
LectureNaiveBayes

NaiveBayes Classifiers 101

Introduction
Example
Bayes' rule

Numerical errors
Missing values
The "low-frequencies problem"

Pseudo-code
Handling Numerics
Not so "Naive" Bayes

Introduction

(This are some quick notes. For more details, see OURMINE.

A Bayes classifier is a simple statistical-based learning scheme.

Advantages:

Tiny memory footprint
Fast training, fast learning
Simplicity
Often works surprisingly well

Assumptions

Learning is done best via statistical modeling
Attributes are

equally important
statistically independent (given the class value)
This means that knowledge about the value of a particular attribute doesn't tell us anything about the
value of another attribute (if the class is known)

Although based on assumptions that are almost never correct, this scheme works well in practice
Domingos97

It has some drawbacks: it can offer conclusions put it is poor at explaining how those conclusions were reached.
But that is something we'll get back to below.

Example

weather.symbolic.arff

outlook temperature humidity windy play

------- ----------- -------- ----- ----

rainy cool normal TRUE no

rainy mild high TRUE no

sunny hot high FALSE no

sunny hot high TRUE no

sunny mild high FALSE no

overcast cool normal TRUE yes

overcast hot high FALSE yes

overcast hot normal FALSE yes

overcast mild high TRUE yes

rainy cool normal FALSE yes

rainy mild high FALSE yes

rainy mild normal FALSE yes

sunny cool normal FALSE yes

sunny mild normal TRUE yes

MSR Canada Summer School Notes on Naive Baues

(CC) Creative Commons Attribution-Share Alike 2.5, Tim Menzies, 2010 1

This data can be summarized as follows:

 Outlook Temperature Humidity
==================== ================= =================
 Yes No Yes No Yes No
Sunny 2 3 Hot 2 2 High 3 4
Overcast 4 0 Mild 4 2 Normal 6 1
Rainy 3 2 Cool 3 1
 ----------- --------- ----------
Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5
Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5
Rainy 3/9 2/5 Cool 3/9 1/5

 Windy Play
================= ========
 Yes No Yes No
False 6 2 9 5
True 3 3
 ---------- ----------
False 6/9 2/5 9/14 5/14
True 3/9 3/5

So, what happens on a new day:

Outlook Temp. Humidity Windy Play
Sunny Cool High True ?%%

First find the likelihood of the two classes

For "yes" = 2/9 * 3/9 * 3/9 * 3/9 * 9/14 = 0.0053
For "no" = 3/5 * 1/5 * 4/5 * 3/5 * 5/14 = 0.0206
Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205
P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

So, we aren't playing golf today.

Bayes' rule

More generally, the above is just an application of Bayes' Theorem.

Probability of event H given evidence E:

 Pr(E | H) * Pr(H)
 Pr(H | E) = -------------------
 Pr(E)

A priori probability of H= Pr(H)
Probability of event before evidence has been seen

A posteriori probability of H= Pr[H|E]
Probability of event after evidence has been seen

Classification learning: what's the probability of the class given an instance?
Evidence E = instance
Event H = class value for instance

Naive Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!

 Pr(E1 | H)* Pr(E2 | H) * *Pr(En | H) * Pr(H)
 Pr(H | E) = ---
 Pr(E)

We used this above. Here's our evidence:

 Outlook Temp. Humidity Windy Play
 Sunny Cool High True ?

Here's the probability for "yes":

 Pr(yes | E) = Pr(Outlook = Sunny | yes) *
 Pr(Temperature = Cool | yes) *
 Pr(Humidity = High | yes) * Pr(yes)
 Pr(Windy = True | yes) * Pr(yes) / Pr(E)
 = (2/9 * 3/9 * 3/9 * 3/9) * 9/14) / Pr(E)

Return the classification with highest probability

Probability of the evidence Pr(E)
Constant across all possible classifications;
So, when comparing N classifications, it cancels out

Numerical errors

From multiplication of lots of small numbers

Use the standard fix: don't multiply the numbers, add the logs

Missing values

Missing values are a problem for any learner. Naive Bayes' treatment of missing values is particularly elegant.

During training: instance is not included in frequency count for attribute value-class combination
During classification: attribute will be omitted from calculation

Example: Outlook Temp. Humidity Windy Play
 ? Cool High True ?%%

Likelihood of "yes" = 3/9 * 3/9 * 3/9 * 9/14 = 0.0238
Likelihood of "no" = 1/5 * 4/5 * 3/5 * 5/14 = 0.0343
P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%
P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

The "low-frequencies problem"

What if an attribute value doesn't occur with every class value (e.g. "Humidity = high" for class "yes")?

Probability will be zero!
Pr(Humidity = High | yes) = 0
A posteriori probability will also be zero! Pr(yes | E) = 0 (No matter how likely the other values are!)

So use an estimators for low frequency attribute ranges

Add a little "m" to the count for every attribute value-class combination
The Laplace estimator
Result: probabilities will never be zero!

And use an estimator for low frequency classes

Add a little "k" to class counts

MSR Canada Summer School Notes on Naive Baues

(CC) Creative Commons Attribution-Share Alike 2.5, Tim Menzies, 2010 2

The M-estimate

Magic numbers: m=2, k=1

And we'll return to the low frequency problem, below.

Pseudo-code

Here's the pseudo code of the the Naive Bayes classifier preferred by Yang03 (p4).

function train(i) {

 Instances++

 if (++N[$Klass]==1) Klasses++

 for(i=1;i<=Attr;i++)

 if (i != Klass)

 if ($i !~ /\?/)

 symbol(i,$i,$Klass)

}

function symbol(col,value,klass) {

 Count[klass,col,value]++;

}

When testing, find the likelihood of each hypothetical class and return the one that is most likely.

The (K,M) variables handle low frequency cases.

function likelihood(l, klass,i,inc,temp,prior,what,like) {

 like = -10000000000; # smaller than any log

 for(klass in N) {

 prior=(N[klass]+K)/(Instances + (K*Klasses));

 temp= log(prior)

 for(i=1;i<=Attr;i++) {

 if (i != Klass)

 if ($i !~ /\?/)

 temp += log((Count[klass,i,$i]+M*prior)/(N[klass]+M))

 }

 l[klass]= temp

 if (temp >= like) {like = temp; what=klass}

 }

 return what

}

Handling Numerics

The above code assumes that the attributes are discrete. If you have numeric attributes then either discretize the
values (sort, group into sets of size 30), or use a Gaussian approximation (usually, discretization beats Gaussians).

The probability density function for the normal (Gaussian) distribution is defined by the mean and standardDev
(standard deviation)

Given:

n: the number of values;
sum: the sum of the values; i.e. sum = sum + value;
sumSq: the sum of the square of the values; i.e. sumSq = sumSq + value*value

Then:

 function mean(sum,n) {

 function mean(sum,n) {

 return sum/n

 }

 function standardDeviation(sumSq,sum,n) {

 return sqrt((sumSq-((sum*sum)/n))/(n-1))

 }

 function gaussianPdf(mean,standardDev,x) {

 pi= 1068966896 / 340262731; #: good to 17 decimal places

 return 1/(standardDev*sqrt(2*pi)) ^

 (-1*(x-mean)^2/(2*standardDev*standardDev))

 }

For example:

outlook temperature humidity windy play

------- ----------- -------- ----- ---

sunny 85 85 FALSE no

sunny 80 90 TRUE no

overcast 83 86 FALSE yes

rainy 70 96 FALSE yes

rainy 68 80 FALSE yes

rainy 65 70 TRUE no

overcast 64 65 TRUE yes

sunny 72 95 FALSE no

sunny 69 70 FALSE yes

rainy 75 80 FALSE yes

sunny 75 70 TRUE yes

overcast 72 90 TRUE yes

overcast 81 75 FALSE yes

rainy 71 91 TRUE no

This generates the following statistics:

 Outlook Temperature Humidity

===================== ================= =================

 Yes No Yes No Yes No

Sunny 2 3 83 85 86 85

Overcast 4 0 70 80 96 90

Rainy 3 2 68 65 80 70

 ----------- ---------- ----------

Sunny 2/9 3/5 mean 73 74.6 mean 79.1 86.2

Overcast 4/9 0/5 std dev 6.2 7.9 std dev 10.2 9.7

Rainy 3/9 2/5

 Windy Play

=================== ===========

 Yes No Yes No

False 6 2 9 5

True 3 3

 ------- ----------

False 6/9 2/5 9/14 5/14

True 3/9 3/5

Example density value:

f(temperature=66|yes)= gaussianPdf(73,6.2,66) =0.0340
Classifying a new day:

Outlook Temp. Humidity Windy Play

Sunny 66 90 true ?%%

MSR Canada Summer School Notes on Naive Baues

(CC) Creative Commons Attribution-Share Alike 2.5, Tim Menzies, 2010 3

Likelihood of "yes" = 2/9 * 0.0340 * 0.0221 * 3/9 * 9/14 = 0.000036
Likelihood of "no" = 3/5 * 0.0291 * 0.0380 * 3/5 * 5/14 = 0.000136

P("yes") = 0.000036 / (0.000036 + 0. 000136) = 20.9%
P("no") = 0. 000136 / (0.000036 + 0. 000136) = 79.1%

Note: missing values during training: not included in calculation of mean and standard deviation

BTW, an alternative to the above is apply some discretization policy to the data; e.g. Yang03. Such discretization is
good practice since it can dramatically improve the performance of a Naive Bayes classifier (see Dougherty95.

Not so "Naive" Bayes

Why does Naive Bayes work so well? Domingos97 offer one analysis:

They offer one example with three attributes where the performance where a "Naive" and a "optimal" Bayes
perform nearly the same.
They generalized that to conclude that "Naive" Bayes is only really Naive in a vanishingly small number of
cases.

Their three attribute example is given below. For the generalized case, see Domingos97.

Consider a Boolean concept, described by three attributes A, B and C .

Assume that the two classes, denoted by + and - are equiprobable

 P(+) = P(-) = 1/2

Let A and C be independent, and let A = B (i.e., A and B are completely dependent). Therefore B should be
ignored, and the optimal classification procedure for a test instance is to assign it to (i) class + if

 P(A|+) * P(C|+) - P(A|-) * P(C|-) > 0,

and (ii) to class (if the inequality has the opposite sign), and (iii) to an arbitrary class if the two sides are equal.

Note that the Bayesian classifier will take B into account as if it was independent from A, and this will be equivalent
to counting A twice. Thus, the Bayesian classifier will assign the instance to class + if

 P(A|+)^2 * P(C|+) - P(A|-)^2 * P(C|-) > 0,

and to - otherwise.

Applying Bayes' theorem, P(A|+) can be re-expressed as

 P(A) * P(+|A)/P(+)

and similarly for the other probabilities.

Since P(+) = P(-), after canceling like terms this leads to the equivalent expressions

 P(+|A) * P(+|C) - P(-|A) * P(-|C) > 0

for the optimal decision, and

 P(+|A)^2 * P(+|C) - P(-|A)^2 * P(-|C) > 0

for the Bayesian classifier. Let

P(+|A) = p
P(+|C) = q.

Then class + should be selected when

 pq - (1 - p)*(1 - q) > 0

which is equivalent to

 q > 1 - p [Optimal Bayes]

With the Bayesian classifier, it will be selected when

 p^2 * q - (1 - p)^2 * (1 - q) > 0

which is equivalent to

q > (1 - p)^2 * p^2 +(1 - p)^2 [Simple Bayes]

The two curves are shown in following figure. The remarkable fact is that, even though the independence
assumption is decisively violated because B = A, the Bayesian classifier disagrees with the optimal procedure only
in the two narrow regions that are above one of the curves and below the other; everywhere else it performs the
correct classification.

Thus, for all problems where (p, q) does not fall in those two small regions, the Bayesian classifier is effectively
optimal.

MSR Canada Summer School Notes on Naive Baues

(CC) Creative Commons Attribution-Share Alike 2.5, Tim Menzies, 2010 4

