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This paper presents the material needed for exposing the reader to the advantages of using Prolog as 
a language for describing succinctly most of the algorithms needed in prototyping and implementing 
compilers or producing tools that facilitate this task. The available published material on the subject 
describes one particular approach in implementing compilers using Prolog. It consists of coupling 
actions to recursive descent parsers to produce syntax-trees which are subsequently utilized in guiding 
the generation of assembly language code. Although this remains a worthwhile approach, there is a 
host of possibilities for Prolog usage in compiler construction. The primary aim of this paper is to 
demonstrate the use of Prolog in parsing and compiling. A second, but equally important, goal of this 
paper is to show that Prolog is a labor-saving tool in prototyping and implementing many non- 
numerical algorithms which arise in compiling, and whose description using Prolog is not available 
in the literature. The paper discusses the use of unification and nondeterminism in compiler writing 
as well as means to bypass these (costly) features when they are deemed unnecessary. Topics covered 
include bottom-up and top-down parsers, syntax-directed translation, grammar properties, parser 
generation, code generation, and optimixations. Newly proposed features that are useful in compiler 
construction are also discussed. A knowledge of Prolog is assumed. 
Categories and Subject Descriptors: D.l.O [Programming Techniques]: General; D.2.m [Software 
Engineering]: Miscellaneous--rapid prototyping; D.3.4 [Programming Languages]: Processors; 
F.4.1. [Mathematical Logic and Formal Languages]: Mathematical Logic--logic programming 
1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving--logic programming 
General Terms: Algorithms, Languages, Theory, Verification 
Additional Key Words and Phrases: Code generation, grammar properties, optimization, parsing 

1. INTRODUCTION 
The seminal paper by Alain Colmerauer on Metamorphosis Grammars first 
appeared in 1975 [9]. That paper spawned most of the developments in compiler 
writing using Prolog, a great many of them due to David H. D. Warren. Warren’s 
thesis [30], the paper summarizing it [31], and the related work on Definite 
Clause Grammars [25] are practically the sole sources of reference on the subject.l 

The available published material on the subject describes one particular ap- 
proach in implementing compilers using Prolog. It consists of coupling actions 

i A recent book edited by Campbell [3] mostly covers the implementation of Prolog itself. 
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to recursive descent parsers to produce syntax-trees which are subsequently 
utilized in guiding the generation of assembly language code. Although this 
remains a worthwhile approach, there is a host of possibilities for Prolog usage 
in compiler construction. The primary aim of this paper is to present the material 
needed for exposing the reader to the advantages of using Prolog in parsing and 
compiling. A second, but equally important, goal of this paper is to show that 
Prolog is a labor-saving tool in prototyping and implementing many non- 
numerical algorithms which arise in compiling, and whose description using 
Prolog is not available in the literature. Finally, a third goal is to present new 
approaches to compiler design which use proposed extensions to Prolog. 

This paper is directed to compiler designers moderately familiar with Prolog, 
who wish to explore the advantages and present drawbacks of using this language 
for implementing language processors. The advantages of Prolog stem from two 
important features of the language. 

(1) The use of unification as a general pattern-matching operation allowing 
procedure parameters (logical variables) to be both input and output or to 
remain unbound. Unification replaces the conditionals and assignments 
which exist in most languages. 

(2) The ability to cope with nondeterministic situations, and therefore allow the 
determination of multiple solutions to a given problem. 

From a subjective point of view, the main advantage of Prolog is that the 
language has its foundations in logic, and it therefore encourages the user to 
describe problems in a logical manner which facilitates the checking for correct- 
ness, enhances program readability, and reduces the debugging effort. It will be 
seen that unification and nondeterminism play an important role in compiler 
design; however, using their full generality is often costly and unnecessary. These 
issues are discussed throughout the paper whenever they become relevant. 
Remarks are made in the last section about the efficiency of Prolog-written 
compilers and the means to improve their performance. 

The Prolog proficiency assumed in this paper can be acquired by reading the 
first few chapters of either Kowalski’s [20] or Clocksin and Mellish’s [6] books. 
In particular, the reader should be at ease with elementary list processing and 
with the predicate append. The concrete syntax used in this paper is that of 
Edinburgh Prolog [6]. It is also assumed that the reader is familiar with compiler 
design topics such as parsing, lexical analysis, code generation, optimizations, 
and so on. These topics are covered in standard texts [l, 17,291. 

2. PARSING 
In this section we present parsers belonging to two main classes of parsing 
algorithms, namely, bottom-up and top-down. Due to the backtracking capabili- 
ties of Prolog, these parsers can in general handle nondeterministic and 
ambiguous languages. An early paper by Griffiths and Petrick [18] describes 
various parsing algorithms and their simulation by automata. There the amount 
of nondeterminism is roughly specified by a selectivity matrix which guides the 
parser in avoiding states leading to backtracking. A similar situation occurs in 
the Prolog parsers described here. In compilers, interest is commonly restricted 
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to deterministic languages. Backtracking may be prevented by a judicious use of 
cuts(!) and/or by introducing assertions in the database that guide the parser in 
avoiding dead-ends. 

A word about notation is in order. The grammar conventions are those in [l]. 
Edinburgh Prolog uses capital letters as variables, and therefore capitals cannot 
be used to represent nonterminals unless they are quoted. In this paper, the 
terms t( ) and n( ) denote, respectively, terminals and nonterminals. Quoting 
may be necessary for specifying certain terminals (e.g., parentheses). For example, 
the right-hand side (rhs) of the rule 

is described by the list 

[WV), de), W)‘)l. 
Whenever stacks are used, they are also represented by lists whose leftmost 
element is the top of the stack. 

This section does not pretend to make an exhaustive treatment of parsers. 
We describe bottom-up and top-down parsers for both nondeterministic and 
deterministic languages. A nondeterministic shift-reduce and a deterministic 
weak-precedence parser are the bottom-up representatives. Their top-down coun- 
terparts are, respectively, a predictive and an LL(1) parser. A recursive descent 
version of the latter is also considered. Besides those described herein, we have 
programmed and tested Earley’s algorithm [13] and a parser generator that 
produces the necessary tables for parsing SLR( 1) grammars [ 11. 

2.1 Bottom-Up 
A very simple (albeit inefficient) shift-reduce parser can be readily programmed 
in Prolog. Its action consists of attempting to reduce whenever possible; otherwise 
the window is shifted on to a stack and repeated reductions (followed by shifts) 
take place until the main nonterminal appears by itself in the top of the stack. 
Note that a reduction may be immediately followed by other reductions. A 
reduction corresponds to the recognition of a grammar rule; for instance, the 
reduction for the rule E + E + T occurs when E + T lies on the top of the stack. 
It is then replaced by an E. This action is expressed by the unit clause 
redme(Idt), H+), n(e) I Xl, Me) I Xl). 
Let us consider the classical grammar describing arithmetic expressions: 

G1: E+E+T 
E-T 
T-+ T*F 
T+F 
F + (E) 
F + (letter) 

The appropriate sequence of reduce clauses follows immediately from the above 
rules. To decrease the amount of backtracking it is convenient to order these 
clauses so that rules with longer right-hand sides are tried before those with 
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shorter rhs. We are now ready to present the parser. It has two parameters: 
(1) a list representing the string being parsed, and (2) the list representing the 
current stack. 
% try-reduce % 
sr-parse(Input, Stack) :- reduce(Stack, NewStack), 

% try-shift % 
sr-parse(Input, NewStack). 

sr-parse([ Window I Rest], Stack) :- sr-parse(Rest, [Window 1 Stack]). 

Assume that a marker ($) is to be placed at the end of each input string. The 
following acceptance clause accepts a string only when the marker is in the 
window and the stack contains just an E. 

% acceptance % 
sr-paWL§l, Me)lh 
Consider the input string a*b. We assume that a scanner is available to translate 
it into the suitable list, understandable by the parser. Then the query 

?- sr-PamWa), t(*), t(b), $1, [ I). 

will succeed. 
The above parser is very inefficient, since it relies heavily on backtracking to 

eventually accept or refuse a string. Note that in parsing the string a*b, t(a) is 
first shifted and successively reduced to an F, T, and (even) an E; the latter 
being a faulty reduction. The parser is, however, capable of undoing these 
reductions through backtracking. This inordinate amount of backtracking can 
be controlled by a careful selection of the reductions and shifts that eliminate 
possible blind-alleys. This is done in our next bottom-up parser, which is the 
weak-precedence type [ 1,191. 

The basic strategy is to consult a table made of unit clauses like 

try-redue(Top-of-stack, Window). and try_shift(Top-of-stack, Window). 

which command a reduction or a shift, depending on the elements lying on the 
window and on the top of the stack. The problem of automatically generating 
the above clauses from the grammar rules is addressed in Section 5. The weak- 
precedence relations for the grammar Gi are represented by the clauses 

try_reduce(n(t), $). 
try_reduce(n(f), $9. 
. . . 
try-reduce(t(‘)‘), t(+)). 

&-reduce(t(‘)‘), t(‘)‘))., and 
try-shift(t(+), t(‘(‘)). 
tryshift(n(e), t(+)). 
and so on. 

We now transform the previous sr-parser into a wp-parser which takes 
advantage of the additional information to avoid backtracking. Using 
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Griffiths and Petrick’s terminology [ 181, these unit clauses render the algorithms 
selective. 
% acceptance % 
w-~~~~4$1, [de)l). 
% try-reduce % 
wp-parse([ W 1 Input], [S 1 Stack]) :- try_reduce(S, W), 

reduce([S 1 Stack], NewStack), 
wp-purse([ W 1 Input], NewStack). 

% try shift % 
wp-parse([ WI Input], [S 1 Stack]) :- try-shift(S, W), 

wp-purse(Zrzput, [W, S 1 Stack]). 

Notice that if a grammar is truly a weak-precedence grammar (i.e., there are no 
precedence conflicts and rules have distinct rhs), then backtracking will only 
occur when try-reduce fails and try-shift has to be tried. Thus the query 
?- wp-parse(Znput, [ I), print(accept). 

will print “accept”, and succeed if the Input string is in the language. If the string 
is not in the language, the query will fail. The time complexity is proportional to 
the length of Input. Error detection and recovery are discussed in Section 9. 

A comment about the efficiency of this version of wp-parse is in order. Since 
there will in general be a large number of try-reduce and try-shift rules, the 
execution time of the wp-parser could be significantly reduced if a Prolog compiler 
could branch directly to a clause having the appropriate constant as its first term 
(for example, by constructing a hashing table at compile time). Recent and 
planned Prolog optimizing compilers can indeed perform this branching [30]. 
The reader should also refer to [21] for a discussion of optimizations applicable 
to deterministic Prolog programs, which render their efficiency closer to those of 
conventional programs. 

Finally, note that it would be straightforward to extend this type of parser to 
cover the syntactical analysis of bounded-context grammars, that is, those for 
which a decision to reduce or shift is based on an inspection of m elements in 
the top of the stack and a look-ahead of n elements in the input string. 

2.2 Top-Down 
A Prolog implementation of predictive parsers [l] follows readily from the 
programs described in the previous section. The grammar G2, below, generates 
the same language as G1, but left-recursion has been replaced by right-recursion. 

Gz: E -+ TE’ 
E’ -+ + TE’ 
E’ 3 e 
T +FT’ 
T’ --B * FT’ 
T’ + E 
F *U-O 
F + (letter) 
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The above rules are placed in the database using the unit clauses 
rule(Non-terminal, Rhs). 

Examples are 
ruMn(tprim), [t(*), n(f), nt@hne)l). 
rule(n(tprime), [ I). 

The parser predict&x&, Stack) has the same parameters as its predecessors, 
namely: (1) the input string and (2) the current stack contents (initially n(e), 
where E is the main nonterminal). The parser succeeds if the Input string is in 
the language, and fails otherwise. 

The basic action of predict is to replace a nonterminal on the top of the parse 
stack by the rhs of the rule defining that nonterminal. If a terminal element lies 
on the top of the stack and if it matches the element W in the window, then 
parsing proceeds by popping W and considering the next element of the input 
string to be in the window. A string is accepted when the stack is empty and the 
window contains the marker. In Prolog we have 
% acceptance. 
predict(I$l, 1 I). 
% try a possible rule. 
predict(lnput, [n(N) 1 Stack]) :- 

ruldn(N), Rh), 
append(Rhs, Stack, NewStack), 
predict&put, NewStack). 

% match the terminals. 
predict([t(W) 1 Input], [t(W) 1 Stack]) :- predict(lnput, Stack). 

The above parser can handle nondeterministic or even ambiguous grammars, but 
may become trapped in an infinite recursion loop if the grammar is left-recursive. 

To improve the efficiency when processing deterministic grammars, one could 
again resort to placing additional information in the database. This is the case 
for the next parser we consider, which is applicable to LL( 1) grammars, and does 
not rely on backtracking. It will become apparent in Section 5 that it is straight- 
forward to generate tables for LL( 1) grammars [ 11. These tables have as entries 
the contents of the window t(W) and the nonterminal n(N) on the top of the 
stack, and they specify the appropriate (unique) replacement by the rhs of the 
rule defining N. Entries may be defined by unit clauses of the form 
entv(t(W), n(N), Rhs). 
for all pairs ( W, N) such that N J* W . . . . An LL(1) deterministic parser is 
obtained by replacing the middle clause of predict by 
predict[t( W) 1 Input], [n(N) 1 Stack]) :- entry(t(W), n(N), Rhs), 

append(Rhs, Stack, NewStack), 
predict([t(W) I Input], NewStack). 

By properly selecting one among multiple entries, predict can deterministically 
parse languages defined by ambiguous grammars, as is the case of the if then 
else construct considered in [l, p. 1911. Moreover, the parser does not rely on 
backtracking to accept a string. The complexity of the LL(1) parser is therefore 
O(n) where n is the length of the input string. 
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2.3 Recursive Descent 
All of the previously described parsers contain a general nucleus which drives 
the parsing, the grammar rules being specified by unit clauses in the database. 
Parser efficiency can be increased by establishing a direct mapping between 
grammar rules and Prolog clauses. This is accomplished as in recursive descent 
parsing: each procedure directly corresponds to a given grammar rule. As usual, 
left-recursion is not allowed and has to be replaced by right-recursion to avoid 
endless loops. 

There are three manners in which these parsers can be implemented in Prolog, 
depending on the form of the input string. The first and the least efficient of 
these is the one that uses the predicate append. The second uses links to define 
the input string that appears as unit clauses in the database. Finally, the third, 
which uses difference lists, is the most efficient, as will be seen by estimates of 
the various complexities. The implementation of these versions is illustrated 
using the grammar G3, generating a’kb”, n I 0. The notation t(T) and n(N) will 
no longer be needed to differentiate between terminals and nonterminals, since 
the nonterminals will be transformed into Prolog procedures which manipulate 
terminal strings. 

G3: S+aSb 
S4C 

Every grammar rule is transformed into a clause whose argument is the list of 
terminals derived from the defined nonterminal. Terminals are similarly handled 
using unit clauses. We have 

s(ASB) :- uppend(A, SB, ASB), 
~PP~W, B, SB), 
a(A), 
SW, 
MB). 

s(C) :- c(C). 
ml). 
WI). 
4cl). 
The appends are used to partition the list ASB as the concatenation of three 
sublists A, S, B. Although the only partition for which the parser will succeed is 

A = a, S = an-lcbnml, B = b, 

this program will generate at least 2n incorrect partitions. Hence the number of 
calls needed to append is at least n2. Note that the appends should precede the 
calls of a(A), s(S), b(B). Otherwise, an infinite loop would occur. The above 
program can be optimized by symbolic execution: the terms a(A), b(B), and c(C) 
can be directly replaced by their unit clause counterparts, yielding 

s(ASB) :- uppend([a], SB, ASB), 
wwMS, PI, SB), 
SW. 

ml). 
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The second approach for programming recursive descent parsers in Prolog is 
the use of links. An input string such as [a, a, c, b, b] is represented by the unit 
clauses link(i, t, i + l), stating that there is a terminal t located between positions 
i and i + 1. In our case the input string aacbb becomes 
hk(1, a, 2). 
link(2, a, 3). 
link(3, c, 4). 
link(4, b, 5). 
link(5, b, 6). 

A clause recognizing a nonterminal will now have two parameters denoting the 
leftmost and rightmost positions in the input string that will parse into the given 
nonterminal. In our particular example we have 
s(X1, X4) :- link(X1, a, X2), 

s(X2, X3), 
link(X3, b, X4). 

s(X1, X2) :- link(X1, c, X2). 

The as will be consumed by the n successive calls of the first two literals. Then, 
only the second clause is applicable and the c is consumed. Finally, the unbound 
variables X3, X4 are successively bound to the points separating the remaining 
bs. The algorithm’s complexity is therefore linear. 

An efficient implementation of recursive descent parsers in Prolog makes use 
of difference lists. If a nonterminal A generates a terminal string a! (i.e., A ==a* 
a), that string can be represented by the difference of two lists U and V; V is a 
sublist of U which has the same tail as U. For example, if U is [a, c, b, b, b] and 
V is [b, b] the difference U - V defines the list [a, c, b], which for G3 parses into 
an S. Warren [31] points out that the use of difference lists corresponds to having 
the general link-like clause: 
link([H 1 2’1, H, T) 

which can be read as “the string position labelled by the list with head H and 
tail T is connected by a symbol H to the string position labelled T.” A parser for 
G3 using difference lists can be written as follows: 
s(U, V) :- a(U, Vl), s(V1, V2), b(V2, V). 
s( w, 2) :- c( w, 2). 

For the terminals a, b, and c we have 

am I VII, vu. 
b([b I U21, U2). 
c(k I u31, U3). 

Symbolic execution allows us to find the values of U and Vl in the first clause: 
U=[alUl], Vl=Ul 

Similarly, 
V2=[bIU2], V= U2 
W=[cIu@], z=u3 
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Substituting the values of the above variables, we obtain the optimized program 
s([a 1 Ul], U2) :- s(U1, [b I U2]). 
4kl u31, U3). 

(The above program could also have been derived using symbolic execution 
by considering the first version of the parser with append and noticing that 
if X - Y and Y - Z are difference lists, then append(X - Y, Y - 2, X - 2) is 
a fact.) 

Let us follow the execution of the call 
s(b, 0, c, b, bl, [ I). 
Notice that Ul becomes [a, c, b, b] and U2 is [ 1. The next calls of S are 
~([a, c, h bl, PII 
s(k, h bl, P, bl) 
This last call matches only the second clause thus indicating a valid string. An 
informal English description of the acceptance is as follows: successively remove 
each a in the head of the first of the difference lists and add a b to the second 
one. A string is accepted when no more as can be removed, the head of the first 
list is a c, and the two lists contain the same number of bs. Therefore, for this 
particular grammar, G3, the parsing is done in linear time with no backtracking. 
The reader might have already surmised that the use of difference lists and of 
symbolic executions illustrated in this example could be carried out automatically 
from the given grammar rules. Clocksin and Mellish ([6, 1st ed., p. 237-2381) 
present a short Prolog program that does the translation. 

3. SYNTAX-DIRECTED TRANSLATION 
This type of translation consists of triggering semantic actions specified by the 
programmer, once selected syntactic constructs are found by a parser. In the case 
of the bottom-up parsers described in Section 2.1, it suffices to add a third 
parameter to the reduce clauses specifying the rule number and to modify the 
parser so that a semantic action (specified by the rule number) will take place 
just after the reduction. For example, in order to translate arithmetic expressions 
into postfix Polish notation, the corresponding reduce for the first rule of G1 
becomes 
reduce(W), t(+), n(e) I Xl, [n(e) I Xl, 0 
The modified parser contains two additional parameters: (1) a stack, Sem, which 
will be manipulated by the action procedure and (2) a parameter, Result, which 
will be bound to the final result of the semantic actions: 
% accept and bind Result to the semantic parameter. 
wp-trunslate([$], [n(e)], Result, Result). 
% try to perform a reduction and a semantic action. 
wp-transkzte([ W 1 Input], [S I Stack], Sem, Result) :- 

&y-reduce@, W), 
reduce([S I Stack], NewStack, RuleNumber), 
action(RuleNumber, [S I Stuck], Sem, NewSem), 
wp-translute([ W I Input], NewStack, NewSem, Result). 
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% try a shift. 
wp-transZate([ W 1 Input], [S 1 Stack], Sem, Result) :- 

try_shift(S, W), 
wp-translute(Znput, [W, S 1 Stack], Sem, Result). 

The parser can then he equipped with actions by adding rules which specify how 
the temporary semantic parameter is to be modified for each rule. The following 
action procedure constructs parse trees for the arithmetic expressions defined by 
grammar G1: 
syntax-tree(Znput, Tree) :- wp-trandute(Znput, [ 1, [ 1, Tree). 
action(1, Stack, [Xl, X2 1 T], [plus(X2, Xl) IT]). 
action(3, Stack, [Xl, X2 I 2’1, [times(X2, Xl) I 2’1). 
action(6, [t(Z,etter) I Stack], Temp, [Letter I Temp]). 
action(X, Stack, Temp, Temp) :- X # 1, X # 3, X # 6. 

The body of the last clause guarantees that no spurious actions are performed 
should backtracking ever occur. Notice that the action procedure must have 
access to the parsing stack (as is the case for rule 6) so that specific terminals 
may be incorporated into the actions. A similar strategy is applicable in adding 
actions to predictive parsers. 

All of the above descriptions of semantic actions utilize inherited attributes 
and are admittedly standard. The main purpose of presenting them here is to 
point out how succinct the descriptions become when Prolog is used. The truly 
novel way of performing syntax-directed translation is that pioneered by 
Colmerauer and widely utilized by Warren. That approach does not strictly 
separate syntax from semantics as was done in this section. They have added 
new parameters to the recursive descent parser described in Section 2.3, so that 
the translation takes full advantage of the unification and goal-seeking features 
of Prolog. Colmerauer’s approach is the subject of the next section. 

4. M-GRAMMARS AND DCGs 
A metamorphosis (or M-) grammar is a formalism which combines a Chomsky- 
type language definition with logic programming capabilities for manipulating 
the semantic attributes needed to perform syntax-directed translations. 
Colmerauer [9] maps general type-0 Chomsky rules into general logic- 
programming clauses, (i.e., those that may contain more than one predicate in 
the left-hand side). A very useful subset of M-Grammars are Definite Clause 
Grammars (DCGs), which are based on Chomsky’s context-free grammars. The 
reader has undoubtedly noticed the similarity between Prolog clauses and con- 
text-free grammar rules: they both have one term in the lhs and several (or none, 
i.e., t) in the rhs. Prolog restricts itself to those special clauses called Horn or 
Definite clauses, thus explaining the acronym. It will be seen shortly that 
although DCGs are based on context-free grammars they are able to parse 
context-sensitive ones as well. (In fact, any recursively enumerable language can 
be recognized using DCGs with parameters.) 

DCGs are translated directly into Prolog clauses which include a recursive 
descent parser using difference lists. For example, the DCG rules for recognizing 
strings in G3 are 

s --+ [cl. 
s --+ [a], s, [b]. 
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The syntax of DCGs is close to that of Prolog clauses. The ‘:-’ is replaced 
by ‘--+‘, and terminals appear within square brackets. Most Prolog interpreters 
automatically translate the above into the clauses: 

s([c I m, LO). 
s([a 1 LO], Ll) :- s(L0, [b I Ll]). 

which have already been explained in Section 2.3. DCG terms usually contain 
one or more arguments which are directly copied into their Prolog counterparts, 
which also contain the difference list parameters. Our first example of usage of 
DCGs is to determine the value of n for a given input string a”&” (generated by 
grammar GB ) . 

s(0) --+ [cl. 
s(succW) --+ [al, SW), PI. 

The added argument specifies that the recognition of a c implies a value of 
N = 0. Each time an s surrounded by an a and a b is recognized, the value of N 
increases by one (succ indicates the successor). The above DCGs are automatically 
translated into 

SK4 [c I w, LO). 
s(succ(N), [a 1 LO], Ll) :- s(N, LO, [b I Ll]). 

The call s(X, [a, a, c, b, b], [ 1) yields X = succ(succ(0)). The backtracking 
capabilities of Prolog allow the call s(succ(succ(O)), X, [ 1) which yields X = 
[a, a, c, b, bl. 

By employing a technique similar to the one illustrated by the previous 
example, we can construct a parser s to recognize the language a”b”c”. It uses 
the auxiliary procedure sequ.ence(X, N) (defined below) which parses a list of Xs 
and binds N to the number of Xs found. 

sequence(X, 0) --+ [ 1. 
sequence(X, succ(N)) --+ [Xl, sequeme(X, IV) 
s(N) --+ sequence(a, N), sequence(b, N), seqwme(c, IV) 

Let us now consider the use of DCGs for translating arithmetic expressions 
into their syntax-trees. We start with the simplified right-recursive grammar 
rules: 

E-T +E 
E-T 
T-a 

Initially one would be tempted to use the DCG 

eWw(X, Y)) --+ W3, [+I, e(y). 
e(X) --+ t(X). 
t(a) --9 [a]. 

These rules, however, translate a + a + a into plus (a, pZus(u, a)) which is right- 
associative, and therefore semantically incorrect. Some cunning is needed to 
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circumvent this difficulty. Let us first rewrite the grammar rules as 

E+TR 
R++TR 
R-,C 
T+a 

Our goal is to generate plus(plus(a, a), a) for the input string a + a + a. The 
following DCG will do the proper translation: 
eqv$?3) --9 term(Tl), restexpr(T1, E). 
restexpr(T1, E) --a [+I, term(T2), restezpr(plus(T1, T2), E). 
restexpr(&, E) --+ [ 1. 
term(a) -3 [a]. 

When the clause expr recognizes the first term Tl in the expression, it passes 
this term to the second clause, restexpr. If there is another term T2 following 
Tl, then the composite term pb(T1, T2) is constructed and recursively passed 
to restexpr. The first parameter of restexpr is used to build a left-recursive parse 
tree, which is finally transmitted back to erpr by the third clause. 

Unfortunately, the above “contortions” are needed if one insists on using a 
recursive descent parser to contruct a left-associative syntax tree. This particular 
Prolog technique has become a standard idiom among DCG writers. A way out 
of this predicament is to implement DCGs using bottom-up parsers. (This has 
been proposed in [28].) At present these capabilities are not generally available 
in existing Prolog interpreters and compilers. 

It is straightforward to generalize the above translation by introducing multi- 
level grammar rules such as 

Ei + TiRi 
Ri + OpiTiRi 
& + &+I 
Ri + c 

with 1 5 i 5 n and En+, + letter ] (El), where i denotes the precedence of the 
operator opi. The corresponding DCG contains i as a parameter, and could allow 
for redefining the priorities of the operators, therefore rendering the language 
extensible. This approach is used in the Edinburgh version of Prolog. 

A very useful feature of DCGs is that parts of Prolog programs may appear in 
their right-hand sides. This is done by surrounding the desired Prolog predicates 
within curly brackets. Our next example illustrates the use of this feature to 
perform the translation of arithmetic expressions into postfix notation directly 
by a DCG that does not construct syntax trees. Our first example of this technique 
will output the postfix notation. 
e --+ t, r. 
r --+ [+I, t, {write(+)), r. 
r --+ [ 1. 
t --+ [a], (write(a)). 
This procedure produces the postfix expression using side effects, and this 
technique can be a drawback. One solution to this problem is to use difference 
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lists to simulate the write procedure. To each DCG clause corresponding to a 
nonterminal N we add difference list parameters representing the list of symbols 
that are output during the recognition of N. (These difference lists are in addition 
to those used in syntactic analysis). We have 
e(F1, F3) --a t(F1, F2), r(F2, F3). 
r(F1, F4) --+ [+I, t(F1, F2), {writefik(+, F2, F3)), r(F3, F4). 
r(F, F) --+ [ 1. 
t(F1, F2) --+ [a], (writefik(a, Fl, F2)). 

The output is simulated by the procedure writefile(Symbo1, Pos, NewPos) defined 
by the unit clause 
writefile(X, [X 1 B], B). 

The call ?- e(F, [ 1, [a, +, a, +, a], [ 1) produces F = [a, a, +, a, +]. This example 
shows that difference lists can be used both to select parts of a list and to 
construct a list. It is not hard to write a program that automatically performs 
the translation from a DCG using write to a DCG using writefile and additional 
difference lists. In the remainder of the paper we use the procedure write, and 
leave to the interested reader the task of adding difference lists to avoid side 
effects. 

The BNF of full-fledged programming languages can be readily transcribed 
into DCGs that translate source programs into syntax-trees which can then be 
either interpreted or used to generate code. We have tested the DCG needed to 
process the entire Pascal language by translating input programs into syntax- 
trees. The following program fragments illustrate this construction for parts of a 
mini-language. A while statement is defined by the DCG: 
statement(while(Test, Do)) --+ 

[while], test(Test), [do], statement(Do). 

A test may be defined by 
test(test(Op, El, E2)) --+ expr(&l), 

comP(oP), 
expr(E2). 

camp(=) --+ [=I. 
cow(( )I --+ [( )I. 
etc . . . 

The translation of statements into P-code-like instructions is also easily achieved. 
For example the statement while T do S can be directly translated into the 
sequence 
L: code for test T 

jif(i.e, jump if false) to Exit 
s 
jump to L 

Exit: 

If labels are represented by terms of the form label(L) and the instructions by 
instr(jif, L) or instr(jump, L), the translation is performed by the DCG: 
statement([label(L), Test, S, instr( jump, L), lubel(Exit)]) --+ 

[while], test(Test, Exit), [do], statement(S). 
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where 
test([Rl, R2, Op, in.str(jif, Exit)], Exit) --+ 

expr(E1, Rl), 
comP(oP), 
expr(E2, R2). 

This example illustrates the elegant use of Prolog’s logical variables and unifi- 
cation in compiling. Each of the variables L and Exit occur twice in the generated 
code. When instantiated, each pair will be bound to the same actual value. This 
instantiation may occur at a later stage when the final program is assembled and 
storage is allocated. Even when using special compiler-writing tools such as 
YACC, the implementation of similar constructs requires lengthier programs 
since one has to keep track of locations that have to be updated when final 
addresses become known. Prolog’s ability to postpone bindings is therefore of 
great value in compiling. 

The advantage of using logical variables and delayed binding is also 
apparent in managing symbol tables. Consider the procedure Zookup(ldentifier, 
Property, Dictionary), in which Dictionary is a list containing the pairs 
(identifier-property); lookup’s behavior is similar to that of the procedure 
member(E, L) which tests if an element E is present or not in the list L. However, 
lookup adds the pair to the Dictionary if it has not been previously added. We 
have 
lookup(l, P, [[I, P] 1 T] :- !. 
lookup(1, P, [[II, Pl] 1 T] :- lookup(I, P, T). 

If lookup is initially called with an uninstantiated variable, the first clause will 
create the new pair [I, P] as well as a new uninstantiated variable T. The cut is 
needed to prevent backtracking once the desired pair is found or is created. 
Consider now the sequence of calls to lookup: 
lookup(a, Xl, D), lookup(b, X2, D), lookup(a, X3, D). 

The net effect of the above calls is to store the two pairs [a, Xl] and [b, X2] in 
D and to bind X3 to Xl. Later on, when Xl and X2 are instantiated, X3 will 
automatically be bound to the value of Xl. 

A similar approach is used in [31] to implement binary tables. In that paper, 
table lookup is done in the code-generation phase after constructing the syntax 
trees (see Section 7). If one wished to perform that operation while parsing, the 
DCG rule defining a factor could be 
WU, PI, D) --+ Went(Z (bokup(V, PI, D)J. 
where ident(1) is constructed in a previous scanning pass and the property P is 
determined while processing declarations. In this case lookup should be modified 
to handle semantic errors such as undeclared identifiers. 

5. GRAMMAR PROPERTIES 
This section makes extensive use of the built-in predicate setof which implicitly 
relies on the nondeterministic capabilities of Prolog. In our view the use of this 
and similar predicates in determining grammar properties is perfectly justifiable, 
since, in this context, efficiency plays a secondary role: grammar properties are 
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usually determined only a few of times when generating the parser and, although 
it is important that the generated parser itself be efficient (and deterministic), 
longer generation times are usually tolerable. 

We start by pointing out that it is easy to test whether a grammar is strictly 
weak-precedence or LL(l), provided one knows the sets first(N), follow(N), and 
last(N). The Prolog procedures for performing these tests follow the declarative 
definitions closely and appear at the end of this section. We first show how 
Prolog can be used to calculate these sets in the general case of context-free 
grammars which may contain left-recursive nonterminals and e-rules. 

We assume that the rules for a grammar are stored in the database by assertions 
like 
rule(RuleNum, n(A), Rhs) 

in which RuleNum is an integer number identifying a rule, Rhs is the list 
representing the right-hand side of the rule defining the nonterminal A. Recall 
that the elements of Rhs are identified by the terms of the form t(T) and n(N) 
representing terminals and nonterminals. 

For each nonterminal N in the grammar, first(N) is the set of all (terminal or 
nonterminal) symbols V such that N a* V . . . . To calculate the set first(A) for 
a nonterminal A, we use the built-in procedure setof in conjunction with a 
procedure first which finds a single element of this set. Thus, we make the top- 
level call: 
allfirst(N, L) :- setof(X, first(N, [ 1, X), L). 

The procedure first(Input, &a&, V) has three parameters: 
(1) an Input list representing a sequence (Y of terminals and/or nonterminals, 
(2) a Stuck of rule numbers which keeps track of the already considered rules, 
(3) a terminal or nonterminal element V such that (Y =J* V . . . . 

There are three ways in which a symbol T can be the first element of a 
sentential form derived from (Y: (1) it can be the first element of (Y, (2) it can be 
the first element of a sentential form obtained by rewriting the first element in 
cu (which must be a nonterminal in this case), or (3) it can be the first element 
of a sentential form obtained by rewriting some of the initial nonterminals of (Y 
into the empty string t. The following procedure contains a clause for each of 
these three cases. The middle parameter &a& is used to prevent looping by 
prohibiting the consideration of previously used rules. The third clause uses the 
procedure reduces-to-epsilon (defined below) to determine if a sequence of 
nonterminals rewrites into 6 
first([Symbol 1 Rest], Stack, Symbol). 
first([n(N) 1 Rest], Stack, Symbol) :- 

rule(Number, n(N), Rks), 
not(member(Number, Stack)), 
first(Rks, [Number 1 Stuck], Symbol). 

first(List, Stack, Symbol) :- 
append(A, B, List), 
Af[l, 
reduces-to-epsilon(A), 
first@, Stuck, Symbol). 
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The predicate reduces-to-epsilon(A) will succeed if A represents a sequence cu of 
nonterminals which rewrite into the empty string. If a sentential form reduces 
to epsilon, then it must consist entirely of nonterminals that reduce to epsilon. 
Moreover, if a nonterminal rewrites to epsilon, then there is a parse tree 
representing this reduction such that no branch of the parse tree contains more 
than one occurrence of any nonterminal. The translation of these two statements 
into Prolog is straightforward. The procedure list-reduces-to-epsilon asserts that 
a sequence of nonterminals List rewrites into epsilon if each of the nonterminals 
does, and the procedure nt-reduces-to-epsilon asserts that a nonterminal N 
reduces to epsilon if it rewrites into a sentential form that reduces to epsilon. 
The stack parameter is used to guarantee that no branch of the parse tree 
contains multiple occurrences of any nonterminal. 
reduces-to-epsilon(List) :- 

list-reduces-to-epsilon(List, [ I). 
list-reduces-to-epsilon([ 1, Stock). 
list-reduces-to-epsilon([n(N) 1 Rest], Stack) :- 

nt-reduces-to-epsih(n(N), [n(N) 1 Stack]), 
list-reduces-to-epsilon(Rest, Stack). 

nt-reduces-to-epsih(n(N), Stack) :- 
rule(Number, n(N), Rhs), 
not(intersect(Rhs, Stuck)), 
list-reduces-to-epsilon(Rhs, Stack). 

intersect(List1, L&2) :- member(X, L&l), member(X, L&2). 

In weak-precedence, parsing reductions are called for when S > IV, where 
(1) W is the terminal element in the window, 
(2) S is the (terminal or nonterminal) element in the top of the stack, 
(3) S > W if there exists a grammar rule 

Y-a **- x,x,..., 
where Xl ++ - - - S and WE first(Xz). 

Shifting occurs when S c W, that is, if there is a rule 
Y-* *** sx, . . . . where W E first(X*). 

To determine whether a language is of the weak-precedence type and to construct 
the parsing tables, one needs to find for each nonterminal X the set last+(X), 
consisting of all terminals and nonterminals V such that X J+ . . . V. This can 
be done by finding the sets first(X) for the grammar that is obtained by reversing 
the right-hand sides of the rules in the original grammar. It is easy to define a 
procedure first-rev that finds the sets first(A) for the reversed grammar by 
modifying the procedure first. The procedure to compute k&+(A) is then concisely 
expressed as follows: 
lost-ph(n(X), 2) :- 

rule(Number, n(X), Rhs), 
reverse(Rhs, RRhs), 
first-rev(RRhs, [ 1, Z). 

As before, the set last+(A) can then be found using the setof predicate: 
aUo.st-ph(n(A), L) :- setof(X, last-plus(n(A), [ 1, X), L). 
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The set follow(N) is also succinctly expressed in Prolog. There are two ways 
in which a symbol V can be in the set follow(N): (1) there is a rule X --* &V/3 
such that V E first(@), or (2) there is a rule X + OlNp such that B rewrites into 
epsilon, and V E follow(X). The Prolog procedure for follow consists of two 
clauses closely paralleling these two cases. The middle parameter &a& is again 
used to prevent looping by prohibiting the multiple use of rules: 
follow(n(N), Stack, Terminal) :- 

rule(Number, n(X), Rhs), 
not(member(Number, Stack)), 
wwW& In(N) I Bl, Rh), 
first(B, [ 1, Terminal). 

follow(n(N), Stack, Terminal) :- 
rule(Number, n(X), Rhs), 
not(member(Number, Stack)), 
~PP=U, [n(N) I Bl, Rh), 
reduces-to-epsilon(B), 

follow(n(X), [Number 1 Stack], Terminal). 

The predicate all-follow below calculates the list of all follow symbols of a 
nonterminal N: 
all-follow(N, L) :- setof(X, follow(N, [ 1, X), L). 

To assess the gains in program size and readability the reader may want to 
compare the above programs with the English description of first and follow in 
[l, p. 1841 and with a Pascal version in [2]. As to efficiency, these programs could 
be significantly improved by using the assert procedure to memorize previously 
computed firsts and follows, thereby avoiding recomputation. (This technique, 
called memoization, has been considered in [ 241.) 

The predicates first and follow and lust-plus can be used to test for the LL(1) 
and weak-precedence grammar properties and to generate the parsing tables for 
each of these types of grammars. For example, the clauses of the try_reduce 
procedure can be computed by the following procedure: 
generate-reduces(L) :- 

setof(try-reduce(X, Y), wp-greater(X, Y), L). 
wp-greater(X, Y) :- 

rule(RuleNum, n(N), Rhs), 
appe~(Awl, [A, B I AnyPI, Rh), 
last-plus(A, X), 
first([B], Y). 

and the try_shift clauses can be generated in a similar manner. Once these clauses 
have been computed and stored in the database, the grammar can be tested for 
weak-precedence by the query: 
not-weak-precedence :- try-reduce(S, W), try-shift(S, W). 
not-weak-precedence :- rule(N, X, Rhs), rule(M, Y, Rhs), N # M 

The first clause tests for reduce-shift conflicts, which could easily be reported to 
the user for selecting the desired action. This choice enables the processing of 
ambiguous grammars. The second clause tests if two grammar rules have identical 
right-hand sides. 
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The procedures to generate LL(1) tables and to test whether a grammar is 
LL(1) can also be written concisely. The procedure that generates the tables 
consists of a call to setof, combined with a procedure to find the firsts and follows 
of the right-hand side of a rule: 
generate-ill-table(L) :- 

setof(entry(t(W), n(X), Rh), first-of-ruk(t(W), n(X), Rh), L). 
first-of-r&( W, N, Rh) :- 

ruk(Number, N, Rhs), 
first(Rhs, W). 

first-of-r&( W, N, Rhs) :- 
rule(Number, N, Rh), 
reduces-to-epsilon(Rhs), 
follow(N, W). 

To test whether a language is LL(1) we must show that the table constructed 
above has no multiple entries. This can be done with a call to the procedure 
n&-111, defined as follows: 
not-ill :- entry(t( W), n(X), Rhsl), entry(t( W), n(X), Rhs2), Rhl # RhsP. 

The generation of the unit clauses for weak-precedence and LL(1) parsing 
actually amounts to prototyping a parser generator. Additional discussion on this 
topic is given in Section 6. The predicates first and last can also be used to 
determine if a grammar contains a nonterminal that is left-recursive and also 
right-recursive. This is a commonly used test for attempting to detect ambiguity 
in context-free grammars. 

There is a host of grammar properties and transformations that could be 
succinctly described in Prolog. A few that we have programmed are elimination 
oft rules, general replacement of left-recursive rules by right-recursive ones, and 
reduction to Chomsky and standard normal forms. Other properties that seem 
likely candidates for description in Prolog are an attempt to determine if a 
grammar is LL(k) or LR(k), and the reduction of an LR(K) grammar to LR(l). 

6. LEXICAL SCANNERS AND PARSER GENERATION 
We first note that the syntax of regular expressions is quite similar to that of 
arithmetic expressions. The union ( I) replaces the add operator and concatena- 
tion (represented by a blank or period) replaces the multiplication operator. The 
star operation may be represented by surrounding a starred sequence by curly 
brackets. The translation of a regular expression into its syntax-tree is performed 
either using DCGs (Section 4) or triggering the semantic actions described in 
Section 3. For examle, the expression ((a 1 b).c).d is translated into the tree: 
cone (star (cpnc (union (a, b), c)), d). We now present a recognizer accepting strings 
defined by a regular expression given by its syntax-tree. The first argument of 
the procedure ret is the syntax-tree, the other two are difference lists (as described 
in Section 4). 
rec(L, [L 1 U], U) :- letter(L). 
rec(stur(X), U, V) :- rec(X, U, W), rec(stur(X), W, V). 
rec(star(X), U, U). 
rec(unzbn(X, Y), U, V) :- rec(X, U, V). 
rec(union(X, Y), U, V) :- rec(Y, U, V). 
rec(conc(X, Y), U, V) :- rec(X, U, W), rec(Y, W, V). 
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The above interpreter for regular expressions is admittedly inefficient, since it 
relies heavily on backtracking. Nevertheless, it might be suitable for fast proto- 
typing. An efficient version of the recognizer may be obtained in three steps: 

(1) translation of regular expressions into a nondeterministic automaton con- 
taining t moves; 

(2) reduction of the automaton in (1) to a deterministic one not containing e 
moves (in the cases where the empty symbol is in the language, a complete 
elimination of t moves is not possible); 

(3) minimization of the automaton obtained in (2). 

The above steps are those performed by LEX, a scanner-generator package 
developed at Bell Labs. A Brandeis student, Peter Appel, has prototyped a Prolog 
version of LEX in less than one month. His program can handle practically all 
features of LEX, but is admittedly slow compared with the original C-version of 
that package. When compiled, his program can generate a scanner for a mini- 
language similar to that in the appendix of [l] in about four minutes. However, 
it should be noted that Appel’s program is considerably (about five times) shorter 
than the C-counterpart, and it took a fairly short time to develop. Since the 
Prolog programs are deterministic, further gains in efficiency could be expected 
by applying the optimizations suggested by Mellish [21]. In Section 9 we briefly 
describe an alternate approach to scanner-generation using proposed extensions 
of Prolog. 

In the remainder of this section we sketch two approaches for prototyping 
parser generators. The first generates recursive descent parsers, whereas the 
second produces SLR(1) parsers of the type used in YACC [ 11. 

The recognizer of regular expressions presented earlier in this section can be 
easily modified to recognize context-free languages specified by rules whose right- 
hand sides are themselves regular expressions. For example the rule 

can be described by the unit clause 
ruk(n(e), conc(n(t), star(conc(t(+), n(t))))). 

The new clause for ret becomes 
rec(n(A), U, V) :- rule(n(A), R), rec(R, U, V). 

It is straightforward to prototype a parser generator by implementing the 
following steps. 

(a) Determine manually the syntax-trees for a grammar B specifying the syntax 
of the grammar rules themselves. Each nonterminal N has its corresponding 
syntax-tree TN asserted in the database by rule(N, 7~). 

(b) Use the modified recognizer ret to parse strings of B, that is, a set of grammar 
rules specifying a context-free grammar G. 

(c) Attach actions to ret so that it produces the syntax-trees for the grammar G 
being read. This step has been described in Section 3. 

(d) Once the trees for G are generated, ret itself can be reused to parse the 
strings generated by G. 
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A detailed description of the above steps appears in [14]. A further advantage of 
this approach is the possibility it offers to generate efficient recursive descent 
parsers [ 71. One may “compile” assembly language code for a parser by “walking” 
on the syntax-tree of a grammar G. 

Another option for parser generation is to use Prolog for producing the tables 
for SLR(l) parsers, given a set of grammar rules. An item of a grammar G is a 
production of G with a dot at some position of the right-hand side. Each item 
can be computed as a triplet (N, D, L) in which N is the rule number, D the dot 
position, also an integer, and L is the length of the right-hand side. (One could 
also have used only N and D and recomputed L for each rule N whenever needed.) 
States are implemented as lists of triplets. The main procedure generates all new 
transition states stemming from a given state. Termination occurs when no new 
states are generated. Ancillary procedures are needed to check if the element 
preceding a dot in a triplet is a nonterminal, or to test if an item has the dot at 
the end of a rule. This latter check is readily achieved by testing for (N, L, L). 
Another auxiliary procedure determines all triplets that should be added to a 
given state once it is found that that state contains items having a dot preceding 
a nonterminal. 

The predicate follow (see Section 5) is called to determine the expected window 
contents that trigger reductions. These correspond to states containing items 
ending with a dot. As in YACC, the parser generator can produce tables with 
multiple entries, allowing the user to select the appropriate entry which renders 
the parsing deterministic. 

A Prolog version of YACC has been prototyped at Brandeis by Cindy Lurie. 
Her program was developed in a couple of months. In addition to generating a 
parser, it also produces the code embodying the error-detection and recovery 
capabilities suggested by Mickunas and Modry [22]; the correction costs being 
interactively supplied by the user (see Section 9). The performance of the Prolog 
version of YACC is comparable to that of the LEX counterpart. The previous 
remarks about the efficiency remain applicable. A word is in order about the 
generated scanners and parsers. They are C-programs which, when optimized, 
can approach the efficiency of those generated by LEX and YACC. 

7. CODE GENERATION 

7.1 Generating Code from Polish 
We start by describing a simple program that generates code for a single register 
computer having the usual arithmetic operations, as well as the LOAD Vur and 
STORE VW instructions, where Vur is the location of a variable. The DCG for 
performing the translation is basically that used to generate the postfixed Polish 
described in Section 4. The algorithm essentially operates as follows: 
(1) When a variable is recognized it is placed on a stack. 
(2) When an operation is recognized its two operands are on the top of the stack. 

If these are variables the following instructions are generated: 
LOAD 1st opera& 
Operation 2nd operand 
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Step (2) is continued by replacing the top elements of the stack with the mark 
ccc to indicate that, at execution time, the result will be in the accumulator. To 
take into account this mark we introduce the revised versions of (1) and (2), 
which handle the cases where one of the operands is an occ mark. 

(la) Before pushing a variable onto the stack it is necessary to check if the mark 
ccc occupies the position just below the top of the stack. This indicates the 
need of a temporary storage, since the accumulator was already utilized in 
a previous operation and it contains a result that should not be destroyed. 
Thus the mark act is replaced by Ti, the ith element of a pool of temporary 
locations, and the following instruction is generated: ST0 Tie It is then 
possible to push the recognized variable onto the stack. 

(lb) If the penultimate element in the stack is not ccc, the variable is simply 
pushed onto the stack. 

As for operators, two cases need to be considered: one for commutative 
operations, the other for noncommutative ones. Let Sl be the top of the stack 
and S2 the element just below it. 

(2a) If neither Sl, nor S2 is an act, then code is generated as in step (2) above. 
(2b, c) For the commutative operations (addition and multiplication) it suffices 

to generate 

Operation Sl if S2 is an ccc, or to generate 
Operation S2 if Sl is an occ. 

(2d) Noncommutative operations (subtraction and division) will check if Sl 
is an act, in which case the instruction ST0 Ti has to be generated and 
the stack updated with Ti instead of ccc, as is done in (la). The generation 
proceeds as indicated in (2). The case where S2 is an ccc is processed as 
in the case of commutative operations (2b). 

The above description can be easily summarized in Prolog. For presentation 
purposes, we assume that the arithmetic expression has been parsed into postfixed 
Polish notation. We also assume that variables are represented by terms of the 
form u (Name) and operators by terms op(Op). In an actual implementation the 
semantic actions described below would be triggered directly from the DCG rules. 

The procedure gen-code(Polish, Stack, Temps) traverses the list Polish and 
outputs the code as soon as it is generated. We remind the reader that a program 
that produces output using writes can easily be modified so that it stores the 
output in a list and thereby avoids relying on side effects to generate results (see 
Section 4). The gen-code procedure is initiated with a call to the procedure 
execute, defined by 
execute(l) :- gen-code& [ 1, [O]). 

where L is the input in postfix. The operators and operands in the list L trigger 
calls to the corresponding operator and operand clauses, which modify the Stack 
as described above, and may either remove or return a location from the list 
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Temps of available temporary locations: 
gen-code([op(Op) 1 Rest], Stack, Temps) :- 

operator(Op, Stack, NewStack, Temps, NewTemps), 
gen-code(Rest, NewStack, NewTemps). 

gen-code([u(X) 1 Rest], Stack, Temps) :- 
operand(X, Stack, NewStack, Temps, NewTemps), 
gen-code(Rest, NewStack, NewTemps). 

gen-code([ 1, AnyStack, AnyTemps). 
The operator and operand clauses have five parameters: 

(1) the variable (or operator) being examined, 
(2,3) the starting and resulting stack configurations, 
(4,5) the starting and resulting lists of available temporary locations. 

The following remarks will help in understanding the semantic actions of the 
procedures. The program assumes the availability of an unlimited number of 
temporary locations which are reused whenever possible: a temporary is returned 
to its stack after emitting an instruction of the type LOAD Ti or Op Tie The list 
of available temporary locations is initialized to contain only the location T,,. 
Whenever a new temporary is needed, it is taken from this list, and if the list 
contains only one element a new temporary is generated (see the second clause 
of get-temp below). The term t(X) is used to represent a temporary location. 
% Case (la). ’ 
operand(X, [A, act 1 Stack], [u(X), A, t(I) 1 Stack], Temps, NewTemps) :- 

get-temp(t(I), Temps, NewTemps), 
write(st0, t(I)). 

% Case (lb). 
operand(X, Stack, [u(X) 1 Stack], Temps, Temps). 
The first clause of operand guarantees that the accumulator is always the first 
or second element of the stack, if it occurs at all. The other elements in the Stack 
are either temporaries or variables: 
% Case (2b). 
operator(Op, [A, act I Stack], [act 1 Stack], Temps, NewTemps) :- 

codeop(Op, Instruction, AnyOpType), 
gen-instr(Instruction, A, Temps, NewTemps). 

% Case (2~). 
operator(Op, [act, A I Stack], [act I Stack], Temps, NewTemps) :- 

codeop(Op, Instruction, commute), 
gen-instr(Instruction, A, Temps, NewTemps). 

% Case (2d). 
operator(Op, [act, A I Stack], [act I Stack], Temps, NewTemps) :- 

codeop (Op, Instruction, rumcommute), 
get-temp(t(Z), Temps, TempsO), 
write(st0, t(Z)), 
gen-instr(load, A, TempsO, Tempsl), 
gen-instr(Instruction, t(I), Tempsl, NewTemps). 

% Case (2a). 
operator(Op, [A, B I Stack], [act I Stack], Temps, NewTemps) :- ’ 

A#acc,B#acc, 
codeop(Op, Instruction, OpType), 
gen-instr(load, B, Temps, Tempsl), 
gen-instr(Instruction, A, Tempsl, NewTemps). 
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Notice that at most one of the clauses for operator can succeed, since there can 
be at most one act in the stack. Thus the ordering of the clauses is unimportant, 
and there is no need for cuts. 

The remainder of the program consists of a few auxiliary procedures. The 
procedure get-temp simulates the pop operation for a stack containing the 
currently available temporary locations. Temporary locations are returned to the 
stack by the first clause of gen-in&r. 

codeop(+, add, commute). 
codeop (-, sub, noncommute). 
codeop(*, mult, commute). 
codeop(/, diu, noncommute). 
gen-temp(tU), V, J I RI, [J I fW. 
getj%y?y), 14, [Jl) :- 

genhstr(Znstruction, t(Z), Temps, [I 1 Temps]) :- 
write(Znstruction, t(Z)). 

gen-instr(Znstruction, v(A), Temps, Temps) :- write(Znstruction, A). 

The code generated for the expression A * (A * B + C - C* D) is 

LOAD A 
MULT B 
ADD C 
ST0 To 
LOAD C 
MULT D 
ST0 Tl 
LOAD T,, 
SUB Tl 
MULT A 

An alternative approach to the method presented here is to generate new 
Prolog variables to represent the temporaries as they are needed and to ensure, 
in a subsequent pass, that their usage is optimized. 

7.2 Generating Code from Trees 
A more general approach to code generation is based on “walks” in the syntax- 
tree of a program. We start by describing Warren’s approach [31] for generating 
code for a fictitious machine. This computer performs arithmetic operations 
using a single accumulator. The corresponding instructions are ADD, MULT, 
SUB, and DIV. Operations of the type ADDI, MULTI, and so on, are also 
available, and consider the value immediately following them as the second 
operand in the computation. LOAD and ST0 commands are of course present, 
as well as the unconditional transfer (JUMP) or conditional ones such as J xx, 
where xx is EQ, NE, GT, and so on. The input/output commands are simply 
READ and WRITE. The generator consists of the clause encode-statement which 
identifies the node of the syntax-tree and constructs the corresponding code. The 
generated code is a list of instructions and labels, (possibly containing embedded 
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sublists), for instance, 

[. . . label(LI), [instr(LOAD, X), instr(ADDI, 3)], . . -1 

In Warren’s paper the arguments of instructions are stored in a dictionary, 
but remain unbound to actual memory addresses until the very final phase of the 
compiler. At that time an assembler determines the addresses of labels, and an 
allocator binds the addresses of the variables and reserves the number of memory 
locations needed to run the compiled program. We now present some fragments 
of Prolog programs that perform the generation. An assignment of an expression 
Expr to a variable X is translated into the list whose head is the generated code 
for the expression followed by the instruction ST0 X. The procedure encode- 
statement has three arguments: the syntax-tree, the dictionary Diet, and the 
resulting code. We have 

encode-statement(assign(name(X), Expr), 
Diet, 
[Exprcode, instr(sto, Addr)]) :- 
lookup(X, Addr, Diet), 
encode-expr(Expr, Diet, Exprcode). 

The procedure lookup stores the new variable X if it is not yet entered in Diet 
and retrieves the unbound variable representing its address (see Section 4). 

The procedure encode-expr can handle two shapes of arithmetic expression 
syntax-trees. In the first the right operand is a leaf (i.e., a variable or a constant). 
In the second the right operand is a subtree. The syntax-tree for arithmetic 
expressions has internal nodes labeled by the operator Op. The more complex 
case where the right operand is a subtree is presented below. Its action is to 
translate expr(Op, Exprl, Expr2) (in which Expr2 is of the form expr(Op, Anyl, 
Any2) into the sequence containing 

(1) the code for Expr2, 
(2) the instruction ST0 temp, 
(3) the code for Exprl, and finally, 
(4) the code for the instruction specified by Op. 

An added argument N is needed to specify the pool of temporary locations. Its 
initial value is zero. In Prolog we have 

encode-subexpr(expr(Op, Exprl, Expr2), N, Diet, 
[Exprkode, instr(sto, Addr), Exprlcode, instr(Opcode, Addr)]) :- 

complex (Expr2), 
lookup(N, Addr, Diet), 
encode-subexpr(Expr2, N, Diet, ExprZcode), 
NlisN+l, 
encode-szbexpr(Exprl, Nl, Diet, Exprlcode), 
memoryop (Op, Opcode). 

complex(expr(Op, Anyl, AnyP)). 
memoryop(+, add). 
memoryop(*, m&t). 
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The code generated for the previous expression A* (A* B + C - C* D) now 
becomes 
LOAD C 
MULT D 
ST0 TO 
LOAD 
MULT ii 
ADD C 
SUB To 
ST0 T,, 
LOAD A 
MULT T,, 

Note that since a right subtree is evaluated before a left one, the code for C* D 
is the first to be generated. 

The use of labels is illustrated by the generation of code for while statements. 
The translation consists of transforming the syntax-tree while (Test, Do) into the 
code 
hbel(L1): (encode Test) 

(encode Do ) 
jump Ll 

lubel(L2): 

Note that a new argument (L2) is needed in the procedure that encodes tests 
to generate the jump to the exit label. The Prolog program to achieve the 
translation parallels the above description. 
encode-statement (while (Test, Do), Diet, 
[hbel(Ll), Testcode, Docode, in&( jump, Ll), bbel(L2)]) :- 

encode-test (Test, Diet, L2, Testcode), 
encode-statement(Do, Diet, Docode). 

7.3 A Machine-Independent Algorithm for Code Generation 
An alternate approach to code generation is that proposed by Glanville and 
Graham [15, 161. It is assumed that by syntax-directed translation a source 
program is translated into its prefix Polish counterpart. A second syntax-directed 
translation of the prefix code then produces actual machine code. The interesting 
feature of this approach is that the grammar used to recognize the prefix takes 
into consideration the description of the machine for which code is generated. 
Consider a register machine whose operations are of the type 

LOAD M, R 
ADD R1, R2 or ADD M, R 
ST0 R, M 
ADDI C, R 

where M is a memory address, C is a constant, and R is a register, and the first 
argument is the source, the second the destination. To simplify the presentation, 
we assume an unlimited pool of registers. The problem of dealing with a limited 
number of registers is discussed in the next section. 
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The grammar rule 

R + op R var 1 var 

describes a prefix string in which the last operand is always a variable, (e.g., as 
in + + a b c). The code to be generated in this case can be triggered by semantic 
actions corresponding to the rules 

R + var 
Action: Load variable into register r 

R + op R var 
Action: 1. recognize (recursively) the left operand R assuming that it will 

use register r 
2. generate the code: op var r 

Similar grammar rules are applicable for generating code when the last operand 
is a constant. The more general case corresponds to the grammar rule 

R + op R R 1 var 1 const 
In this case a new register is needed before recursing to the second R. Also, a 
register becomes available after recognizing the second R. A natural way of 
implementing the Glanville-Graham approach is through the use of DCGs. The 
following simplified grammar rules express assignments: 

A + := var R 
R+opRvar~opRconst 
R-+opRR 
R + var I const 

Note that this is an ambiguous grammar, and therefore the use of cuts at the end 
of each clause is recommended to avoid generating multiple solutions. The 
recursive descent compiler generated from the DCGs opts, whenever possible, to 
the first rule defining R, instead of the more general second rule. 

The procedures listed below specify the syntax-directed translation of prefix 
Polish into assembly language according to the above grammar rules. The 
procedure reg corresponds to the nonterminal R and has three parameters: 

(1) generated assembly language sequence, 
(2) register containing the final result, 
(3) dictionary for storing variables. 
Although the presented program assumes an unlimited number of registers, it is 
fairly straightforward to modify it to consider a finite number only. This can be 
done by adding extra parameters to the procedure reg. 

The first two clauses of reg treat the special cases where the second parameter 
is a variable or a constant: 
% Rule:R+OpRvar. 
reg([Sl, imtr(Op, Addr, Rl)], Rl, D) --+ 

arithop(Op, Optwe), 
regC% RL D), 
[uar(Var)l, 
(lookup( Var, D, Addr), !). 
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% Rule: R --, Op R const. 
reg([Sl, instr(Constop, C, Rl)], Rl, D) --+ 

arithop(Op, Optwe), 
redsl, RI, D), 
bdC)l, 
{constop(op, Con-stop), !). 

where arithop and constop are defined as 
arithop(sub, noncommute) --+ [-I. arithopbdd, commute) --+ [+I. 
arithop(diu, noncommute) --+ [/I. arithp(nult, commute) --+ [*I. 

constop(sub, subi). constop(diu, diui). 
constop(add, addi). constop(mult, multi). 

It is possible to perform some optimization in the case of commutative operations. 
For that purpose two additional DCG clauses are included to process the rules: 

R + op var R and R + op const R 
The DCG clause for the first of these rules is given below. 
% Rule: R -+ op uar R(op is commutatiue). 
reg([Sl, instr(Op, Addr, Rl)], Rl, D) --+ 

arithop(Op, commute), 
[udVar)l, 
reg(S1, RI, D), 
(lookup( Var, Addr, D), !I. 

The more complex DCG given below corresponds to the rule R + op R R. 
% Rule:R-*opRR. 
reg([Sl, S2, instr(Op, R2, Rl)], Rl, D) --+ 

arithop(Op), 
redS1, RI, D), 
(R2 is Rl + 1), 
reg(S2, R2, D), (!). 

Two recursive calls are made to reg to determine the subsequences Sl and S2 
representing the code for calculating the two operands. The simple DCG clauses 
for the rules R + uar and R + const generate the necessary instructions that 
load a register with a variable or with a constant. 
% Rule: R + var. 
reg(instr(load, Addr, Rl), Rl, D) --+ 

[MVar)l, 
{lookup( Var, D, Addr), !). 
% Rule: R + const. 
reg(instr(hzdc, C, Rl), Rl, D) --+ 

[co=dC)l, 1% 
Finally, we present the DCG clause for generating an assignment expressed in 

prefix by the rule 
A + := var R. 

% Code generator for assignments. 
instruction([Sl, instr(store, 1, Addr)], D) --+ 

[assign, uar (Vur)], 
red% 0, D), 
(lookup( Var, Addr, D)]. 
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Notice that the chosen grammar relies extensively on backtracking for recog- 
nizing the appropriate rule. For example, consider the two rules 

R --+ Op R const 
R --+ Op R var 

and the input string (+ + 5 c d). Although the first rule will not apply, it will 
nonetheless be tried, and the code for the expression (+ 5 c) will be generated 
before backtracking. The same code will then have to be regenerated when the 
second rule is applied. This can be avoided by considering the following trans- 
formed equivalent grammar: 

R --+ Op R R2 
R2 --+ Var 1 Const 

This transformation can be easily generalized to the case at hand, and the 
resulting parser will not rely on backtracking so there will be no need to insert 
cuts into the program. 

An example of the code generated by this technique for the expression 
,*(A* B + C - C*(D - E)) is 
LOAD B, RO 
MULT A, RO 
ADD C, RO 
LOAD D, Rl 
SUB E, Rl 
MULT C, RI 
SUB Rl, RO 
MULT A. RO 

7.4 Code Generation from a Labelled Tree 
We conclude this section by presenting the Prolog programs implementing the 
optimal code generation applicable to labelled trees as described in [ 1] 

The labelling phase consists of a postorder walk on a syntax-tree in which left 
leaves are labelled with a 1 and right leaves with a 0. Interior nodes are labelled 
by max(left, right) if the left label is different from the right one; otherwise the 
interior node is labelled with right + 1. The label of the root specifies the total 
(optimal) number of registers needed to code the syntax-tree without using 
temporary locations. In Prolog the labelling is accomplished by the clause Zubel, 
having four parameters: (1) the original syntax-tree, (2) a mark denoting a left 
or right branch, (3) the generated labelled tree, and (4) the node label itself. 
lubel(uar(X), left, uar(X, l), 1). 
lubel(uar(X), right, uar(X, 0), 0). 
label(expr(Op, Left, Right), 2, expr(Op, El, E2, Label), N) :- 

hbel(L.eft, left, El, L.ubell), 
lubel(Right, right, E2, LabelZ), 
nmx(Label1, LabelP, Label). 

mux(N, N, Nl) :- Nl is N + 1. 
m&N, Nl, N) :- N > Nl. 
max(N1, N, N) :- N-c Nl. 
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The actual code generation algorithm is practically the same as that presented 
on p. 544 of [l]. The parameters of gencode are (1) the labelled syntax-tree, 
(2) the register stack, (3) the maximum number of registers, and (4) the next 
available temporary location. The procedure will output code for the expression 
in such a way that the result of the expression is stored in the register at the top 
of the register stack. (We remind the reader that any program that uses write to 
produce its results can easily be modified to store the results in a list, as described 
in Section 4). 

The first two clauses consider the simplest cases dealing with leaves. The third 
clause is applicable only when the right subexpression is a tree. It finds the labels 
of the two subexpressions and calls gencodel which generates code using the 
minimal number of registers and temporaries. We purposely avoided the use of 
cuts by ensuring that each of the clauses deal with mutually exclusive cases, and 
so no backtracking is possible. 

% case 0: left expression is a leaf. 
gencode(var(X, l), [Reg ] RestR], Max, Temp) :- print(moue, X, Reg). 
% case 1: right expression is a leaf. 
gencode(expr(Op, X, uar( Y, 0), Label), [Reg ] RestR], Max, Temp) :- 

gencode(X, [Reg ] RestR], Max, Temp), 
write(Op, Y, Reg). 

% cases 2a, 2b, and 2c: left and right expressions are trees. 
gencode(expr(Op, L, R, Any-Label), Regs, Max, Temp) :- 

labelvalue(L, NL), 
labelvalue(R, NR), NR > 0 
gencodel(expr(Op, L, R, Any-Label), Regs, Max, NL, NR, Temp). 

% case 2a: Left expression can be computed without temporaries. 
gencodel(expr(Op, L, R, Any-Label), [Regl, Reg2 ] RestR], Max, Nl, N2, Temp) :- 

Nl < N2, Nl < Max, 
gencode(R, [RegZ, Regl ] RestR], Max, Temp), 
gencode(L, [Regl ] RestR], Max, Temp), 
write (Op, Reg2, Regl). 

% case 2b: Right expression can be computed without temporaries. 
gencodel(expr(Op, L, R, Any-Label), [Regl, Reg2 ] RestR], Max, Nl, N2, Temp) :- 

N2 =< Nl, N2 <Max, 
gencode(L, [Regl, Reg2 ] RestR], Max, Temp), 
gencode(R, [Reg:! ] RestR], Max, Temp), 
write(Op, Reg2, Regl). 

% case 2~: temporaries are required. 
gencodel(expr(Op, L, R, Any-Label), [Reg ] RestR], Max, Nl, N2, Temp) :- 

Nl 2 Max, N2 > Max, 
gencode(R, [Reg ] RestR], Max, Temp), 
write(move, Reg, t (Temp)), 
NextTemp is Temp + 1, 
gencode(L, [Reg ] RestR], Max, NextTemp), 
write(Op, t(Temp), Reg). 

% miscellaneous. 
labelvalue(expr(Any1, Any2, Any3, N), N). 
labelvalue(var(Any1, N), N). 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



154 l J. Cohen and T. J. Hickey 

Assuming that two registers are available, the code generated for the expression 
((A - B)/(C - D))l((E - J’MG - f0) is 

MOVE E, R0 
SUB F, Ro 
MOVE G, R, 
SUB H, RI 
DIV RI, Ro 
MOVE R,,, T,, 
MOVE A, R,, 
SUB B, R,, 
MOVE C, R, 
SUB D, R, 
DIV RI, Ro 
DIV To, Ro 

We conclude this section by pointing out that Cattell’s method of code gen- 
eration is a prime candidate for prototyping using Prolog. In his dissertation, 
Cattell [5] proposes a method for formalizing and automatically deriving code 
generators from machine descriptions. The method consists of constructing a 
syntax-tree-like description for each instruction in the machine’s repertoire. 
A special tree-matching program then generates code sequences by combining 
the available instruction syntax-trees so that they match the syntax-tree repre- 
senting a source program. Cattell’s approach combines AI techniques with those 
in current use in compiler construction. 

Although the code generators described herein are specialized to the case of 
Algol-like programs, Prolog has already proved its usefulness in writing Prolog 
compilers [3]. At Brandeis we have developed a Prolog compiler that compiles 
Prolog programs into equivalent C programs [8]. A remarkable feature of these 
compilers is their conciseness and the ease with which they can be changed to 
generate code in various target languages. 

8. OPTIMIZATIONS 

8.1 Compile-Time Evaluation 
Compile-time evaluation of numerical expressions and algebraic simplification 
are easily performed by transforming the syntax-trees of arithmetic expressions 
into equivalent trees containing fewer nodes. Both of the procedures evaluate 
and simplify have as arguments the initial and final trees. They also have a 
similar structure: recursive calls are made to process the left and right branches 
until the leaves are reached. Then the auxiliary procedure simp is called to 
perform the actual simplifications. This allows successive simplifications to be 
performed. 

% leaves are left unchanged 
evaluute(const(X), const(X)). 
evahte(var(X), var(X)). 
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% internal nodes are optimized after each of its subtrees 
70 has been optimized 
evaluate(expr(Op, Left, Right), Optexp) :- 

eualuate(left, Optleft), 
evaluate(Right, Optright), 
simp(expr(Op, Optkft, Optright), Optexp). 

simp(expr(Op, const(X), const(Y)), const(Z)) :- 
Temp =. . [Op, X, Y], Z is Temp. 

(In the Edinburgh syntax [6], the operation Temp =. . [Op, X, Y] binds Temp to 
the term Op(X, Y)). Note that, unfortunately, this procedure is unable to simplify 
expressions such as a + 3 + 2 into a + 5. This may be achieved by writing a 
simple procedure that transforms left-associative expressions into equivalent 
right-associative expressions. The procedure that performs algebraic simplifica- 
tions is 
simplify(expr(Op, X, Y), U) :- 

simplify(X, Left), 
simplify( Y, Right), 
simp(expr(Op, Left, Right), U). 

simplify(X, X). 

As before, the auxiliary procedure simp performs the actual simplifications. 
simp(expr(Op, X, const(O)), X) :- addop(Op). 
simp(expr(Op, X, const(l)), X) :- multop(Op). 
simp(expr(*, X, const(O)), const(0)). 
simp(expr(*, const(O), X), const(0)). 
simp(X, X). 
addop(+). addop(-). muZtop(*). m&top(/). 

8.2 Peephole Optimization 
Table I summarizes some of the typical peephole optimizations that can be 
performed after code generation. The table also indicates the source program 
segments, resulting in code that can be optimized in this manner. 

We first note that if Warren’s approach (Section 7.2) is used for code genera- 
tion, an additional pass is needed to “flatten” the list that makes up the generated 
code. This list contains sublists resulting from the order in which the clauses 
endcode statements are activated. Assuming that the code consists of a list of 
elements separated by (right-associative) semicolons, it is a simple matter to 
express in Prolog the optimizations in Table I: 
% if pattern is found perform the optimization. 
peep([instr(sto, X), instr(load, X) 1 L], [instr(sto, X) 1 M]) :-peep&, M). 
peep([instr(subi, 0) I L], M) :-peep@, M). 
peep([lubel(A), instr(jump, A) 1 L], M) :- peep([instr(jump, A), L], M). 
% keep trying with tail of list. 
ped[X I Ll, IX I Ml) :-peep& MI. 
pw([ I, 1 I). 
Note that the above program can handle the nondeterministic situations arising 
when the code to be inspected using the first parameter renders more than one 
peep clause applicable. The resulting nondeterministic searches could result in 
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Table I. Peephole Optimization 

Source code Compiled code 
a:= . . . ST0 a 
b:=a . . . LOAD a 
ifa<Othen -.. SUB1 0 

Optimization code 
ST0 a 

e 
while.. . do 
if...then...else; 

JUMP a 
. . . 

a: JUMP b 

JUMP b 
. . . 

a: JUMP b 

longer processing times. It is up to the designer to decide whether this overhead 
brings significant gains in the execution of the optimized code. A careful ordering 
of the clauses and a judicious introduction of cuts can reduce some of the 
overhead. It is also possible to control the amount of backtracking by introducing 
and tallying costs which, when exceeded, trigger the choice of alternate paths 
(see Section 9). 

Finally, it should be mentioned that David Hildum and the first author were 
able to implement, using Prolog, all of the (over one hundred) peephole optimi- 
zations applicable to a P-code-like intermediate language [27]. This was achieved 
by prototyping a language for specifying the transformations. An interesting 
aspect of this implementation is that DCG rules are used to generate another set 
of DCG rules needed to match and replace patterns. 

9. USING PROPOSED EXTENSIONS 
Several extensions have been proposed to enhance the capabilities of Prolog. The 
reader is referred to [S] for a brief description of some of these extensions. ‘Iwo 
of them are of special interest in compiler construction and are dealt with in this 
section: the use of the built-in predicate freeze and unification involving infinite 
trees. These features are available in Prolog II [lo], in the interpreter developed 
by Carlsson [4] and in MU-Prolog [2312. 

The predicate freeze (also referred to as lazy evaluation, or coroutining) has 
the form 

freeze ( Var, Procedure) 

Its action is to immediately activate the given Procedure if the variable Var is 
bound. Otherwise, the Procedure becomes a dormant goal until Var is bound. In 
that event, Procedure becomes the next goal to be activated. It is straightforward 
to write a metalevel interpreter that simulates the effect of freeze [8]. This 
interpreter is admittedly inefficient. Nevertheless, when compiled, it is usable 
for processing small examples. 

We illustrate the use of freeze in two contexts: (1) coroutining the scanning, 
parsing, and code generation phases of a compiler, and (2) error detection and 
recovery. 

The coroutining of the phases is particularly useful when parallel processing 
is available: it allows the intermediate results of one phase to be transmitted to 

’ One purpose of presenting them here is to generate interest, so that they will become more generally 
available. 
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the subsequent phase and therefore speed-up the computation by triggering 
simultaneous executions whenever possible. (In Warren’s compiler [31] the 
phases are strictly sequential.) Consider the simple procedure 
readlkt(L) :- read(X), readrest(X, L). 
readrest(stop, [ I). 
readrest(X, [X 1 L]) :- readrest( 

The built-in predicate read reads individual atoms, and readlist assembles them 
into a list. The atom stop is used as a flag to terminate the reading. 

The availability of freeze allows one to write a writelist procedure which outputs 
the elements of a list as soon as they are read: 
writelist ([ I). 
writeZist([H 1 T]) :- freeze(H, write(H)), freeze(T, writelist(T 

The query is: ?- freeze(L, writelist(L readlist( 
The same ideas can be used to alternately transfer control among the scanner, 

the parser, and the code generator. The main procedure compile is 
compile :- freeze (Tree, encode-statement (Tree, Diet, Code)), 

freeze(List, parse(Lkt, Tree)), 
scan(List). 

The above states that purse can only be activated as soon as (a part of) a List is 
available. Similarly, encodestatement is activated as soon as a (partially) instan- 
tiated syntax-tree becomes available. It is of course necessary to “sprinkle” 
additional freezes within parse and encode-statement. This is illustrated below 
by examples. The translated DCG rule for parsing a while statement becomes 
stutement(whik(Test, Do), [while 1 Dl], 04) :- 

freeze(D1, test(Test, Dl, D2)), 
freeze(D2, eq(D2, [do 1 D3])), 
freeze(D3, statement(Do, D3,04)). 

The second and third parameters of statement and test are the difference lists for 
parsing strings derived from the corresponding nonterminals. The procedure eq 
is simply the unit clause eq(X, X) which unifies its arguments. The effect of 
freezing on Dl, 02, and 03 is to allow test and the recursive call of statement to 
be activated only when the pertinent information becomes available. Similarly, 
the code generator for a while node of the syntax-tree (see Section 7.2) becomes 
encode-statement(while(Test, Do), Diet, . . .) :- 

freeze(Test, encode-test(Test, Diet, L2, Testcode)), 
freeze(Do, encode-statement(Do, Diet, Docode)). 

Figure 1 shows the alternating flow of control among the scanner, parser, and 
code generator while compiling a small program using the coroutining technique. 
The reader might have already suspected that the introduction of freezes could 
be done automatically. We have indeed developed programs that perform this 
task, based on user-specified mode declarations (input or output) for each 
parameter of a procedure. 

Another usage of freeze is in error detection and recovery. The following 
example just illustrates the main ideas, which are based on the work of Mickunas 
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begin i := 0 I while i < 100 do i := i + 1 end . stop 

Scan 

parse 

Encode 

Figure 1 

-1 J -J 

and Modry [22]. At the top level the procedure recover has two parameters: 
(1) the possibly erroneous input string and (2) the corrected string. 
recover ( Tokens, Tree) :- 

freeze(Filtered-tokens, parse(Filtered-tokens, Tree)), 
correct( Tokens, Filtered-tokens, 0). 

The variable Filtered-tokens is initially unbound; purse will call the corresponding 
procedures that use the difference lists. The third parameter of correct is the 
initial cost of correction. The approach consists of attempting to insert or to 
delete tokens in the input string so that an erroneous string becomes parsable. If 
necessary, different costs for insertion and deletion, applicable to specific ter- 
minals, can be specified by the designer. In the simplified version of correct listed 
below, a unit cost is used for both operations. The database contains a unit clause 
cost-ok(nax) in which mar is a number that controls the amount of backtracking. 
% final scan 
correct([ 1, [ 1, Cost). 
70 normal scan 
correct([X 1 R], [X 1 Rl], Cost) :- correct(R, Rl, Cost). 
% deletion 
correct([X 1 R], Rl, Cost) :- 

cost-ok(Cost), 
Cost1 is cost + 1, 
correct(R, Rl, Costl). 

% insertion 
correct(R, [I 1 Rl], Cost) :- 

cost-ok(Cost), 
Cost1 is cost + 1, 
correct(R, Rl, Costl). 

Note that the variable I in the insertion clause will be bound by the parser 
according to the grammar rules. 

A more elaborate version of correct could reduce the amount of nondeterminism 
by making insertions and deletions based on examining the (fragments of the) 
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parse tree constructed prior to encountering an error. This is the approach 
described in [ 221. 

In addition to the two above uses of freeze, we have explored its application in 
dataflow analysis. The iterative methods described in [l] can be implemented 
using a variant of freeze in which the frozen variables simulate the incoming and 
outgoing flow of information for each block. 

The other proposed extension of Prolog that is useful in compiler design deals 
with the so-called infinite trees. It is Colmerauer’s contention that grammars, 
flowcharts, and programs frequently specify loops or recursion [ll], which can 
be conveniently described using directed graphs. Their use within Prolog requires 
that the unification operation be extended to handle circular structures instead 
of trees. 

An elegant and novel approach for implementing a scanner generator using 
infinite trees has been developed by students of the University of Marseilles [12] 
under the guidance of A. Colmerauer. It consists of using a special type of 
unification to produce the minimal finite state automaton directly from a given 
regular expression. Most Prolog interpreters perform unification only on trees. 
A notable exception is the interpreter developed at Marseilles, which can unify 
special kinds of graphs called infinite trees [lo]. For example, when the unit 
clause eq (X, X) is matched with eq (A, stute(a(A ))), the resulting unification is 
expressed by the infinite tree: 

Terms representing states have an additional component specifying whether 
the state is final or not. The procedure to translate a regular expression into the 
corresponding minimal finite state automaton takes as input the expression given 
by its syntax-tree and produces as result the infinite tree corresponding to the 
minimal automaton. The highlights of this translation are given in what follows. 

If a node of the syntax-tree is a conc(L.eft, Right), one recursively determines 
the automata corresponding to the Left and Right branches and “concatenates” 
the two automata to obtain the result. Concatenation of two automata Al and 
A2 is performed by checking whether the starting state of Al is final or not-find. 
In the first case the resulting automata is the union of the automata A2 with the 
concatenation of automata Al’ and A2, in which Al’ is a modified copy of Al in 
which the starting state is considered to be not-find. In the second case the 
concatenation of the two automata consists of specifying the proper transitions 
between the final states of Al directly to the states that stem from the initial 
state of A2. The union and star operations are processed similarly. 

A dictionary is “carried along” as a parameter to provide the information 
needed to keep a single copy of each of the generated subautomata needed to 
construct the desired one. Therefore, before proceeding to generate an automaton 
corresponding to a subpart of a regular expression, the dictionary is used to check 
if the translation has already been done. If so, the desired subautomaton is 
retrieved from the dictionary. Otherwise, the automaton is determined and the 
corresponding entry is placed in the dictionary. This per se does not guarantee 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



160 l J. Cohen and T. J. Hickey 

the construction of a minimal automaton. The program that “prints” the desired 
infinite tree is actually the one responsible for the minimization [26]. Again with 
the use of a dictionary, the printing program keeps unique copies of each subtree 
of the given infinite tree and uses them every time identical subtrees are found. 
This process has been proved to terminate [ll], and for the particular problem 
at hand it yields the desired minimal automaton. 

The authors of this program [12] extended its capabilities to handle the 
difference and intersection of regular expressions. The program hardly exceeds 
three pages of code; it also uses another feature that is only available in Marseilles’ 
interpreters: the constraint &ff(X, Y), meaning X # Y is valid even when X and 
Y are uninstantiated, therefore allowing the program’s execution to continue in 
the forward mode. Backtracking is thus postponed until it is found that the 
ensemble of constraints becomes unsatisfiable. 

10. FINAL REMARKS 
In the previous sections we described in Prolog several algorithms that play an 
important role in the design and construction of compilers. We hope it has 
become apparent to the reader that the descriptions using Prolog are substantially 
more concise than those which appear in current textbooks. For example, Aho 
and Ullman often use a mixture of English, the language of sets, and control 
primitives usually found in Pascal-like languages. The reader is urged to compare 
some of their descriptions to those presented in this paper. 

The experience we gained with Prolog has convinced us of its effectiveness as 
a language for rapid prototyping compilers and for developing ancillary tools. 
Presently, the highest gains are achieved in the development of tools in which 
performance is not of prime consideration. This is the case of automatically 
producing code generators, parsers, and scanners. Even if the generation of these 
components takes considerable computer time (say a few hours), the combined 
man-machine effort may be inexpensive when compared to the human resources 
needed to produce their hand-coded counterparts. Another area in which the 
language has proved its usefulness is in the writing of compilers for Prolog itself. 
It is fair to say that most Prolog compilers are written in Prolog. The gains are 
substantial, especially because they have to process relatively short programs, 
and compilation can be done incrementally as the procedures are developed. 

Yet another advantage of using Prolog programs is their ability to perform 
computations both in the forward and reverse directions. It should therefore be 
possible to decompile target code to obtain the corresponding source code. 
Although this is in principle feasible, the use of “impure” Prolog features 
such as the cut and the assignment (is) render the reverse execution impossible. 
These problems may be circumvented by using the generalized diff, mentioned in 
Section 9, and by ensuring that simple assignments such as those incrementing 
the values of variables become backtrackable. 

Among the shortcomings of Prolog, it should be mentioned that the language 
is still in evolution and that, presently, a suitable environment for developing 
larger Prolog programs is not yet available. The language also suffers from the 
nonexistence of a methodology for documentation, the lack of scoping for vari- 
ables, the ever-increasing number of parameters, and the resulting profusion of 
identifier names. 
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Benchmarks of the parsers and code generators described in this paper showed 
that their interpretation is indeed slower than the compiled equivalent programs 
written in C or in Pascal. Compiled Prolog programs running on a dedicated 
workstation exhibit 5- to lo-fold speed-ups compared to their interpreted ver- 
sions. For example, the compiled version of Warren’s minicompiler enabled us 
to generate code for sample programs containing a few hundred statements in a 
couple of minutes. Such compilation speeds are still admittedly below those 
attained by equivalent compilers written in C. However, we feel that there is a 
great potential for improving considerably the performance of compilers written 
in Prolog. The justifying arguments are as follows. 

The advantages of Prolog basically stem from the use of unification and 
nondeterminism. The present price paid for the advantages are increasing de- 
mands in memory and execution time. Since compilers are usually designed to 
avoid nondeterministic situations, it is important to reduce Prolog’s interpreter 
(or compiled code) overhead for dealing with these situations. Once it is known 
that a Prolog program is deterministic, several optimizations can be carried out. 
One of them is to eliminate the need of saving choice points for backtracking 
purposes. The optimized program can then achieve the efficiency of the corre- 
sponding programs written in a functional language (see [30]). 

In a recent paper, Mellish [21] provides weak conditions for determining 
automatically if a set of Prolog procedures is deterministic. His method is based 
on a dataflow analysis in which properties of programs are determined by 
iteratively solving a system of equations. The efficiency of the compiled code can 
also be increased by having the user supply, by a mode declaration, the nature 
(input or output) of each parameter of a procedure. This allows the compiler not 
only to discard certain nondeterministic situations, but also to replace costly 
unifications by the simpler operations of assignments and conditionals. 

A possibility that should not be overlooked in the quest to speed-up Prolog 
programs is the use of parallel processing. In contrast with most other languages, 
Prolog offers an embarrassment of riches for exploiting parallelism. The experi- 
ence gained by empirical or theoretical analysis of parallel Prolog compilers may 
therefore help to shed some light as to which particular approach yields better 
speed-up gains. 

We feel that the initial investment spent in learning Prolog is largely compen- 
sated for by the advantages accrued in having a shorter program-development 
stage and achieving program descriptions that can easily be tried and tested in a 
computer. It is also possible that other higher level languages such as SETL 
could be used with the same purpose. What seems certain is that the availability 
of these languages will make program description less verbose and more accurate. 
In addition, they will spur the development of optimization techniques capable 
of rendering efficient the descriptions that are not directly presented in an 
efficient form. The history of the development of Fortran and other languages 
indicates that this is not only a desirable goal but likely an unavoidable one. 
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