Prolog in Practical Compiler Writing

J. PAAKKI
Nokia Research Center, P.O. Box 156, 02101 Espoo, Finland

We discuss the experiences gained with implementing the programming language Edison in Prolog. The evaluation of
Prolog in this application area is based on a comparison with two other Edison compilers, one written in Pascal
(procedural approach) and the other generated using the compiler writing systems PGS and GAG (declarative
approach). The crucial hindrance to applying Prolog in practical compiler writing was found to be inefficiency of the
standard Prologs. Conceptually, however, Prolog was found to be quite attractive and, as a combination of the
procedural and declarative approaches, a promising candidate for the basis of a special compiler writing language that

is currently under development.

Received September 1989, revised April 1990

1. INTRODUCTION

There are two basic paradigms to produce a compiler.®
Most commonly a procedural approach has been applied
where the whole compiler is written in some general
purpose programming language. While being the stan-
dard way in industrial compiler production, this ap-
proach brings on some well-known problems: due to the
low level concepts and to the lack of powerful application
oriented tools the compilers tend to be rather lengthy,
error-prone, and hard to maintain. These drawbacks can
be circumvented with a declarative approach where the
compiler is automatically generated from a high-level
specification. This approach, however, has not been
generally accepted by the industry, probably because the
compiler generators have not yet reached the industrial
quality and efficiency requirements.

It would be most feasible to find a middle-of-the-road
method between the two extreme approaches: in that
case it would be possible to make use both of the
flexibility and efficiency of the procedural approach and
of the soundness and compactness of the declarative
approach. One of the most promising candidates for
such a tool is Prolog with its declarative and operational
side. The principal suitability of Prolog for writing
compilers has been discussed e.g. by Warren® and by
Cohen & Hickey.® However, no comprehensive evalu-
ations of applying Prolog to the implementation of real,
non-trivial programming languages have been reported.

The purpose of the experiment reported in this paper
is to give some insight into this unexplored corner of
Prolog and compiler writing. We have chosen Edison® as
our case language, on one hand because of its modest size
and on the other hand because of its nice selection of
advanced programming concepts, such as modularization
and concurrency. Thus writing a compiler for Edison
made it possible to test Prolog in a realistic case with
reasonable effort. The compiler was first written in C-
Prolog,?? and it was later ported into Quintus Prolog? in
order to get more exact efficiency characteristics.

Since a stand-alone compiler written just in Prolog
would give rather vague evaluation results, we have
produced the same compiler also by applying the two
popular approaches. In that way we can draw more
reliable conclusions both from a methodological and
from a practical point of view. We used Pascal and the
compiler writing system employing GAG*? and PGS as

representatives of the procedural resp. the declarative
model.

This paper is organized as follows: in Section 2 we
present the Edison implementation as done in Prolog.
Section 3 briefly characterizes the procedural and
declarative solutions and makes a comparison of all the
three methods applied in the experiment. During the
experiment we have explicitly noticed the potential
power of Prolog in this application area, but also the
shortcomings of standard Prologs. These observations
have led to the idea of designing a new Prolog dialect
especially for compiler writers. This dialect is outlined in
Section 4 where also a summary of results is given.

2. THE EDISON IMPLEMENTATION

Since our aim was to evaluate Prolog in compiler writing
and not to produce a quality compiler for Edison, we
chose the implementation strategy sketched in Figure 1.
We divided the process into separate passes, a solution
that would be absolutely too inefficient in a real situation.
However, in this way we could get a more exact view on
Prolog’s suitability in different subphases of compilation.
In order to make it easier to compare our three
approaches we used the same implementation scheme in
the procedural and in the declarative compiler as well,
except that scanning and parsing were interleaved.
Phases 1-3 constitute the actual compiler. Its input is
an Edison program and its output a sequence of
instructions for an abstract Edison machine.® This
abstract machine is represented as an interpreter for the
abstract code, written in Pascal (phase 4). Compilation
covers the whole language, but for simplicity the library
mechanism has been excluded from the interpretation.

2.1 Scanning

We wanted to evaluate the renowned definite clause
grammar (DCG) formalism® in a realistic situation.
That is why we had to separate scanning and parsing into
consecutive passes (a DCG expects the source program
to be presented as a list of tokens). The scanner was
implemented in Prolog as a set of procedures, each
recognizing elements of one token class (identifiers,
strings, numbers, etc.). In Edison the class of a token can
be decided from its first character, except for identifiers

64 THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

PROLOG IN PRACTICAL COMPILER WRITING

source program

phase 1 scanning

phase 2

tokens

€ITor messages

parsing

abstract|syntax tree

y
> semantic [——» error messages

symbol
table

phase 3

analysis

modified | abstract
syntax | tree

code

phase 4

generation

abstract | Edison
code

input interpretation output

Figure 1. Implementation scheme.

and reserved words that are syntactically identical and
have to be distinguished using an additional look-up.

As an example, the scanner procedure for identifiers
and reserved words is the following:

token(Start, Line, Next, Token) : -
letter(Start), ! ,
get0(C),
rest_id(C, Next,R),
name (X, [Start|R]),
id_or_reserved(X, Line, Token).

This procedure is applied if the last character read
(Start)is a letter; note the commitment made using cut
(!).rest_id reads the rest of the identifier/reserved
word (R), stopping on character Next. id_or_
reserved chooses between identifiers and reserved
words and returns the representation of the token in
Token. Because our compiler is a multi-pass one, we
have to include line numbers (Line) in all the inter-
mediate representations of the source program to
support error reporting in subsequent phases.

2.2 Parsing

The parser was written as a DCG with two parameters,
for the resulting abstract syntax tree and for a set of error
recovery symbols. Syntactic error handling has been
implemented using a practical variant of the straight-
forward ‘panic mode’ strategy®? where the input is
skipped until a suitable synchronizing token is found and
parsing can continue. Besides with special error pro-
ductions, the DCG is augmented with a nonterminal
(producing an empty string) that is placed at the end of
central productions and that in error situations syn-
chronizes the input and the parser.

As an example, the DCG fragment for the concurrent
(cobegin) statement of Edison is as follows:

stat (S, cobegin(Line,Clist)) —>
[cobegin(Line)],

process_stat_list([end|S],Clist),
[end(-)],
check(S).

This corresponds to the context-free production

stat —> ‘cobegin’ process_stat_list
‘end’ check.

Here S represents the set of tokens that can follow a
concurrent statement or any of its ancestors in the
underlying parse tree, and [end|S] represents the set of
tokens that can follow the list of process statements.
Note that in the latter case using just [end] as the
synchronizing token set might have destructive con-
sequences in the case of a missing end: the recovery
process would not stop until reaching the next end-
symbol, wherever that might appear. Carrying along the
S set guarantees that synchronization will take place on
a token that some enclosing syntactic unit is expecting to
deal with. check is the augmented recovering non-
terminal.)

The abstract syntax tree for a source program is
constructed as a Prolog term, i.e. in a textual prefix form.
The abstract tree does not contain any semantic
information; all the semantic processing is postponed
until phase 2. In the DCG fragment above, cobeg-
in(Line, Clist) is the resulting abstract form of a
parsed concurrent statement.

For example, consider the statement

cobegin

1 do x: =10
also

2 do y: =20
end

starting on line 100 of the source program. In that case
the scanner will convert it into the form

[cobegin(100), num(1,101),do(101), id(x,
101),d(: =,101),num(10,101),
also(102),num(2,103),do(103), id(y, 103),
d(: =,103),num(20,103), end (104)]

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 65

CPJ 34

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

J.PAAKKI

and the parser into the abstract form

cobegin (100, [also (101, num(1),

[: = (name(x,
101),num(10))]),also (102, num(2),
[: = (name(y,103),num(20))])]).

2.3 Semantic analysis

The semantic analyzer checks the validity of the static
semantics of the source program on the basis of the
abstract tree produced by the parser. As output the
analyzer produces a modified tree, again as a Prolog
term. The modified tree is constructed to serve the
subsequent code generation phase: redundant de-
clarations are removed, symbolic names are replaced
with symbol table references, and expression lengths in
terms of Edison words are included, as well as some type
information.

The analyzer consists basically of a set of procedures,
each checking and modifying one specific Edison
construction. Since the program’s abstract form is a
Prolog term, we can pass it as a parameter to the
semantic routines. The modified form is also expressed
by a parameter. The analyzer has been written in a
recursive descent style with one procedure for each
nonterminal of the (abstract) syntax. Since no explicit
lookahead mechanism nor syntactic error handling is
needed (we are now processing syntactically correct
abstract programs), the analyzer can be characterized as
being a ‘translation scheme’® which makes it quite
readable and thus rather easy to maintain.

The heart of semantic analysis, the symbol table, was
implemented in the internal indexed database. The
existing literature on Prolog and compiler writing has
not discussed this implementation strategy but has
instead concentrated on term-based solutions, such as
linear lists® or ordered binary trees.** While being
convenient for simple introductory cases, such data
structures are not suited for a more complex and practical
symbol table representation. First, they are too clumsy
for a language with block-structured scope rules, such as
Edison. Second, as large data structures they would
consume too much space when passed as parameters
throughout the analyzer. An analogy can be drawn to
attribute grammar based compiler generators where one
of the main shortcomings has been space-inefficiency
associated with symbol table attributes: usually the
problem has been solved with some form of global
attributes (e.g. HLP84') or with automatic space
management (e.g. GAG). And third, symbol identifi-
cation would be much slower than in the hashed
database; our experiments showed that locating a symbol
with a key in a linear list is typically about 10 times
slower than locating it in the internal database and even
more slower in case of an unsuccessful search.

Symbol insertions were implemented with the database
predicate recorda, identifications with recorded and
instance, and symbol hidings (when leaving a scope) with
erase. The predicates were good enough for our
experimental purposes. However, since they are general
and not designed-for special applications, they turned
out to be too primitive for some tasks that are normal in
language processing. Examples are grouping of local
entities and update of symbol entries. These actions

made it necessary to introduce some auxiliary solutions,
such as keeping track of scopes with lists of symbol
references.

As an example of semantic analysis and transform-
ation, we present the fragment for Edison’s concurrent
statement. The first argument always represents the
input tree and the second one the output tree.

modify_stat(cobegin(Line, Pstats),
cobegin(Line, Nr,MPstats)): —
process_stats(Pstats,MPstats),
length(Pstats, Nr).

process_stats([Pstat/Rest],
[MPstat|MRest]):—
modify_process(Pstat,MPstat),
process_stats(Rest,MRest).

process_stats([],[]).

modify_process(also(Line, Const, Stats),
also(Line, Val,MStats)):—
eval_const(Const, Type, Val),
(Type==1int - true;
error(‘process constant must be
int’,Line)),
modify_stat_list(Stats,MStats).

Here length returns the number (Nr) of process
statements (Pstats) which is needed in code generation,
eval_const returns the type (Type) and value (Val)
of the process constant (Const), error gives an error
message, and modify_stat_list analyzes and trans-
forms the list of process statements (Stats) into
MStats. Note that line numbers are passed forward to
the code generation phase where they are still needed for
generating dynamic error checks.

Now the concurrent statement used as an example in
Chapter 2.2 will be transformed into the following form:

cobegin (100, 2, [also(101,1,

[: = (1,var(x_ref),
const(10))],also0(102, 2,

[: = (1,var(y—_ref),const(20))])]).

Here x_ref and y_ref are references to x’s and y’s
entries in the symbol table, respectively. We assume that
both x and y will occupy 1 word of memory at runtime.

2.4 Code generation

The task of the code generation phase is to form the
abstract Edison code that corresponds to the source
program. The resulting code is a sequence (list) of
instructions for an Edison stack machine.

The structure of the code generator is roughly the
same as the structure of the semantic analyzer: a syntax-
directed translation scheme. The code generator is,
however, much simpler since no complex symbol table
operations are needed. For Edison procedures we had to
build an additional table merely for code addresses
because the main symbol table in the database could not
be supplemented with address information during this
phase: the entries in Prolog’s internal database are
essentially write-once. In this case we used a list
implementation since that solution made it possible to
backpatch forwarded procedure calls implicitly with
Prolog’s elegant delayed binding mechanism. An example

66 THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

PROLOG IN PRACTICAL COMPILER WRITING

of such a situation is the next piece of an Edison
program:

pre proc p
proc g begin p end €e10?
post proc p begin...end ¢ ¢2°°

Now the call for pat ¢ 1’ can be generated by leaving
p’s address undefined (bound with symbol p) in the code.
The unification mechanism will take care of filling in that
address automatically (and all the other undefined calls
for p as well) when it becomes known at point ¢<2°°.

As an example, the code generator fragment for the
concurrent statement is as follows. The input tree is
represented by the first and the output code by the last
argument.

code_stat(cobegin(Line,Nr,Pstats), S1,
Adri, Env, Adrs,
goto(Gdispl)&Pcode&cobegin(Nr, Line,
Arglist)):—

Pstart is Adri+2,

Cobegin_length is 2*Nr+3,

code_proc_list(Pstats,S1,Pstart, Env,
Cobegin_length, Padr, Arglist, Pcode),

Adrs is Padr+Cobegin_length,

Gdispl is Padr-Adri.

code_proc_list([also(Line,
Val, Stats)|[]1], S1,
Adri, Env, Cobegin_length, Adrs, [Val,
Pdispl],process(Temp_length,
Line)&Scode&also(Adispl)):—
Sstart is Adri+3,
code_stat_list(Stats, S1, Sstart, Env,
Temp_length, Sadr, Scode),
Adrs is Sadr+2,
Pdispl is Adri-Adrs,
Adispl is Cobegin_length+2.

code_proc_list([also(Line, Val,
Stats)|Rest], S1, Adri, Env,
Cobegin_length, Adrs, [Val,Pdispl|Rlist],
process(Temp_length,
Line)&Scode&also(Adispl)&Rcode): —

Sstart is Adri+3,

code_stat_list(Stats, S1, Sstart, Env,
Temp_length, Sadr, Scode),

Rstart is Sadr+2,

code_proc_list(Rest,S1,Rstart, Env,
Cobegin_length, Adrs,Rlist, Rcode),

Pdispl is Adri-Adrs,

Adispl is Adrs+Cobegin_length-Sadr.

For syntactic convenience the code is represented as an
expression over instructions and &-operators. Each
instruction and each argument is assumed to occupy one
word of memory. The relative address of each instruction
is expressed by parameter pairs Adri-Adrs, Sstart-
Sadr, Rstart-Adrs. The procedure table is repre-
sented by Env (the code address list) and S1 (the static
level). code_stat_list generates the code (Scode)
for the process statement list (Stats) and returns the
amount of temporary storage needed for executing the
statements (Temp_length).

For instance, the abstract code for the concurrent
statement used as an example in previous chapters would
be as follows (for clarity, we give it as a sequence of

instructions and not as a Prolog expression). We clarify
this example further by using symbolic code addresses
instead of relative ones and by substituting the assigning
codes with the corresponding source statements:

goto (M)
L1l: process(2,101)
x: =10
also(N)
L2: process(2,102)
y: =20
also(N)
M: cobegin(2,100,[1,L1,2,L2])
N:

The first instruction to be executed is cobegin (M)
which divides the free space evenly among the two
processes L1 and L2 to be executed simultaneously (or in
cyclical order in a single-processor system, as in this
case). The process instructions check that there is enough
local stack space for the processes (2 words in this case
which is the amount of space needed for executing the
assignments). An also statement terminates the cor-
responding process, and the last process reaching also
continues execution at N. In a single-processor system
also switches to the next process in case there are
processes waiting.

2.5 Interpretation

The abstract code generated by the compiler was made
executable by writing an interpreter for that code (in
Pascal). This interpreter can be seen as an ‘abstract
Edison stack machine’ that processes its input in the
memory organized as a stack. The interpreter was
written according to the implementation of Brinch
Hansen.® Since this phase is outside the actual com-
pilation, we do not discuss it here further.

3. COMPARISON WITH OTHER METHODS

In order to get a better insight into Prolog’s suitability in
compiler construction the same Edison compiler was
produced procedurally and declaratively as well. Since
we wanted to make comparisons on each of the
compilation subphases, we followed the scheme of Figure
1 also in these versions. The procedural compiler was
originally written in Berkeley Pascal'! and later ported
into DEC VAX Pascal,®® the declarative one was
produced with the integrated generator pair PGS —
GAG.B

The scanners and parsers of the compilers were
produced in the order PGS - Prolog — Pascal, and the
semantic analyzers and code generators in the order
Prolog — Pascal - GAG. The production order has of
course significance in the evaluation because all the
pieces were written by the same person and thus the
solutions made in the first version inevitably had an
influence on the subsequent ones.

3.1 The procedural method

The procedural compiler was assembled from three com-
ponents: scanner/parser, semantic analyzer, code gen-
erator. All these were written following a recursive
descent style. The source program and all its intermediate

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 67

5-2

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

J. PAAKKI

representations were given in a textual form which made
them suitable for this kind of processing.

The compiler makes use of standard recursive descent
techniques as presented e.g. by Welsh & McKeag.?? The
organization of the symbol table was typical for one-pass
languages. It is an integrated data structure with four
tables: character representations of the symbols, symbol
attributes, scopes, and a hashing table. The structure
made the implementation of Edison’s type and scope
rules quite flexible, and most notably no methodological
restrictions were met as when using the database in
Prolog (see 2.3).

The abstract instructions of the target code were
collected in an array before printing. This was due to
backpatching which now could be done by traversing
lists of incomplete instruction locations in the array. The
backpatching process was thus more laborious than in
the Prolog version where it was carried out implicitly by
unification.

3.2 The declarative method

The declarative version of the compiler was produced
with two advanced compiler writing systems: PGS was
employed for producing the first pass (integrated scanner
and parser), and GAG for producing the other two
passes (semantic analyzer, code generator). Actually
PGS was used in production of each phase since it is
closely coupled with GAG: the attribute evaluators
produced by GAG work in a parse tree which is
produced by a parser generated by PGS. Again all the
intermediate representations of the source program were
textual.

PGS is a conventional LALR(1) parser generator
based on context-free grammars and a simple attri-
butation facility, similar to YACC.!® Besides the parser,
PGS produces automatically a syntactic error recovery
routine, but no scanner. Fortunately the PGS system
contains a standard scanner for Pascal which in this case
could be used for Edison with small modifications. The
attributation facility was used for building the abstract
syntax tree for the source program.

The input to GAG is an ordered attribute grammar'?
which can be extended with external abstract data types,
implemented in Pascal. In our experiment we specified
the compiler’s symbol table and target code as abstract
data types mainly because of efficiency: as is well known,
the strict attribute grammar formalism falls short when
representing large variable data structures. Since the
symbol table solution in the procedural version (see 3.1)
was found flexible enough, we adopted it in this GAG
version as well. Also the target code representation was
similar to that in the procedural version, i.e. an array
where backpatching was carried out through explicit list
traversals.

3.3 Evaluation of the methods

It was remarkably easy to produce the Edison compiler
with Prolog as the implementation language. The mixture
of a declarative framework and embedded conventional
programming concepts was found to provide a rigorous
tool for writing this kind of a compiler. This observation
came by no means as a surprise since some central
features of Prolog are intrinsically compilation-oriented,
for instance DCGs, logical variables, or trees as the

Table 1. Production days

Prolog Pascal PGS/GAG
DAYS 26 27 30
LOC 2400 4800 4500

central data type. This suitability of Prolog for rapid
implementation can be made more concrete by giving in
Table 1 the amount of production days (DAYS) and the
number of written lines, excluding comments, (LOC) for
each compiler version.

One may wonder why each version took almost the
same amount of time to produce although the Prolog
version is only about half as long as the other two. The
explanation to this is the production order of the
versions: most notably the Prolog version of each
compiler phase was produced before the corresponding
Pascal version. That is why all the fundamental issues on
the problem domain were already solved when writing
the Pascal versions and the whole work left was almost
just straight coding. If we included the design time in the
DAYS row of the Pascal and PGS/GAG versions as well,
these figures would be significantly bigger. The relevant
conclusions from Table 1 are that we could produce with
Prolog a 4-pass compiler for Edison in 5 weeks, and that
the amount of code was only half of both the procedural
and the declarative code.

Another factor that reduced the working time in the
Pascal and PGS/GAG versions is the position of Prolog
between these two. In this experiment this view could be
verified in.practice since it was a natural choice to use the
Prolog version of the semantic analyzer and code
generator as a model both for the procedural and for the
declarative versions: on one hand a compiler phase
written in Prolog could easily be transformed into a
recursive descent Pascal program, and on the other hand
into an attribute grammar. However, we also were
careful in relying on the procedural and declarative
traditions of building compilers and thus did not produce
just three incarnations of a Prolog program, but indeed
three conceptually different compilers.

Table 2. Scanner execution times (cpu sec.)

Length Pascal Quintusl Quintus2
10 0.03 0.04 0.4
60 0.07 0.4 2.7
300 0.4 3.3 21.3
900 0.7 7.1 —
1800 1.3 22.6 —
Table 3. Parser execution times (cpu sec.)
Length Pascal Quintusl Quintus2
10 0.01 0.04 0.3
60 0.02 0.3 1.3
300 0.06 2.1 900
900 0.2 7.5 —
1800 0.3 600 —

68 THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

PROLOG IN PRACTICAL COMPILER WRITING

Table 4. Parser execution times for invalid programs (cpu sec.)

length/errors Pascal Quintusl
10/5 0.02 0.07
60/10 0.04 0.5

900/50 0.2 11.5

When analyzing the execution times of our three
compiler versions, we notice drastically two sides of the
Prolog version: while Prolog performs fairly well in
semantic analysis and code generation, it is hopelessly
slow in scanning and parsing. In Tables 2 and 3 we give
execution times for the VAX Pascal and Quintus Prolog
versions of the scanner and parser, resp., for legal Edison
programs. The Quintus Prolog times are given both for
compiled (Quintus1) and for interpreted (Quintus?2)
programs. Output times of the produced trees are
excluded. Some test runs (-) could not be completed due
to memory overflow. All the times are given in seconds of
cpu time on a VAX/8800, and the source program
lengths in lines of code. The PGS version could not be
analyzed in the same environment because the system
was not available on this mainframe. However, an
analysis on a VAX/750 showed that these phases
produced by PGS are at least 5-10 times faster than the
corresponding phases written in Prolog.

We also compared the speed of the compiled parsers in
VAX Pascal and Quintus Prolog when analyzing
syntactically erroneous programs. The cpu times are
given in Table 4 for source programs of different length
and including different numbers of errors.

As the tables show, these phases implemented in
Prolog are absolutely too inefficient to be used in
practice. The speed is acceptable only for very small
source programs (less than 100 lines); for large source
programs the intermediate results might grow so big that
they could not be handled at all.

The scanner written in Prolog behaves rather deter-
ministically. Recall that in Edison the token class can be
decided from the first character of the token, and that
our scanner makes use of this fact by committing to a
specific token class after analyzing the first character (see
2.1). After a commitment the scanner never backtracks
between different token class procedures, and input is
also never backtracked. Thus having only a local
‘shallow’ form of backtracking®® implies the Edison
scanner written in Prolog to require linear time with
respect to the length of the source program. However,
even this restricted way of backtracking, combined with
recursion as the iteration tool, makes the scanner creep
for large program sizes. Also space consumption may be
huge (though not analyzed in this experiment in more
detail).

The situation is worst in parsing. The standard DCG
implementation we employed yields unavoidably a
nondeterministic parser, even when we have ordered the
alternative productions as well as made extensive use of
error productions and synchronizing nonterminals that
avoid backtracking to some extent by synchronizing
input with parsing (see 2.2). In general, backtrack parsing
as a function of program length takes in worst-case
exponential time.®> Thanks to explicit synchronization,
the average-case performance of our Edison parser

Table 5. Semantic analyzer and code generator execution
times (cpu sec.)

Length Pascal KA-Prolog C-Prolog GAG
10 0.3 0.6 1.2 4.8
70 1.6 22 6.5 11.5

300 10.1 13.4 454 59.2

900 26.3 323 113 177

written in Prolog is better than exponential. There are
cases, however, that lead to backtracking in a way that
exploses the parser time consumption (note the longest
source program in Table 3). One example of such a case
are assignment statements vs. procedure calls. Pure
context-free information of X is not sufficient for the
parser to choose between the following statements:

X: =1,
X(1);

In case the current input symbol is identifier X, the parser
makes a guess for an assignment statement and processes
X as a variable; however, if the token following X
happens to be ¢ ¢ (* *, the parser must backtrack, adjust
the input, and try a procedure statement instead. Note
that in contrast to scanning, already processed tokens
(here X) must be shifted from the current history of
parsing back to the input stream; thus backtracking can
be here characterized as being of a real, ‘deep’*® nature.
Another frequently occurring case making the parser
extensively backtrack are productions with an empty
right-hand side. In a DCG these have to be placed as the
last alternatives for the associated nonterminals, and
they will thus not be reached by the parser until first
having unsuccessfully tried the non-empty alternatives.

The semantic analyzer and the code generator for
Edison, written in Prolog, were surprisingly close in
speed to those written in Pascal and produced by GAG."*
In Table 5 we give total execution times for the Berkeley
Pascal, the compiled KA-Prolog,'® the interpreted C-
Prolog, and the GAG versions of the semantic analyzer
and the code generator. Here the times are given in
seconds of cpu time on a VAX/750.

As can be seen, the compiled Prolog versions do not
consume much more time than the Pascal ones. In this
case the Prolog programs are most deterministic since (1)
the input is guaranteed to be syntactically correct, (2) the
scanner and the parser provide to the semantic analyzer
additional information in the abstract input tree for
making selection between alternative choices possible
immediately during unification of the procedures’ first
arguments; for instance assignment statements and
procedure calls are now distinguishable by their principal
functors:

(assignment)
(procedure call)

: = (Var, Expr)
call(Proc, Args)

(3) the semantic analyzer supplements the determinating
input for the code generator still further by context-
sensitive information. Hence the Edison compiler written
in Prolog requires both in semantic analysis and in code
generation only linear time with respect to input length.
This general observation and the experimental data in
Table 5 show that deterministic Prolog programs that

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 69

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

J. PAAKKI

can fully utilize unification of trees might not be very
much slower than the corresponding Pascal programs,
and that they can be even faster than the corresponding
automatically generated Pascal programs.

The total times showed that compiling an Edison
program of modest size (less than 1000 lines) with the
Prolog implementation is typically 6-10 times slower
than doing it with the Pascal implementation. For source
programs of small size the overall performance of the
Prolog implementation is quite close to the performance
of the PGS/GAG implementation: the superiority of
PGS over Prolog in scanning and parsing is balanced by
the superiority of Prolog over GAG in semantic analysis
and code generation. When compared to the other two
versions, the deeply backtracking parser makes the
Prolog version an absolute loser for Edison programs of
reasonable size (more than 1000 lines), and for Edison
programs containing a significant amount of ‘worst-
case’ code, such as procedure calls.

From a conceptual point of view, Prolog is much
related to one-pass attribute grammars (or affix-gram-
mars). In both approaches one can specify a compiler
with the syntax-directed method where semantic actions
are embedded within context-free productions. In at-
tribute grammars these actions are given as functions, in
Prolog as predicates. The relationship becomes more
concrete when comparing Prolog with L-attributed
grammars* 7 that are integrated with top-down parsing,
and with compiler writing systems implementing L-
attributed grammars, such as LILA(MIRA)!® and
Coco.?® The execution model of Prolog is a complete
depth-first traversal of the search tree obtained by always
choosing the leftmost goal, which is analogous to
producing the parse tree for a source program in a depth-
first left-to-right (top-down) fashion.

The most significant difference between these two
compiler writing tools is that Prolog uses non-
deterministic parsing whereas the L-attributed systems
employ deterministic parsing. The difference is most
unfortunate from a practical point of view since
nondeterminism makes the parsers produced with con-
ventional Prologs or DCGs too ineffective for competing
in efficiency with deterministic ones (see Tables 3—4).
Prolog can be related with general attribute grammars as
well;” we feel, however, that the execution mechanism of
Prolog brings it in practice closer to the more restricted
L-attributed class.

This experiment revealed that DCGs are very con-
venient to use for introductory or prototyping purposes
but too primitive for practical parsing. Besides having
the efficiency problem, they also omit such fundamental
aspects in context-free grammars and parsing as left-
recursion, regular grammar expressions, integration with
scanning, and syntactic error handling. All these could
be expressed with Prolog (e.g. we included error handling
in our Edison DCG) but then we would lose the
compactness and simplicity of the formalism. The result
would be a normal recursive descent parser, as written in
some procedural language. In our experiment we
produced one such parser (in Pascal) which was found
rather awkward to do, mainly because of its low-
levelness.

Because of these reasons, we feel that the declarative,
automated approach is currently the best one for
scanning and parsing (even though in our case the

scanner was actually not generated). Some recent
generators produce scanners and parsers that are nearly
as efficient as the corresponding hand-written ones,® and
their high-level inputs support easy modification, main-
tenance, and transportation of the products.

When evaluating the tools in the semantic analysis
field the support for symbol table management is most
crucial. Both Prolog and GAG provide some predefined
high-level facilities for this task, while in Pascal one has
to build the whole thing from scratch. Some projects on
this topic have shown how hard it is to design a set of
simple and powerful table management primitives that
would be also general enough for a large number of
different cases;'® 2" it was thus no surprise that neither
the database or term-based facilities in Prolog nor the
standard list operations in GAG were absolutely ideal
for Edison.

In principle our idea of unifying two related concepts,
symbol tables and databases, worked quite well in
Prolog. However, we were forced to use a couple of
supporting constructions since some central symbol table
concepts were missing in Prolog’s database world. Using
Pascal we could create a symbol table solution that,
while being of low level, was at least flexible and efficient.
Recall that we decided to model this implementation in
the GAG version as well, but now the interface between
the attribute grammar and the external symbol table
became rather messy.

Prolog turned out to be strongest in the code generation
phase where its sophisticated pattern matching primitive,
unification with delayed binding, made it remarkably
easy to map the abstract tree to the abstract code. No
low-level tricks were needed as in the Pascal and GAG
versions to backpatch incomplete instructions. The code
generator was also relatively the most efficient component
of the Prolog version.

As a summary of the evaluation, none of the analyzed
methods and tools is ideal for compiler construction. We
feel that there is still much work to be done in all these
approaches when trying significantly to simplify the
production of reliable, maintainable, and efficient com-
pilers. The Prolog methodology provides clear possi-
bilities to make further progress: while some work in this
direction has been reported,’® the idea is still quite
unexplored. Our opinion is that by combining the best
characteristics of both the procedural, the declarative,
and the Prologian approach a very strong compiler
writing tool can be developed. In the next section we
briefly introduce one such tool, as a Prolog dialect.

4. SUMMARY AND FUTURE WORK

We have discussed the suitability of Prolog in practical
compiler construction. The discussion was based on an
experiment where producing a compiler in Prolog for the
programming language Edison was compared with
producing corresponding compilers using a procedural
and a declarative approach.

The experiment showed how well Prolog supports the
rapid prototyping method of software production: in
about one month we could design and implement a
complete Edison compiler (in Prolog) that could easily
be transformed into an equivalent, more efficient one (in
Pascal). Besides utilizing in this way the operational side
of Prolog, we also exploited its declarative side by using

70 THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

PROLOG IN PRACTICAL COMPILER WRITING

the compiler phases in Prolog as models for the
corresponding attribute grammars. Thus we can well
characterize Prolog as a middle-of-the-road method for
compiler construction, although the fixed execution
model of Prolog brings it closer to the procedural than to
the declarative approach.

Conceptually Prolog provides a number of attractive
high-level features for compiler writing, such as DCGs
for parsing, an internal database for symbol table
management, and unification with logical variables for
code generation. The unfortunate fact that makes the
Prolog approach unsuitable for constructing production-
quality compilers is inefficiency of the current Prolog
dialects. Even the many compiler oriented features
mentioned above turned out to be too general for this
particular application area and thus either too space- and
time-consuming or too inflexible. The compiler writing
research has generated an extensive set of standard
deterministic concepts and techniques that are strangers
within the logic programming paradigm, such as lexical,
syntactic and semantic error recovery, integration of
lexical and syntactic analysis, or scoped and hashed
symbol tables. The lack of these standard deterministic
compiler writing facilities made our Edison compiler
written in Prolog too slow for serious programming; one
can state that Prolog is convenient for compiler writers
but rather inconvenient for compiler users.

Prolog turned out to be strongest in code generation
and semantic analysis. These phases in our Edison
compiler were conceptually quite elegant and high-level,
as well as reasonably efficient. In scanning and parsing
the situation is different: the DCG formalism might be
good enough for small toy examples but its conventional
implementation is absolutely too naive for larger or more
practical cases. We have showed this fact both by a static
complexity analysis of the parser generated by a DCG, as
well as by an empirical performance study. It must be
noted, however, that the problems with DCGs arise

REFERENCES

1. H. Abramson, Towards an expert system for compiler
development. Technical Report 87-33, Dept. of Computer
Science, University of British Columbia (1987).

2. A.V.Aho, R.Sethi and J.D.Ullman, Compilers—
Principles, Techniques and Tools. Addison-Wesley (1986).

3. A.V.Aho and J.D.Ullman, The Theory of Parsing,
Translation, and Compiling, Volume 1: Parsing. Prentice-
Hall (1972).

4. G. V. Bochmann, Semantic evaluation from left to right.
Communications of the ACM 19 (2), 55-62 (1976).

5. P. Brinch Hansen, Programming a Personal Computer.
Prentice-Hall (1982).

6. J. Cohen and T.J. Hickey, Parsing and compiling using
Prolog. ACM Transactions on Programming Languages
and Systems 9 (2), 125-163 (1987).

7. P. Deransart and J. Maluszynski, Relating logic programs
and attribute grammars. Journal of Logic Programming 3
(2), 119-155 (1985).

8. J. Grosch, Generators for high-speed front-ends. Proc. of
the Workshop on Compiler Compiler and High Speed
Compilation, pp. 133-144. Akademie der Wissenschaften
der DDR (1989).

9. P. R. Henriques, A semantic evaluator generating system
in Prolog. Proc. of PLILP88, Int. Workshop on Pro-
gramming Language Implementation and Logic Program-

merely from its conventional implementation, and not
from the notation which is rather attractive.

Since the conceptual advantages with the Prolog
approach are evident, we believe that one can develop a
practical Prolog-based compiler writing tool by refining
the central features of the language exclusively for
compilational purposes and by designing an efficient
deterministic implementation for these features. We are
currently working on the design and implementation of
one such Prolog dialect.?

The leading objectives behind the dialect are simplicity,
efficiency, compactness, and high-level support on the
application area. Some important features of the dialect
will be

e determinism; the model has been taken from ‘guards’
found in many parallel logic programming languages®®

e practical DCGs; already a prototype implementation
of this feature has been produced with emphasis on
deterministic parsing and automatic error handling?!

e a symbol table oriented internal database

e functionality in the simple form of functional terms2*
that roughly correspond to inherited and synthesized
attribute values

e redundancy, such as modules, types, and modes.

Acknowledgements

The implementation work has been carried out at the
German National Research Center for Computer Science
(GMD) in Karlsruhe, and at the Department of
Computer Science, University of Helsinki. I would like
to thank Prof. Gerhard Goos, Prof. Stefan Jahnichen,
Prof. Uwe Kastens, and Dr. Josef Grosch for their valu-
able comments on the experiment. The comments of
Prof. Kai Koskimies, Prof. Reino Kurki-Suonio, Prof.
Esko Ukkonen, and an anonymous referee on the draft
of this paper are appreciated.

ming, edited P. Deransart, B. Lorho, J. Maluszynski, pp.
201-218, LNCS 348, Springer-Verlag (1989).

10. S. C. Johnson, YACC, yet another compiler compiler.
Report CS-TR-32, Bell Laboratories, Murray Hill, N.J.
(1975).

11. W.N. Joy, S.L. Graham, C. B. Haley, M. K. McKusick
and P. B. Kessler, Berkeley Pascal user manual, version
3.0. Computer Science Division, Dept. of Electrical
Engineering and Computer Science, University of Berkeley
(1983).

12. U. Kastens, Ordered attributed grammars. Acta Infor-
matica 13, 229-256 (1980).

13. U. Kastens, B. Hutt and E. Zimmermann, GAG: A Prac-
tical Compiler Generator. LNCS 141, Springer-Verlag
(1982).

14. E. Klein and M. Martin, The parser generating system
PGS. Software — Practice and Experience 19 (11), 1015—
1028 (1989).

15. K. Koskimies, O. Nurmi, J. Paakki and S. Sippu, The
design of a language processor generator. Soft-
ware — Practice and Experience 18 (2), 107-135 (1988).

16. J. Lewi, K. DeVlaminck, J. Huens and M. Huybrechts, 4
Programming Methodology in Compiler Construction (I and
IT). North-Holland (1979).

17. P. M. Lewis, D. J. Rosenkrantz and R. E. Stearns, Attri-

THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991 71

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

18.

20.

21.

22.

23.

J.PAAKKI

buted translations. Journal of Computer and System
Sciences 9, 279-307 (1974).
N. Lindenberg, A. Bockmayr, R. Dietrich, P. Kursawe, B.
Neidecker, C.Scharnhorst and 1. Varsek, KA-Prolog:
Sprachdefinition. Arbeitspapiere der GMD 249, Gesell-
schaft fiir Mathematik und Datenverarbeitung mbH
(1987).
. J. Paakki, A note on the speed of Prolog. ACM SIGPLAN
Notices 23 (8), 73-82 (1988).
J. Paakki, A Prolog-based compiler writing tool. Proc. of
the Workshop on Compiler Compiler and High Speed
Compilation, pp. 107-117. Akademie der Wissenschaften
der DDR (1989).
J. Paakki and K. Toppola, An error-recovering form of
DCGs. Acta Cybernetica (to appear).
F. Pereira (ed.), C-Prolog user’s manual, version 1.5.
EdCAAD, Dept. of Architecture, University of Edinburgh
(1984).
F. C. N. Pereira and D. Warren, Definite clause grammars
for language analysis —a survey of the formalism and a
comparison with augmented transition networks. Artificial
Intelligence 13, 231-278 (1980).

25.

26.

27.

28.

29.

30.
31.

32.

Finnish). Report C-1989-71, Dept. of Computer Science,
University of Helsinki.

Quintus Prolog Reference Manual, Version 6. Quintus
Computer Systems, Inc., April 1986.

P. Rechenberg and H. Méssenbock, A Compiler Generator
for Microcomputers. Carl Hanser Verlag and Prentice-Hall
International (UK) Ltd. (1989).

S. P. Reiss, Generation of compiler symbol processing
mechanisms from specifications. ACM Transactions on
Programming Languages and Systems 5 (2), 127-163 (1983).
L. Sterling and E. Shapiro, The Art of Prolog. The MIT
Press (1986).

A. Takeuchi and K. Furukawa, Parallel logic programming
languages. Proc. of the Third International Conference on
Logic Programming, edited E. Shapiro, pp. 242-254. LNCS
225, Springer-Verlag (1986).

VAX Pascal Reference Manual. Digital Equipment Cor-
poration (1987).

D. Warren, Logic programming and compiler writing.
Software — Practice and Experience 10 (2), 97-125 (1980).
J. Welsh and M. McKeag, Structured System Program-
ming. Prentice-Hall International (1980).

24. K. Poysd, Extending Prolog with functional features (in

Correspondence

Sir,

The recent paper by R. G. Dromey and T. A.
Chorvat in the Journal® prompts me to set the
record straight on ‘Program Inversion’. In the
late 1960s I was a member of a programming
team led by Michael Jackson. Individually
and collectively, members of this team devised
many of the techniques that form the basis of
the Jackson Structured Programming meth-
odology.® (I don’t intend to detract from
Jackson’s contribution; there is a big gap
between a collection of techniques and an
integrated methodology. The synthesis is
Jackson’s own.)

Much of the team’s work involved systems
programming in assembly language. Struc-
tured programming was supported by macros,
and the resulting programs looked very much
like Jackson’s Program Design Language,
even including the ‘posit’ conditional struc-
ture. Wherever possible, programming tech-
niques were supported by software, usually in
the form of macros.

‘Program Inversion’ stems from an idea
originated by Brian Boulter and myself, and
was originally aimed at software re-use rather
than resolving boundary clashes. We recog-
nised that the same algorithm could appear in
different guises, which we would now call its
different inversions. Since we both had a
hardware background, our original idea was
to implement library procedures as finite-state
machines in a universal form that could be
used directly in any of their possible inversion
modes. (Vestiges of this method can be found
in my ‘Lateral Programming’ methodology.2)
This proved to be inefficient, and the code was
hard to read, so we then adopted a manual
method based on transforming flowcharts.
When flowcharts became passé, this evolved
into the co-routine-derived approach that is
familiar from Jackson’s book.

I mention this to make it clear that the
connections between JSP and finite-state auto-
mata, pointed out by Hughes,* were always

understood by Jackson’s team. But Jackson
knew his audience — mainly Cobol pro-
grammers without formal Computer Science
education — well enough to know that the
explanation of his methodology should be
directly in terms of the program text. It is
worth noting here that Hughes’ speculation
that any pair of programs coupled by inversion
can be reduced to a single program is certainly
true. If no other means were available, we can
find the state-machines for each program of
the pair, then define a larger machine whose
state space is the cartesian product of the two
individual state spaces. Alternatively, we can
take the inverted program, express it as a case
statement based on its internal state, work
backwards to its structure diagram, then
substitute the diagram wherever the inverted
program is called from the other. Of course,
this method is rarely practical, and the
resulting program would usually be very
difficult to understand.

This is where Dromey and Chorvat have
made an important contribution. Jackson’s
team understood that boundary clash prob-
lems could be resolved by Dromey and
Chorvat’s ‘forced synchronisation’ method.
In terms of regular expressions, we were well
aware that x* = (x*)* = (x|¢)*. As evidence,
consider my 1980 paper on file updating,?
where forced synchronisation (in all but name)
is used to resolve the clash between the old
and new master files. However, our use of this
method relied on insight by the programmer,
and Dromey and Chorvat must be commended
for devising their understandable and general-
ised ‘ prototype’ methodology to replace what
was previously a programming trick.

One final comment. Since Hughes’ paper,
it has often been stated that JSP corresponds
to the algebra of regular expressions. This is a
reasonable mistake, because Jackson’s book
never deals with recursive problems or re-
cursive data structures. But this is because it
was addressed primarily to Cobol pro-

72 THE COMPUTER JOURNAL, VOL. 34, NO. 1, 1991

grammers, and Cobol does not support recur-
sion. JSP is more closely related to the LL(1)
grammars. For problems that are dominated
by the structure of their input data, it is
essentially the same method as recursive-
descent parsing. That Jackson (and I) recog-
nised this is belatedly acknowledged in the
notes on First and Follow sets that appear in
his later book on system development.® In
fact, JSP can handle regular expressions only
if they convert directly to deterministic
automata, and are therefore a subset of LL(1)
grammars.

Yours faithfully
BARRY DWYER

Department of Computer Science,
The University of Adelaide,

Box 498, G.P.O.,

Adelaide,

South Australia 5001

References

I. R. G. Dromey and T. A. Chorvat, Struc-
ture clashes — an alternative to program
inversion. The Computer Journal 33 (2),
126132 (1990).

2. B. Dwyer, Lateral programming: a
proven technique. In Tutorial: Software
Design Strategies, edited G. D. Bergland
and R. D. Gordon 214-222, IEEE (1979).

3. B. Dwyer, One more time — how to update
a master file. Communications of the ACM
24 (1), 3-8 (1981).

4. J. W. Hughes, A formalization of expli-
cation of the Michael Jackson method of
program design. Software Practice and
Experience 9 (4), 191-202 (1979).

5. M. A. Jackson, Principles of Program De-
sign. Academic Press, London (1975).

6. M. A. Jackson, System Development.
Prentice-Hall, Englewood Cliffs, NJ
(1982).

0102 ‘g2 |udy uo Ausieaiun eiulblaip 1Sep) 1e 610 sieuinolpiolxo’|uliog)/:dny wolj papeojumoq

http://comjnl.oxfordjournals.org

