
PDE: A Pareto-frontier Differential Evolution Approach for
Mult i-ob ject ive Optimization Problems

Hussein A. Abbass, Ruhul Sarker, and Charles Newton
School of Computer Science,

University of New South Wales,
University College, ADFA Campus,

Northcott Drive, Canberra ACT, 2600, Australia,
{ h.abbass,r.sarker,c.newton}Qadfa.edu.au

Abstract-
The use of evolutionary algorithms (EAs) to solve

problems with multiple objectives (known as
Multi-objective Optimization Problems (MOPs)) has
attracted much attention recently. Being popula-
tion based approaches, EAs offer a means to find
a group of pareto-optimal solutions in a single
run. Differential Evolution (DE) is an EA that was
developed to handle optimization problems over
continuous domains. The objective of this paper
is to introduce a novel Pareto-frontier Differential
Evolution (PDE) algorithm to solve MOPs. The
solutions provided by the proposed algorithm
for two standard test problems, outperform
the Strength Pareto Evolutionary Algorithm, one of
the state-of-the-art evolutionary algorithm for
solving MOPs.

1 Introduction
Although single objective decision models are sufficient
for some decision making processes, there are many
situations where decisions have multiple objectives.
Multi-objective problems are known as multi-objective
optimization problems (MOPs). In these situations, the
aim is to simultaneously optimize a group of conflicting
objectives. MOPs are a very important research topic,
not only because of the multi-objective nature of most
real-world decision problems, but also because there are
still many open questions in this area. In fact, there is
no universally accepted definition of “optimum” in MOP
as opposed to single-objective optimization problems,
which makes it difficult to even compare results of
one method to another. Normally, the decision about
what the “best” answer is, corresponds to the so-called
human decision maker (Coello 1999).

Traditionally, there are several methods available in
the Operational Research (OR) literature for solving
MOPs as mathematical programming models, viz goal
programming (Charnes and Cooper 1961), weighted
sum method (Turban and Meredith 1994), goals as
requirement (Coello 1999), goal attainment (Wilson
and Macleod 1993), and the iso-resource-cost solu-

tion method (Zeleny 1998). The concept of a goal
is somewhat different from an objective. A goal is
usually considered as a planned objective. Therefore,
the optimality is measured, in the case of goal-based
methods, in terms of the amount of deviation from the
planned levels (aspiration levels). Among the previous
methods, goal programming is the most widely used
in practice although it relies on domain knowledge to
setup the goals’ aspiration levels. None of the previous
methods treat all the objectives simultaneously, except
the Iso-resource-cost Solution method, which is a
basic requirement in most MOPs. Subsequently, the
solutions may be far away from the acceptable ones.
These methods handle MOPs with a set of impractical
assumptions such as linearity and convexity.

The iso-resource-cost solution method (Zeleny 1998)
has been recently demonstrated for a problem with two
objectives, two variables and few constraints. To gener-
ate the iso-cost solutions, the cost is assumed to equal
the total cost of all available resources. Therefore, the
set of solutions assumes full utilization of the resource
budget. This may lead to many infeasible solutions
(under original problem structure) in the solution set
(Zeleny 1998). The amount of available resources is
decided based on many factors other than the budget,
and finding the appropriate mix of resources will make
the problem even more complex. However, the concept
of iso-resource-cost solutions would be very useful to
enhance the future research in MOPs.

In MOPs, there is no single optimal solution, but
rather a set of alternative solutions. These solutions are
optimal in the wider sense that no other solutions in
the search space are superior to (dominate) them when
all objectives are simultaneously considered. They are
known as pareto-optimal solutions. Pareto-optimality is
expected to provide flexibility for the human decision
maker.

Recently, evolutionary algorithms (EAs) were found
useful for solving MOPs (Zitzler and Thiele 1999). EAs
have some advantages over traditional OR techniques.
For example, considerations for convexity, concavity,
and/or continuity of functions are not necessary in

0-7803-6657-3/01/$10.00 02001 IEEE 971

EAs, whereas, they form a real concern in traditional
OR techniques. Although EAs are successful, to some
extent, in solving MOPs, the methods appearing in the
literature vary a lot in terms of their solutions and the
way of comparing their best results with other existing
algorithms. In other words, there is no well-accepted
method for MOPs that will produce a good set of
solutions for all problems. This motivates the further
development of good approaches to MOPs.

In this paper, we develop a novel Diifferential Evolu-
tion (DE) algorithm for MOPs. The approach shows
promising results when compared with the Strength
Pareto Evolutionary Algorithm (SPEA) (Zitzler and
Thiele 1999), for two benchmark problems. The paper
is organized as follows: background materials are scruti-
nized in Section 2 followed by the proposed algorithm in
Section 3. Experiments are then presented in Section 4
and conclusions are drawn in Section 5.

2 Background Materials
2.1 Local and Global optimality in MOPs
Consider a MOP model as presented below:-

Optimize F (Z)
subject to: R = {d E RnlG(d) 5 0)

Where Z is a vector of decision variables
(SI,. . . ,xn) and F (Z) is a vector of objective functions
(fl(Z), . . . , ~K(Z)). Here fl(Z), . . . ,~K(Z), are functions
on Rn and R is a nonempty set in R”. The vector G(Z)
represents constraints that may be easily handled ex-
plicitly, such as lower and upper bounds on the variables.

In MOPs, the aim is to find the optimal solution
Z’ E R which optimize F(d). Each objective €unction,
f,(Z), is either maximization or minimization. In
this paper, we assume that all objectives are to be
minimized for clarity purposes. We may note that
any maximization objective can be transformed to a
minimization one by multiplying it by -1.

To define the concept of non-dominated solutions in
MOPs, we need to define two operators, $Z and 5 and
then assume two vectors, d and c. d y’ iff 3 x, E Z
and y, E asuch that x, # y*. And, d 5 y’iff V x, E Z
and y% E g, x, 5 y,, and 3 $Z g. and 5 can be seen
as the ‘hot equal to” and “less than or equal to” oper-
ators respectively, over two vectors. We can now define
the concepts of local and global optimality in MOPs.

Definition 1: Neighborhood or open ball The open
ball (ie. a neighborhood centered on ? and de-
fined by the Euclidean distance) &(?) = {.’ E
Rnl 11.‘- ?I1 < a}.

Definition 2: Local efficient (non-inferior/
pareto-optimal) solution A vector P E R is
said to be a local efficient solution of MOP iff
8 Z E (B B (P) n 0) such th3t F (Z) 5 F (P) for
some positive 6.

Definition 3: Global efficient (non-inferior/
pareto-optimal) solution A vector P E hl is
said to be a global efficient solution of MOP iff
3 .’ E R such that F (Z) 5 IT(?).

Definition 4: Local non-dominated solution A vec-
tor y’* E F (Z) is said to be local non-dominated so-
lution of MOP iff its projection onto the decision
space, 2, is a local efficient solution of MOP.

Definition 5: Global non-dominated solution A
vector y’* E F (Z) is said to be global non-
dominated solution of MOP iff its projection onto
the decision space, P, is a global efficient solution
of MOP.

In this paper, the term “non-dominated solution” is
used as a shortcut for the term “E;lobal non-dominated
solution”.

2.2 MOPs and EAs

EAs for MOPs (Coello 1999) can be categorized as plain
aggregating, population-based non-Pareto and Pareto-
based approaches. The plain aggregating approaches
takes a linear combination of the objectives to form
a single objective function (such as in the weighted
sum method, goal programming, and goal attainment).
This approach produces a single scdution at a time that
may not satisfy the decision maker, and it requires the
quantification of the importance of each objective (eg.
by setting numerical weights), which is very difficult
for most practical situations. However optimizing all
the objectives simultaneously and generating a set of
alternative solutions, offer more flexibility to decision
makers. The simultaneous optimization can fit nicely
with population based approaches, such as EAs, because
they generate multiple solutions in a single run.

The Vector Evaluated Genetic Algorithm (VEGA)
(Schaffer 1985) is a population-based non-Pareto ap-
proach. In this approach, the total population is divided
into a number of populations equals to the number of
objective functions to be optimized. Each population is
used to optimize each objective function independently.
The populations are then shuffled together followed by
conventional crossover and mutatiotn operators. Schaffer
(Schaffer 1985) realized that the solutions generated
by his system were non-dominated in a local sense,
because their non-dominance was limited to the current
population, and while a locally dominated individual is
also globally dominated, the converse is not necessarily

972

true.

In the Pareto-based approaches, the dominated and
non-dominated solutions in the current population
are separated. Goldberg (Goldberg 1989) suggested
a non-dominated ranking procedure to decide the
fitness of the individuals. Later, Srinivas and Dev
(Srinivas and Dev 1994) introduced Non-dominated
Sorting Genetic Algorithms (NSGA) based on the idea
of Goldberg’s procedure. The population’s individuals
are layered according to their ranks. Afterwards, the
non-dominated individuals are removed layer by layer
from the population.

Fonseca and Fleming (Fonseca and Fleming 1993)
proposed a slightly different scheme which is known as
Fonseca and Fleming’s evolutionary algorithm (FFES).
In this approach, an individual’s rank is determined
by the number of individuals dominating it. Without
using any non-dominated ranking methods, Horn et a1
(Horn, Nafpliotis, and Goldberg 1994) proposed the
Niched Pareto Genetic Algorithm (NPGA) that directly
uses a group of randomly picked individuals to form
a comparison reference set. The fitness of the two
randomly selected individuals is decided according to
whether they are dominated by any of the individuals
from the comparison reference set. If both individuals
are either dominated or non-dominated by the set, then
a niched method is used for selection.

The common features of the Pareto-based approaches
mentioned above are that (i) the Pareto-optimal solu-
tions in each generation are assigned either the same
fitness or a rank, and (ii) some sharing and niche tech-
niques are applied in the selection procedure. Recently,
Zitler and Thiele (Zitzler and Thiele 1999) proposed a
Pareto-based method, the Strength Pareto Evolutionary
Algorithm (SPEA). The main features of this approach
are: it

sorts non-dominated solutions externally and con-
tinuously update population,

evaluates an individual’s fitness depending on the
number of external non-dominated points that
dominate it,

preserves population diversity using the Pareto
dominance relationship, and

incorporates a clustering procedure in order to re-
duce the non-dominated set without destroying its
characteristics.

Currently, this approach seems to be an outstanding
method in the literature.

Most recently, Knowles and Corne (Knowles and
Corne 1999; Knowles and Corne 2000) proposed a
simple Evolution Strategies (ES), (1+1)-ES, known as
the Pareto Archived Evolution Strategy (PAES) that
keeps a record of limited non-dominated individuals.
The non-dominated individuals are accepted for record-
ing based on the degree of crowdiness in their grid
(defined regions on the Pareto-frontier) location to
ensure diversity of individuals in the final solution. The
algorithm is strictly confined to local search i.e. it uses a
small change (mutation) operator only, and move from
a current solution to a nearby neighbor. As they re-
ported, the algorithm works well, specially for problems
of low computational complexity. They also propose
an extension to this basic approach, which results in
some variants of a (p + A) -ES. The performance of the
algorithm is judged, by solving several test problems,
and analyzing the superiority on different regions of the
attainment surfaces.

2.3 Statistical Analysis

MOPS require multiple, but uniformly distributed,
solutions to form a Pareto trade-off frontier. When
comparing two algorithms, these two factors (number of
alternative solution points and their distributions) must
be considered. There are a number of methods available
in the literature to compare the performance of different
algorithms. The error ratio and the generational
distance are used as the performance measure indicators
when the Pareto optimal solutions are known (Veld-
huizen and Mamont 1999). The spread measuring
technique expresses the distribution of individuals over
the non-dominated region (Srinivas and Dev 1994).
The method is based on a chi-square-like deviation
distribution measure, and it requires several parameters
to be estimated before calculating the spread indicator.

The method of coverage metrics (Zitzler and Thiele
1999) compares the performances of different multi-
objective evolutionary algorithms. It measures whether
the outcomes of one algorithm dominate those of
another without indicating how much better it is.

Most recently, Knowles and Corne (Knowles and
Corne 2000) proposed a method to compare the per-
formances of two or more algorithms by analyzing the
distribution of an approximation to the Pareto-frontier.
For two objective problems, the attainment surface is
defined as the lines joining the points on the Pareto-
frontier generated by an algorithm. Therefore, for two
algorithms A and B, there are two attainment surfaces.
A number of sampling lines can be drawn from the
origin, which intersects with the attainment surfaces,
across the full range of the Pareto-frontier. For a given

973

sampling line, the intersection of an algorithm closer
to the origin (for both minimization) is the winner.
Given a collection of k attainment surfaces, some from
algorithm A and some from algorithm B, a single
sampling line yields k points of intersection, one for
each surface. These intersections form a univariate
distribution, and we can therefore perform a statistical
test to determine whether or not the intersections for
one of the algorithms occurs closer to the origin with
some statistical significance. Such a test is performed
for each of several lines covering the Pareto tradeoff
area. Insofar as the lines provide a uniform sampling
of the Pareto surface, the result of this analysis yields
two numbers - a percentage of the surface in which
algorithm A significantly outperforms algorithm B, and
the percentage of the surface in which algorithm B
significantly outperforms algorithm A .

2.4 Differential Evolution

DE is a branch of evolutionary algorithms developed by
Rainer Storn and Kenneth Price (Storn and Price 1995)
for optimization problems over continuous domains.
In DE, each variable’s value in the chromosome is
represented by a real number. The approach works
by creating a random initial population of potential
solutions, where it is guaranteed, by some repair rules,
that the value of each variable is within its boundaries.
An individual is then selected at random for replacement
and three different individuals are selected as parents.
One of these three individuals is selected as the main
parent. With some probability, each variable in the
main parent is changed while at least one variable
should be changed. The change is undertaken by adding
to the variable’s value a ratio of the difference between
the two values of this variable in the other two parents.
In essence, the main parent’s vector is perturbed with
the other two parents’ vector. This process represents
the crossover operator in DE. If the resultant vector is
better than the one chosen for replacement, it replaces
it; otherwise the chosen vector for replacement is
retained in the population. Therefore, DE differs from
GA in a number of points:

1. DE uses real number representation while conven-
tional GA uses binary, although it sometimes uses
integer or real number representation as well.

2. In GA, two parents are selected for crossover and
the child is a recombination of the parents. In
DE, three parents are selected for crossover and
the child is a perturbation of one of them.

3. The new child in DE replaces a randomly selected
vector from the population only if it is better than

it. In conventional GA, children replace the par-
ents with some probability regardless of their fit-
ness.

In DE, a solution, 1, in generation i is a multi-
dimensional vector &=; = (.: ,. . . , .”,,’. A popula-
tion, PG=k, at generation G = k is a vector of M
solutions (M > 4). The initial population, PG=O =
{Z,&o,. . . ,Zg=o}, is initialized as

= lozuer(s;)+randi[O, 11 x (zipper(x;)-lozuer(~;)),

1 = 1 , . . . , M , i = 1 , 2 ,..., N
where A4 is the population size, PJ is the solution’s di-
mension, and each variable i in a solution vector 1 in the
initial generation G = 0, z : , ~ = ~ , is initialized within its
boundaries (lower(ai) , upper(xi)) . Selection is carried
out to select four different solutions indices r1, ~2~7’3, and
j E 11, MI. The values of each variable in the child are
changed with some crossover probability, CR, to

.I,%=k-1 + ,x (xI,b=k-l - 5i,k=k-1)
Vi 5 N , x & ~ = if (randoria[O, 1) < CR A i = irand) { xi,G=k--l otherwise

where F E (0 , l) is a problem parameter representing the
amount of perturbation added to t,he main parent. The
new solution replaces the old one if it is better than it
and at least one of the variables should be changed. The
latter is represented in the algorithm by randomly se-
lecting a variable, zrand € (1, N). iifter crossover, if one
or more of the variables in the new solution are outside
their boundaries, the following repair rule is applied

2: G + l o w e ~ (z i)

z:,c=k = lower(zi) + 4 , c - U P P e r (s i)

if ‘4,,+, < lower(xi)
- if 4 , G + 1 > upper(xi) r 2 X 3 , G + 1 ‘ 2 otherwise

The DE algorithm is presented in Figure 1.

3 PDE: A Pareto-frontier Differential
Evolution algorithm for MOPS

A generic version of the adopted algorithm is presented
in Figure 2. The PDE algorithm is similar to the one
presented in Figure 1 with the following modifications:-

1. The initial population is initialized according to a
Gaussian distribution N(0.5,0.15).

2. The step-length parameter F is generated from a
Gaussian distribution N(0,l) .

3. Reproduction is undertaken. only . among non-
dominated solutions in each generation.

974

let G denotes a generation, P a population of size M ,

dimension N in population P in generation k,
and CR denotes the crossover probability

and the j t h individual of

input N , M 2 4, F E (0 , l+), CR E [0,1], and initial

initialize PG,o = {z&=~, . . . ,#=o} as
for each individual j E PG=O

bounds: lower(x,),upper(xi),i = 1, . . . N

<,G=o = lower(si) + randi[O, 11 X
(upper(xi) - lower(xi)),i = 1, . . . , N

end for each
evaluate PG=O
k = l
while the stopping criterion is not satisfied do

forall j 5 M
randomly select T I , T Z , r3 E (1 , . . . , M),

randomly select irand E (1 , . . . , N)
forall i 5 N , x : =

j # TI # T Z # 1-3

X r 2 , k - l + F x (xr,&=k-l - x y G = k - l)

Z f
4,G=k-1

(random(O,1) < CR A 2 = i rand)

otherwise

1 { $, i f f($) 5 f(pG",=k-l)
pG3C=k--1 otherwise

i
end forall

&=k =

end forall
evaluate PG=k
k = k + l

end while
return the best encountered solution x .

Figure 1: The Differential Evolution Algorithm

4. The boundary constraints are preserved either by
reversing the sign if the variable is less than 0 or
keeping subtracting 1 if it is greater than 1 until
the variable is within its boundaries.

5. Offspring are placed into the population if they
dominate the main parent.

The algorithm works as follows. An initial population
is generated at random from a Gaussian distribution
with mean 0.5 and standard deviation 0.15. All
dominated solutions are removed from the population.
The remaining non-dominated solutions are retained
for reproduction. If the number of non-dominated
solutions exceeds some threshold, a distance metric
relation (will be described in the next paragraph) is
used to remove those parents who are very close to
each others. Three parents are selected at random. A
child is generated from the three parents and is placed
into the population if it dominates the first selected
parent; otherwise a new selection process takes place.

let G denotes a generation, P a population of size M,

dimension N in population P in generation k ,
and CR denotes the crossover probability

and the j t h individual of

input N , M 2 4,a, CR E [0,1], and initial
bounds: lower(x,),upper(xi), i = 1,. . . N

initialize PG=O = {z&=O,. . . , Zg=o} as
for each individual j E PG=O

4,G=o = Gussian(0.5,0.15),i = 1,. . . , N
Repair Z&=k i f any variable is outside its boundaries

end for each
evaluate PG=O
k = l
while the stopping criterion is not satisfied do

remove all dominated sohtions from
if the number of non-dominated solutions in

then apply the neighborhood rule
end if
for j = 0 to number of non-dominated sohtions in Pckk-1

end for
while j 5 M

> a,

2 G = k s G = k - 1

randomly select rl,rZ, r3 E (1, . . . ,a), from the

randomly select &and E (1, . . . , I?)
forall i 5 N , z & G = ~ =

non-dominated solutions Of PG=k-I , where T I # T Z # r3

x: ,&~-~ -I- Gaussian(O,1) x (x&=k-l - x&&l)
i f (random(0,l) < C R A i = i r a n d)

<,G=k-1 { otherwise
end forall
Repair $..k if any variable is outside its boundaries
if Z' dominates fld=k-l then

?Azk + 2
j = j + l

end if
end while
k = k + l

end while
return the set of non-dominated solutions.

Figure 2: The Pareto-frontier Differential Evolution Al-
gorithm (PDE)

This process continues until the population is completed.

A maximum number of non-dominated solutions in
each generation was set to 50. If this maximum is ex-
ceeded, the following nearest neighbor distance function
is adopted:

(minllx - ZlJJ + minllx - xjll) D (x) = ,
2

where x # xi # xj, That is, the nearest neighbor
distance is the average Euclidean distance between the

975

closest two points. The non-dominated solution with
the smallest neighbor distance is removed from the
population until the total number of non-dominated
solutions is retained to 50.

4 Experiments
4.1 Test Problems

The algorithm is tested on the following two benchmark
problems used in Zitler and Thiele (1999):

Test Problem 1: Convex

xj E [O , l] , i = 1,. . . ,30

Test Problem 2: Discontinuous pareto-front

fib) = 21

E [O , l] , i = 1,. . . ,30

Both test problems contain two objective functions
and thirty variables. The computational results of these
test problems are provided in the next section.

4.2 Experimental Setup

The initial population size is set to 100 and the max-
imum number of generations to 200. Twenty different
crossover rates changing from 0 to 1.00 with an incre-
ment of 0.05 are tested without mutation. The initial
population is initialized according to a Gaussian distri-
bution N(0.5,0.15). Therefore, with high probability,
the Gaussian distribution will generate values between
0.5 f 3 x 0.15 which fits with the variables’ boundaries.
If a variable’s value is not within its range, a repair rule
is used to repair the boundary constraints. The repair
rule is simply to truncate the constant part of the value;

therefore if, for example, the value is 3.3, the repaired
value will be 0.3 assuming that the variable is between
0 and 1. The step-length parameter F is generated for
each variable from a Gaussian distribution N(0,l) . The
algorithm is written in standard C++ and ran on a Sun
Sparc 4.

4.3 Experimental Results and Discussions

In Figure 3, we plotted all the non-dominated solu-
tions for the first twenty runs of both test problems
with the SPEA results obtained from the web site
“http//www.tik.ee.ethz.ch/~zitzler/testdata.html”.
The crossover rates of the solutions plotted were 0.15
and 0.05 for the first and second tiest problems respec-
tively. As can be seen in Figure 3, our results are clearly
better than SPEA in terms of the objective function’s
values. The Pareto-frontier is always lower than SPEA
and the distribution of the points on the Pareto-frontier
is more uniformly distributed than SPEA.

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 4
F1

Figure 3: The performance of the]?DE algorithm com-
pared with SPEA on the test problem.

To perform the statistical analysis using Knowles
and Corne method (Knowles and Corne ZOOO), we used
the solutions of the twenty runs for each crossover rate.
The results of the comparison is presented in the form
of a pair [a,b], where a gives the percentage of the space

976

(i.e. the percentage of lines) on which algorithm A is
found statistically superior to B, and b gives the similar
percentage for algorithm B. For probleml, the best re-
sult [84.3,15.1] is achieved with crossover rate 0.15. This
means, our algorithm outperforms SPEA on about 84.3
percent of the Pareto surface whereas SPEA is statisti-
cally superior than our algorithm for 15.1 percent. For
problem2, the best result is obtained with crossover 0.05.

0 -D -d ,' SPEA
eo +(,,/' P-d

'.$ 30 \ f

Figure 4: The percentage outperformed by our algorithm
and SPEA for the two test problems. The x-axis repre-
sents the crossover rate for our algorithm and the y-axis
represents the percentage outperformed by both algo-
rithms.

As per the analysis, the percentage outperformed
by our algorithm and SPEA are plotted against the
crossover rate in Figure 4 for both test problems.
For SPEA, the results are the best published results;
therefore, the crossover rate on the x-axis does not
reflect the crossover rate used in SPEA. Only within the
crossover range 0.05 - 0.55 for probleml and 0.0 - 0.15
for problem2, PDE is significantly better than SPEA.
The crossover rate versus the number of non-dominated
solution points are shown in Figure 5. In both problems,
the number of solution points are maximum within
the crossover range 0.10 to 0.30. Interestingly, the
distribution of non-dominated solutions against the
crossover rate follows a normal distribution shape.

Pmaleml
7WI . , , , ,

' 0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.6 0.8
cro-vor rsts

PmDlemP
400 , , , , , , , , ,

Figure 5: The distribution of the number of non-
dominated solutions found by our algorithm for the two
test problems using different crossover rates. The x-axis
represents the crossover rate and the y-axis represents
the number of non-dominated solutions found.

From the experimental results, it is clear that
the solution's quality varies with the crossover rate.
However, the results suggest that there is a trend in
both problems which may suggest that the relationship
between the crossover rate and the solution's quality is
almost unimodal. This is very interesting sine it makes
the search problem of finding a good crossover rate easy.

5 Conclusions and Future Research
In this paper, a novel differential evolution approach
is presented for vector optimization problems. The
approach generates a step by mutation, where the step
is randomly generated from a Gaussian distribution. We
tested the approach on two benchmark problems and it
was found that our approach outperformed the SPEA
approach. We also experimented with different crossover
and mutation rates, on these two test problems, to find
their best solutions. The crossover rates are found to
be very sensitive to the solutions. However, a trend
was found which suggests that large number of non-
dominated solutions were found with low-crossover rates.

977

For future work, we intend to test the algorithm on
more problems. Also, the parameters chosen in this pa-
per were generated experimentally. It would be interest-
ing to see the effect of these parameters on the problem.

Bibliography
Charnes, A. and W. Cooper (1961). Management

models and industrial applications of linear pro-
gramming, volume 1. John Wiley, New York.

Coello, C. (1999). A comprehensive survey of
evolutionary-based multiobjective optimization
techniques. Knowledge and Information Sys-
tems 1(3), 269-308.

Fonseca, C. and P. Fleming (1993). Genetic algorithms
for multiobjective optimization: Formulation, dis-
cussion a.nd generalization. Proceedings of the Fifth
International Conference on Genetic Algorithms,
San Mateo, California, 416-423.

Goldberg, D. (1989). Genetic algorithms: in search,
optimisation and machine learning. Addison We-
sely.

Horn, J., N. Nafpliotis, and D. Goldberg (1994). A
niched pareto genetic algorithm for multiobjective
optimization. Proceedings of the First iEEE Con-
ference on Evolutionary Computation 1, 82-87.

Knowles, J. and D. Corne (1999). The pareto archived
evolution strategy: a new baseline algorithm
for multiobjective optimization. I n 1999 Congress
on Evolutionary Computation, Washington D. C.,
IEEE Service Centre, 98-105.

Knowles, J. and D. Corne (2000). Approximating the
nondominated front using the pareto archived evo-
lution strategy. Evolutionary Computation 8(2),

Schaffer, J. (1985). Multiple objective optimization
with vector evaluated genetic algorithms. Genetic
Algorithms and their Applications: Proceedings of
the First International Conference on Genetic Al-
gorithms, 93-100.

Srinivas, N. and K. Dev (1994). Multiobjective op-
timization using nondominated sorting in genetic
algorithms. Evolutionary Computation 2(3), 221-
248.

Storn, R. and K. Price (1995). Differential evolution: a
simple and efficient adaptive scheme for global op-
timization over continuous spaces. Technical Re-
port TR-95-012, International Computer Science
Institute, Berkeley.

Turban, E. and J. Meredith (1994). Fundamentals of
Management Science. McGraw-Hill, Boston, USA.

149-1 72.

Veldhuizen, D. V. and G. Mamont (1999). Multiobjec-
tive evolutionary algorithm tl:st suites. Procedings
of the 1999 ACM Sysposium on Applied Comput-
ing, San Antonio, Texas, A G M , 351-357.

Wilson, P. and M. Macleod (1993). Low implementa-
tion cost iir digital filter design using genetic al-
gorithms. IEE/IEEE workshop on Natural Algo-
rithms in Signal Processing, 1-8.

Zeleny, M. (1998). Multiple criteria decision mak-
ing: Eight concepts of optimetlity. Human Systems
Management 17, 97-107.

Zitzler, E. and L. Thiele (1999). Multiobjective evolu-
tionary algorithms: A comparative case study and
the strength pareto approach. IEEE Ransactions
on Evolutionary Computation 3(4), 257-271.

978

