USING PROLOG TO PRESENT ABSTRACT MACHINES

D Croockes

Department of Computer Science
The Queen's University of Belfast
BELFAST BT7 1NN, Northern Ireland

ABSTRACT

Introductory courses in Theory of Computation
usually include a study of abstract machines
such as finite state machines and Turing
machines. This paper demonstrates that a neat
and useful way of presenting these automata is
to use a logic programming language such as
Prolog, making the approach useful from a
teaching point of view. Not only does a Prolog
specification provide a precise definition of an
automoton's behaviour, but it also gives an
immediately-executable simulator. The
reversible execution property of Prolog programs
can make these simulators inherently more
powerful than traditional simulators. The paper
includes Prolog specifications for finite state
machines, Turing machines, linear bounded
automata, and pushdown automata.

1 INTRODUCTION

Introductory courses in Theory of Computation
usually include a study of different types of
abstract machinel 2,3/,4, These automata have
different capabilities, and are commonly used to
illustrate the different types of language
identified by Chomsky. Indeed, Chomsky's
hierarchy of four language classes has 1its
direct counterpart in automata theory: there is
a hierarchy of four abstract machines, each of
which corresponds to a class of language in the
Chomsky hierarchy. The four types of abstract
machine, in increasing order of power, are:

+ finite state machines

+ pushdown automata

¢ linear bounded automata
¢« Turing machines

When teaching this material, we have often found
it useful to supplement an informal and
intuitive machine description by giving a more
precise definition of each type of machine, in
the form of an outline of a simulator in some
sort of high level language. This constitutes
an operational specification of the machine.
Recently, we tried using Prolog for this, and
found it to be particularly well suited to the
task. The main advantages (from an educational
point of view) in using Prolog are:

(i} The specification can be executed as it
stands, and acts as a simulator for the
machine.

(ii) The trace facilities typically available
with Prolog systems can be used to give a

SIGCSE
BULLETIN Vol. 20 No. 3 Sept. 1988

useful single-step trace of the machine's
behaviour, with no extra programming
effort.

(iii)Since a Prolog clause merely specifies a
logical relationship between its arguments,
the reversible execution feature of Prolog
programs means that the Prolog program can
be used as a multi-purpose simulator. For
instance, rather than supplying the input
and generating the output, the same progran
can sometimes be used to generate the input
which would be required to produce a given
output.

(iv) Because of the conciseness of the Prolog
versions compared with, say, a definition
in Pascal, complete specifications can be
presented to students, rather than just an
outline.

The use of logic for specifying Turing machines
has become a standard tool in Recursion Theory
and Complexity Theory5, beginning with Turing's
pioneering paper6. Also, Tarnlund uses Horn
clauses, thereby establishing Horn clauses (and
hence Prolog) as a system powerful enough to
express any computational process’. our
approach in using Prolog has a more practical
motivation, however, and is more concerned with
the presentation of these concepts in an
educational context.

In the remainder of this paper, Prolog
specifications are developed for finite state
machines, Turing machines, the execution
mechanism of linear bounded automata, and for
pushdown automata. Where there are different
forms of each autcmata which could be modelled,
the simplest version is usually chosen. (For
instance, Mealy machines are chosen for finite
state machines). This is so that the approach
of using Prolog 1is not lost in a detailed
discussion of abstract machines (of which there
is plenty already in the literature). It should
be obvious to the reader, though, how variations
on the machines presented here can be
accommodated. The Prolog descriptions in this
paper are presented in standard Prolog, such as

defined by Clocksin and Mellish8.

2 FINITE STATE MACHINES

A finite state machine undergoes a sequence of
discrete events, where an event involves:

+ the input of a symbol from the environment;
¢« a change of state; )
» the output of a symbol to the environment.



These actions take place simultaneously and
instantaneously.

Defining a particular finite state machine
requires all posssible events to be enumerated.
In Prolog, a valid event 1is defined as a
quadruple:

event (current state, input symbol,
output symbol, new _state)

Given a set of such event descriptions, an
actual finite state machine will in general be
defined by the Prolog relation:

fsm (initial state, inpul stream,
output_ stream, final state)

This states that a finite state machine starting
in state initial state, supplied with a stream
of input symbols input stream, will end up in
state final state, having generated a stream of
output symbols output stream. Note that the
environment of a finite state machine is here
being modelled by two lists of symbols
input stream and output stream.

The relation fsm, which specifics the behaviour
of a finite state machine, can be defined quite
easily in Prolog. The simplest case 1is when
there is no (more) input, in which case nothing
happens:

fsm (Q, (], (], Q).

This states that a finite state machine in any
state @, which is supplied with no further
input, will produce no output and will remain in
state Q. In the rather more useful case where
input is available, the overall effect 1is
defined as the effect of a single event followed
by the effect of a new fsm starting in the
resulting new state:

fsm (Q, (X[S], [YIT], Q') :i-
event (0, X, Y, Q"),
fsm (Q", S, T, Q').

Put together, these two clauses define the basic
execution mechanism of any finite state machine.
All that remains is to enumerate the different
possible events, using the Prolog relation event
described above. As an example, a finite state
machine to check the parity of an input stream
of 0's and 1's would require the clauses:

event (even, 0, 0, even).
event (even, 1, 1, odd).
event (odd, 0, 0, odd).
event (odd, 1, 1, even).

Prolog language features such as the anonymous
variable ' ' can conveniently be used when
enumerating events. For instance,

event ( , *, error, error_state) .

will trap the first occurrence of '*' in the
input, irrespective of the state of the machine.

Executing the specification

Once the events have been defined, we have a
complete Prolog program, which can be executed.
This means that the specification as it stands
is also a simulator. For instance, if event is
defined as above for parity checking, consider
executing the goal:

SIGCS
BULLE Vol. 20 No. 3 Sept. 1988

E
TIN

fsm (even, (1,0,1,1,0}, X, Y)

If X and Y are initially wuninstantiated
variables, then executing this goal will result
in X and Y being instantiated to (1,0,1,1,0)} and
odd respectively. Should the program ever reach
the state where no event description matches the
current configuration, fsm will fail.

Since the predicate fsm merely specifies the
logical relationship in a valid finite state
machine between the initial state, input stream,
output stream and finite state, then it need not
be dedicated to finding the final configuration
from the supplied initial configuration. For
instance,

fsm (X, Y, (1,1,1], odd)

effectively asks — "What initial state and input
stream are required to cause the machine to end
up in state odd having generated the output
stream (1,1,1]?". Execution in this case would
instantiate X and Y to even and (1,1,1]
respectively. This feature of Prolog programs
means that the simulator is multi-purpose, at no
extra programming cost. However, caution must

be exercised in using the simulator in this way;
for instance, if we ask for an input sequence
which will cause a specified final state to be
reached in the following way:

fsm (even, X, Y, odd)

then executing this goal will never terminate
(or will run out of memory because o¢f the
recursion). The Prolog interpreter will attempt
to satisfy this goal effectively by beginning in
state even and executing events until state odd
is reached. In deoing so, it will repeatedly
select the first matching event:

event (even, 0, 0, even)

as the next event, and so will never escape from
state even. This attempted execution will
demand an unbounded input stream of 0's, which,
since X 1is uninstantiated, can be made
available. To use fsm safely as a multi-purpose
program (for any set of event descriptions), one
must ensure that either the input stream or the
output stream is initially instantiated (and
hence is finite in length). This puts an upper
bound on any execution path.

3 TURING MACHINES

A Turing machine is a finite state machine with
an unlimited memory in the form of a tape,
accessed by a moving read/write head, as shown
in figure 1. The tape of a Turing machine
replaces the environment of a finite state
machine., At any instant, all but a finite
number of squares on the tape will be blank
(indicated by the symbol b).

L b 1 0 1 1 0 b 2
N

finite
state
control

Figure 1. A Turing machine



An event in the life of a Turing machine can be
defined by a quintuple, written in Prolog as:

quintuple (current state, input symbol,
output symbol, new state,
head movement)

where input/output is from/to the current tape
square. Having selected a quintuple which
matches the current configuration, an event
involves:

¢« overwriting the current
output symbol;

* entering state new state;

* moving the read/write head one square in
the direction indicated by head movement
(either <-, =-> or =, standing for left,
right or not at all).

square with

The first task is to model a tape configuration
— the tape contents and the position of the
read/write head. One way of representing a tape
configuration in Prolog would be to maintain a
list of symbols for the tape, with a special
marker to indicate the head position. However,
specifying a head movement operation using this
representation is rather awkward, and a neater
way is to divide the tape into three sections,
as shown in figure 2. This avoids the need for
a special position marker, and limits changes in
a list to Jjust one end. This is the method
which Minsky uses for arithmetisation of a tape
configuration?,

unnnininaos

left tape

current
square

right tape

Figure 2 Tape configuration of a Turing
machine

Such a tape configuration can be represenccu g
a single Prolog term:

tape (left part, current_square,
right part)

where left part and right part are just Prolog
lists. For instance, the tape configuration
illustrated in figures 1 and 2 would be
represented by the term

tape ([(0,1], 1, [1,0])

(Note that the rightmost square of the left tape
is the head of the list, so the 1list
representing the left tape appears to be written
backwards!)

The action of moving the head 1is specified by
the predicate

move (tape before, direction,
- tape after)

There are three cases of move to be considered —
one for each possible direction. The most
straightforward case is when direction indicates
no movement; here, the tape after is the same as
the tape before:

move (T, -, T).

SIGCS
B E Vol. 20 No. 3 Sept. 1988

E
ULLETIN

Moving a configuration right lengthens the left
tape by one, and reduces the right tape by one:

move (tape(L, C, ([X|R}]), ->,
tape({C|L], X, R)).

Although a left move could now be defined by a
similar clause, this definition of a right move
can itself be used to define a left move. By
looking at a diagram of a tape, such as in
figure 2, it can be seen that moving the head
left is the same as turning the tape upside
down, moving the head right, and inverting the
tape once again. This is expressed by the
predicate

move (tape(L,C,R), <- ,
tape(L',C',R"')) :-
move (tape (R,C, L), -> ,
tape(R',C',L"')).

Were it not for the possibility of running off
the end of the tape (to be discussed presently),
a left move could have been defined even more
simply as

move (T, <- , T'}) :-
move (T', -> , T).

Representing an infinite tape

Strictly speaking, the length of a Turing
machine tape is unbounded rather than infinite.
Should the read/write head attempt to move off
the end, we <can imagine the tape being
dynamically extended with some more blank tape.
Our predicate move as it now stands will fail
when it attempts to move off the end of the
tape, say when moving right:

move (tape ({1}, 1, (]), —> , T).

To model the action of creating a new (blank)
square, we add an additional move clause to
cover this special case:

move (tape (L, C, []), -> .,
tape ((CIL], b, [])).

Since a move to the left is defined in terms of
a right move, no additional clause is required
to handle moving off the left hand end of the
tape.

We can now move on to an event in the life of a
Turing machine, to be defined by the predicate:

event (current state, current tape,
new state, new tape)

Such an event involves selecting a quintuple,
and carrying out the three actions mentioned
previously:

event (Q, tape(L,C,R), Q', T) :-
quintuple (0, C, S, Q', D),
move (tape(L,S,R), D, T).

Assuming that all the quintuples have been
defined, a complete Turing machine can now be
specified by the predicate

tm (initial state, initial tape,
final tape)

This says that a Turing machine starting in
state initial state with tape configuration
initial tape will halt (in a special state halt)



with tape configuration final tape. To write
Prolog clauses defining the relation tm, take
the simplest case when the Turing machine is
already in the 'halt' state:

tm (halt, T, T).

The more general case executes one event and
then runs from the new state:

tm (Q, T, T') :-
event (Q, T, Q', T"),
tm (Qf, T", T').

Gathering together all the necessary clauses
developed to date, we obtain a complete Prolog
specification for a Turing machine as follows:

tm (halt, T, 7).

tm (Q/ T/ T') -
event (0, T, Q', T"),
tm (Q7, T, T').

event (Q, tape(L,C,R), Q', T} :-
quintuple (Q, C, S, Q', D),
move (tape(L,S,R), D, T).

move (T, - , T).
move (tape(L,C, (X|R]), —-> ,
tape ([CIL],X,R)).
move (tape(L,C,[]), ->
tape ([CIL}, b, [])).
move (tape(L,C,R), <-,
tape(L',C',R")) -
move (tape(R,C,L), ->,
tape(R',C',L')).

Executing the specification

Assuming that a set of gquintuples has been
defined, the above specification as it stands
constitutes a complete Prolog program which will
run and simulate the behaviour of a Turing
machine. For instance, we can define quintuples
for a parity checker by adding the following
Prolog clauses to the program:

, 0, even, ->).
, 1, odd, ->).
, 0, odd, ->).
, 1, even, ->).
, even, halt, - ).
, odd, halt, - ).

quintuple (even, 0
quintuple (even, 1
quintuple (odd, 0
quintuple (odd, 1
quintuple (even, b
quintuple (odd, b

If we executed the goal:
tm (even, tape(f],1,(0,1,1,0]), T)

the final result tape T would be instantiated
to:

tape({0,1,1,0,1],0dd,[])

where the symbol under the read/write head (odd)
indicates the result. Note that leading or
trailing blanks are not removed from the tape
representation.

When using reverse execution of tm, one again
needs to be careful that the computation is
definitely finite. Now that we can have a
potentially 4infinite tape, this 1is more
difficult than for a finite state machine. A
Turing machine computation even on a finite tape
can go on for ever. However, it can still be
possible to use the facility, as in:

tm (Q, tape((],1,(0,1,1,0]),
tape([0,1,1,0,1],0dd,[]))

Sl
BUGLCL%1E'|N Vol. 20 No. 3 Sept. 1988

which asks what initial state Q will cause the
machine with the given initial and final tape
configurations to halt. With the above
quintuples defined for parity checking, this
will instantiate @ to even.

4 LINEAR BOUNDED AUTOMATA

The basic execution mechanism of a linear
bounded automaton is similar to that of a Turing
machine, The only difference is that the length
of tape available to a linear bounded automaton
is bounded rather than potentially infinite. In
our formulation in Prolog, we therefore remove
the ability to extend the tape dynamically from
the basic execution mechanisn. It is assumed
that the entire tape available to the mechanism
is supplied as input (either by the user, or by
an intermediate operation which extends the tape
linearly). Removing this extension capability
from the previous specification of a Turing
machine thus gives us the following Prolog
definition of the execution mechanism of a
linear bounded automaton. Strictly speaking, it
is not as it stands a complete linear bounded
automaton — only the execution mechanism of one.

lba (halt, T, T).

lba (Q, T, T') :-
event (Q, 1, 0', T"),
lba (Q', T", T').

event (Q, tape(L,C,R), Q', T) :-
q'uintuple (Q, ¢, S, Q', D),
move (tape(L,S,R), D, T).

move (T, - , T).
move (tape(L,C, [XIR]), -> ,
tape([C|L),X,R)).
move (T, <- , T') :—
move (T', -> , T).

The parity checking mechanism can be solved by
lba using the same quintuples as before, as
follows:

lba (even, tape((],1,(0,1,1,0,b}]), T)

Note that the working space (one blank square in
this case, to write the result) must be supplied
to lba,.

5 PUSHDOWN AUTOMATA

Architecturally, a pushdown automaton is the
most complex of the four common automata,
because it has two memories: a bounded read-only
input tape, and an unbounded read/write pushdown
stack, illustrated in figqure 3.

Input tape Pushdown stack

Figure 3 A pushdown automaton



Again, all possible events must be enumerated
for a definition of a specific pushdown
automaton. An event is selected on the basis of

the current input symbol (on the input tape),
the current state of the machine, and the symbol
on top of the stack. An event causes the
following actions:

* move the input reading head one square
right (or perhaps leave it where it 1is -
see below);

« perform a stack action:
nothing, or push a symbol;

+« change state.

either pop, do

If no event description matches the current
configuration, the machine halts.

In Prolog, an event in a pushdown automaton is
defined by a quintuple:

quintuple (current_ state,
input_symbol, top of stack,
new_state, stack_action)

where stack action 1is
nothing), or any other symbol
pushed) . Note that there is
directive for controlling the input reading
head: by default it moves right, but in the
special case where input symbol in the selected
quintuple is the token — (which will match any
input tape symbol, or the empty string), the
reading head is left unchanged.

either pop, '-' (do
(which will be
s no explicit

Representation of a pushdown automaton in Prolog
is not difficult. The input tape can be defined
by a Prolog list. So too can the stack; and the
effect of a stack action can be defined by a
predicate:

stack _action (old stack, action,
new stack)

where the three action types are defined by
separate clauses:

stack_action ([X[S],
stack action (S, - ,
stack _action (S, X,

pop, 5).
S).

[(xX1s]).

There are three types of event to be defined: an
tordinary' event, the special case where -
appears in the selected quintuple, and the case
when no quintuple matches (halting the machine).
Each of these cases is specified by a predicate:

event (current_state, input tape,
current_stack, new_state,
new_tape, new_stack)

as follows:

event (Q, (X|I}, (YIs], @', I, §') :-
quintuple (Q, X, Y, Q', D),
stack action ([Y[|S], D, S').

event (Q, I, (yisy, o', 1, ') :-
quintuple (Q, =, Y, Q', D),
stack action ([Y|S], D, §').
event (Q, I, [(Y|S], halt, I, [YI|S]).
Note that an event always requires the stack to
be non-empty, since the top of stack is used in
selecting a quintuple. If the stack should ever
become empty, the event is undefined and will
fail.

SLGL?_E%N Vol. 20 No. 3 Sept. 1988

12

Finally, a complete pushdown automaton can be
specified by the predicate:

pda (initial state, initial tape,
initial stack, final_ tape,
final‘stack)

as follows:

pda (halt, 1, 5, I, S).

pda (0, I, 5, I', §') :-
event (Q, I, S, Q',
pda (Ql, Ill, S”, I”

I, §"),
S').

6 CONCLUSION

This study has shown that Prolog can be a useful
formalism for communicating the nature and
behaviour of abstract machines in a precise but
understandable way (provided the reader has some
familiarity with Prolog). It also leads to an
immediately- executable simulator, whose
usefulness can be further extended, at no extra
programming effort, by using the Prolog trace
facility to emulate single step operation. This
makes the approach a useful teaching aid. It
can be seen that the same approach could also be
applied to the modelling of more complex
machines — in particular, existing or proposed
computer systems.

REFERENCES

[1] Minsky, M.L., "“Computation: finite and
infinite machines", Prentice-Hall Inc.,
Englewood Cliffs, N.J. (1967).

[2) Hopkin, D. and Moss, B., *Automata",
Macmillan, London (1976).

[3] Kain, R.Y., "Automata theory: machines and
languages", McGraw-Hill Inc., London (1972).

[4]) Brady, J. M., "The theory of computer
science: a programming approach", Chapman
and Hall, London (1877).

[5] Borger, "Spekralproblem and completeness of
logical decision problems", Lecture Notes in
Computer Science 171, pp.333-356, Springer-
Verlag.

[6) Turing, A.M., "On computable numbers with an
application to the Entscheidungsproblem",
Proc. London Math. Soc., Ser. 2, Vol 42
(1936/37) .

(7] Tarnlund, S., "Horn clause computability",
BIT 17, pp. 215- 226 (1977).

(8] Clocksin and Mellish, C.S., "Programming in
Prolog", 2nd edition, Springer-vVerlag
(1984) .



