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Abstract- 
The use of evolutionary algorithms (EAs) to solve 

problems with multiple objectives (known as 
Multi-objective Optimization Problems (MOPs)) has 
attracted much attention recently. Being popula- 
tion based approaches, EAs offer a means to find 
a group of pareto-optimal solutions in a single 
run. Differential Evolution (DE) is an EA that was 
developed to handle optimization problems over 
continuous domains. The objective of this paper 
is to introduce a novel Pareto-frontier Differential 
Evolution (PDE) algorithm to solve MOPs. The 
solutions provided by the proposed algorithm 
for two standard test problems, outperform 
the Strength Pareto Evolutionary Algorithm, one of 
the state-of-the-art evolutionary algorithm for 
solving MOPs. 

1 Introduction 
Although single objective decision models are sufficient 
for some decision making processes, there are many 
situations where decisions have multiple objectives. 
Multi-objective problems are known as multi-objective 
optimization problems (MOPs). In these situations, the 
aim is to simultaneously optimize a group of conflicting 
objectives. MOPs are a very important research topic, 
not only because of the multi-objective nature of most 
real-world decision problems, but also because there are 
still many open questions in this area. In fact, there is 
no universally accepted definition of “optimum” in MOP 
as opposed to single-objective optimization problems, 
which makes it difficult to even compare results of 
one method to another. Normally, the decision about 
what the “best” answer is, corresponds to the so-called 
human decision maker (Coello 1999). 

Traditionally, there are several methods available in 
the Operational Research (OR) literature for solving 
MOPs as mathematical programming models, viz goal 
programming (Charnes and Cooper 1961), weighted 
sum method (Turban and Meredith 1994), goals as 
requirement (Coello 1999), goal attainment (Wilson 
and Macleod 1993), and the iso-resource-cost solu- 

tion method (Zeleny 1998). The concept of a goal 
is somewhat different from an objective. A goal is 
usually considered as a planned objective. Therefore, 
the optimality is measured, in the case of goal-based 
methods, in terms of the amount of deviation from the 
planned levels (aspiration levels). Among the previous 
methods, goal programming is the most widely used 
in practice although it relies on domain knowledge to 
setup the goals’ aspiration levels. None of the previous 
methods treat all the objectives simultaneously, except 
the Iso-resource-cost Solution method, which is a 
basic requirement in most MOPs. Subsequently, the 
solutions may be far away from the acceptable ones. 
These methods handle MOPs with a set of impractical 
assumptions such as linearity and convexity. 

The iso-resource-cost solution method (Zeleny 1998) 
has been recently demonstrated for a problem with two 
objectives, two variables and few constraints. To gener- 
ate the iso-cost solutions, the cost is assumed to equal 
the total cost of all available resources. Therefore, the 
set of solutions assumes full utilization of the resource 
budget. This may lead to many infeasible solutions 
(under original problem structure) in the solution set 
(Zeleny 1998). The amount of available resources is 
decided based on many factors other than the budget, 
and finding the appropriate mix of resources will make 
the problem even more complex. However, the concept 
of iso-resource-cost solutions would be very useful to 
enhance the future research in MOPs. 

In MOPs, there is no single optimal solution, but 
rather a set of alternative solutions. These solutions are 
optimal in the wider sense that no other solutions in 
the search space are superior to (dominate) them when 
all objectives are simultaneously considered. They are 
known as pareto-optimal solutions. Pareto-optimality is 
expected to provide flexibility for the human decision 
maker. 

Recently, evolutionary algorithms (EAs) were found 
useful for solving MOPs (Zitzler and Thiele 1999). EAs 
have some advantages over traditional OR techniques. 
For example, considerations for convexity, concavity, 
and/or continuity of functions are not necessary in 
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EAs, whereas, they form a real concern in traditional 
OR techniques. Although EAs are successful, to some 
extent, in solving MOPs, the methods appearing in the 
literature vary a lot in terms of their solutions and the 
way of comparing their best results with other existing 
algorithms. In other words, there is no well-accepted 
method for MOPs that will produce a good set of 
solutions for all problems. This motivates the further 
development of good approaches to MOPs. 

In this paper, we develop a novel Diifferential Evolu- 
tion (DE) algorithm for MOPs. The approach shows 
promising results when compared with the Strength 
Pareto Evolutionary Algorithm (SPEA) (Zitzler and 
Thiele 1999), for two benchmark problems. The paper 
is organized as follows: background materials are scruti- 
nized in Section 2 followed by the proposed algorithm in 
Section 3. Experiments are then presented in Section 4 
and conclusions are drawn in Section 5. 

2 Background Materials 
2.1 Local and Global optimality in MOPs 
Consider a MOP model as presented below:- 

Optimize F ( Z )  
subject to: R = {d E RnlG(d) 5 0) 

Where Z is a vector of decision variables 
(SI,. . . ,xn) and F ( Z )  is a vector of objective functions 
(fl(Z), . . . , ~K(Z)). Here fl(Z), . . . ,~K(Z), are functions 
on Rn and R is a nonempty set in R”. The vector G(Z) 
represents constraints that may be easily handled ex- 
plicitly, such as lower and upper bounds on the variables. 

In MOPs, the aim is to find the optimal solution 
Z’ E R which optimize F(d). Each objective €unction, 
f,(Z), is either maximization or minimization. In 
this paper, we assume that all objectives are to be 
minimized for clarity purposes. We may note that 
any maximization objective can be transformed to a 
minimization one by multiplying it by -1. 

To define the concept of non-dominated solutions in 
MOPs, we need to define two operators, $Z and 5 and 
then assume two vectors, d and c. d y’ iff 3 x, E Z 
and y, E asuch  that x, # y*. And, d 5 y’iff V x, E Z 
and y% E g, x, 5 y,, and 3 $Z g. and 5 can be seen 
as the ‘hot equal to” and “less than or equal to” oper- 
ators respectively, over two vectors. We can now define 
the concepts of local and global optimality in MOPs. 

Definition 1: Neighborhood or open ball The open 
ball (ie. a neighborhood centered on ? and de- 
fined by the Euclidean distance) &(?) = {.’ E 
Rnl 11.‘- ?I1 < a}. 

Definition 2: Local efficient (non-inferior/ 
pareto-optimal) solution A vector P E R is 
said to be a local efficient solution of MOP iff 
8 Z E ( B B ( P )  n 0) such th3t F ( Z )  5 F ( P )  for 
some positive 6. 

Definition 3: Global efficient (non-inferior/ 
pareto-optimal) solution A vector P E hl is 
said to be a global efficient solution of MOP iff 
3 .’ E R such that F ( Z )  5 IT(?). 

Definition 4: Local non-dominated solution A vec- 
tor y’* E F ( Z )  is said to be local non-dominated so- 
lution of MOP iff its projection onto the decision 
space, 2, is a local efficient solution of MOP. 

Definition 5: Global non-dominated solution A 
vector y’* E F ( Z )  is said to be global non- 
dominated solution of MOP iff its projection onto 
the decision space, P, is a global efficient solution 
of MOP. 

In this paper, the term “non-dominated solution” is 
used as a shortcut for the term “E;lobal non-dominated 
solution”. 

2.2 MOPs and EAs 

EAs for MOPs (Coello 1999) can be categorized as plain 
aggregating, population-based non-Pareto and Pareto- 
based approaches. The plain aggregating approaches 
takes a linear combination of the objectives to form 
a single objective function (such as in the weighted 
sum method, goal programming, and goal attainment). 
This approach produces a single scdution at a time that 
may not satisfy the decision maker, and it requires the 
quantification of the importance of each objective (eg. 
by setting numerical weights), which is very difficult 
for most practical situations. However optimizing all 
the objectives simultaneously and generating a set of 
alternative solutions, offer more flexibility to decision 
makers. The simultaneous optimization can fit nicely 
with population based approaches, such as EAs, because 
they generate multiple solutions in a single run. 

The Vector Evaluated Genetic Algorithm (VEGA) 
(Schaffer 1985) is a population-based non-Pareto ap- 
proach. In this approach, the total population is divided 
into a number of populations equals to the number of 
objective functions to be optimized. Each population is 
used to optimize each objective function independently. 
The populations are then shuffled together followed by 
conventional crossover and mutatiotn operators. Schaffer 
(Schaffer 1985) realized that the solutions generated 
by his system were non-dominated in a local sense, 
because their non-dominance was limited to the current 
population, and while a locally dominated individual is 
also globally dominated, the converse is not necessarily 
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true. 

In the Pareto-based approaches, the dominated and 
non-dominated solutions in the current population 
are separated. Goldberg (Goldberg 1989) suggested 
a non-dominated ranking procedure to decide the 
fitness of the individuals. Later, Srinivas and Dev 
(Srinivas and Dev 1994) introduced Non-dominated 
Sorting Genetic Algorithms (NSGA) based on the idea 
of Goldberg’s procedure. The population’s individuals 
are layered according to their ranks. Afterwards, the 
non-dominated individuals are removed layer by layer 
from the population. 

Fonseca and Fleming (Fonseca and Fleming 1993) 
proposed a slightly different scheme which is known as 
Fonseca and Fleming’s evolutionary algorithm (FFES). 
In this approach, an individual’s rank is determined 
by the number of individuals dominating it. Without 
using any non-dominated ranking methods, Horn et a1 
(Horn, Nafpliotis, and Goldberg 1994) proposed the 
Niched Pareto Genetic Algorithm (NPGA) that directly 
uses a group of randomly picked individuals to form 
a comparison reference set. The fitness of the two 
randomly selected individuals is decided according to 
whether they are dominated by any of the individuals 
from the comparison reference set. If both individuals 
are either dominated or non-dominated by the set, then 
a niched method is used for selection. 

The common features of the Pareto-based approaches 
mentioned above are that (i) the Pareto-optimal solu- 
tions in each generation are assigned either the same 
fitness or a rank, and (ii) some sharing and niche tech- 
niques are applied in the selection procedure. Recently, 
Zitler and Thiele (Zitzler and Thiele 1999) proposed a 
Pareto-based method, the Strength Pareto Evolutionary 
Algorithm (SPEA). The main features of this approach 
are: it 

sorts non-dominated solutions externally and con- 
tinuously update population, 

evaluates an individual’s fitness depending on the 
number of external non-dominated points that 
dominate it, 

preserves population diversity using the Pareto 
dominance relationship, and 

incorporates a clustering procedure in order to  re- 
duce the non-dominated set without destroying its 
characteristics. 

Currently, this approach seems to be an outstanding 
method in the literature. 

Most recently, Knowles and Corne (Knowles and 
Corne 1999; Knowles and Corne 2000) proposed a 
simple Evolution Strategies (ES), (1+1)-ES, known as 
the Pareto Archived Evolution Strategy (PAES) that 
keeps a record of limited non-dominated individuals. 
The non-dominated individuals are accepted for record- 
ing based on the degree of crowdiness in their grid 
(defined regions on the Pareto-frontier) location to 
ensure diversity of individuals in the final solution. The 
algorithm is strictly confined to local search i.e. it uses a 
small change (mutation) operator only, and move from 
a current solution to a nearby neighbor. As they re- 
ported, the algorithm works well, specially for problems 
of low computational complexity. They also propose 
an extension to this basic approach, which results in 
some variants of a ( p  + A) -ES. The performance of the 
algorithm is judged, by solving several test problems, 
and analyzing the superiority on different regions of the 
attainment surfaces. 

2.3 Statistical Analysis 

MOPS require multiple, but uniformly distributed, 
solutions to form a Pareto trade-off frontier. When 
comparing two algorithms, these two factors (number of 
alternative solution points and their distributions) must 
be considered. There are a number of methods available 
in the literature to compare the performance of different 
algorithms. The error ratio and the generational 
distance are used as the performance measure indicators 
when the Pareto optimal solutions are known (Veld- 
huizen and Mamont 1999). The spread measuring 
technique expresses the distribution of individuals over 
the non-dominated region (Srinivas and Dev 1994). 
The method is based on a chi-square-like deviation 
distribution measure, and it requires several parameters 
to be estimated before calculating the spread indicator. 

The method of coverage metrics (Zitzler and Thiele 
1999) compares the performances of different multi- 
objective evolutionary algorithms. It measures whether 
the outcomes of one algorithm dominate those of 
another without indicating how much better it is. 

Most recently, Knowles and Corne (Knowles and 
Corne 2000) proposed a method to compare the per- 
formances of two or more algorithms by analyzing the 
distribution of an approximation to  the Pareto-frontier. 
For two objective problems, the attainment surface is 
defined as the lines joining the points on the Pareto- 
frontier generated by an algorithm. Therefore, for two 
algorithms A and B,  there are two attainment surfaces. 
A number of sampling lines can be drawn from the 
origin, which intersects with the attainment surfaces, 
across the full range of the Pareto-frontier. For a given 
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sampling line, the intersection of an algorithm closer 
to the origin (for both minimization) is the winner. 
Given a collection of k attainment surfaces, some from 
algorithm A and some from algorithm B,  a single 
sampling line yields k points of intersection, one for 
each surface. These intersections form a univariate 
distribution, and we can therefore perform a statistical 
test to determine whether or not the intersections for 
one of the algorithms occurs closer to the origin with 
some statistical significance. Such a test is performed 
for each of several lines covering the Pareto tradeoff 
area. Insofar as the lines provide a uniform sampling 
of the Pareto surface, the result of this analysis yields 
two numbers - a percentage of the surface in which 
algorithm A significantly outperforms algorithm B, and 
the percentage of the surface in which algorithm B 
significantly outperforms algorithm A .  

2.4 Differential Evolution 

DE is a branch of evolutionary algorithms developed by 
Rainer Storn and Kenneth Price (Storn and Price 1995) 
for optimization problems over continuous domains. 
In DE, each variable’s value in the chromosome is 
represented by a real number. The approach works 
by creating a random initial population of potential 
solutions, where it is guaranteed, by some repair rules, 
that the value of each variable is within its boundaries. 
An individual is then selected at  random for replacement 
and three different individuals are selected as parents. 
One of these three individuals is selected as the main 
parent. With some probability, each variable in the 
main parent is changed while at least one variable 
should be changed. The change is undertaken by adding 
to  the variable’s value a ratio of the difference between 
the two values of this variable in the other two parents. 
In essence, the main parent’s vector is perturbed with 
the other two parents’ vector. This process represents 
the crossover operator in DE. If the resultant vector is 
better than the one chosen for replacement, it replaces 
it; otherwise the chosen vector for replacement is 
retained in the population. Therefore, DE differs from 
GA in a number of points: 

1. DE uses real number representation while conven- 
tional GA uses binary, although it sometimes uses 
integer or real number representation as well. 

2. In GA, two parents are selected for crossover and 
the child is a recombination of the parents. In 
DE, three parents are selected for crossover and 
the child is a perturbation of one of them. 

3. The new child in DE replaces a randomly selected 
vector from the population only if it is better than 

it. In conventional GA, children replace the par- 
ents with some probability regardless of their fit- 
ness. 

In DE, a solution, 1,  in generation i is a multi- 
dimensional vector &=; = (.: ,. . . , .”,,’. A popula- 
tion, PG=k, at generation G = k is a vector of M 
solutions ( M  > 4). The initial population, PG=O = 
{Z,&o,. . . ,Zg=o}, is initialized as 

= lozuer(s;)+randi[O, 11 x (zipper(x;)-lozuer(~;)), 

1 = 1 ,  . . .  , M ,  i = 1 , 2  ,..., N 
where A4 is the population size, PJ is the solution’s di- 
mension, and each variable i in a solution vector 1 in the 
initial generation G = 0, z : , ~ = ~ ,  is initialized within its 
boundaries (lower(ai) ,  upper(xi)) .  Selection is carried 
out to select four different solutions indices r1, ~2~7’3, and 
j E 11, MI. The values of each variable in the child are 
changed with some crossover probability, CR, to 

.I,%=k-1 + ,x (xI,b=k-l - 5i,k=k-1) 
Vi 5 N , x & ~  = if (randoria[O, 1) < CR A i = irand) { xi,G=k--l otherwise 

where F E (0 , l )  is a problem parameter representing the 
amount of perturbation added to t,he main parent. The 
new solution replaces the old one if it is better than it 
and at least one of the variables should be changed. The 
latter is represented in the algorithm by randomly se- 
lecting a variable, zrand € (1, N). iifter crossover, if one 
or more of the variables in the new solution are outside 
their boundaries, the following repair rule is applied 

2: G + l o w e ~ ( z i )  

z:,c=k = lower(zi) + 4 , c - U P P e r ( s i )  

if ‘4,,+, < lower(xi) 
- if 4 , G + 1  > upper(xi) r 2  X 3 , G + 1  ‘ 2  otherwise 

The DE algorithm is presented in Figure 1. 

3 PDE: A Pareto-frontier Differential 
Evolution algorithm for MOPS 

A generic version of the adopted algorithm is presented 
in Figure 2. The PDE algorithm is similar to the one 
presented in Figure 1 with the following modifications:- 

1. The initial population is initialized according to a 
Gaussian distribution N(0.5,0.15). 

2. The step-length parameter F is generated from a 
Gaussian distribution N(0,l) .  

3. Reproduction is undertaken. only . among non- 
dominated solutions in each generation. 
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let G denotes a generation, P a population of size M ,  

dimension N in population P in generation k, 
and CR denotes the crossover probability 

and the j t h  individual of 

input N ,  M 2 4, F E (0 ,  l+), CR E [0,1], and initial 

initialize PG,o = {z&=~, . . . ,#=o} as 
for each individual j E PG=O 

bounds: lower(x,),upper(xi),i = 1, .  . . N 

<,G=o = lower(si) + randi[O, 11 X 
(upper(xi) - lower(xi)),i = 1, .  . . , N 

end for each 
evaluate PG=O 
k = l  
while the stopping criterion is not satisfied do 

forall j 5 M 
randomly select T I ,  T Z ,  r3 E (1 ,  . . . , M), 

randomly select irand E (1 , .  . . , N )  
forall i 5 N , x :  = 

j # TI # T Z  # 1-3 

X r 2 , k - l  + F x (xr,&=k-l - x y G = k - l )  

Z f 
4,G=k-1  

(random(O,1) < CR A 2 = i rand)  

otherwise 

1 { $, i f  f($) 5 f(pG",=k-l)  
pG3C=k--1 otherwise 

i 
end forall 

&=k = 

end forall 
evaluate PG=k 
k = k + l  

end while 
return the best encountered solution x .  

Figure 1: The Differential Evolution Algorithm 

4. The boundary constraints are preserved either by 
reversing the sign if the variable is less than 0 or 
keeping subtracting 1 if it is greater than 1 until 
the variable is within its boundaries. 

5. Offspring are placed into the population if they 
dominate the main parent. 

The algorithm works as follows. An initial population 
is generated at random from a Gaussian distribution 
with mean 0.5 and standard deviation 0.15. All 
dominated solutions are removed from the population. 
The remaining non-dominated solutions are retained 
for reproduction. If the number of non-dominated 
solutions exceeds some threshold, a distance metric 
relation (will be described in the next paragraph) is 
used to remove those parents who are very close to 
each others. Three parents are selected at random. A 
child is generated from the three parents and is placed 
into the population if it dominates the first selected 
parent; otherwise a new selection process takes place. 

let G denotes a generation, P a population of size M, 

dimension N in population P in generation k ,  
and CR denotes the crossover probability 

and the j t h  individual of 

input N ,  M 2 4,a, CR E [0,1], and initial 
bounds: lower(x,),upper(xi), i = 1,. . . N 

initialize PG=O = {z&=O,. . . , Zg=o} as 
for each individual j E PG=O 

4,G=o = Gussian(0.5,0.15),i = 1,.  . . , N 
Repair Z&=k i f  any variable is outside its boundaries 

end for each 
evaluate PG=O 
k = l  
while the stopping criterion is not satisfied do 

remove all dominated sohtions from 
if the number of non-dominated solutions in 

then apply the neighborhood rule 
end if 
for j = 0 to number of non-dominated sohtions in Pckk-1 

end for 
while j 5 M 

> a, 

2 G = k  s G = k - 1  

randomly select rl,rZ, r3 E (1, .  . . ,a), from the 

randomly select &and E (1, . . . , I?) 
forall i 5 N , z & G = ~  = 

non-dominated solutions Of PG=k-I ,  where T I  # T Z  # r3 

x: ,&~-~ -I- Gaussian(O,1) x (x&=k-l - x&&l) 
i f  (random(0,l) < C R  A i = i r a n d )  

<,G=k-1 { otherwise 
end forall 
Repair $..k if any variable is outside its boundaries 
if Z' dominates fld=k-l then 

?Azk + 2 
j = j + l  

end if 
end while 
k = k + l  

end while 
return the set of non-dominated solutions. 

Figure 2: The Pareto-frontier Differential Evolution Al- 
gorithm (PDE) 

This process continues until the population is completed. 

A maximum number of non-dominated solutions in 
each generation was set to 50. If this maximum is ex- 
ceeded, the following nearest neighbor distance function 
is adopted: 

(minllx - ZlJJ + minllx - xjll) D ( x )  = , 
2 

where x # xi # xj, That is, the nearest neighbor 
distance is the average Euclidean distance between the 
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closest two points. The non-dominated solution with 
the smallest neighbor distance is removed from the 
population until the total number of non-dominated 
solutions is retained to 50. 

4 Experiments 
4.1 Test Problems 

The algorithm is tested on the following two benchmark 
problems used in Zitler and Thiele (1999): 

Test Problem 1: Convex 

xj E [ O , l ] , i  = 1,. . . ,30 

Test Problem 2: Discontinuous pareto-front 

fib) = 21 

E [ O , l ] , i  = 1,. . . ,30 

Both test problems contain two objective functions 
and thirty variables. The computational results of these 
test problems are provided in the next section. 

4.2 Experimental Setup 

The initial population size is set to 100 and the max- 
imum number of generations to 200. Twenty different 
crossover rates changing from 0 to 1.00 with an incre- 
ment of 0.05 are tested without mutation. The initial 
population is initialized according to a Gaussian distri- 
bution N(0.5,0.15). Therefore, with high probability, 
the Gaussian distribution will generate values between 
0.5 f 3 x 0.15 which fits with the variables’ boundaries. 
If a variable’s value is not within its range, a repair rule 
is used to repair the boundary constraints. The repair 
rule is simply to truncate the constant part of the value; 

therefore if, for example, the value is 3.3, the repaired 
value will be 0.3 assuming that the variable is between 
0 and 1. The step-length parameter F is generated for 
each variable from a Gaussian distribution N(0,l) .  The 
algorithm is written in standard C++ and ran on a Sun 
Sparc 4. 

4.3 Experimental Results and Discussions 

In Figure 3, we plotted all the non-dominated solu- 
tions for the first twenty runs of both test problems 
with the SPEA results obtained from the web site 
“http//www.tik.ee.ethz.ch/~zitzler/testdata.html”. 
The crossover rates of the solutions plotted were 0.15 
and 0.05 for the first and second tiest problems respec- 
tively. As can be seen in Figure 3, our results are clearly 
better than SPEA in terms of the objective function’s 
values. The Pareto-frontier is always lower than SPEA 
and the distribution of the points on the Pareto-frontier 
is more uniformly distributed than SPEA. 

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 4 
F1 

Figure 3: The performance of the ]?DE algorithm com- 
pared with SPEA on the test problem. 

To perform the statistical analysis using Knowles 
and Corne method (Knowles and Corne ZOOO), we used 
the solutions of the twenty runs for each crossover rate. 
The results of the comparison is presented in the form 
of a pair [a,b], where a gives the percentage of the space 
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(i.e. the percentage of lines) on which algorithm A is 
found statistically superior to B, and b gives the similar 
percentage for algorithm B. For probleml, the best re- 
sult [84.3,15.1] is achieved with crossover rate 0.15. This 
means, our algorithm outperforms SPEA on about 84.3 
percent of the Pareto surface whereas SPEA is statisti- 
cally superior than our algorithm for 15.1 percent. For 
problem2, the best result is obtained with crossover 0.05. 

0 -D -d ,' SPEA 
eo +( ,,/' P-d 

'.$ 30 \ f  

Figure 4: The percentage outperformed by our algorithm 
and SPEA for the two test problems. The x-axis repre- 
sents the crossover rate for our algorithm and the y-axis 
represents the percentage outperformed by both algo- 
rithms. 

As per the analysis, the percentage outperformed 
by our algorithm and SPEA are plotted against the 
crossover rate in Figure 4 for both test problems. 
For SPEA, the results are the best published results; 
therefore, the crossover rate on the x-axis does not 
reflect the crossover rate used in SPEA. Only within the 
crossover range 0.05 - 0.55 for probleml and 0.0 - 0.15 
for problem2, PDE is significantly better than SPEA. 
The crossover rate versus the number of non-dominated 
solution points are shown in Figure 5. In both problems, 
the number of solution points are maximum within 
the crossover range 0.10 to 0.30. Interestingly, the 
distribution of non-dominated solutions against the 
crossover rate follows a normal distribution shape. 

Pmaleml 
7WI . , , . . . . , , 

' 0  0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.6 0.8 
cro-vor rsts 

PmDlemP 
400 , , , , , , , , , 

Figure 5: The distribution of the number of non- 
dominated solutions found by our algorithm for the two 
test problems using different crossover rates. The x-axis 
represents the crossover rate and the y-axis represents 
the number of non-dominated solutions found. 

From the experimental results, it is clear that 
the solution's quality varies with the crossover rate. 
However, the results suggest that there is a trend in 
both problems which may suggest that the relationship 
between the crossover rate and the solution's quality is 
almost unimodal. This is very interesting sine it makes 
the search problem of finding a good crossover rate easy. 

5 Conclusions and Future Research 
In this paper, a novel differential evolution approach 
is presented for vector optimization problems. The 
approach generates a step by mutation, where the step 
is randomly generated from a Gaussian distribution. We 
tested the approach on two benchmark problems and it 
was found that our approach outperformed the SPEA 
approach. We also experimented with different crossover 
and mutation rates, on these two test problems, to find 
their best solutions. The crossover rates are found to 
be very sensitive to the solutions. However, a trend 
was found which suggests that large number of non- 
dominated solutions were found with low-crossover rates. 
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For future work, we intend to test the algorithm on 
more problems. Also, the parameters chosen in this pa- 
per were generated experimentally. It would be interest- 
ing to see the effect of these parameters on the problem. 
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