given evidence E:

Pr(E | H) * Pr(H) Pr(H | E) = -----Pr(E)

- A priori probability of H= Pr(H)
- Probability of event before evidence has been seen
 A posteriori probability of H= Pr[H|E]
- Probability of event after evidence has been seen
- Classification learning: what's the probability of the class given an instance?
 Evidence E = instance
 - Event H = class value for instance
- Naive Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!

• We used this above. Here's our evidence:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

• Here's the probability for "yes":

```
Pr(yes | E) = Pr(Outlook = Sunny | yes) *

Pr(Temperature = Cool | yes) *

Pr(Humidity = High | yes) * Pr(yes)

Pr(Windy = True | yes) * Pr(yes) / Pr(E)

= (2/9 * 3/9 * 3/9 * 3/9) * 9/14) / Pr(E)
```

Return the classification with highest probability

- Probability of the evidence Pr(E)
 - Constant across all possible classifications;
 - · So, when comparing N classifications, it cancels out

Numerical errors

From multiplication of lots of small numbers

· Use the standard fix: don't multiply the numbers, add the logs

Missing values

Missing values are a problem for any learner. Naive Bayes' treatment of missing values is particularly elegant.

- During training: instance is not included in frequency count for attribute value-class combination
- · During classification: attribute will be omitted from calculation

Example:	Outlook	Temp.	Humidity	Windy	Play
	?	Cool	High	True	288

- Likelihood of "yes" = 3/9 * 3/9 * 3/9 * 9/14 = 0.0238
- Likelihood of "no" = 1/5 * 4/5 * 3/5 * 5/14 = 0.0343
- P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%
- P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

The "low-frequencies problem"

What if an attribute value doesn't occur with every class value (e.g. "Humidity = high" for class "yes")?

- Probability will be zero!
- Pr(Humidity = High | yes) = 0
- A posteriori probability will also be zero! Pr(yes | E) = 0 (No matter how likely the other values are!)

So use an estimators for low frequency attribute ranges

- · Add a little "m" to the count for every attribute value-class combination
 - The Laplace estimator
 Result: probabilities will never be zero!

And use an estimator for low frequency classes

· Add a little "k" to class counts

The M-estimate

Magic numbers: m=2, k=1

And we'll return to the low frequency problem, below.

Pseudo-code

Here's the pseudo code of the the Naive Bayes classifier preferred by Yang03 (p4).

```
function train( i) {
   Instances++
   if (++N[$Klass]==1) Klasses++
   for(i=1;i<=Attr;i++)
        if (i != Klass)
        if ($i !~ /\?/)
            symbol(i,$i,$Klass)
   }
function symbol(col,value,klass) {
        Count[klass,col,value]++;
   }
</pre>
```

When testing, find the likelihood of each hypothetical class and return the one that is most likely.

The (K,M) variables handle low frequency cases.

Handling Numerics

The above code assumes that the attributes are discrete. If you have numeric attributes then either discretize the values (sort, group into sets of size 30), or use a Gaussian approximation (usually, discretization beats Gaussians).

The probability density function for the normal (Gaussian) distribution is defined by the mean and standardDev (standard deviation)

Given:

- n: the number of values;
- sum: the sum of the values; i.e. sum = sum + value;
- sumSq: the sum of the square of the values; i.e. sumSq = sumSq + value*value

Then:

```
function mean(sum,n) {
```

For example:

outlook	temperature	humidity	windy play
sunny	85	85	FALSE no
sunny	80	90	TRUE no
overcast	83	86	FALSE yes
rainy	70	96	FALSE yes
rainy	68	80	FALSE yes
rainy	65	70	TRUE no
overcast	64	65	TRUE yes
sunny	72	95	FALSE no
sunny	69	70	FALSE yes
rainy	75	80	FALSE yes
sunny	75	70	TRUE yes
overcast	72	90	TRUE yes
overcast	81	75	FALSE yes
rainy	71	91	TRUE no

This generates the following statistics:

Outlook		Temperature			Humidity			
			======		====	======		====
	Yes	No		Yes	No		Yes	No
Sunny	2	3		83	85		86	85
Overcast	4	0		70	80		96	90
Rainy	3	2		68	65		80	70
Sunny	2/9	3/5	mean	73	74.6	mean	79.1	86.2
Overcast Rainy	4/9 3/9	0/5 2/5	std dev	6.2	7.9	std dev	10.2	9.7

	W	indy	Play		
		====	==========		
	Yes	No	Yes	No	
False	6	2	9	5	
True	3	3			
False	6/9	2/5	9/14	5/14	
True	3/9	3/5			

Example density value:

• f(temperature=66|yes)= gaussianPdf(73,6.2,66) =0.0340

Classifying a new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	? % %

- Likelihood of "yes" = 2/9 * 0.0340 * 0.0221 * 3/9 * 9/14 = 0.000036
- Likelihood of "no" = 3/5 * 0.0291 * 0.0380 * 3/5 * 5/14 = 0.000136
 - P("yes") = 0.000036 / (0.000036 + 0. 000136) = 20.9%
 - P("no") = 0. 000136 / (0.000036 + 0. 000136) = 79.1%

Note: missing values during training: not included in calculation of mean and standard deviation

BTW, an alternative to the above is apply some discretization policy to the data; e.g. Yang03. Such discretization is good practice since it can dramatically improve the performance of a Naive Bayes classifier (see Dougherty95.

Not so "Naive" Bayes

Why does Naive Bayes work so well? Domingos97 offer one analysis:

- They offer one example with three attributes where the performance where a "Naive" and a "optimal" Bayes perform nearly the same.
- They generalized that to conclude that "Naive" Bayes is only really Naive in a vanishingly small number of cases.

Their three attribute example is given below. For the generalized case, see Domingos97.

Consider a Boolean concept, described by three attributes A, B and C .

Assume that the two classes, denoted by + and - are equiprobable

P(+) = P(-) = 1/2

Let A and C be independent, and let A = B (i.e., A and B are completely dependent). Therefore B should be ignored, and the optimal classification procedure for a test instance is to assign it to (i) class + if

P(A|+) * P(C|+) - P(A|-) * P(C|-) > 0,

and (ii) to class (if the inequality has the opposite sign), and (iii) to an arbitrary class if the two sides are equal.

Note that the Bayesian classifier will take B into account as if it was independent from A, and this will be equivalent to counting A twice. Thus, the Bayesian classifier will assign the instance to class + if

 $P(A|+)^{2} * P(C|+) - P(A|-)^{2} * P(C|-) > 0,$

and to - otherwise.

Applying Bayes' theorem, P(A|+) can be re-expressed as

P(A) * P(+|A)/P(+)

and similarly for the other probabilities.

Since P(+) = P(-), after canceling like terms this leads to the equivalent expressions

P(+|A) * P(+|C) - P(-|A) * P(-|C) > 0

for the optimal decision, and

$$P(+|A)^2 * P(+|C) - P(-|A)^2 * P(-|C) > 0$$

for the Bayesian classifier. Let

P(+|A) = pP(+|C) = q.

Then class + should be selected when

$$pq - (1 - p)*(1 - q) > 0$$

which is equivalent to

q > 1 - p [Optimal Bayes]

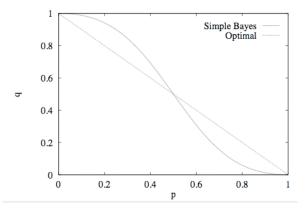
With the Bayesian classifier, it will be selected when

$$p^2 * q - (1 - p)^2 * (1 - q) > 0$$

which is equivalent to

q > (1 - p)^2 * p^2 + (1 - p)^2 [Simple Bayes]

The two curves are shown in following figure. The remarkable fact is that, even though the independence assumption is decisively violated because B = A, the Bayesian classifier disagrees with the optimal procedure only in the two narrow regions that are above one of the curves and below the other; everywhere else it performs the correct classification.



Thus, for all problems where (p, q) does not fall in those two small regions, the Bayesian classifier is effectively optimal.