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ABSTRAC T

Introductory courses in Theory of Computatio n
usually include a study of abstract machine s
such as finite state machines and Turin g
machines . This paper demonstrates that a nea t
and useful way of presenting these automata i s
to use a logic programming language such as
Prolog, making the approach useful from a
teaching point of view . Not only does a Prolo g
specification provide a precise definition of a n
automoton's behaviour, but it also gives an
immediately-executable simulator . Th e
reversible execution property of Prolog program s
can make these simulators inherently mor e
powerful than traditional simulators . The pape r
includes Prolog specifications for finite stat e
machines, Turing machines, linear bounde d
automata, and pushdown automata .

1

 

INTRODUCTION

Introductory courses in Theory of Computatio n
usually include a study of different types o f
abstract machine l , 2 , 3 , 9 . These automata hav e
different capabilities, and are commonly used t o
illustrate the different types of languag e
identified by Chomsky . Indeed, Chomsky' s
hierarchy of four language classes has it s
direct counterpart in automata theory : there i s
a hierarchy of four abstract machines, each o f
which corresponds to a class of language in th e
Chomsky hierarchy . The four types of abstrac t
machine, in increasing order of power, are :

• finite state machine s
• pushdown automata
• linear bounded automat a
• Turing machines

When teaching this material, we have often foun d
it useful to supplement an informal an d
intuitive machine description by giving a mor e
precise definition of each type of machine, i n
the form of an outline of a simulator in som e
sort of high level language . This constitute s
an operational specification of the machine .
Recently, we tried using Prolog for this, an d
found it to be particularly well suited to th e
task . The main advantages (from an educationa l
point of view) in using Prolog are :

(i) The specification can be executed as i t
stands, and acts as a simulator for the
machine .

(ii) The trace facilities typically availabl e
with Prolog systems can be used to give a
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useful single-step trace of the machine' s
behaviour, with no extra programming
effort .

(iii)Since a Prolog clause merely specifies a
logical relationship between its arguments ,
the reversible execution feature of Prolo g
programs means that the Prolog program ca n
be used as a multi-purpose simulator . For
instance, rather than supplying the inpu t
and generating the output, the same program
can sometimes be used to generate the input
which would be required to produce a give n
output .

(iv) Because of the conciseness of the Prolo g
versions compared with, say, a definitio n
in Pascal, complete specifications can b e
presented to students, rather than just a n
outline .

The use of logic for specifying Turing machine s
has become a standard tool in Recursion Theor y
and Complexity Theory5 , beginning with Turing' s
pioneering paper 6 . Also, Tarnlund uses Horn
clauses, thereby establishing Horn clauses (an d
hence Prolog) as a system powerful enough t o
express any computational process 7 . Our
approach in using Prolog has a more practica l
motivation, however, and is more concerned wit h
the presentation of these concepts in an
educational context .

In the remainder of this paper, Prolo g
specifications are developed for finite stat e
machines, Turing machines, the execution
mechanism of linear bounded automata, and fo r
pushdown automata . Where there are different
forms of each automata which could be modelled ,
the simplest version is usually chosen . (For
instance, Mealy machines are chosen for finit e
state machines) . This is so that the approac h
of using Prolog is not lost in a detaile d
discussion of abstract machines (of which ther e
is plenty already in the literature) . It should
be obvious to the reader, though, how variation s
on the machines presented here can b e
accommodated . The Prolog descriptions in thi s
paper are presented in standard Prolog, such a s
defined by Clocksin and Mellish 8 .

2

 

FINITE STATE MACHINE S

A finite state machine undergoes a sequence o f
discrete events, where an event involves :

• the input of a symbol from the environment ;
• a change of state ;
• the output of a symbol to the environment .
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These actions take place simultaneously and
instantaneously .

Defining a particular finite state machin e
requires all posssible events to be enumerated .
In Prolog, a valid event is defined as a
quadruple :

event (current state, input symbol ,
output symbol, new state )

Given a set of such event descriptions, a n
actual finite state machine will in general b e
defined by the Prolog relation :

fsm (initial state, input stream ,
output stream, final state )

This states that a finite state machine startin g
in state initial state, supplied with a stream
of input symbols input stream, will end up i n
state final state, having generated a stream o f
output symbols output stream . Note that th e
environment of a finite state machine is her e
being modelled by two lists of symbol s
input stream and output stream .

The relation fsm, which specifies the behaviou r
of a finite state machine, can be defined quit e
easily in Prolog . The simplest case is whe n
there is no (more) input, in which case nothin g
happens :

fsm (Q, U , (1, 4) .

This states that a finite state machine in an y
state Q, which is supplied with no furthe r
input, will produce no output and will remain i n
state Q . In the rather more useful case wher e
input is available, the overall effect i s
defined as the effect of a single event followe d
by the effect of a new fsm starting in th e
resulting new state :

fsm (Q, (XIS], (YIT], 0') . -
event (4, X, Y. 4") ,
fsm (0", S, T, Co) .

Put together, these two clauses define the basi c
execution mechanism of any finite state machine .
All that remains is to enumerate the differen t
possible events, using the Prolog relation even t
described above . As an example, a finite stat e
machine to check the parity of an input stream
of 0's and 1's would require the clauses :

event (even, 0, 0, even) .
event (even, 1, 1, odd) .
event (odd, 0, 0, odd) .
event (odd, 1, 1, even) .

Prolog language features such as the anonymou s
variable '' can conveniently be used whe n
enumerating events . For instance ,

event (

 

*, error, error state) .

will trap the first occurrence of '*' in th e
input, irrespective of the state of the machine .

Executing the specificatio n

Once the events have been defined, we have a
complete Prolog program, which can he executed .
This means that the specification as it stand s
is also a simulator . For instance, if event is
defined as above for parity checking, conside r
executing the goal :
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fsm (even, (1,0,1,1,0), X, Y)

If X and Y are initially uninstantiate d
variables, then executing this goal will resul t
in X and Y being instantiated to (1,0,1,1,0) and
odd respectively . Should the program ever reac h
the state where no event description matches th e
current configuration, fsm will fail .

Since the predicate fsm merely specifies th e
logical relationship in a valid finite stat e
machine between the initial state, input stream ,
output stream and finite state, then it need no t
be dedicated to finding the final configuratio n
from the supplied initial configuration . For
instance ,

fsm (X, Y, [1,1,1], odd )

effectively asks — "What initial state and inpu t
stream are required to cause the machine to en d
up in state odd having generated the output
stream [1,1,1]?" . Execution in this case would
instantiate X and Y to even and [1,1,1 ]
respectively . This feature of Prolog program s
means that the simulator is multi-purpose, at n o
extra programming cost . However, caution mus t
be exercised in using the simulator in this way ;
for instance, if we ask for an input sequenc e
which will cause a specified final state to b e
reached in the following way :

fsm (even, X, Y, odd)

then executing this goal will never terminat e
(or will run out of memory because of th e
recursion) . The Prolog interpreter will attempt
to satisfy this goal effectively by beginning i n
state even and executing events until state odd
is reached . In doing so, it will repeatedl y
select the first matching event :

event (even, 0, 0, even )

as the next event, and so will never escape from
state even . This attempted execution wil l
demand an unbounded input stream of 0's, which ,
since X is uninstantiated, can be made
available . To use fsm safely as a multi-purpose
program (for any set of event descriptions), on e
must ensure that either the input stream or th e
output stream is initially instantiated (an d
hence is finite in length) . This puts an uppe r
bound on any execution path .
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TURING MACHINE S

A Turing machine is a finite state machine wit h
an unlimited memory in the form of a tape ,
accessed by a moving read/write head, as show n
in figure 1 . The tape of a Turing machin e
replaces the environment of a finite stat e
machine . At any instant, all but a finit e
number of squares on the tape will be blank
(indicated by the symbol b) .

b

 

1

 

0

 

1

 

1

 

0

 

b

finit e
stat e

contro l

Figure I . A Turing machine
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An event in the life of a Turing machine can b e
defined by a quintuple, written in Prolog as :

quintuple (current state, input_symbol ,
output symbol, new state,
head movement )

where input/output is from/to the current tap e
square . Having selected a quintuple whic h
matches the current configuration, an event
involves :

• overwriting the current square wit h
output symbol ;

• entering state new state ;
• moving the read/write head one square i n
the direction indicated by head movemen t
(either <-, -> or -, standing for left ,
right or not at all) .

The first task is to model a tape configuratio n
– the tape contents and the position of the
read/write head . One way of representing a tap e
configuration in Prolog would be to maintain a
list of symbols for the tape, with a specia l
marker to indicate the head position . However ,
specifying a head movement operation using thi s
representation is rather awkward, and a neate r
way is to divide the tape into three sections ,
as shown in figure 2 . This avoids the need fo r
a special position marker, and limits changes i n
a list to just one end . This is the metho d
which Minsky uses for arithmetisation of a tap e
configuration l .

left tape

 

current

 

right tape
square

Figure 2 Tape configuration of a Turin g
machin e

Such a tape configuration can be representee . . 1
a single Prolog term :

tape (left_part, current_ square ,
right_part )

where left part and right_part are just Prolog
lists . For instance, the tape configuration

illustrated in figures 1 and 2 would b e
represented by the term

tape ([0,1], 1, (1,0] )

(Note that the rightmost square of the left tape
is the head of the list, so the list
representing the left tape appears to be written
backwards! )

The action of moving the head is specified b y
the predicate

move (tape_before, direction ,
tape after)

There are three cases of move to be considered –
one for each possible direction . The mos t
straightforward case is when direction indicates
no movement ; here, the tape after is the same a s
the tape before :

move (T, -, T) .
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Moving a configuration right lengthens the lef t
tape by one, and reduces the right tape by one :

move (tape(L, C, [X/R]), -> ,
tape([C/L], X, R)) .

Although a left move could now be defined by a
similar clause, this definition of a right mov e
can itself be used to define a left move . By
looking at a diagram of a tape, such as i n
figure 2, it can be seen that moving the head
left is the same as turning the tape upside
down, moving the head right, and inverting th e
tape once again . This is expressed by th e
predicate

move (tape(L,C,R), < -
tape(L',C',R')) . -

move (tape (R, C, L) , - >
tape (R', C', L')) .

Were it not for the possibility of running of f
the end of the tape (to be discussed presently) ,
a left move could have been defined even mor e
simply a s

move (T, <-

 

T') : -
move (T', -> , T) .

Representing an infinite tap e

Strictly speaking, the length of a Turin g
machine tape is unbounded rather than infinite .
Should the read/write head attempt to move of f
the end, we can imagine the tape bein g
dynamically extended with some more blank tape .
Our predicate move as it now stands will fai l
when it attempts to move off the end of the
tape, say when moving right :

move (tape ([1], 1, []), -> , T) .

To model the action of creating a new (blank )
square, we add an additional move clause to
cover this special case :

move (tape(L, C, (]), -> ,
tape([C/L], b, [1) )

Since a move to the left is defined in terms o f
a right move, no additional clause is required
to handle moving off the left hand end of th e
tape .

We can now move on to an event in the life of a
Turing machine, to be defined by the predicate :

event (current state, current tape ,
new state, new tape )

Such an event involves selecting a quintuple ,
and carrying out the three actions mentione d
previously :

event (Q, tape (L, C, R) , Q', T) : -
quintuple (Q, C, S, Q', D) ,
move (tape (L, S, R) , D, T) .

Assuming that all the quintuples have bee n
defined, a complete Turing machine can now b e
specified by the predicat e

tm (initial state, initial tape ,
final_tape )

This says that a Turing machine starting in
state initial state with tape configuratio n
initial tape will halt (in a special state halt )

1b 0 b

re_

1 0



with tape configuration final tape . To writ e
Prolog clauses defining the relation tm, tak e
the simplest case when the Turing machine i s
already in the 'halt' state :

tm (halt, T, T) .

The more general case executes one event an d
then runs from the new state :

tm (Q, T, T') : -
event (Q, T, Q', T") ,
tm (Q', T", T') .

Gathering together all the necessary clause s
developed to date, we obtain a complete Prolo g
specification for a Turing machine as follows :

Lm (halt, T, T) .
tm (Q, T, T') : -

event (Q, T, 0 ' , T") ,
tm (Q', T", T') .

event (Q, tape (L, C, R) , Q', T) : -
quintuple (Q, C, S, Q', DJ ,
move (tape (L, S, R) , D, T) .

move (T,

 

T) .
move (tape (L,C, [X/R] ), -> ,

tape ([CIL],X,R)) .
move (tape (L, C, []),

 

-> ,
tape([C/L],b, (])) .

move (tape (L, C, R) ,

 

<- ,
tape (L', C', R'))

 

: -
move (tape (R, C, L) , ->

tape (R', C', L')) .

Executing the specificatio n

Assuming that a set of quintuples has bee n
defined, the above specification as it stand s
constitutes a complete Prolog program which wil l
run and simulate the behaviour of a Turin g
machine . For instance, we can define quintuple s
for a parity checker by adding the followin g
Prolog clauses to the program :

which asks what initial state Q will cause th e
machine with the given initial and final tap e
configurations to halt . With the above
quintuples defined for parity checking, thi s
will instantiate Q to even .

4

 

LINEAR BOUNDED AUTOMATA

The basic execution mechanism of a linea r
bounded automaton is similar to that of a Turin g
machine . The only difference is that the lengt h
of tape available to a linear bounded automato n
is bounded rather than potentially infinite . In
our formulation in Prolog, we therefore remov e
the ability to extend the tape dynamically fro m
the basic execution mechanism . It is assumed
that the entire tape available to the mechanis m
is supplied as input (either by the user, or b y
an intermediate operation which extends the tap e
linearly) . Removing this extension capabilit y
from the previous specification of a Turin g
machine thus gives us the following Prolo g
definition of the execution mechanism of a
linear bounded automaton . Strictly speaking, i t
is not as it stands a complete linear bounded
automaton — only the execution mechanism of one .

lba (halt, T, T) .
lba (Q, T, T') : -

event (Q, 1', Q', T") ,
lba (Q', T", T' )

event (Q, tape (L,C,R), Q', T) : -
quintuple (Q, C, S, Q', D) ,
move (tape (L, S, R) , D, T) .

move (T,

 

T) .
move (tape(L,C, (X/R]), ->

tape ([C/LJ,X,R)) .
move (T, <- , T') : -

move (T', -> , T) .

The parity checking mechanism can be solved b y
lba using the same quintuples as before, a s
follows :

quintuple (even, 0 ,
quintuple(even, 1 ,
quintuple(odd, 0 ,
quintuple(odd, 1 ,
quintuple(even, b ,
quintuple(odd, b,

0, even, ->) .
1, odd,

 

->) .
0, odd,

 

->) .
1, even, ->) .
even, halt, - ) .
odd, halt, - ) .

lba (even, tape([], 1, [0,1,1,0,b]), T )

Note that the working space (one blank square i n
this case, to write the result) must be supplie d
to lba .

1 1

If we executed the goal :

tm (even, tape([],1, (0,1,1,0]), T )

the final result tape T would be instantiate d
to :

tape ([0, 1, 1, 0, 1 ], odd, [] )

where the symbol under the read/write head (odd )
indicates the result . Note that leading o r
trailing blanks are not removed from the tap e
representation .

When using reverse execution of tm, one agai n
needs to be careful that the computation i s
definitely finite . Now that we can have a
potentially infinite tape, this is mor e
difficult than for a finite state machine . A
Turing machine computation even on a finite tap e
can go on for ever . However, it can still b e
possible to use the facility, as in :

tm (Q, tape([],l, [0.1 1 .0]) .
tape ([0, 1, 1, 0, 1 ], odd, (1) )
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PUSHDOWN AUTOMATA

Architecturally, a pushdown automaton is th e
most complex of the four common automata ,
because it has two memories : a bounded read-onl y
input tape, and an unbounded read/write pushdow n
stack, illustrated in figure 3 .

Input tape

 

Pushdown stack

Figure 3 A pushdown automaton
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Again, all possible events must be enumerated
for a definition of a specific pushdow n
automaton . An event is selected on the basis o f
the current input symbol (on the input tape) ,
the current state of the machine, and the symbo l
on top of the stack . An event causes the
following actions :

• move the input reading head one squar e
right (or perhaps leave it where it is -
see below) ;

• perform a stack action : either pop, d o
nothing, or push a symbol ;

• change state .

If no event description matches the curren t
configuration, the machine halts .

In Prolog, an event in a pushdown automaton i s
defined by a quintuple :

quintuple (current state ,
input _ symbol, top of stack,
new state, stack_action)

where stack_action is either pop, '-' (do
nothing), or any other symbol (which will b e
pushed) . Note that there is no explici t
directive for controlling the input reading
head : by default it moves right, but in th e
special case where input symbol in the selecte d
quintuple is the token -1 (which will match an y
input tape symbol, or the empty string), th e
reading head is left unchanged .

Representation of a pushdown automaton in Prolo g
is not difficult . The input tape can be define d
by a Prolog list . So too can the stack ; and th e
effect of a stack action can be defined by a
predicate :

stack action (old stack, action ,
new stack )

where the three action types are defined b y
separate clauses :

stack_action ([XIS], pop, S) .
stack action (S, - , S) .
stack_action (S, X, (XIS)) .

There are three types of event to be defined : an
'ordinary' event, the special case where
appears in the selected quintuple, and the cas e
when no quintuple matches (halting the machine) .
Each of these cases is specified by a predicate :

event (current state, input_tape ,
current stack, new state,
new tape, new stack )

as follows :

event (Q, 1X/I], MS), Q', I, S') : -
quintuple (Q, X, Y . Q', W .
stack_action ((YIS], D, S') .

event (Q,

 

I,

 

(Y/S], Q', I, S') : -
quintuple (Q, -i, Y, Q', D) .
stack action ([Y/S], D, S') .

event (Q, I, (Y/S], halt, I, [YlS]) .

Note that an event always requires the stack t o
be non-empty, since the top of stack is used i n
selecting a quintuple . If the stack should eve r
become empty, the event is undefined and wil l
fail .
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Finally, a complete pushdown automaton can b e
specified by the predicate :

pda (initial state, initial tape ,
initial stack, final t- pe ,
final stack)

as follows :

pda (halt, I, S, I, S) .
pda (Q, I, S, I', S') : -

event (Q, I, S, Q', I", S") ,
pda (Q', I", S", I', S') .
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CONCLUSION

This study has shown that Prolog can be a usefu l
formalism for communicating the nature an d
behaviour of abstract machines in a precise bu t
understandable way (provided the reader has som e
familiarity with Prolog) . It also leads to a n
immediately- executable simulator, whos e
usefulness can be further extended, at no extr a
programming effort, by using the Prolog trac e
facility to emulate single step operation . Thi s
makes the approach a useful teaching aid . I t
can be seen that the same approach could also b e
applied to the modelling of more comple x
machines - in particular, existing or propose d
computer systems .

REFERENCES

[1] Minsky, M .L ., "Computation : finite and
infinite machines", Prentice-Hall Inc . ,
Englewood Cliffs, N .J . (1967) .

[2] Hopkin, D . and Moss,

 

B .,

 

"Automata" ,
Macmillan, London (1976) .

[3] Kain, R .Y ., "Automata theory : machines and
languages", McGraw-Hill Inc ., London (1972) .

[9] Brady, J .M ., "The theory of compute r
science : a programming approach", Chapman
and Hall, London (1977) .

[5] Borger, "Spekralproblem and completeness o f
logical decision problems", Lecture Notes i n
Computer Science 171, pp .333-356, Springer -
Verlag .

[6] Turing, A .M ., "On computable numbers with a n
application to the Entscheidungsproblem" ,
Proc .

 

London Math . Soc ., Ser .

 

2,

 

Vol

 

4 2
(1936/37) .

[7]

 

Tarnlund, S ., "Horn clause computability",
BIT 17, pp . 215- 226 (1977) .

[8] Clocksin and Mellish, C .S ., "Programming i n
Prolog", 2nd edition, Springer-Verla g
(1984) .


