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Introduction

(This are some quick notes. For more details, see OURMINE.
A Bayes classifier is a simple statistical-based learning scheme.
Advantages:

e Tiny memory footprint

e Fast training, fast learning

e Simplicity

e Often works surprisingly well

Assumptions

e Learning is done best via statistical modeling
e Attributes are
o equally important
o statistically independent (given the class value)
o This means that knowledge about the value of a particular attribute doesn't tell us anything about the
value of another attribute (if the class is known)
e Although based on assumptions that are almost never correct, this scheme works well in practice

Domingos97

Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test
splits. “Bayes™ is the Bayesian classifier with discretization and “Gauss” is the Bayesian classifier with
an distributions. Superscripts denote confidence levels for the difference in accuracy between the
Bayesian classifier and the ponding algorithm, using a one-tailed paired £ test: 1 is 99.5%, 2 is 99%,
3i897.5%, 4 is 95%, 5 is 90%, and 6 is below 90%.

Data Set Bayes C45 PEBLS CN2 Def.
Audiology T3046.1 72.545.8°% 75.8:4£5.4% 71.0£5.1% 213
Annealing 50.5422" 98.8:£0.8" 764
Breast cancer 716247 70.146.87 65.6:44.7" 676
Credit 845418 85.9:42.1% 82.2:419% 574
Chess endgames 88014 69.240.1" 56.940.7" 520
Diabetes 745224 735434 7114241 660
Echocardiogram 64.7463" 61.7£6.4" 6824720 678
Glass 63.948.7% 62.047.4" 63.8455° 317
Heart disease 75443 789440 79.7429% 550
Hepatitis 792443" 790451 803:42' 781
Horse colic 85.1:43.8" 75.745.0% 8254422 636
Hypothyroid 99.140.2" 95.940.7" 98.8::04! 953
Iris 92.642.7° 93.5:43.08 93.3:43.6% 265
Labor 78.14£7.9¢ 89.7:£5.06 82.1269! 650
Lung cancer 4094163° 423417.3°% 3861135 268
Liver disease 65.9444" 61.3:£43° 65.0238" 58.1
LED 61.2484" 55.3:46.1" 8.0
Lymphography 1 7504421 8294565 573
Post-operative 672450° 700452 59.2:48.02 712
Promoters 87.947.0° 743:47.8" 9174593 431
Primary tumor 442255 4424:55% 359458" 30.944.7" 3684521 246
Solar flare 685230 37° 70.6:£2.9* 67.6:43.55 704230 252
Sonar 694276 69.1:£7.45 7384744 66.2+7.55 508
Soybean 1000200 65.046.0% 100.040.0% 96.9+59" 300
Splice junctions 954206 93.4:408" 94.3:40.5" 81.5+5.5! 524
Voting records 912417 56.341.3" 64.9.412% 95.8.21.6" 605
Wine 964222 924456 97.2:4:18° 90.8+4.7" 364
Zoology 944241 89.6:44.7" 94.6:443° 90.6+5.0" 394

It has some drawbacks: it can offer conclusions put it is poor at explaining how those conclusions were reached.
But that is something we'll get back to below.

Example

weather.symbolic.arff

outlook temperature humidity windy play

rainy cool normal TRUE no
rainy mild high TRUE no
sunny hot high FALSE no
sunny hot high TRUE no
sunny mild high FALSE no
overcast cool normal TRUE yes
overcast hot high FALSE yes
overcast hot normal FALSE yes
overcast mild high TRUE yes
rainy cool normal FALSE yes
rainy mild high FALSE yes
rainy mild normal FALSE yes
sunny cool normal FALSE yes
sunny mild normal TRUE yes
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This data can be summarized as follows:

Outlook Temperature Humidity
Yes No Yes No Yes No
Sunny 2 3 Hot 2 2 High 3 4
Overcast 4 0 Mild 4 2 Normal 6 1
Rainy 3 2 Cool 3 1
Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5
Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5
Rainy 3/9 2/5 Cool 3/9 1/5
Windy Play
Yes No Yes No
False 6 2 9 5
True 3 3
False 6/9 2/5 9/14 5/14
True 3/9 3/5

So, what happens on a new day:

Outlook Temp. Humidity Windy Play
Sunny Cool High True ?2%%

First find the likelihood of the two classes

e For"yes" =2/9 * 3/9 * 3/9 * 3/9 * 9/14 = 0.0053

e For "no" =3/5 * 1/5 * 4/5 = 3/5 * 5/14 = 0.0206

e Conversion into a probability by normalization:
o P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205
o P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

So, we aren't playing golf today.

Bayes' rule

More generally, the above is just an application of Bayes' Theorem.

* Probability of event H given evidence E:
Pr(H | E) = ——--—mmmmmmmm -

e A priori probability of H= Pr(H)
o Probability of event before evidence has been seen
e A posteriori probability of H= Pr[H|E]
o Probability of event after evidence has been seen
o Classification learning: what's the probability of the class given an instance?
o Evidence E = instance
o Event H = class value for instance
* Naive Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!

e We used this above. Here's our evidence:

Outlook Temp. Humidity Windy Play
Sunny Cool High True ?

e Here's the probability for "yes":

Pr( yes | E) = Pr(Outlook Sunny | yes) *

Pr(Temperature Cool \ yes) *

Pr(Humidity = High | yes) * Pr( yes)

Pr(Windy = True | yes) * Pr(yes) / Pr(E)
= (2/9 * 3/9 * 3/9 * 3/9) * 9/14) / Pr(E)

Return the classification with highest probability
e Probability of the evidence Pr(E)

o Constant across all possible classifications;
o So, when comparing N classifications, it cancels out

Numerical errors

From multiplication of lots of small numbers

e Use the standard fix: don't multiply the numbers, add the logs
Missing values

Missing values are a problem for any learner. Naive Bayes' treatment of missing values is particularly elegant.

e During training: instance is not included in frequency count for attribute value-class combination
e During classification: attribute will be omitted from calculation

Example: Outlook Temp. Humidity Windy Play
? Cool High True ?2%%

Likelihood of "yes" = 3/9 * 3/9 * 3/9 * 9/14 = 0.0238
Likelihood of "no" = 1/5 * 4/5 * 3/5 * 5/14 = 0.0343
P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%
P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

3
3
3
3

The "low-frequencies problem”
What if an attribute value doesn't occur with every class value (e.g. "Humidity = high" for class "yes")?
e Probability will be zero!
¢ Pr(Humidity = High | yes) =0
o A posteriori probability will also be zero! Pr( yes | E) = 0 (No matter how likely the other values are!)
So use an estimators for low frequency attribute ranges
e Add a little "m" to the count for every attribute value-class combination
o The Laplace estimator
o Result: probabilities will never be zero!

And use an estimator for low frequency classes

e Add a little "k" to class counts
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o The M-estimate
Magic numbers: m=2, k=1

And we'll return to the low frequency problem, below.

Pseudo-code

Here's the pseudo code of the the Naive Bayes classifier preferred by Yang03 (p4).

function train( i) {
Instances++
if (++N[$Klass]==1) Klasses++
for(i=1;i<=Attr;i++)
if (i != Klass)
if (si !t~ /\2/)
symbol(i,$i,$Klass)
}
function symbol(col,value,klass) {
Count[klass,col,value]++;

}
When testing, find the likelihood of each hypothetical class and return the one that is most likely.

The (K,M) variables handle low frequency cases.

function likelihood(1l, klass,i,inc,temp,prior,what,like) {

like = -10000000000; # smaller than any log
for(klass in N) {

prior=(N[klass]+K)/(Instances + (K*Klasses));

temp= log(prior)

for(i=1l;i<=Attr;i++) {

if (i != Klass)
if ( $i 1~ /\2/ )
temp += log((Count[klass,i,$i]+M*prior)/(N[klass]+M))

}

llklass]= temp

if ( temp >= like ) {like = temp; what=klass}
}

return what

Handling Numerics

The above code assumes that the attributes are discrete. If you have numeric attributes then either discretize the
values (sort, group into sets of size 30), or use a Gaussian approximation (usually, discretization beats Gaussians).

The probability density function for the normal (Gaussian) distribution is defined by the mean and standardDev
(standard deviation)

Given:
e n: the number of values;
e sum: the sum of the values; i.e. sum = sum + value;
e sumSq: the sum of the square of the values; i.e. sumSq = sumSq + value*value

Then:

function mean(sum,n) {

}

func

}

func

p
r

For example:

sunny
sunny
overcast
rainy
rainy
rainy
overcast
sunny
sunny
rainy
sunny
overcast
overcast
rainy

This generates t|

return sum/n

tion standardDeviation(sumSq,sum,n) {
return sqrt((sumSqg-((sum*sum)/n))/(n-1

tion gaussianPdf (mean,standardDev,x) {
i= 1068966896 / 340262731; #: good to
eturn 1/(standardDev*sqrt(2*pi))

))

17 decimal places

(-1*(x-mean) "2/ (2*standardDev*standardDev))

temperature humidity windy play

85 85 FALSE no
80 90 TRUE no
83 86 FALSE yes
70 96 FALSE yes
68 80 FALSE yes
65 70 TRUE no
64 65 TRUE vyes
72 95 FALSE no
69 70 FALSE yes
75 80 FALSE yes
75 70 TRUE yes
72 90 TRUE vyes
81 75 FALSE yes
71 91 TRUE no

he following statistics:

Outlook Temperature Humidity
Yes No Yes No Yes No
Sunny 2 3 83 85 86 85
Overcast 4 0 70 80 96 90
Rainy 3 2 68 65 80 70
Sunny 2/9 3/5 mean 73 74.6 mean 79.1 86.2
Overcast 4/9 0/5 std dev 6.2 7.9 std dev 10.2 9.7
Rainy 3/9 2/5
Windy Play
Yes No Yes No
False 6 2 9 5
True 3 3
False 6/9 2/5 9/14 5/14
True 3/9 3/5

Example density value:

o f(temperature=66|yes)= gaussianPdf(73,6.2,66) =0.0340
e Classifying a new day:

Out
Sun

look Temp. Humidity Windy
ny 66 90 true

Play
?2%%

(CC) Creative Commons Attribution-Share Alike 2.5, Tim Menzies, 2010




MSR Canada Summer School

Notes on Naive Baues

e Likelihood of "yes" = 2/9 * 0.0340 * 0.0221 * 3/9 * 9/14 = 0.000036
e Likelihood of "no" = 3/5 * 0.0291 * 0.0380 * 3/5 * 5/14 = 0.000136
o P("yes") = 0.000036 / (0.000036 + 0. 000136) = 20.9%
o P("no") = 0. 000136 / (0.000036 + 0. 000136) = 79.1%
Note: missing values during training: not included in calculation of mean and standard deviation

BTW, an alternative to the above is apply some discretization policy to the data; e.g. Yang03. Such discretization is
good practice since it can dramatically improve the performance of a Naive Bayes classifier (see Dougherty95.

Not so "Naive" Bayes

Why does Naive Bayes work so well? Domingos97 offer one analysis:

e They offer one example with three attributes where the performance where a "Naive" and a "optimal" Bayes
perform nearly the same.

e They generalized that to conclude that "Naive" Bayes is only really Naive in a vanishingly small number of
cases.

Their three attribute example is given below. For the generalized case, see Domingos97.
Consider a Boolean concept, described by three attributes A, B and C .

Assume that the two classes, denoted by + and - are equiprobable
P(+) = P(-) = 1/2

Let A and C be independent, and let A = B (i.e., A and B are completely dependent). Therefore B should be
ignored, and the optimal classification procedure for a test instance is to assign it to (i) class + if

P(A[+) * P(C|+) - P(A[-) * P(C|-) > O,
and (ii) to class (if the inequality has the opposite sign), and (iii) to an arbitrary class if the two sides are equal.

Note that the Bayesian classifier will take B into account as if it was independent from A, and this will be equivalent
to counting A twice. Thus, the Bayesian classifier will assign the instance to class + if

P(A|+)"2 * P(C|+) - P(A|-)"2 =* P(C|-) > 0,
and to - otherwise.
Applying Bayes' theorem, P(A|+) can be re-expressed as
P(A) * P(+|A)/P(+)
and similarly for the other probabilities.
Since P(+) = P(-), after canceling like terms this leads to the equivalent expressions
B(+|a) * P(+[C ) - P(-|B) * P(-]C ) >0
for the optimal decision, and
P(+|a)"2 * P(+|C ) - P(-|a)"2 * P(-|C) >0

for the Bayesian classifier. Let

P(+|a)
B(+|C)

P
q.

Then class + should be selected when

Pqg - (1 - p)*(l - q) >0
which is equivalent to

q>1-p [Optimal Bayes]
With the Bayesian classifier, it will be selected when

p"2 *q - (L -p)"2=* (1L-q) >0
which is equivalent to

qg> (1 -p)"2 * p*2 +(1 - p)~2 [Simple Bayes]

The two curves are shown in following figure. The remarkable fact is that, even though the independence
assumption is decisively violated because B = A, the Bayesian classifier disagrees with the optimal procedure only

in the two narrow regions that are above one of the curves and below the other; everywhere else it performs the
correct classification.
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Thus, for all problems where (p, q) does not fall in those two small regions, the Bayesian classifier is effectively
optimal.
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