NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States [Title 17, United States
Code] governs the making of photocopies or other reproductions of
copyrighted material. Under certain conditions specified in the
law, libraries and archives are authorized to furnish a photocopy or
other reproduction. One of these specified conditions is that the
reproduction is not to be used for any purpose other than private
study, scholarship, or research. If a user makes a request for, or
later uses, a photocopy or reproduction for purposes in excess of
"fair use," that use may be liable for copyright infringement. This
institution reserves the right to refuse to accept a copying order if,
in its judgement, fullfillment of the order would involve violation
of copyright law. No further reproduction and distribution of this
copy is permitted by transmission or any other means.

Branch Main Library Lending

Ra |d#

® |||I||l||

Page 5 of 6

- Ariel
-33720 IP: 157.182.199.203

il

Rapid

Status Code Branch Name Start Date
Pending AZS Main Library 4/23/2010 7:28:32 AM
CALL #: QA 76.9 .D3 I5589a
LOCATION: AZS :: Main Library :: SCIENCE 2nd FLOOR
TYPE: Article CC:CCL
JOURNAL TITLE: Very large data bases : proceedings / International Conference on Very Large
Data Bases.
USER JOURNAL Very Large Data Bases, 7th International Conference
TITLE:

AZS CATALOG
TITLE:

ARTICLE TITLE:

ARTICLE
AUTHOR:

VOLUME:
ISSUE:
MONTH:
YEAR:
PAGES:
ISSN:
OCLC #:

CROSS
REFERENCE ID:

VERIFIED:

BORROWER:

PATRON:
PATRON ID:

_PATRON ADDRESS:
PATRON PHONE:

PATRON FAX:

PATRON E-MAIL:

PATRON DEPT:

PATRON STATUS:
PATRON NOTES:

“Very large data bases : proceedings / International- Conference on Very Large

Data Bases.
Efficient Processing of Interactive Relational Data Base Queries expressed in

~ Logic

Warren

1981

AZS ISSN: 0253-0325
8103070
420907

ISSN crossmatch found using OCLC number

WVU :: Evansdale Library
Menzies, TIm

RAPID...

ThlS material may be protected by copyright law (Title 17 U.S. Code)
System Date/Time: 4/23/2010 8:20:19 AM MST

o ‘http:S ://rapid2.libréry.colostate.edu/ IlI/Vierueue.aspx?ViewType=PendingByBranch&Id...

4/23/2010

EFFICIENT PROCESSING OF
INTERACTIVE RELATIONAL DATABASE QUERIES EXPRESSED IN LOGIC

David H D Warren

Department of Artificial Intelligence
University of Edinburgh

ABSTRACT

Relational database retrieval is viewed as a
special case of deduction in logic. It is argued
that expressing a query in logic clarifies the
problems involved in processing it efficiently
("query optimisation®). The paper describes a
simple but effective strategy for planning a query
8o that it can be efficiently executed by the
elementary deductive mechanism provided in the
programming language Prolog. This planning
algorithm has been implemented as part of a
natural language question answering system, called
Chat-80. The Chat-80 method of query planning and
execution is compared with the strategies used in
other relational database systems, particularly
Ingres and System R.

ANTRODUCTION

Is it possible to design practical computer
systems which can answer questions expressed in
precisely defined subsets of natural language?
This is the question which motivates the research
project I have been working on, in collaboration
with Fernando Pereira. A major part of the
problem, and the main subject of this paper, is
the following. Given that one understands the
natural language question, and that one has
available the information needed to produce an
answer, how does one go about effectively
producing the answer? This 1is essentially a
generalisation of the central problem - cof
relational databases -~ how can one efficiently
handle queries expressed in a non-procedural
formalism that is intended to insulate the user
from the details of how information is stored in
the database?

Notice that I prefer not to view the problem as
one of providing natural language front-ends to
databases. This seems to me to be putting the cart
before the horse. Rather my approach has been to
investigate what "back-end" is needed to support
natural language question answering.

The starting point for our work was a question
answering system for a small subset of Spanish,
implemented by Veronica Dahl [5] [4], following
the approach advocated by Alain Colmerauer [3].

CH1701-2/81/0000/0272$00.75 © 1981 IEEE

272

We were particularly attracted to Colmerauer's
approach for the clear insight it gives into some
of the essential problems of natural language
question answering. 1In addition, it proved very
easy to adapt Dahl's program to English (and to a
different domain). This was due in large part to
the fact that the system is implemented in Prolog
[13] ([21), a programming 1language based on
first-order 1logic devised by Colmerauer and his
colleagues around 1972. We called the adapted
program "Chat™,

The most serious shortcoming of Chat, we found,
was that the query answering process is quite
impracticable for a database of any significant
size. The problem appears to be intrinsic to the
semantics Colmerauer gives to what he calls
"three-branched quantifiers" (3BQs). Furthermore,
the semantics fails to correctly model natural
language in certain cases. To tackle these
problems, I decided instead to try translating 3BQ
expressions directly into first-order 1logic (or
something as close to first-order logic as
possible). (The same approach has been taken by
Michael McCord (8], who has independently been
developing a natural language system drawing on
the ideas in Chat). Using first order logic has

the major advantage , that the intermediate
formalism is directly executable as a Prolog
program. Furthermore, the first order logic
formulation of a query lends itself to
transformations which can improve the efficiency,

corresponding to what is usually called "query
optimisation”, Essentially these transformations
involve augmenting the 1logic with extra control
information to produce efficient Prolog. This
task is normally the responsibility of the Prolog
programmer, The main topic of this paper will be
to describe a simple planning algorithm which
tackles the same task and produces good results.

This approach to query semantiecs and gquery
prccessing, together with 'a more comprehensive
English grammar written by Pereira, have been
incorporated into a completely new, experimental
program which we call "Chat-80". An overall
account of this system will be given elsewhere

£171. Chat-80, 1like 1its predecessor, is
implemented entirely in Prolog. It has been
developed using the DEC-10 Prolog

compiler/interpreter [19] [10].

In order to test the approach on a non-trivial
domain, Chat-80 includes a database of facts about
world geography. This domain has the advantage,

for demonstration purposes, that the facts in the
database are generally common knowledge, so it is
easier to appreciate what is entailed in answering
different queries. The database contains basic
facts about the world's countries (over 150 of
them), oceans, major seas, major rivers and major
cities. The largest relation, ‘borders’',
represents all pairs of countries, oceans or major
seas which are adjacent, and contains therefore
over 850 tuples. It should be emphasised that the
database is itself implemented as ordinary Prolog;
it therefore resides within the normal DEC-10
virtual memory.)

In order to relate this approach to other work
on relational databases, I shall make specific
reference to Ingres [15]. Ingres has been singled
out because. its query languge, Quel, has a
particularly simple mapping into first-order
logic. Also, Ingres is a system I actually have
access to. - ’

In contrast to many current database .systems,
the design of Chat-80 is aimed exclusively at
interactive queries, by which I mean queries that
can 4in principle be answered in a time short
enough for it to be reasonable for the user to
wait for an immediate answer. Basically this
rules out .queries which necessarily involve a
large number of accesses to very 1large (and
therefore slow to access) relations. Natural
language access does not seem so appropriate for
non-interactive queries, since here it will pay
the user to exercise more control over how the
query is executed.

LOGIC AS A DATABASE FORMALISM

Several current relational database formalisms
have a core which can be viewed as no more than a
syntactic variant for a certain subset of 1logic.
This 1is particularly true of the Quel formalism
supported by Ingres. To illustrate this, let us
consider an example used by the Ingres authors
[15]:

range of E,M is employee
range of D is dept
retrieve (E.name)

where E.salary > M.salary

and E.manager = M.name
and E.dept = D.dept
and D.floor = 1

and E.age > 40

In ordinary English, this query means:

"Which employees aged over 40 on the first
floor earn more than their managers?”

The query refers to relations:

employee(name,dept,salary,manager,age)
dept(dept,floor)

This query can be expressed in 1logic
Prolog oriented syntax) as:

(using a

273

answer(E) <=
employee(E,D,S,M,8) & A > 40 &
dept(D,1) &

employee(M,__,S1) & 5S> St.

Read this as:

E is an
E is

answer if

an employee, dept 'D, salary S,
manager M, age A, and

greater than 40 and

a department on floor 1 and

an employee, salary S1, and

S is greater than St.
Here the identifiers starting with a capital
letter, such as E, D, S, etec., are logic

variables, which can be thought of as standing for
arbitrary objects of the domain. Contrast this
with the variables of Quel, which denote arbitrary
tuples of a certain relation specified in the
range statement. (Because, in this example,
tuples can be uniquely identified by their first
fields, it 1is natural for the logic variable
corresponding to this field to have the same
identifier as is used for the tuple variable in
the Quel version). For each tuple variable in a
Quel query, there is, in the logic version, a
corresponding goal (also called "atomic formula®),
eg.

dept(D,1)

A goal consists of a predicate, naming the range
relation of the corresponding tuple variable,
applied to some arguments, corresponding to the
fields of this relation. Quel constraints which
are identities map into an appropriate choice of
variables or constants (such as '1') for certain
goal arguments. This aspect tends to make the
logic form of the query more concise and, it can
be argued, easier to comprehend. Note the use of
'_' to denote an "anonymous" variable, which is
only referred to once, and which therefore does
not need to be given a distinct name. Quel
constraints _which are inequalities map into
separate logic goals. The Quel query as a whole
maps into a restricted kind of implication, called
a clause, where the target of the query appears as
the conclusion of the implication (to the left of
the '<=').

Clauses can be used not only to represent
queries, but also to express the information which
makes up the database itself. (It is this aspect
which distinguishes what will be described here
from much other work relating 1logic and
databases). . ’

In general a clause consists of an implication,
which in the Prolog subset of logic is restricted
to the form:

P<=Q1&Q2& ... Qn.

meaning "P is true if Q1 and Q2 and ... Qn are
true", where P and the Qi may be any goals., If n
= 0, we have what is called a unit clause, which
is written simply as:

P.
meaning "P is true".

For ‘example, here are some unit clauses,
representing elementary facts, which serve to
define which tuples make up a relation 'parent'.

parent(david,hugh).
parent(david,winifred).
parent(ben,david).
parent(ben, jane).

The first clause, for instance, may be read as:
"David has a parent Hugh".

Here we have defined a database relation by
explicitly enumerating its tuples. However it is
also possible to define a relation implicitly,
through general rules expressed as non-unit
clauses. For example, here is a definition of the
‘ancestor' relation in terms of the ‘parent'
relation:

ancestor(X,Z) <=
ancestor(X,2) <=

parent(X,Z).
parent(X,Y) & ancestor({Y,2).

Read these clauses as:
%X has an ancestor Z if X has a parent Z".
"X has an ancestor Z if

X has a parent Y and Y has an ancestor 2",

Note that the second clause makes the definition

recursive. We can think of ‘ancestor' as a
"yirtual® - relation, A pair <X,Y> belongs to the
'ancestor' relation if:

ancestor(X,Y)

is a logical consequence of the clauses which make
up the database. Thus one can infer, for example,
that one of Ben's ancestors is Hugh, ie.

ancestor(ben,hugh)

This use of logic clauses to define - a database
gives much greater power and conciseness than is
available in most conventional relational database
systems, including Ingres. These systems do not
allow an equivalent recursive definition of the
tancestor' relation, for example.

In fact, the logic subset we have been looking
at forms the ©basis of a general purpose
programming language, Prolog. A Prolog system is
essentially a machine which can generate solutions
to a problem by enumerating all instances of some
goal which are valid inferences from the clauses
which make up a "program"., For example, if the
user presents the query:

answer(X) <= ancestor(ben,X).

Prolog responds with the following 1list of
possible values for X, representing all the
ancestors of Ben that can be deduced:

X = david; X = jane; X =

hugh; X = winifred

274

The solutions are in fact produced in exactly this
order. How this takes place will now be
described.

In Prolog, the ordering of clauses in a program,
and the ordering of foals in the right-hand side
of a clause, is important control information,
which helps to determine the way a program is
executed.

To execute a goal (such as 'ancestor(ben,X)' in
the previous query), Prolog tries to mateh it
against the 1left-hand side of some clause, by
finding values for variables which make the goal
and the clause "head" identical. When successful,
Prolog then recursively executes the goals (if
any) in the right-hand side of the clause, which
will by now have been modified by the results of
the matching. When no match-can be found, or when
there are no more goals left to execute, Prolog
backtracks. That is it goes back to the goal most
recently matched, undoes the effects of the match,
and then seeks an alternative match.

Clauses are tried for a match in the order they
appear in the program. Goals in the right-hand
side of a clause are executed in the order they
appear in that clause. The matching process is
actually unification [12], a process which
effectively produces " the least possible
instantiation of variables necessary to make the
two goals identical.

Prolog's backtracking can be thought of as a
generalised form of iteration. Thus the two
clauses for ‘ancestor', when used to satisfy a
goal such as 'ancestor(ben,X)', give a behaviour
when executed by Prolog equivalent to the
following procedure:

To generate Zs who are ancestors of X:
first generate Zs who are parents of X;
then for each Y who is a parent of X:

generate Zs who are ancestors of Y.

In fact, the DEC-10 Prolog compiler can compile
such clauses into code which .is comparable in
efficiency with 1iterative loops in- a more
conventional language [18]. ’

As a final remark, one should note that the
Prolog subset of logic includes, besides the
variables and elementary constants seen so far,
objects which are structures. In this respect,
while being similar to many other programming

languages, it is a further important
generalisation of most relational database
formalisms, A detailed discussion of this " aspect

is ocuside the scope of this paper.

QUERY PLANNING

It should be clear that the efficiency with
which Prolog executes a query 1is critically
dependent on the order in which goals are
expregssed in a .conjunction. In the logic
programming context, this ordering constitutes
extra control information, supplied .by the

programmer. The programmer uses his expert
judgement, and knowledge of the predicates
involved, to determine a suitable order. However,
for logical expressions derived from natural
language input, such control: Iinformation is
completely lacking (or so it seems). The purpose
of query planning, therefore, is to supply the
missing control information, by simulating, in a
rudimentary fashion, some of the judgements an
expert Prolog programmer makes.

QOrdering goals in a conjunction

To see how bad an uncontrolled query expression
der the followi t f
$52 884aR"3 ehat B fo Lowing query taken from

"Which countries bordering the Mediterranean
border Asian countries?®

The natural language front-end translates this
into: 5 .

answer(C) <=
country(C) & borders(C,mediterranean) &
country(C1) & asian(C1) & borders(C,C1).

Executed exactly as it stands, this query would
take a time of the order of the number of
Mediterranean countries multiplied by the total
number of countries, ie. roughly 20%150=3000.
(And if the goal ordering had happened to be the
worst possible, the figure would instead be
150%150=22500) . However, after planning, the
query is re-ordered as:

-answer(C) <=
borders(C,mediterranean) & country(C) &
borders(C,C1) & asian(C1) & country(Ct)..

and now takes a time of the same order as the
number of Mediterranean country borders, ie.
roughly 90. For queries which are only a little
more complex than this - having say three or four
variables instead of just two - the planning will
generally make all the difference between an
execution time which is perfectly acceptable, and
one which is out of the question.

The intended objective of the planning algorithm
is to minimise the number of alternatives which
have to be considered during the Prolog execution,
In conventional database terms, this is equivalent
to minimising the number of tuyple accesses. The
planner attempts to meet this objective by so
ordering the goals that the goal to be executed
next is the one which can be expected to 1least

"increase . the = number of alternatives being
considered, or (better still) to most decrease
that number. :

The planner assumes a cost function which

assigns, for each predicate, and each state of
instantiation of its arguments, a numeric value

- representing the expected factor by which such a

goal would multiply the number of possibilities
~ being considered. (For convenience, the planner
in practice manipulates numbers which are the

275

logarithms of such factors).

For example, a goal ‘country(C)', where C is
uninstantiated, involves generating all known
countries, multiplying the number of possibilities
under consideration by some 150. If however C is
already instantiated, the goal is a test which
will generally eliminate possibilities, and the
cost factor is therefore less than 1.

By its nature, the cost function is something
which can only be estimated, and there is wide
scope for experiment with different methods for
computing it. In practice, however, most
reasonable cost functions produce very similar
results, The current planner therefore uses a
very simple function, which has proved adequate so
far, although it could undoubtedly be improved on.
The computation depends on some simple statistical
information about the sizes of the relations in
the database, and the sizes of the domains over
which their arguments range. The cost is taken to
be the total size (ie. number of tuples) of the
relation corresponding to the goal predicate,
divided by the product of the sizes of the domains
of each instantiated argument position. Note that
it is somewhat problematic to decide what
constitutes the domain of a predicate argument
position.

For the predicates involved in the example given
above, relevant statistics might be:

predicate size argument domain sizes
country 150 300

asian 100 300

borders 900 180 180

Thus *borders(C,C1)* has cost:

900 if neither C nor Ct
- is instantiated,
900/180 = 5 if just one of C and C1

is instantiated,
900/180%#180 = 1/36 if both C and C1
- are instantiated.

The planning algorithm itself is comparatively
simple. It selects the goal of least cost,
determines which variables will become
instantiated as a result of executing this goal
(using certain reasonable assumptions to be
discussed later), and then repeats the process for
the remaining goals with those variables
instantiated.

To illustrate this, the goals of our example
have initial costs as follows:

150 country(C) &
S borders(C,mediterranean) &

150 country(Ct) &

100 asian(Ct) &

900 borders(C,C1)
The goal chosen is therefore ‘borders(C,
mediterranean)’, which will result in

instantiating C, to say 'c', leaving the remaining
goals with costs:

1/2 country(c) &
150 country(C1) &
100 asian(C1) &

5 borders(c,C1)

The test ‘'country(e)' is selected for execution
next, and this is followed by ‘'borders(e,C1)?',
which instantiates Ci1, to say 'c1'. The situation
is now:

1/2 country(el) &
1/3 asian(et)

The figures indicate that 'asian(ct)' is the more
restrictive of these two tests, and so this goal
is chosen to be executed first. Thus the planning
algorithm chooses what is probably the best order
for executing the goals.

Note that the implementation (in Prolog) of the
planning algorithm is such that it does not
actually recompute and re-compare all the costs at
every step of the planning process.

An implicit assumption of the planning process
is that all tuple accesses (or, more precisely,
all successful matches) are equally easy to make.
For this to be at all realistic, it is necessary
that the database be suitably indexed. For the
Chat-80 application, each relation (of significant
size) effectively has a separate index for each
argument position of the predicate concerned, ie.
the database 1is "totally inverted"®. (DEC-10
Prolog provides built-in indexing only on the
first argument position of a predicate, but by
using Prolog's M"meta-logical"™ facilities it is
possible to simulate full indexing by defining
auxiliary predicates which represent the extra
indexes). Of course, full indexing does make the
database significantly bigger, although, since the
expansion can be kept within some constant factor,
say a doubling in size, this does not seem to be a
major problem. However, perhaps a better approach
would be to postpone creating an index until -it is
actually found to be needed.

Although the raticnale for the planning process
is most easily understood in terms of explicit
relations, defined via unit clauses, the planner
in fact works just as well for queries which refer
to virtual relations, defined using non-unit
clauses. The goals in the query are simply
re-ordered exactly as before and then handed over
to Prolog for execution, It is immaterial whether
the relation referred to by a goal is explicit or
virtual, since this will make no visible
difference to the outcome of executing the goal.
For example, although one may think of the tuples
of the tasian® relation as Dbeing stored
explicitly, this relation is in fact defined via
general rules, which, simplifying things slightly,
are as follows:

asian(C) <= in(C,asia).
in(X,Y) <= partof(X,Y).
in(X,2) <= partof(X,Y) & in(Y,Z).

These clauses constitute a piece of Prolog program
which serves both to test whether something is

276

Asian and to generate all things that are Asian,
(However, for the latter purpose these clauses apre
rather inefficient; hence the actual definition is
somewhat more complicated).

The planner is therefore only responsible for
controlling the execution of the query itself; it
is up to the definer of the database to make sure
that any non-unit clauses he supplies will perfornm
efficiently when executed by Prolog. In
principle, it seems that the planner could also be
applied to the task of automatically ordering the
goals in the right-hand sides of database clauses,
However the task is complicated by the fact that
clauses can be used for more than one purpose, as
we have seen with the definition of ‘'asian'.

In computing the cost function, the size of a
virtual relation is just the number of distinect
tuples that can be deduced to belong to that
relation. Note that it is possible to make the
planner deal sensibly with relations which are

infinite. For example, the relation '<' (integer
less than) may be taken to have size
"infinity*infinity/2" with argument domain sizes
each being "infinity", where "infinity" is in

practice some very large number. The planner will
then only allow a '<' goal to be executed when
both arguments are known.

Isolating independent parts of a query

The basic deductive mechanism of Prolog has an
inherent defect, shared with all systems based on
the inference rule of resolution. The problem is
essentially that resolution treats all goals in a
conjunction as being dependent. This is fine so
long as the goals share uninstantiated variables.
However when two parts of a conjunction no longer
share = variables, they should be solved
independently. Instead resolution effectively
nmultiplies together the two tasks - steps of one
task are needlessly repeated in the course of
trying different ways to sclve the other task.

To illustrate the problem, let us go back to the
query considered earlier, with the goals
appropriately ordered by the planner:

answer(C) <=
borders(C,mediterranean) & country(C) &
borders(C,C1) & asian(C1) & country(C1).

If Prolog executes this as it stands, then some of
the solutions will be separately generated more
than once, revealing the underlying inefficiency.
For example, the solution ‘'answer(turkey)!' is
produced four times, the reason being that Turkey
borders four different Asian countries.

Once the first goal 'borders(C,mediterranean)?
has been solved, producing an instantiation such
as C=turkey, the rest of the body breaks into two
independent parts,. -neither of which share
uninstantiated variables with each other or with
the head of the clause. Let us 1indicate these
parts with braces:

answer (turkey) <=
{country(turkey)} &
{borders(turkey,C1) &
asian(C1) & country(C1)}

Such independent subproblems should be processed
separately (ie. goals from the two tasks should
not be intermingled), and no more than one
solution should be produced for each subproblem.

The braces can be viewed as additional control
information, showing where the normally exhaustive
enumeration of possibilities can and should be
overridden. Although existing Prolog
implementations do not rec¢ognise braces as such,
they do provide a control primitive, "cut", which
Prolog programmers use (amongst other things) to
achieve exactly the same effect. With the aid of
the cut operator, it is easy either (a) to write
in Prolog an extended Prolog interpreter for which
the braces have the intended effect - the course
taken in Chat-80, or (b) to translate clauses with
braces, into ordinary Prolog clauses. I shall
therefore simply regard braces as a control
primitive provided by Prolog.

The query planner takes care of producing this
second kind of control information, in addition to
working out the goal ordering. At every step, it
checks to see whether the remaining goals can be
partitioned into independent subsets. If so, each
independent part is planned separately, and the
result is enclosed in braces if no variable is
shared with the head of the clause. The planned
subproblems are ordered according to the costs of
their first goals. (This, like other heuristics
of the planner, is not necessarily optimal, but it
produces reascnable results while simplifying the
analysis). Notice that doing the extra work of
recognising independent subproblems often actually

reduces the complexity of the rest of the planning-

task, since independent subgoals can be planned
separately.

For our example query, the result of this extra
analysis is:

answer(C) <=
borders(C,mediterranean) & {country(C)} &
{vorders(C,C1) &
{asian(C1)} & {country(C1)}}.

For this example, the saving of execution time is

significant but not huge. In other cases, the
difference can be orders of magnitude, eg.
consider the following query (describing the

"Indian Ocean):

"Which is the ocean that borders African
countries and (that borders) Asian
countries?"

This translates into:

answer(X) <=
ocean(X) &
{pborders(X,C1) &
{african(C1)} & {country(C1)}} &
{borders(X,C2) &
{asian(C2)} & {country(C2)}}.

277

Leaving out the braces here would result in a
combinatorial explosion where the last part of the
query is needlessly repeated for each different
African country that borders a given ocean.

The analysis 1into independent subproblems
depends on the assumption that the solution to any
goal is ground, ie. it contains no uninstantiated
variables. This is a very reasonable assumption
in the database context, though it is not true of
Prolog programs in general. It amounts to
forbidding the usé of the "logical variable® [21].

t) : - v
Many natural language queries involve
(explicitly or implicitly) the concept of

negation, "not". An example is:

"Which American ‘countries do not border the
Pacific?®

This query can be translated into logic as:

answer(X) <= .
american(X) & country(X) &
\borders(X,pacific).

However the Prolog subset of 1logic does not
contain negation (and a proper treatment of
negation is highly problematic). In the database
context, it 1is natural to interpret questions
involving negation as referring to the state of
knowledge expressed in the database rather than to
what is actually true in the real world. Often
the assumption is that the database contains
complete information about the field concerned -
the "Closed World Assumption" [11]. Thus the
question above would be interpreted as meaning:

"Which American countries are not known to
border the Pacific?"

with a logic translation of:
answer(X) <=

american{X) & country(X) &
\+borders(X,pacific).

where '\+' is to be read as a single symbol
meaning "not provable™ or "it cannot be shown
that®. It is possible to provide a partial

implementation of non-provability. within Prolog.
The implementation only works correctly if the
negated goal contains no uninstantiated free
variables at the time it is executed. (There are
fundamental reasons for this limitation, which I
will not go into here).

The Chat-80 planning algorithm ensures that this
constraint is always met. To achieve this, a
negated goal is given a cost of "infinity" so long
as it contains uninstantiated free variables.
Otherwise it is assigned a cost of 1, (although
the cost should effectively be somewhat less than
1, as the goal must function as a test). The
effect for the example above is that the negative

goal 1is delayed until after both of the other two
goals. One of them will be chosen to generate X,
at which point the negative goal is potentially
executable., However the negative goal is delayed
until after the other goal, which, having a cost
of less than 1, is considered the more restrictive
test.

It is possible for the negative goal to be
complex, containing a conjunction of goals, in
which case these are ordered by simply applying
the planner recursively. The negative goal may
also contain existential quantifiers, serving to
restrict the scope of certain variables, and the
planner fully caters for this situation, but I
will not go into further details here.

Jreatment of set expressions

Besides negation, natural language queries also
often involve explicit or implicit reference to
the set of individuals having some property. For
this and other reasons, I have proposed and
implemented an extension to Prolog, which has been
described in detail elsewhere [20] [2]. The
extension allows goals of the form:

setof(X,P,S)

to be read as "the set of Xs such that P is
provable 1is S, which is non-empty". P is a goal
or conjunction of goals. (It may also contain
existential quantifiers, as for negation). For
example, the query:

"Which countries border (exactly) two (major)
seas?"

could be translated as:

answer(C) <=
country(C) &
setof(X, borders(C,X) & sea(X), S) &
size(s,2).

Notice that, here too, the query is being
construed as referring to the state of knowledge
expressed in the database.

An important aspect of the implementation of the
'setof' construct is that, unlike '\+', it behaves
correctly in all situations. Free variables in
the 'setof' expression need not be completely

" instantiated at the time of executian. If they are
not fully instantiated, execution of the ‘'setof!
will generate suitable instantiations,
backtracking where necessary.

This allows the planning algorithm greater
flexibility in choosaing an efficient execution
order. At present, the cost of a 'setof' is taken
to be the cost of 1its least costly internal
subgoal. Though only a crude estimate, this
produces reasonable results in most cases. A4s for
negation, the goals within a 'setof' are ordered
by -applying the planner recursively. The result
of the planning for the above example is:

answer(C) <=
setof(X, sea(X) & borders(C,X), S) &
size(S,2) & country(C).

Thus the 'setof' construct itself is responsible
for generating instantiations for the variable
C. Given that there are only a few (major) seas
(and things that border them), but many countries,
this is probably the best ordering.

Experimental resuyits

The performance of Chat-80 on some sample
queries relating to the geographical database is
shown in the Appendix. Generally speaking, any
query Iin this domain that can comfortably be-
expressed in a single sentence of the English
subset is answered in well under one second of CPU
time, and normally only a small part of this time
is spent in planning. Without the planning, many
queries would take an unacceptably long time-to
answer - several minutes or more. Therefore one
can say that the planning algorithm certainly pays
off 'in practice, and, for this domain at least, it
seems more than adequate.

Incidentally, it is also worth noting that the -
time spent in natural language analysis is
typically quite small in relation to the time for
planning and retrieval. Therefore cost should not
be a deterrent to the use of natural language for
accessing databases.

SOMPARISON WITH OTHER WORK

The approach to query processing described above
rests on the use of Prolog for the eventual
execution of a query. However expressing queries
in logic does not force us to execute them with
Prolog. We are open to use any other valid
inference method. Prolog was not in fact designed
with relational database retrieval in wind; it was
conceived purely as a programming language
interpreter. How does the Prolog-based approach
of Chat-80 compare . with the strategies used in
conventional relational database systems, and can
we devise a better inference method for the
database context, by lifting techniques from such
systems? To answer these questions, I have looked
at a number of relaticnal database systems [7]
[16] [15] [22] {1] [14] (9], especially Ingres and
System R. Unfortunately there is only space for a
brief discussion here.

Surprisingly (to me), I . have not found
convincing evidence of ways to i{mprove on the
general strategy, at least as far as interactive
queries are concerned. In fact the Chat-80 query
processing method, while being quite different
from the strategies used in many relational
database systems, is actually very similar to the
strategy of System R, as recently described ({14],
(This similarity was only discovered when this
paper waa on the point of completion!)

The basic Prolog execution method differs from
that used -in most relational database systems in

718

that there is no explicit creation of intermediate
relations, with the extra sorting or indexing, and
tuple accesses, that this entails, Instead
answers to the entire query are produced strictly
one at a time. The method can be characterised by
the fact that it minimises the amount of working
storage needed to process a query (which also
naturally tends to reduce computation time).

Query execution by Prolog corresponds almost
exactly to System R's method of "nested loops" for
implementing a Jjoin, where "search arguments"
(SARGs) achieve a similar effect to Prolog's
pattern matching. Ingres's "tuple substitution"
is somewhat similar in effect, but there the
matching is not built-in. Instead the effect of
the matching is achieved in a separate, preceding,
rdetachment® operation.

Before the introduction of the ‘"reduction”
tactic [22], Ingres's query processing strategy
was in fact fairly similar in its effect to the
present System R, and to the Chat-80 approach. A
possible reason why the Ingres authors decided to
change course may lie in the fact that Ingres
mixes planning with execution, unlike System R and
Chat-80. Tuple substitution therefore has the
effect that planning operations have to be done on
a tuple-by-tuple basis, which may well add
enormously to the amount of computation that has
to be done.

The query planning of System R aims to be
exhaustive, whereas Chat-80 only doces a very
limited search by making a "best guess" at each
stage. As a result, the System R algorithm takes
a time which is at least exponential in the size
of the query, whereas the Chat-80 algorithm, as
implemented, is nearly linear (and certainly no
worse than order N¥%2), Given that Chat-80 is
dealing with interactive queries which may be
quite 1large, and given that the present planning
‘algorithm seems to produce quite . satisfactory
results, there does not seem to be sufficient
Justification to do a more expensive search.

The way System R estimates the size of an
intermediate relation is almost identical to that
used in Chat-80, except that the "selectivity
factors®™ do not seem to give a sufficiently
accurate estimate of argument domain sizes. (They
ignore the possibility that an argument value may
not even appear in the corresponding index, and if

the corresponding index does not exist, the
selectivity factor is purely arbitrary).
As we have seen, Chat-80's treatment of

independent subproblems is vital for certain kinds
of = query. It does not appear to have any exact
counterpart in System R, or indeed in any of ‘the
other systems I have looked at. It may be that
the "nested subqueries” of SQL provide a means for
the user to force a similar effeect in System R,
but this seems contrary to the philosophy of
- relational databases. In effect, the System R
~query language SQL provides two distinct ways of
-specifying a join, unlike Quel for example.

- To sum up my conclusions on query processing

279

strategies, I have not found an alternative
strategy to Chat-80's that is guaranteed to reduce
the number of tuple accesses, and in the context
of current Prolog implementations, this is
certainly a good measure of the cost of executing
a query. Also, it seems a not unreasonable
measure in general.

Experiments with running Ingres on the Chat-80
geographical database show that 1Ingres often
accesses far more tuples than Chat-80 does on the
same query. Also, for what it is worth, queries
which Chat-80 answers in well under a second on a
DEC-10 typically take several minutes of CPU time
with Ingres on a PDP-11. Of course, although this
is of interest from a user point of view, there
are too many other factors involved for any
immediate conclusions to drawn about query
processing strategies.

A conclusion that I find difficult to avoid
after reading the literature on query processing,
and locking’ briefly into the Ingres
implementation, is that query formalisms such as
Quel and SQL (not to mention the algebraic
formalisms) make life unnecessarily difficult for
the implementor, both conceptually and in terms of
implementation code. Expressing a query in logic
lays bare what its essential parts are (the logiec
goals), what it is that links the parts together
(the logic variables), and what the crucial
problem is {in what order should one to attempt to
satisfy the goals).

Finally, it should be noted that there is much
other work relating logic and databases - Gallaire
[6] gives a useful survey. A common feature in
much of this work is to regard the logical
formalism as separate from the database itself,
and to make a distinction between database
retrieval and logical deduction. Typically this
view leads to systems in which deduction and
retrieval are completely separate processes. In
contrast, the view of this paper is that no clear
line can be drawn between deduction and retrieval,

or indeed. between deduction and ordinary
computation. Identifying deduction with retrieval
clarifies common problems (such as . query

optimisation), and avoids unnecessary duplication
of machinery (such as indexing). It alsc leads to
a natural interface between the database and a
well proven high-level programming language -~
Prolog.

CONCLUSION

We have seen how relational database retrieval
can be viewed as a aspecial case of logical
deduction. We have seen how queries expressed in
the Prolog subset of logic can be transformed into
efficient Prolog code. The method can be viewed
as a generalisation of pechniques used in

relational database systems, although it was not

conceived in this way. ’

What- is the practical importance of all this?
It means that a single formalism (the Prolog
subset of logic) can in principle serve both as a

practical high level programming language and as a
database formalism. The difference between
"program™ and "database" would then be invisible
to the user,

Of course existing Prolog implementations are
not practical for large databases - they will only
accommodate relatively small volumes of data and
there are many aspects, particularly indexing,
which would prove inadequate if 1large relations
were to be handled. A promising direction for
future work would be to produce a Prolog system
that is equally good for both database and
programming purposes.

ACKNOWLEDGEMENTS

This work was supported by a British Science
Research Council grant. The Chat-80 program was
written in collaboration with Fernando Pereira,
and owes much to the work of Alain Colmerauer and
Veronica Dahl.

REFERENCES

1. Astrahan M M and Chamberlin D
D. Implementation of a structured English query
language. CACM 18, 10 (Oct 1975), 580-588.

2. Byrd L, Pereira F and Warren D. A guide to
Version 3 of DEC-10 Prolog. Occasional Paper 19,
Dept of AI, Univ of Edinburgh, Jul, 1980.

3. Colmerauer A. Un sous-ensemble interessant du
francais. RAIRQ 13, 4 (1979), 309-336.

[Presented under the title "An interesting natural
language subset" at the Workshop on Logic and
Databases, Toulouse, 19771

4. Dahl V. Quantification in a three-valued logic
for natural language question-answering systems.
1JCAI-79, Tokyo, Aug, 1979, pp. 182-187.

5. Dahl V. Un systeme deductif d'interrogation de
banques de donnees en Espagnol. Groupe
d'Intelligence Artificielle, UER de Luminy,
Universite d'Aix~Marseille II, 1977.

6. Gallaire H. Impacts of logic on data bases.
Lab de Marcoussis - CGE, Marcoussis, France, 1981.
[To be presented at the 1981 Conference on Very
Large Data Bases]

7. Hall P A V. Optimisation of a single
relational expression in a relational data base
system. Report UKSC 0076, IBM UK Scientific
Centre, Jun, 1975.

8. McCord M C. Using slots and modifiers in logic
grammars for natural language. Report 69A-80,
Dept of Computer Science, Univ of Kentucky, Oct,
1980.

280

9. Moore R C. Handling complex queries in a
distributed data base. Tech Note 170, AI Center,
SRI International, Menlo Park, Calif, Oct, 1979.

10. Pereira L M, Pereira F and Warren D H
D. User's Guide to DECsystem-10 Prolog. Dept of
AI, Univ of Edinburgh, 1978.

11. Reiter R. On closed world data bases. 1In

Gallaire H and Minker J, Ed., Logic and Databases,
Plenum Press, New York, 1978.

12. Robinson J A. A machine-oriented logic based
on the resolution principle. JACM 12, 1 (Dec
1965), 227-234.

13. Roussel P. Prolog: Manuel de Reference et
d'Utilisation. Groupe d'Intelligence
Artificielle, UER de Luminy, Universite
d*'Aix-Marseille II, 1975.

14. Selinger P G, Astrahan M M, Chamberlin D D,
Lorie R A & Price T G. Access path selection in a
relational database management system. Report
RJ2429, IBM Research Laboratory, San Jose, 1979.

15. Stonebraker M, Wong E, Kreps P and Held
G. The design and implementation of INGRES.

Irans. on Database Systems 1, 3 (Sep 1976),
189-222.

ACM

16. Todd S and Verhofstad J. An optimizer for a
relational database system - description and
evaluation, IBM UK Scientific Centre, Feb, 1979.

17. Warren D H D and Pereira F C N. An efficient
easily -adaptable system' for interpreting natural

language queries. Dept of AI, Univ of Edinburgh,
1981. [To be submitted to IJCAI—81]

18. Warren D H D. Implementing Prolog - compiling
predicate logic programs. Research Reports 39 &
40, Dept of AI, Univ of Edinburgh, May, 1977.

19. Warren D H D. Prolog on the DECsystem-10.
Michie D, Ed., Expert Systems in the Micro-
Electronic Age, Edinburgh Univ Press, '1979.

In

20. Warren D H D. Higher-order extensions to
Prolog - are they needed?. Tenth International
Machine Intelligence Workshop, Cleveland, Ohio,
Apr, 1981.

21. Warren D H D, Pereira L M and Pereira

F. Prolog - the language and its implementation
compared with Lisp. ACM Symposium on AI and
Programming Languages, August, 1977.

22. Wong E and Youssefi K. Decomposition - a
strategy for query processing. ACM Trans. on
Database Systems 1, 3 (Sep 1976), 223-241.

AEPENDIX - SAMPLE QUERIES

The Chat-80 examples below show the original English query, its logical form, the executable form after
planning, and the actual answer., Also shown, preceding the corresponding output, are the separate times
(in milliseconds om a DEC KL-10) for natural language analysis, for planning, and for execution. Time
spent in producing output t6 the user is excluded.

¥Which country's capital is London?
52 ms. ans({C) <= country(C) & capital(C,london).
16 ms. ans(C) <= capital(C,london) & {country(C)}.
16 ms. united_kingdom.

which European countries border Asian countries?
72 ms. ans(C) <= country(C) & european(C) & country(C1) & asian(C1) & borders(C,C1).
21 ms. ans(C) <= european{C) & {country(C)} & {borders(C,C1) & {asian(C1)} & {country(C1)}}.
113 ms. bulgaria, czechoslovakia, finland, greece, hungary, norway, poland, romania.

Which Asian countries border European countries?
54 ms. ans(C) <= country(C) & asian(C) & country(C1) & european(C1) & borders(C,C1).
22 ms. ans(C) <= european(C1) & {country(C1)} & borders(C,C1) & asian(C) & {country(C)}.
112 ms. soviet_union, turkey.

Which is the ocean that borders African countries and that borders Asian countries?
91 ms. ans(X) <= ocean(X) & country(C) & african(C) & borders(X,C) &
country(C1) & asian(C1) & borders(X,C1).
51 ms. ans(X) <= ocean(X) & {borders(X,C) & {african(C)} & {country(C)}} &
{borders(X,C1) & {asian(C1)} & {country(C1)}}.
102 ms. 3indian_ocean. :

Which American countries do not border the Pacific?
46 ms. ans(C) <= country(C) & american(C) & \+borders(C,pacific).
10 ms. ans{C) <= american{C) & {country(C)} & \+borders(C,pacific).
56 ms. argentina, bahamas, barbados, belize, bolivia, brazil, cuba, dominican_republic, french guiana,
grenada, guyana, haiti, jamaica, paraguay, surinam, trinidad_and_tobago, uruguay, venezuela.

Which countries border two oceans?
63 ms. ans(C) <= country(C) & numberof(X,ocean(X)&borders(C,X),2).
12 ms. ans(C) <= numberof(X,ocean(X)&borders(C,X),2) & {country(C)}.
699 ms. australia, colombia, costa_rica, guatemala, honduras, indonesia, malaysia, mexico, nicaragua,
norway, panama, south africa, soviet_union, thailand.

How many countries does the Danube flow through?
48 ms. ans(N) <z numberof(C,country(C) & flows(danube,C),N).
3 ms. ans(N) <= numberof{C,flows(danube,C) & {country(C)},N).
21 ms. 6.

What is the capital of each country bordering the Baltic? _
81 ms. ans(C-X) <= country(C) & borders(C,baltic) & capital(C,X).
12 ms. ans(C-X) <= borders(C,baltic) & {country(C)} & capital(C,X).
29 ms. denmark-copenhagen, east_germany-east_berlin, finland-helsinki, poland-warsaw,
: soviet _union-moscow, sweden-stockholm, west_germany-bonn.

What are the countries bordering the Soviet Union whose population exceeds the population of the United
Kingdom?
145 ms. ans{C) <= country(C) & borders(C,soviet_union) & population(C,X) &
; population(united_kingdom,Y) & exceeds(X,Y).
41 ms. ans(C) <= population(united_kingdom,Y) & borders(C,soviet_union) & {country(C)} &
. {population(C,X) & {exceeds(X,Y)}}.
28 ms. china.

Which country bordering the Mediterranean borders a country that is bordered by a country whose
population exceeds 400 million?
138 ms. ans(C) <= country(C) & borders(C,mediterranean) & country(C1) & country(C2) &
population(C2,X) & exceeds(X,%00000000) & borders(C2,C1) & borders(C,C1).
46 ms. ans(C) <= borders(C,mediterranean) & {country(C)} &
‘ {borders(C,C1) & {country(C1)} &
{borders(C2,C1) & {country(C2)} &

: {population(C2,X) & {exceeds(X,400000000)}}}}.
- 195 ms. turkey.

281

