DE/BBO: A Hybrid Differential Evolution with
Biogeography-Based Optimization for Global
Numerical Optimization

Wenyin Gong, Zhihua Cai, and Charles X. Ling, Senior Member, IEEE

Abstract— Differential Evolution (DE) is a fast and robust
evolutionary algorithm for global optimization. It has been widely
used in many areas. Biogeography-Based Optimization (BBO)
is a new biogeography inspired algorithm. It mainly uses the
biogeography-based migration operator to share the information
among solutions. In this paper, we propose a hybrid DE with
BBO, namely DE/BBO, for the global numerical optimization
problem. DE/BBO combines the exploration of DE with the
exploitation of BBO effectively, and hence it can generate the
promising candidate solutions. To verify the performance of our
proposed DE/BBO, 23 benchmark functions with a wide range of
dimensions and diverse complexities are employed. Experimental
results indicate that our approach is effective and efficient.
Compared with other state-of-the-art DE approaches, DE/BBO
performs better, or at least comparably, in terms of the quality
of the final solutions and the convergence rate. In addition,
the influence of the population size, dimensionality, different
mutation schemes, and the self-adaptive control parameters of
DE are also studied.

Index Terms— Differential evolution, biogeography-based op-
timization, hybridization, global numerical optimization, explo-
ration, exploitation

I. INTRODUCTION

VOLUTIONARY Algorithms (EAs, including genetic
algorithms, evolution strategies, evolutionary program-
ming, and genetic programming) have received much attention
regarding their potential as global optimization techniques [1],
both in single and in multi-objective optimization. Inspired by
the natural evolution and survival of the fittest, EAs utilize
a collective learning process of a population of individuals.
Descendants of individuals are generated using randomized
operations such as mutation and recombination. Mutation
corresponds to an erroneous self-replication of individuals,
while recombination exchanges information between two or
more existing individuals. According to a fitness measure, the
selection process favors better individuals to reproduce more
often than those that are relatively worse.
Differential Evolution (DE) [2] is a simple yet powerful
population-based, direct search algorithm with the generation-
and-test feature for global optimization problems using real-
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valued parameters. DE uses the distance and direction in-
formation from the current population to guide the further
search. It won the third place at the first International Contest
on Evolutionary Computation on a real-valued function test-
suite [3]. Among DE’s advantages are its simple structure,
ease of use, speed and robustness. Price and Storn [2] gave
the working principle of DE with single scheme. Later on, they
suggested ten different schemes of DE [3], [4]. However, DE
has been shown to have certain weaknesses, especially if the
global optimum should be located using a limited number of
fitness function evaluations (NFFEs). In addition, DE is good
at exploring the search space and locating the region of global
minimum, but it is slow at exploitation of the solution [5].

Biogeography-Based Optimization (BBO), proposed by Si-
mon [6], is a new global optimization algorithm based on the
biogeography theory, which is the study of the geographical
distribution of biological organisms. Similar to GAs, BBO is a
population-based, stochastic global optimizer. In the original
BBO algorithm, each solution of the population is a vector
of integers. BBO adopts the migration operator to share
information between solutions. This feature is similar to other
biology-based algorithms, such as GAs and PSO. It makes
BBO applicable to many of the same types of problems that
GAs and PSO are used for. However, BBO also has several
unique features compared with biology-based algorithms. For
example, it maintains its set of solutions from one iteration
to the next one [6]. Simon compared BBO with seven state-
of-the-art EAs over 14 benchmark functions and a real-world
sensor selection problem. The results demonstrated the good
performance of BBO. With the migration operator, BBO has
a good exploitation ability.

Hybridization of EAs is getting more and more popu-
lar due to their capabilities in handling several real world
problems [7]. In order to balance the exploration and the
exploitation of DE, in this paper, we propose a hybrid DE with
BBO, referred to as DE/BBO, for the global numerical opti-
mization problems. In DE/BBO, a hybrid migration operator
is proposed, which combines the exploration of DE with the
exploitation of BBO effectively. Experiments have been con-
ducted on 23 benchmark functions chosen from the literature.
In addition, five performance criteria are employed to fairly
compare our approach with other algorithms. Furthermore,
the influence of the population size, dimensionality, different
mutation schemes, and the self-adaptive control parameters of
DE are also investigated.

The rest of this paper is organized as follows. Section II



briefly describes function optimization problem, the DE al-
gorithm, and the BBO algorithm. In Section III, some related
work of DE are presented. Our proposed approach is presented
in detail in Section IV. In Section V, we verify our approach
through 23 benchmark functions. Moreover, the experimental
results are compared with several other approaches. The last
section, Section VI, is devoted to conclusions and future work.

II. PRELIMINARY
A. Problem definition

Global numerical optimization problems are frequently
arisen in almost every field of engineering design, applied
sciences, molecular biology and other scientific applications.
Without loss of generality, the global minimization problem
can be formalized as a pair (S, f) , where S C RP is a
bounded set on R and f: S — R is a D-dimensional real-
valued function. The problem is to find a point X* € S such
that f(X*) is the global minimum on S [8]. More specifically,
it is required to find an X* € S such that

VX €S f(XT) < f(X) (M

where f does not need to be continuous but it must be
bounded. In this work, we only consider the unconstrained
function optimization.

In global numerical optimization problems, the major chal-
lenge is that an algorithm may be trapped in the local
optima of the objective function. This issue is particularly
challenging when the dimension is high. Recently, using
the Evolutionary Computation (EC) [1] to solve the global
optimization has been very active, producing different kinds
of EC for optimization in the continuous domain, such as
genetic algorithms [9], evolution strategy [10], evolutionary
programming [8], particle swarm optimization [11], immune
clonal algorithm [12], differential evolution [2], etc.

B. Differential evolution

The DE algorithm [2] is a simple EA that creates new
candidate solutions by combining the parent individual and
several other individuals of the same population. A candidate
replaces the parent only if it has better fitness. This is a rather
greedy selection scheme that often outperforms traditional
EAs. Among DE’s advantages are its simple structure, ease
of use, speed and robustness. Due to these advantages, it has
many real-world applications, such as data mining [13], [14],
pattern recognition, digital filter design, neural network train-
ing, etc. [4], [15], [16]. Most recently, DE has also been used
for the global permutation-based combinatorial optimization
problems [17].

The pseudo-code of the original DE algorithm is shown in
Algorithm 1. Where D is the number of decision variables.
NP is the size of the parent population P. F' is the mutation
scaling factor. C'R is the probability of crossover operator.
Xi(j) is the j-th variable of the solution X;. U; is the
offspring. rndint(1, D) is a uniformly distributed random
integer number between 1 and n. And rndreal;[0,1) is a
uniformly distributed random real number in [0,1). Many
schemes of creation of a candidate are possible. We use

the DE/rand/1/bin scheme (see lines 6 - 13 of Algorithm 1)
described in Algorithm 1 (more details on DE/rand/1/bin and
other DE schemes can be found in [3] and [4]).

Algorithm 1 The DE algorithm with DE/rand/1/bin scheme

1: Generate the initial population P

2: Evaluate the fitness for each individual in P

3: while The halting criterion is not satisfied do

4 for i =1to NP do

5: Select uniform randomly r1 # ro # 73 # 4
6: Jrand = rndint(1, D)
‘7.
8

for j =1to D do
if rndreal;[0,1) > CR or j == jrqnad then

0 Uij) = Xrs () + F % (Xra () = Xra ()
10: else
1 Ui(j) = X:(j)
12: end if
13: end for
14: end for
15: for i=1to NP do
16: Evaluate the offspring U;
17: if U; is better than P; then
18: P =U;
19: end if
20: end for

21: end while

From Algorithm 1, we can see that there are only three
control parameters in this algorithm. These are NP, F' and
CR. As for the terminal conditions, one can either fix the
maximum NFFEs Max_NFFEs or the precision of a desired
solution VTR (value to reach).

Algorithm 2 Habitat migration
1: for i =1to NP do
2 Select X; with probability oc \;
3:  if rndreal(0, 1) < A; then
4 for j =1to NP do
5: Select X; with probability o< ji;
6.
7
8

if rndreal(0,1) < p; then
Randomly select a variable o from X
: Replace the corresponding variable in X; with o
9: end if

10: end for
11: end if
12: end for

C. Biogeography-based optimization

BBO [6] is a new population-based, biogeography inspired
global optimization algorithm. In BBO, each individual is
considered as a ‘“habitat” with a habitat suitability index
(HSI), which is similar to the fitness of EAs, to measure the
individual. A good solution is analogous to an island with a
high HSI, and a poor solution indicates an island with a low
HSI. High HSI solutions tend to share their features with low
HSI solutions. Low HSI solutions accept a lot of new features
from high HSI solutions.

In BBO, each individual has its own immigration rate A and
emigration rate p. A good solution has higher p and lower A,
vice versa. The immigration rate and the emigration rate are



functions of the number of species in the habitat. They can be
calculated as follows

/\k_I(l—E> 2)
n

we=5(%) 3)

where I is the maximum possible immigration rate; E is
the maximum possible emigration rate; £ is the number of
species of the k-th individual; and 7 is the maximum number
of species. Note that Eqns. 2 and 3 are just one method for
calculating A and p. There are other different options to assign
them based on different specie models [6].

Suppose that we have a global optimization problem and a
population of candidate individuals. The individual is repre-
sented by a D-dimensional vector. The population consists
of NP = n parameter vectors. In BBO, there are two
main operators, the migration and the mutation. One option
for implementing the migration operator can be described in
Algorithm 2!'. Where rndreal(0,1) is a uniformly distributed
random real number in (0,1) and X;(j) is the j-th SIV of
the solution X;. With the migration operator, BBO can share
the information among solutions. Especially, poor solutions
tend to accept more useful information from good solutions.
This makes BBO be good at exploiting the information of the
current population. More details about the two operators can
be found in [6] and in the Matlab code [18].

III. RELATED WORK TO DE

Some previous researches pointed out that there are three
main drawbacks of the original DE algorithm. First, the pa-
rameters of DE are problem dependent and the choice of them
is often critical for the performance of DE [19], [20]. Second,
choosing the best among different mutation schemes available
for DE is also not easy for a specific problem [27], [28]. Third,
DE is good at exploring the search space and locating the
region of global minimum, but it is slow at exploitation of the
solution [5]. Due to these drawbacks, many researchers are
now working on the improvement of DE, and many variants
are presented.

Adapting the DE’s control parameters is one possible im-
provement. Liu and Lampinen [20] proposed a Fuzzy Adaptive
DE (FADE), which employs fuzzy logic controllers to adapt
the mutation and crossover control parameters. Brest ez al. [21]
proposed self-adapting control parameter settings. Their pro-
posed approach encodes the ' and C'R parameters into the
chromosome and uses a self-adaptive control mechanism to
change them. Salman et al. [22] proposed a self-adaptive DE
(SDE) algorithm that eliminates the need for manual tuning of
control parameters. In SDE, the mutation weighting factor F'
is self-adapted by a mutation strategy similar to the mutation
operator of DE. Nobakhti and Wang [23] proposed a Random-
ized Adaptive Differential Evolution (RADE) method, where
a simple randomized self-adaptive scheme was proposed for
the mutation weighting factor F'. Das et al. [24] proposed

I'Since the mutation operator of BBO is not used in our approach, we do
not describe it here. Interested readers can refer to [6] and [18].

two variants of DE, DERSF and DETVSE, that use varying
scale factors. They concluded that those variants outperform
the original DE. Teo [25] presented a dynamic self-adaptive
populations DE, where the population size is self-adapting.
Through five De Jong’s test functions, they showed that DE
with self-adaptive populations produced highly competitive
results. Brest and Mauéc [26] proposed an improved DE
method, where the population size is gradually reduced. They
concluded that their approach improved efficiency and robust-
ness of DE.

Qin and Suganthan [27] proposed a self-adaptive DE al-
gorithm. The aim of their work was to allow DE to switch
between two schemes: “DE/rand/1/bin” and “DE/best/2/bin”
and also to adapt the F' and C'R values. The approach
performed well on several benchmark problems. Recently, Qin
et al. [28] extent their previous work [27]. In their SaDE,
four schemes were adopted. And different CR values were
also used for different mutation schemes. Their proposed algo-
rithm outperformed the original DE and some other compared
adaptive/self-adaptive DE variants [28].

Hybridization with other different algorithms is another
direction for the improvement of DE. Fan and Lampinen [29]
proposed a new version of DE that uses an additional muta-
tion operation called trigonometric mutation operation. They
showed that the modified DE algorithm can outperform the
classic DE algorithm for some benchmarks and real-world
problems. Sun et al. [30] proposed a new hybrid algorithm
based on a combination of DE with Estimation of Distribution
Algorithm (EDA). This technique uses a probability model
to determine promising regions in order to focus the search
process on those areas. Gong et al. [31] employed the two level
orthogonal crossover to improve the performance of DE. They
showed that the proposed approach performs better than the
classical DE in terms of the quality, speed, and stability of the
final solutions. Noman and Iba [32] proposed fittest individual
refinement, a crossover-based local search (LS) method DE to
solve the high dimensional problems. Based on their previous
work [32], they incorporated LS into the classical DE in [5].
They presented a LS technique to solve this problem by
adaptively adjusting the length of the search, using a hill-
climbing heuristic. Through the experiments, they showed
that the proposed new version of DE performs better, or at
least comparably, to classic DE algorithm. Kaelo and Ali [33]
adopted the attraction-repulsion concept of electromagnetism-
like algorithm to boost the mutation operation of the original
DE. Yang et al. [34] proposed a neighborhood search based
DE algorithm. Experimental results showed that DE with
neighborhood search has significant advantages over other
existing algorithms on a broad range of different bench-
mark functions [34]. Wang et al. [35] proposed a dynamic
clustering-based DE for global optimization, where a hierar-
chical clustering method is dynamically incorporated in DE.
Experiments on 28 benchmark problems, including 13 high
dimensional functions, showed that the new method is able
to find near optimal solutions efficiently [35]. Rahnamayan
et al. [36] proposed a novel initialization approach which
employs opposition-based learning to generate initial popu-
lation. Through a comprehensive set of benchmark functions



they showed that replacing the random initialization with the
opposition-based population initialization in DE can accelerate
convergence speed.

IV. OUR APPROACH: DE/BBO

As mentioned above, DE is good at exploring the search
space and locating the region of global minimum. However,
it is slow at exploitation of the solution [5]. On the other
hand, BBO has a good exploitation for global optimization [6].
Based on these considerations, in order to balance the explo-
ration and the exploitation of DE, in this work, we propose
a hybrid DE approach, called DE/BBO, which combines the
exploration of DE with the exploitation of BBO effectively.
Our proposed DE/BBO approach is described as follows.

A. Hybrid migration operator

The main operator of DE/BBO is the hybrid migration
operator, which hybridizes the DE operator with the migration
operator of BBO, described in Algorithm 3. From Algorithm 3
we can see that the offspring U; is possibly constituted by three
components: the DE mutant, the migration of other solutions,
and its corresponding parent X;. The core idea of the proposed
hybrid migration operator is based on two considerations. On
the one hand, good solutions would be less destroyed, while
poor solutions can accept a lot of new features from good
solutions. In this sense, the current population can be exploited
sufficiently. On the other hand, the mutation operator of DE
is able to explore the new search space. From the analysis, it
can be seen that the hybrid migration operator can balance the
exploration and the exploitation effectively. It is worth pointing
out that in Algorithm 3 the “DE/rand/1” mutation operator is
illustrated, however, other mutation operators of DE can also
be used in our proposed hybrid migration operator. And the
influence of different mutation schemes will be discussed in
Section V-F.

constraints should be reflected back from the bound by the
amount of violation. In this work, the following repair rule is
applied

X(i) = {

where rndreal; [0, 1] is the uniform random variable from [0,1]
in each dimension <.

l; + rndreal; [0, 1] X (u; — ;)
u; — rndreal; [0, 1] X (u; — 1;)

if X (i) < L
it X >u @

C. Main procedure of DE/BBO

By incorporating the above-mentioned hybrid migration
operator into DE, the DE/BBO approach is developed and
shown in Algorithm 4. Compared with the original DE algo-
rithm described in Algorithm 1, our approach needs only a
small extra computational cost in sorting the population and
calculating the migration rates. In addition, the structure of our
proposed DE/BBO is also very simple. Moreover, DE/BBO
is able to explore the new search space with the mutation
operator of DE and to exploit the population information with
the migration operator of BBO. This feature overcomes the
lack of exploitation of the original DE algorithm.

Algorithm 4 The main procedure of DE/BBO

1: Generate the initial population P

2: Evaluate the fitness for each individual in P

3: while The halting criterion is not satisfied do

4:  For each individual, map the fitness to the number of species

5. Calculate the immigration rate A; and the emigration rate ;
for each individual X;

6:  Modify the population with the hybrid migration operator
shown in Algorithm 3

7. fori=1to NP do

8: Evaluate the offspring U;
9: if U; is better than P; then
10: P=U;

11: end if

12:  end for

13: end while

Algorithm 3 Hybrid migration operator of DE/BBO
1: for:=1to NP do
2 Select uniform randomly 71 # 72 # 73 # 4
3 Jrand = mdint(1, D)
4. for j=1to D do
5
6
7

if rndreal(0,1) < A; then
if rndreal;[0,1) > CR or j == jrana then
Uij) = Xri () + F x (Xrs(j) = Xra(5)) {The
original mutation operator of DE.}

8: else

9: Select X, with probability o< g
10: Ui(j) = Xi(j)

11: end if

12: else

13: Ui(j) = X:(5)

14: end if

15: end for

16: end for

B. Boundary constraints

In order to keep the solution of bound-constrained prob-
lems feasible, those trial parameters that violate boundary

V. EXPERIMENTAL RESULTS

In order to verity the performance of DE/BBO, twenty-
three benchmark functions are chosen from [8]. Since we do
not make any modification of these functions, they are only
briefly described in Table I. A more detailed description of
these functions can be found in [8], where the functions were
divided into three categories: unimodal functions, multimodal
functions with many local minima, and multimodal functions
with a few local minima.

Functions f01 - 13 are high-dimensional and scalable prob-
lems. Functions fO1 - fO5 are unimodal. Function f06 is the
step function, which has one minimum and is discontinuous.
Function f07 is a noisy quartic function, where random [0,1)
is a uniformly distributed random variable in [0,1). Functions
fO8 - f13 are multimodal functions where the number of local
minima increases exponentially with the problem dimension.
They appear to be the most difficult class of problems for
many optimization algorithms. Functions f14 - f23 are low-
dimensional functions that have only a few local minima.



TABLE I
BENCHMARK FUNCTIONS USED IN OUR EXPERIMENTAL STUDIES. MORE DETAILS OF ALL FUNCTIONS CAN BE FOUND IN [8].

Functions ~ Name D S optimal
fo1 Sphere Model 30 [~100, 100]7 0
02 Schwefel’s Problem 2.22 30 [—10,10]P 0
03 Schwefel’s Problem 1.2 30 [—100, 100]” 0
f04 Schwefel’s Problem 2.21 30 [—100, lOO]D 0
05 Generalized Rosenbrock’s Functions 30 [—30,30]° 0
06 Step Function 30 [—100, 100]” 0
07 Quartic Function 30 [—1.28,1.28]P 0
08 Generalized Schwefel’s Problem 2.26 30 [—500, 500] -12569.5
09 Generalized Rastrigin’s Function 30 [-5.12,5.12]P 0
10 Ackley’s Function 30 [—32,32]P 0
f11 Generalized Griewank Function 30 [—600, 600] b 0
12 Generalized Penalized Function 1 30 [—50,50]° 0
13 Generalized Penalized Function 2 30 [—50, 50]° 0
f14 Shekel’s Foxholes Function 2 [—65.536, 65.536] 7 1
15 Kowalik’s Function 4 [—5,5]° 0.003075
16 Six-Hump Camel-Back Function 2 [-5,5)P -1.0316285
17 Branin Function 2 [—5,10] x [0, 15] 0.398
18 Glodstein-Price Function 2 0,117 3
19 Hartman’s Function 1 3 [0,1]” -3.86
20 Hartman’s Function 2 6 lo,11P -3.32
21 Shekel’s Function 1 4 [0,10]" -10.1532
22 Shekel’s Function 2 4 [0,10]P -10.4029
23 Shekel’s Function 3 4 [0,10]" -10.5364

A. Experimental setup

For DE/BBO, we have chosen a reasonable set of value and
have not made any effort in finding the best parameter settings.
For all experiments, we use the following parameters unless a
change is mentioned.

« Population size: NP = 100 [5], [8], [21], [36];

« Habitat modification probability = 1 [6];

o Scaling factor: F' = rndreal(().l, 1.0) [4], [16];

o Crossover probability: CR = 0.9 [2], [20], [25], [36];

o DE mutation scheme: DE/rand/1/bin [2], [5], [20], [25],

(361;
 Value to reach: VIR = 108 [37], except for f07 of VTR

=10"2;
¢ Maximum Number of Fitness Function Evaluations
(Max_NFFEs): For {01, {06, f10, f12, and f13,

Max_NFFEs = 150000; for f03 - f05, Max_NFFEs =
500000; for f02 and f11, Max_NFFEs = 200000; For f07
- f09, Max_NFFEs = 300000; for f14, f16 - 19, 21, and
22, Max_NFFEs = 10000; for f15, Max_NFFEs = 40000;
and for 20, Max_NFFEs = 20000.
Moreover, in our experiments, each function is optimized
over 50 independent runs. We also use the same set of
initial random populations to evaluate different algorithms in
a similar way done in [5]. All the algorithms are implemented
in standard C++. The source code can be obtained from the
first author upon request.

B. Performance Criteria

Five performance criteria are selected from the litera-
ture [36], [37] to evaluate the performance of the algorithms.
These criteria are described as follows.

e Error [37]: The error of a solution X is defined as

f(X) — f(X*), where X* is the global optimum of
the function. The minimum error is recorded when the

Max_NFFE:s is reached in 50 runs. Also the average and
standard deviation of the error values are calculated.

o NFFEs [37]: The number of fitness function evaluations
(NFFEs) is also recorded when the VTR is reached. The
average and standard deviation of the NFFEs values are
calculated.

o Number of successful runs (SR) [37]: The number of
successful runs is recorded when the VTR is reached
before the max_NFFEs condition terminates the trial.

« Convergence graphs [37]: The convergence graphs show
the mean error performance of the total runs, in the
respective experiments.

o Acceleration rate (AR) [36]: This criterion is used
to compare the convergence speeds between DE/BBO
and other algorithms. It is defined as follows: AR =

NEFBsoner  where AR > 1 indicates DE/BBO is faster
NFFEspr/BBO

than its competitor.

C. General performance of DE/BBO

In order to show the superiority of our proposed DE/BBO
approach, we compare it with the original DE algorithm and
the BBO algorithm. The parameters used for DE/BBO and
DE are the same as described in Section V-A. The parameters
of BBO are set as in [6], and the mutation operator with
Mmax = 0.005 is also used in our experiments. All functions
are conducted for 50 independent runs. Table II shows the best
error values of DE/BBO, DE, and BBO on all test functions.
The average and standard deviation of NFFEs are shown in
Table III. In addition, some representative convergence graphs
of DE/BBO, DE, and BBO are shown in Figure 1.

When compared with DE: From Table II we can see
that DE/BBO is significantly better than DE on 8 functions.
However, DE/BBO is outperformed by DE on two functions
(f03 and f05). For the rest 13 functions, there are no significant



TABLE 11
BEST ERROR VALUES OF DE/BBO, DE, AND BBO ON ALL TEST FUNCTIONS, WHERE “MEAN” INDICATES THE MEAN BEST ERROR VALUES FOUND IN
THE LAST GENERATION, “STD DEV” STANDS FOR THE STANDARD DEVIATION. “1 VS 2” MEANS “DE/BBO vs DE” AND “1 VS 3” MEANS “DE/BBO vs
BBO”. HEREAFTER, A RESULT WITH BOLDFACE MEANS BETTER VALUE FOUND.

F DE/BBO DE BBO 1vs2 1vs3
Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR t-test t-test
fO1 8.66E-28 5.21E-28 50 1.10E-19 1.34E-19 50 8.86E-01 3.26E-01 0 581t 19217
f02 0.00E+00 0.00E+00 50 1.66E-15 8.87E-16 50 2.42E-01 4.58E-02 0 -13.247 37361
f03 2.26E-03 1.58E-03 0 8.19E-12 1.65E-11 50  4.16E+02  2.02E+02 0 10.10"  -14.587
f04 1.89E-15 8.85E-16 50 7.83E+00  3.78E+00 0 7.76E-01 1.72E-01 0 14657 -31.96"
o5 1.90E+01 7.52E+00 0 8.41E-01 1.53E+00 6 9.14E+01 3.78E+01 0 16.737 13287
f06 0.00E+00 0.00E+00 50 0.00E+00  0.00E+00 50 2.80E-01 5.36E-01 38 0 -3.69"
f07 3.44E-03 8.27E-04 50 3.49E-03 9.60E-04 50 1.90E-02 7.29E-03 4 -0.29 -14.96F
f08 0.00E+00 0.00E+00 50 4.28E+02  4.69E+02 1 5.09E-01 1.65E-01 0 -6.45" 21787
f09 0.00E+00 0.00E+00 50 1.14E+01 7.57E+00 0 8.50E-02 3.42E-02 0 -10.617  -17.617
f10 1.07E-14 1.90E-15 50 6.73E-11 2.86E-11 50 3.48E-01 7.06E-02 0 -16.667  -34.817
f11 0.00E+00 0.00E+00 50 1.23E-03 3.16E-03 43 4.82E-01 1.27E-01 0 2767 26937
f12 7.16E-29 6.30E-29 50 2.07E-03 1.47E-02 49 5.29E-03 5.21E-03 0 -1.00 7.18f
f13 9.81E-27 7.10E-27 50 7.19E-02 5.09E-01 49 1.42E-01 5.14E-02 0 -1.00 -19.50"
f14 0.00E+00 0.00E+00 50 2.75E-13 1.55E-12 50 8.85E-06 2.74E-05 14 -1.26 -2.28f
f15 3.84E-12 2.70E-11 50 4.94E-19 5.20E-19 50 5.92E-04 2.68E-04 0 1.01 -15.657
f16 1.15E-12 6.39E-12 50 1.98E-13 4.12E-13 50 6.75E-04 1.09E-03 0 1.05 437t
f17 2.92E-10 1.38E-09 50 7.32E-10 2.21E-09 49 4.39E-04 4.26E-04 0 -1.19 -7.307
f18 9.15E-13 6.51E-15 50 9.14E-13 5.01E-15 50 7.86E-03 9.57E-03 0 0.70 5817
f19 0.00E+00  0.00E+00 50 1.36E-14 6.40E-15 50 2.51E-04 2.62E-04 0 15057 -6.76"
20 0.00E+00 0.00E+00 50 4.76E-03 2.35E-02 47 1.46E-02 3.90E-02 0 -1.43 2.64"
21 3.59E-03 1.44E-02 15 6.83E-06 1.26E-05 0 S5.18E+00  3.34E+00 0 1.76 -10.95"
22 3.14E-07 1.36E-06 29 7.26E-06 4.53E-05 1 3.67E+00  3.40E+00 0 -1.08 -7.63%
23 2.50E-08 5.37E-08 27 3.70E-06 1.75E-05 0 2.73E+00  3.29E+00 0 -1.49 -5.87%

T The value of ¢ with 49 degrees of freedom is significant at @« = 0.05 by two-tailed test.

TABLE III
NFFES REQUIRED TO OBTAIN ACCURACY LEVELS LESS THAN VT R. “NA” INDICATES THE ACCURACY LEVEL IS NOT OBTAINED AFTER MAX_NFFES.
“1 vs 2” MEANS “DE/BBO vs DE” AND “1 VS 3” MEANS “DE/BBO vs BBO”.

F DE/BBO DE BBO 1vs2 1vs3
Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR AR AR
fo1 59926 745.5 50 79688 1858.8 50 NA NA 0 1.33 NA
f02 82004 983.9 50 119764 1871.2 50 NA NA 0 1.46 NA
f03 NA NA 0 385990 17193.4 50 NA NA 0 NA NA
fo4 296572 4969.9 50 NA NA 0 NA NA 0 NA NA
o5 NA NA 0 448583  60428.8 6 NA NA 0 NA NA

f06 21590 573.3 50 28874 2014.5 50 119042 16882.8

)
oo
—
(5]
=
w
w
—

f07 109574  21005.8 50 103136  29677.7 50 205000  23896.2 4

f08 95952 3126.7 50 251700 0 1 NA NA 0 2.62 NA
f09 170226 8379.0 50 NA NA 0 NA NA 0 NA NA
f10 91308 922.7 50 122340 2179.6 50 NA NA 0 1.34 NA
f11 62042 1219.6 50 81986 1795.8 43 NA NA 0 1.32 NA
f12 54482 873.3 50 71183 4700.9 49 NA NA 0 1.31 NA
f13 64772 1133.4 50 93298 16916.8 49 NA NA 0 1.44 NA
f14 4532 719.5 50 6768 766.0 50 5757 2351.3 14 1.49 1.27
f15 24028 3279.3 50 12590 977.8 50 NA NA 0 0.52 NA
f16 5676 1012.7 50 5760 632.5 50 NA NA 0 1.01 NA
f17 7138 1404.9 50 7271 1098.7 49 NA NA 0 1.02 NA
f18 5050 374.3 50 4610 292.9 50 NA NA 0 0.91 NA
f19 4808 3522 50 5434 346.8 50 NA NA 0 1.13 NA
20 9614 705.1 50 14161 1553.3 47 NA NA 0 1.47 NA
21 9560 397.9 15 NA NA 0 NA NA 0 NA NA
22 9527 349.4 29 10000 0 1 NA NA 0 1.05 NA
23 9533 362.7 27 NA NA 0 NA NA 0 NA NA

difference based on the ¢-test?>. For the multimodal functions with many local minima (fO8 - f13), DE/BBO can obtain
the VTR = 10~8 over all 50 runs within the Max_NFFEs.
However, DE may trap into the local minima for five out of

2 . . . or
The paired t-test determines whether two paired sets differ from each . . R ..
P P six functions. This indicates that our approach has the ability

other in a significant way under the assumptions that the paired differences
are independent and identically normally distributed [38].
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to escape from poor local optima and locate a good near-
global optimum. Apparently, from Table III it can be seen that
DE/BBO requires less NFFEs to reach the VTR than DE on 18
functions. DE is faster than DE/BBO on the rest 5 functions.
Additionally, for the majority of the test functions DE/BBO
converges faster than DE as shown in Figure 1.

When compared with BBO: From Tables II , III and Figure 1,
it is obvious that DE/BBO performs significantly better than
BBO consistently with respect to all five criteria for all test
functions. By carefully looking at Figure 1, we can see that
in the beginning of the evolutionary process BBO converges
faster than DE/BBO while DE/BBO is able to improve its
solution steadily for a long run. The reason might be that BBO
has a good exploitation but lacks the exploration. However, for
DE/BBO with the hybrid migration operator, it can balance the
exploration and the exploitation effectively.

In general, the performance of DE/BBO is highly compet-
itive with DE, especially for the high-dimensional problems.

2
NFFEs

25 3 35 4 0 2000 4000 6000 8000 10000
NI

FFEs

®

Mean error curves of DE/BBO, DE, and BBO for selected functions. (a) fO1. (b) f03. (c) f04. (d) f08. (e) f09. (f) f11. (g) f12. (h) f15. (i) f22.

Moreover, DE/BBO is significantly better than BBO for all
problems. Since for the majority of the low-dimensional
functions (f14 - 23), both DE/BBO and DE have no significant
difference, we will not use these functions in the following
experiments. In addition, we also don’t compare the algorithms
with BBO in the following experiments.

D. Influence of population size

The choice of the best population size of DE is always
critical for different problems [19], [25], [26]. Increasing
the population size will increase the diversity of possible
movements, promoting the exploration of the search space.
However, the probability to find the correct search direction
decreases considerably [39]. The influence of population size
is investigated in this section. For both DE/BBO and DE, all
the parameter settings are the same as mentioned in Section V-
A, only except for NP = 50, NP = 150, and NP = 200.

The results for different population size are shown in



Table IV. It can be seen that: i) for NP = 50 DE/BBO
is significantly better than DE on 10 functions while it is
outperformed by DE for function f03. For f05, DE/BBO is
sightly better than DE. And for f13, DE/BBO can locate the
near-global optimum over all 50 runs, however, DE traps into
the local minima on 14 out of 50 runs. ii) When the population
increases to NP = 100, DE can obtain higher overall
successful runs than NP = 50. DE/BBO is significantly
better than DE on 8 functions based on the ¢-test results.
DE is significantly better than DE/BBO for functions f03 and
fO5. For the rest 3 functions, DE/BBO is better than DE.
iii) For NP = 150 and NP = 200, DE/BBO is able to
obtain significant better performance than DE on 8 and 9
functions, respectively. Similarly, for f03 and f05, DE/BBO is
outperformed by DE significantly. In addition, from Figure 2
we can see that DE/BBO can obtain higher convergence
speed to different population size for the majority of functions
compared with DE.

In general, the overall performance of DE/BBO is better
than DE to different population size. DE/BBO exhibits higher
overall successful runs, higher convergence velocity, and more
robustness than DE.

E. Effect of dimensionality

In order to investigate the influence of the problem di-
mension on the performance of DE/BBO, we carry out a
scalability study comparing with the original DE algorithm
for the scalable functions in the test suit. For functions fO1
- f13, D = 10,50, 100, and 200. The results are recorded in
Table V after D x 10000 NFFEs, and some representative
convergence graphs are shown in Figure 3. From Table V we
can see that the overall SR is decreasing for both DE/BBO
and DE, since increasing the problem dimension leads to
the algorithms sometimes unable to solve the problem before
reaching the Max_NFFEs. However, similarly to D = 30,
on the majority of functions, DE/BBO outperforms DE at
every dimension. By carefully looking at the results, we can
recognize that for f05 DE is better than DE/BBO at D = 10
and D = 30, however, DE is outperformed by DE/BBO
at higher dimension (D = 50,100,and 200). So, from the
experimental results of this section, we can conclude that the
hybrid migration operator has the ability to accelerate DE in
general, especially the improvements are more significant at
higher dimensionality.

F. Influence of different mutation schemes

There are ten mutation schemes proposed in the orig-
inal DE [3], [4]. Actually, choosing the best among dif-
ferent mutation schemes available for DE is also not easy
for a specific problem [27], [28]. In this section, we per-
form additional experiment to compare the performance of
DE/BBO with that of DE to different schemes. Four schemes,
namely, DE/best/1/bin, DE/rand/2/bin, DE/rand-to-best/1/bin,
and DE/best/2/bin are chosen in these experiments. All re-
maining parameters are the same as mentioned in Section V-
A. Table VI gives the results of DE/BBO and DE for the four
schemes. Based on the t-test, the results can be summarized as

“w/t/1”, which means that DE/BBO wins in w functions, ties
in t functions, and loses in [ functions, compared with DE.
From Table VI, for DE/best/1/bin, DE/rand/2/bin, DE/rand-to-
best/1/bin, and DE/best/2/bin, they are 12/1/0, 9/2/2, 8/3/2,
and 10/2/1, respectively. The results indicate that DE/BBO is
able to obtain greater robustness than DE to different mutation
schemes on the majority of functions.

G. Influence of self-adaptive parameter control

As mentioned above, the choice of the control parameters F'
and C'R is sensitive for different problems [19]. Researchers
have proposed the adaptive parameter control of DE, such
as [20], [21], and so on. In order to show that DE/BBO
can also improve the self-adaptive DE, in this section, we
adopt the self-adaptive parameter control proposed in [21] to
replace ' = rndreal(0.1,1.0) and CR = 0.9 in the previous
experiments. All other parameter settings are kept unchanged.
The results for the self-adaptive DE (SADE) and self-adaptive
DE/BBO (SADE/BBO) are given in Table VII.

According to Table VII, we can see that: first, for the Error
values, both SADE/BBO and SADE can obtain the global
optimum on five functions (f02, f06, f08, f09, and f11) over
50 runs. SADE/BBO is significantly better than SADE on five
functions. SADE outperforms SADE/BBO on two functions
(f03 and f05). Second, with respect to the NFFE:s, it is obvious
that SADE/BBO is significantly better than SADE on 11
functions. And the AR values are larger than 1 for these
functions, it means that SADE/BBO is faster than SADE.
For functions fO3 and f05, SADE/BBO fails to solve the two
functions over all 50 runs. Overall, integration of the hybrid
migration operator can improve the performance of SADE.

H. Comparison with other DE hybrids

In this section, we make a comparison with other DE
hybrids. Since there are many variants of DE, we only compare
our approach with DEahcSPX proposed in [5], ODE proposed
in [36], and DE/EDA proposed in [30].

1) Comparison with DEahcSPX and ODE: Firstly, we com-
pare our approach with DEahcSPX and ODE. In DEahcSPX,
a crossover-based adaptive local search operation to accelerate
the original DE. The authors concluded that DEahcSPX out-
performs the original DE in items of convergence rate in all
experimental studies. In ODE, the opposition-based learning is
used for the population initialization and generation jumping.
In this section, we compare our proposed CDE with the
original DE, DEahcSPX and ODE. All the parameter settings
are the same as mentioned in Section V-A. For DEahcSPX, the
number of parents in SPX sets to be n, = 3 [5]. For ODE, the
jump rate J,, = 0.3 [36]. The results are given in Table VIII.
The selected representative convergence graphs are shown in
Figure 4.

It can be seen that, from Table VIII, DE/BBO is significantly
better than DEahcSPX on 8 functions while it is outperformed
by DEahcSPX on two functions (fO3 and f05). For the rest
three functions, there are no significant difference between
DE/BBO and DEachSPX. However, for f12 and f13, DE/BBO
can obtain the near-global optimum over all 50 runs while
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OF SUCCESSFUL RUNS AND [a + b] DENOTES THE AVERAGED NFFES REQUIRED WHEN THE GLOBAL MINIMUM ACHIEVED BEFORE USING

TABLE IV
INFLUENCE OF THE PERFORMANCE TO DIFFERENT POPULATION SIZE FOR FUNCTIONS f01 — f13 (D = 30). HEREAFTER, (#) INDICATES THE NUMBER

MAX_NFFES FOR ALL ALGORITHMS.

. NP =50 NP =100
DE/BBO DE DE/BBO DE
f01  4.93E-34 + 2.44E-33 (50)  6.73B-33 & 9.09E-33 (50)'  8.66E-28 - 5.21E-28 (50) 1.10E-19 & 1.34E-19 (50)
02 0.00E+00 £ 0.00E+00 (50)  1.55B-17 & 4.49E-17 (50)"  0.00E+00 - 0.00E+00 (50)  1.66E-15 % 8.87E-16 (50)
03 7.69E-13 £ 8.68E-13 (50)  3.03E-17 £ 2.10E-16 (50))  2.26E-03 £ 1.58E-03 (0) 8.19E-12 + 1.65E-11 (50)*
f04  1.37E-06 £ 6.00E-06 (40)  1.72E+01 + 5.64E+00 (0)'  1.89E-15 -+ 8.85E-16 (50) 7.83E+00 = 3.78E+00 (0)"
05  1LI10E+01 + 5.63E+00 (0)  1.27E+01 - 7.26E+00 (0)  1.90E+01 = 7.52E+00 (0) 8.41E-01 + 1.53E+00 (6)*
06 [9.39E+03+£3.09E+02] (50)  [1.95E+04-£6.20E+03] (50)7  [2.16E+04-£5.73E+02] (50)  [2.89E+04 + 2.01E+03] (50)*
f07  1.64E-03 £ 3.67E-04 (50)  4.19B-03 - 2.05E-03 (50)7  3.44E-03 £ 8.27E-04 (50) 3.49E-03 + 9.60E-04 (50)
f08  2.37E+01 £ 5.35E+01 (41)  5.57E+02 = 3.38E+02 (0)"  0.00E+00 - 0.00E+00 (50)  4.28E+02 + 4.69E+02 (1)
f09  5.37E-01 £ 7.84E-01 31)  1.23E+01 = 4.17E+00 (0)"  0.00E+00 = 0.00E+00 (50)  1.14E+01 &+ 7.57E+00 (0)
f10  4.14E-15 £ 0.00E+00 (50)  7.45B-02 £ 2.55E-01 (46)|  1.07E-14 £ 1.90E-15 (50) 6.73B-11 = 2.86B-11 (50)f
fl1  3.45E-04 + 1.73E-03 (48)  4.83B-03 £ 7.90E-03 (32)7  0.00E+00 - 0.00E+00 (50)  1.23E-03 % 3.16E-03 (43)
f12 1.57E-32 £ 0.00E+00 (50)  4.98B-02 £ 1.26E-01 41)T  7.16E-29 £ 6.30E-29 (50) 2.07B-03 £ 1.47E-02 (49)
13 1.36E-32 + 7.15E-34 (50)  3.61E+00 = 1.80E+01 (36)  9.81E-27 - 7.10E-27 (50) 7.19E-02 + 5.09E-01 (49)
. NP =150 NP = 200
DE/BBO DE DE/BBO DE

f01  7.60E-23 £ 3.75E-23 (50)  6.36E-12 £ 4.24E-12 (50)'  1.91E-16 + 7.51E-17 (50) 7.24E-08 = 2.98E-08 (0)f
02 0.00E+00 £ 0.00E+00 (50)  1.12E-09 &+ 3.67E-10 (50)"  1.88E-14 + 4.27E-15 (50) 8.87E-07 &+ 2.37E-07 (0)
03 8.10E-01 % 4.63E-01 (0) 1.16E-07 & 2.24E-07 ()  1.98E+01 = 9.76E+00 (0) 3.27E-05 + 3.17E-05 (0)*
f04  2.33E-13 £ 1.02E-13 (50)  4.74B+00 + 3.21E+00 (0)'  6.53E-10 < 2.04E-10 (50) 2.61E+00 £ 1.95E+00 (0)'
05  1.99E+01 + 5.26E-01 (0)  1.84E+00 + 1.58E+00 (0)!  2.11E+01 % 4.06E-01 (0) 4.85E+00 + 1.63E+00 (0)*
06 [2.56E+04-£6.27E+02] (50)  [4.27E+04=1.53E+03] (50)7  [3.36E+04+6.97E+02] (50)  [5.78E+04 & 1.74E+03] (50)'
07  3.93E-03 £ 7.69E-04 (50)  4.39E-03 £ 1.10E-03 (50)"  5.03E-03 + 1.09E-03 (50) 5.55B-03 £ 1.75E-03 (50)
08 0.00E+00 £ 0.00E+00 (50)  2.35E+03 % 1.13E+03 (0)7  0.00E+00 + 0.00E+00 (50)  3.10E+03 & 1.04E+03 (0)*
f09  0.00E+00 £ 0.00E+00 (50)  3.27E+01 &+ 1.43E+01 (0)7  0.00E+00 + 0.00E+00 (50)  4.86E+01 & 1.21E+01 (0)*
f10  1.91E-12 + 5.21E-13 (50) 6.40E-07 £ 1.98E-07 (0)'  3.11E-09 = 5.76E-10 (50) 7.04E-05 £ 1.68E-05 (0)F
f11 0.00E+00 £ 0.00E+00 (50)  2.22E-18 + 1.57E-17 (50)  0.00E+00 % 0.00E+00 (50)  4.93E-04 &= 1.99E-03 (47)
f12 513E-24 + 3.15E-24 (50)  2.07E-03 £ 1.47E-02 (49)  1.17E-17 % 5.01E-18 (50) 1.58E-09 & 1.01E-09 (50
13 6.84E-22 £ 5.10E-22 (50)  2.51E-03 £ 1.78E-02 (49)  1.75E-15 % 8.37E-16 (50) 9.58E-08 - 7.78E-08 (0)f

10

¥ The value of ¢ with 49 degrees of freedom is significant at « = 0.05 by two-tailed test.

¥

DEahcSPX traps into the local minima on one run, respec-
tively. In addition, Figure 4 shows that DE/BBO converges
faster than DEahcSPX on the major functions.

With respect to ODE, the t-test is 9/2/2 in Table VIIL It
means that DE/BBO significantly outperforms ODE on 9 out
of 13 functions. ODE is significantly better than DE/BBO on
two functions (fO03 and f07). For fO1 and f10, there are no
significant difference between DE/BBO and ODE, however,
DE/BBO is slightly better than ODE. Moreover, on the ma-
jority of functions, DE/BBO exhibits higher convergence rate
than ODE.

2) Comparison with DE/EDA: Secondly, the comparison
between DE/BBO and DE/EDA is conducted in this section.
The reason is that DE/BBO is similar to DE/EDA, i.e.,
both algorithms combine DE with another global optimization
algorithm to improve the performance of DE. DE/EDA com-
bines global information extracted by EDA with differential
information obtained by DE to create promising solutions [30].
DE/BBO integrates the migration operator of BBO into DE
to balance the exploration and the exploitation. In original
DE/EDA algorithm?, the DE mutation scheme is described as

3The source code of DE/EDA is available online at:
http://cswww.essex.ac.uk/staff/qzhang/IntrotoResearch/HybridEDA.htm

means that the corresponding algorithm is better than our proposed DE/BBO method.

follows

UG = [Xn () + X)) /2+
Fx [(Xn () = X)) + (X2 (0) = Xna ()]
Q)
where X; is the target vector of DE. In order to make a
fair comparison, all compared algorithms (DE, DE/BBO, and
DE/EDA) adopt the mutation scheme shown in Eqn. 5 to
replace the DE/rand/1/bin scheme. All other parameters are the
same as mentioned in Section V-A. The results are presented in
Table IX. And the selected representative convergence graphs
are shown in Figure 5.

When compared with DE: DE/BBO is significantly better
than DE on 11 functions. For the rest two functions (f06 and
f13), DE/BBO is also better than DE. Additionally, DE/BBO
is able to obtain faster convergence velocity than DE for all
functions.

When compared with DE/EDA: The overall SR of DE/BBO
is better than DE/EDA. On 9 functions, DE/BBO is signifi-
cantly better than DE/EDA. DE/EDA is significantly better
than DE/BBO only on one functions (f03). For the rest three
functions, there are no significant difference. By carefully
looking at the results in Table IX, we can see that DE/BBO is
substantial better than DE/EDA for all multimodal functions



TABLE V
SCALABILITY STUDY FOR FUNCTIONS f01 — f13 AT Max_NFFEs = D x 10000.

DE/BBO

DE

DE/BBO

DE

01
02
03
f04
05
f06
f07

[1.89E+04 + 3.63E+02] (50)
[2.63E+04 + 4.19E+02] (50)
6.07E-14 = 9.60E-14 (50)
1.58E-16 = 9.88E-17 (50)
3.40E+00 + 8.03E-01 (0)
[6.62E+03 £ 3.28E+02] (50)
1.11E-03 & 3.96E-04 (50)

[3.08E+04 + 8.41E+02] (50)
[4.71E+04 + 7.61E+02] (50)
1.35E-21 + 2.49E-21 (50)*
1.39E-13 + 1.22E-13 (50)1
3.53E-11 + 1.24E-10 (50)*
[1.06E+04 + 5.50E+02] (50)"
1.52E-03 + 5.97E-04 (50)1

0.00E+00 + 0.00E+00 (50)
0.00E+00 + 0.00E+00 (50)
5.20E+02 = 2.48E+02 (0)
3.42E-03 - 2.28E-02 (3)
4.43E+01 + 1.39E+01 (0)

[2.74E+04 £ 6.22E+02] (50)
4.05E-03 £ 9.20E-04 (50)

1.87E-32 + 1.64E-32 (50)F
1.44E-17 + 3.97E-17 (50)F
1.12E-01 + 8.06E-02 (0)*
1.95E+01 + 4.14E+00 (0)f
5.33E+01 & 2.89E+01 (0)
[5.57E+04 + 1.64E+04] (50)"
9.49E-03 + 3.07E-03 (34)

f08
09
f10
f11
f12
f13

0.00E+00 =+ 0.00E+00 (50)
0.00E+00 =+ 0.00E+00 (50)
5.89E-16 <+ 0.00E+00 (50)
0.00E+00 =+ 0.00E+00 (50)
4.71E-32 & 0.00E+00 (50)
1.35E-32 & 0.00E+00 (50)

1.51E-11 £ 1.05E-10 (50)
3.75E+00 + 2.72E+00 (5)F
8.02E-16 + 8.52E-16 (50)
8.54E-03 + 1.56E-02 31)t
4.71E-32 + 0.00E+00 (50)
1.35E-32 + 0.00E+00 (50)

2.37E+00 £+ 1.67E+01 (49)
0.00E+00 £ 0.00E+00 (50)
5.92E-15 + 1.79E-15 (50)
0.00E+00 £ 0.00E+00 (50)
9.42E-33 £+ 0.00E+00 (50)
1.35E-32 + 0.00E+00 (50)

1.51E+03 + 9.97E+02 (0)*
2.33E+01 =+ 8.27E+00 (0)f
3.52E-02 + 1.74E-01 (48)
5.08E-03 + 1.62E-02 (9)*
451E-02 + 1.40E-01 (41)F
1.34E-01 + 5.74E-01 (40)

F

D =100

D = 200

DE/BBO

DE

DE/BBO

DE

01
02
03
f04
05
f06
f07

6.16E-34 + 1.97E-33 (50)
0.00E+00 =+ 0.00E+00 (50)
3.10E+04 + 1.12E+04 (0)
2.71E+00 + 2.58E+00 (0)
1.19E+02 & 3.38E+01 (0)
[4.93E+04 + 1.11E+03] (50)
6.87E-03 £ 1.15E-03 (49)

2.30E-31 + 1.37E-31 (50)%
7.95E-16 + 1.05E-15 (50)"
1.31E+02 + 5.76E+01 (0)*
3.05E+01 + 4.00E+00 (0)f
1.76E+02 + 4.22E+01 (0)f
[3.30E+05 + 1.34E+05] (50)"
4.84E-02 + 2.19E-02 (0)1

3.07E-32 + 2.48E-32 (50)
5.83E-17 + 8.11E-17 (50)
2.22E+05 + 5.90E+04 (0)
1.59E+01 & 3.43E+00 (0)
2.95E+02 + 4.48E+01 (0)
0.00E+00 % 0.00E+00 (50)
1.56E-02 & 2.82E-03 (0)

1.41E-24 + 3.14E-24 (50)F
7.38E-09 + 2.33E-08 (46)"
3.64E+03 + 7.60E+02 (0)*
4.27E+01 + 4.31E+00 (0)*
4.39E+02 + 1.11E+02 (0)*
3.00E+00 + 7.75E+00 (20)
2.19E-01 + 7.38E-02 (0)f

f08
09
f10
f11
f12
f13

7.11E+00 + 2.84E+01 (47)
7.36E-01 + 8.48E-01 (23)
7.84E-15 + 7.03E-16 (50)
0.00E+00 + 0.00E+00 (50)
4.71E-33 + 0.00E+00 (50)
1.76E-32 + 2.68E-32 (50)

6.79E+03 + 1.07E+03 (0)f
7.28E+01 + 1.07E+01 (0)f
1.87E+00 + 5.72E-01 (1)}
8.43E-03 + 1.71E-02 (36)*
8.07E+03 + 2.82E+04 (26)*
1.85E+03 + 7.38E+03 (12)

2.01E+02 + 1.68E+02 (23)
1.76E+01 £ 2.89E+00 (0)
1.09E-14 + 1.12E-15 (50)
1.11E-16 + 0.00E+00 (50)
2.36E-33 £ 0.00E+00 (50)
8.36E-32 £ 1.44E-31 (50)

2.47TE+04 + 2.44E+03 (0)f
2.12E+02 =+ 2.12E+01 (0)f
5.30E+00 + 8.47E-01 (0)f
1.33E-01 + 2.50E-01 (0)
5.71E+04 + 7.31E+04 (8)"
1.65E+05 + 2.91E+05 (0)

% The value of ¢ with 49 degrees of freedom is significant at &« = 0.05 by two-tailed test.
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TABLE VI
COMPARISON OF DE/BBO AND DE TO DIFFERENT MUTATION SCHEMES FOR FUNCTIONS f01 — f13 (D = 30).

DE/best/1/bin

DE/rand/2/bin

DE/BBO

DE

DE/BBO

DE

o1
02
03
04
05
f06
07

3.71E-32 £ 3.61E-32 (50)
5.46E-16 + 1.81E-15 (50)
8.15E-30 £ 2.66E-29 (50)
2.36E+01 + 5.72E+00 (0)
8.72E+00 + 1.43E+01 (8)
1.56E+01 £ 2.98E+01 (0)
4.07E-03 + 1.39E-03 (50)

1.25E+02 + 1.55E+02 (0)F
4.16E+00 =+ 3.02E+00 (0)*
2.62E+02 + 3.04E+02 (0)f
2.97E+01 + 6.06E+00 (0)f
1.14E+04 + 1.43E+04 (0)f
1.17E+03 + 5.42E+02 (0)f
9.53E-03 + 5.73E-03 (43)"

1.27E-17 & 6.15E-18 (50)
4.70E-15 + 1.54E-15 (50)
1.31E+01 = 7.15E+00 (0)
2.04E-09 + 7.53E-10 (50)
9.25E+00 = 1.30E+00 (0)

[3.16E+04 + 8.95E+02] (50)

5.21E-03 £ 1.26E-03 (50)

1.53E-10 + 8.92E-11 (50)1
2.02E-08 + 9.61E-09 (2)f
7.28E-07 + 8.90E-07 (0)*
5.18E+00 + 3.41E+00 (0)f
9.60E-02 + 5.63E-01 (0)*

[4.74E+04 + 1.88E+03] (50)

5.41E-03 £ 1.46E-03 (49)

08
f09
f10
f11
f12
f13

6.58E+02 £ 2.94E+02 (0)
1.85E+01 + 7.55E+00 (0)
2.48E+00 + 1.16E+00 (2)
3.22E-02 + 4.06E-02 (12)
6.70E-01 + 1.15E+00 (20)
7.14E-01 + 1.24E+00 (1)

4.84E+03 =+ 6.80E+02 (0)f
7.26E+01 + 1.51E+01 (0)F
9.73E+00 + 1.66E+00 (0)f
2.13E+00 + 1.33E+00 (0)f
2.77E+01 + 2.24E+01 (0)f
2.67E+04 + 1.28E+05 (0)

0.00E+00 £ 0.00E+00 (50)
7.60E-05 £ 2.98E-04 (12)
8.65E-10 £ 2.00E-10 (50)
0.00E+00 + 0.00E+00 (50)
1.31E-18 + 1.09E-18 (50)
3.28E-16 + 3.02E-16 (50)

6.71E+03 + 2.95E+02 (0)F
1.16E+02 + 2.28E+01 (0)F
3.11E-06 + 1.04E-06 (0)*
6.41E-04 + 2.22E-03 (46)*
8.03E-12 + 1.04E-11 (50)*
1.29E-04 + 9.08E-04 (44)

DE/rand-to-best/1/bin

DE/best/2/bin

DE/BBO

DE

DE/BBO

DE

o1
02
03
04
05
f06
07

0.00E+00 % 0.00E+00 (50)
[3.42E+04 -+ 3.97E+02] (50)
3.71B-25 + 8.69E-25 (50)
2.63E+00 + 1.35E+00 (0)
1.28E+01 = 3.24E+00 (0)
2.00E-02 -+ 1.41E-01 (49)
8.43E-04 + 2.62E-04 (50)

1.23E-34 £ 6.10E-34 (50)

[4.14E+04 =+ 3.72E+03] (50)"

5.63E-32 + 2.72E-32 (50)*
2.95E+00 + 1.31E+00 (0)

1.04E+00 + 1.77E+00 (37)*
3.42E+00 + 4.13E+00 (5)
2.17E-03 + 7.98E-04 (50)

1.65E-32 & 1.37E-32 (50)
3.11E-17 + 6.65E-17 (50)
3.28B-30 = 5.47E-30 (50)
2.31E-06 + 6.77E-06 (3)
1.10E+01 & 5.63E+00 (0)
2.20E-01 + 4.65E-01 (40)
2.20E-03 + 7.68E-04 (50)

1.65E-31 + 1.93E-31 (50)*
7.88E-15 + 3.26E-14 (50)

1.07E-30 + 8.69E-31 (50)*
3.64E-02 + 4.42E-02 (0)f
1.27E+01 =+ 7.26E+00 (0)

1.34E+01 + 1.95E+01 (2)1
5.33E-03 + 2.81E-03 (461

08
f09
f10
f11
f12
f13

4.97E+01 + 7.60E+01 (33)
3.98E-02 £ 1.97E-01 (48)
6.13E-15 £ 1.78E-15 (50)
1.23E-03 + 3.24E-03 (43)
2.07E-03 + 1.47E-02 (49)
2.20E-04 + 1.55E-03 (49)

3.15E+03 + 5.79E+02 (0)F
2.37E+01 + 7.13E+00 (0)F
1.69E+00 + 7.01E-01 (0)*
1.35E-02 + 1.52E-02 (12)F
7.06E-02 + 1.71E-01 (34)"
2.71E+00 + 1.05E+01 (16)

2.61E+01 £ 5.50E+01 (40)
1.11E+00 + 1.25E+00 (19)
1.77E-01 + 4.19E-01 (42)
6.74E-03 + 8.82E-03 (23)
6.43E-02 + 1.63E-01 (40)
5.47E-03 + 1.93E-02 (41)

4.60E+03 + 5.21E+02 (0)f
5.71E+01 + 1.48E+01 (0)F
3.99E+00 + 1.14E+00 (0)"
2.60E-02 + 4.33E-02 (16)F
1.54E+00 + 2.35E+00 (8)*
1.99E+01 + 2.41E+01 (0)*

% The value of ¢ with 49 degrees of freedom is significant at o = 0.05 by two-tailed test.
* means that the corresponding algorithm is better than our proposed DE/BBO method.

INFLUENCE OF SELF-ADAPTIVE PARAMETER CONTROL TO DE/BBO AND DE FOR FUNCTIONS f01 — f13 (D = 30).

TABLE VII

P Error NFFEs

SADE/BBO SADE SADE/BBO SADE AR
01 0.00E+00 + 0.00E+00 (50) 1.75E-27 + 1.57E-27 (50)T 3.91E+04 + 8.15E+02  6.11E+04 + 1.12E+037 | 1.56
f02 0.00E+00 =+ 0.00E+00 (50) 0.00E+00 =+ 0.00E+00 (50) 5.12E+04 + 8.17E+02 8.45E+04 + 1.40E+03T | 1.65
f03 2.10E-01 £ 2.85E-01 (0) 4.03E-13 + 6.20E-13 (50)* NA 3.57E+05 + 1.84E+04 NA
f04 4.11E-16 + 1.10E-15 (50) 3.44E-14 £+ 1.83E-13 (50) 2.25E+05 4+ 3.57E+04 3.09E+05 + 4.54E+03T | 1.38
05 4.05E+01 + 2.30E+01 (0) 9.99E-02 + 1.23E-01 (1)* NA 4.81E+05 + 0.00E+00 NA
f06 0.00E+00 + 0.00E+00 (50) 0.00E+00 + 0.00E+00 (50) 1.46E+04 + 4.91E+02 2.30E+04 + 7.05E+02T | 1.57
f07 1.98E-03 + 4.35E-04 (50) 3.46E-03 + 9.00E-04 (50) 6.33E+04 + 1.32E+04 1.11E+05 + 2.23E+047 | 1.75
fO8 0.00E+00 + 0.00E+00 (50) 0.00E+00 =+ 0.00E+00 (50) 4.87E+04 + 1.26E+03  9.58E+04 + 2.27E+037 | 1.97
f09 0.00E+00 =+ 0.00E+00 (50) 0.00E+00 =+ 0.00E+00 (50) 6.45E+04 + 3.23E+03 1.19E+05 + 4.08E+03" | 1.85
f10 4.14E-15 + 0.00E+00 (50) 1.54E-14 + 5.48E-15 (50)" 5.92E+04 + 8.21E+02  9.31E+04 + 1.63E+037 | 1.57
f11 0.00E+00 + 0.00E+00 (50) 0.00E+00 + 0.00E+00 (50) 4.04E+04 + 7.94E+02  6.47E+04 + 3.14E+03T | 1.60
f12 1.57E-32 + 0.00E+00 (50) 1.15E-28 + 1.15E-28 (50)1 3.56E+04 + 8.09E+02 5.52E+04 + 1.28E+03T | 1.55
f13 1.35E-32 + 0.00E+00 (50) 3.92E-26 + 5.22E-26 (50)1 4.22E+04 + 8.62E+02  6.71E+04 + 1.45E+03T | 1.59

% The value of ¢ with 49 degrees of freedom is significant at &« = 0.05 by two-tailed test.
 means that the corresponding algorithm is better than our proposed DE/BBO method.

(fO8 - £13). DE/BBO can locate the near-global optimum over

all 50 runs for all these functions. However, DE/EDA traps
into the local minima many times. Especially, for f08 and {09,

DE/EDA fails to solve the two functions. In addition, Figure 5
shows that DE/BBO converges faster than DE/EDA on the

major functions.

1. Discussions

12

The DE algorithm is a fast, robust, and simple global

optimization algorithm. However, it may lack the exploitation.
BBO is novel optimization algorithm for global optimization.

BBO has a good exploitation with the migration operator.
Therefore, in this work, we hybridize DE with BBO and
propose a hybrid migration operator to generate the promis-



COMPARISON THE PERFORMANCE OF DE/BBO WiTH DE, DEACHSPX, AND ODE FOR FUNCTIONS f01 — f13 (D = 30).

TABLE VIII

F DE/BBO DE DEahcSPX ODE

f01  8.66E-28 £ 5.21E-28 (50) 1.10E-19 = 1.34E-19 (50)f 2.90E-20 = 2.28B-20 (50)  4.33E-25 £ 1.86E-24 (50)
02 0.00E+00 £ 0.00E+00 (50) 1.66E-15 & 8.87E-16 (S0)'  4.47E-16 + 3.66E-16 (50)' 2.81E-13 & 1.74E-13 (50)*
£03 2.26B-03 £ 1.58E-03 (0) 8.19E-12 + 1.65E-11 (50)"  5.11E-12 4 9.27E-12 (50)}  2.50E-11 = 3.91E-11 (50)
f04  1.89E-15 & 8.85E-16 (50) 7.83E+00 = 3.78E+00 (0)" 7.79E+00 = 3.18E+00 (0)" 9.44E-02 & 2.33E-01 (14)1
£05 1.90E+01 = 7.52E+00 (0) $.41E-01 + 1.53E+00 (6)* 1.24E+00 & 1.67E+00 (5)F 2.80E+01 =+ 9.24E+00 (0)'
06 [2.16E+04 & 5.73E+02] (50)  [2.89E+04 %+ 2.01E+03] (S0)" [2.81E+04 & 1.50E+03] (50)" [2.29E+04 + 1.81E+03] (50)
f07  3.44E-03 & 8.27E-04 (50) 3.49E-03 = 9.60E-04 (50) 3.52E-03 = 1.20E-03 (50) 1.03E-03 & 3.38E-04 (50)°
f08  0.00E+00 £ 0.00E+00 (50) 4.28E+02 £ 4.69E+02 (1) 4.98E+02 = 8.42E+02 (5) 1.63E+03 £ 1.27E+03 (1)
09  0.00E+00 £ 0.00E+00 (50) 1.14E+01 = 7.57E+00 (0)" 1.30E+01 =& 8.11E+00 (0)" 1.65E+01 + 1.17E+01 (0)
f10  1.07E-14 £ 0.00E+00 (50) 6.73E-11 = 2.86E-11 (50)° 3.89E-11 = 1.97B-11 (50)° 5.34B-07 & 3.77B-06 (49)
fII  0.00E+00 £ 0.00E+00 (50) 1.23E-03 & 3.16E-03 (43)" 1.82E-03 & 5.09E-03 (42)f 2.12B-03 & 4.66E-03 (39)1
f12 7.16E-29 £ 6.30E-29 (50) 2.07E-03 &£ 1.47E-02 (49) 6.22E-03 = 2.49E-02 (47) 3.44E-18 £ 1.95E-17 (50)
13 9.81E-27 & 7.10E-27 (50) 7.19E-02 = 5.09E-01 (49) 3.22B-02 = 2.26E-01 (46) 2.05E-22 & 1.44E-21 (50)
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T % The value of ¢ with 49 degrees of freedom is significant at o = 0.05 by two-tailed test.
¥ means that the corresponding algorithm is better than our proposed DE/BBO method.

TABLE IX
COMPARISON THE PERFORMANCE OF DE/BBO WITH DE, AND DE/EDA FOR FUNCTIONS f01 — f13 (D = 30).

F DE/BBO DE

01 0.00E+00 % 0.00E+00 (50) 2.20B-08 & 2.91E-08 (22)f
02 0.00E+00 % 0.00E+00 (50) 8.46E-11 = 8.62E-11 (50)f
f03  1.97BE-06 &+ 2.14E-06 (0)  3.93E-03 = 5.06E-03 (0)f
f04  146E+00 + 1.O1E+00 (0)  1.14E+01 = 3.05E+00 (0)f
f05  2.08E+01 £ 7.69E+00 (0)  3.53E+01 % 2.64E+01 (0)
06 0.00E+00 % 0.00E+00 (50) 2.00E-02 = 1.41E-01 (49)
f07  1.09E-03 & 3.31E-04 (50)  1.04E-02 = 3.70E-03 (23)f

08 0.00E+00 + 0.00E+00 (50)  6.53E+03 + 4.96E+02 (0)
f09  4.57E-12 + 2.91E-11 (50)  2.48E+01 % 2.32E+01 (0)
f10  4.07E-15 + 5.02E-16 (50)  1.09E+00 & 7.27E-01 (0)
f11  0.00E+00 + 0.00E+00 (50)  1.28E-02 =+ 1.70E-02 (24)
f12  1.57E-32 + 0.00E+00 (50)  3.73B-02 + 9.54E-02 1)
13 1.35E-32 £+ 0.00E+00 (50)  1.18E+02 & 7.77E+02 (0)

DE/EDA

4.68E-25 £+ 1.33E-24 (50)1
8.33E-16 + 2.85E-16 (50)1
5.27E-16 + 1.17E-15 (50)%
6.58E+00 + 1.65E+00 (0)f
1.97E+01 £ 1.72E+01 (0)
0.00E+00 + 0.00E+00 (50)
3.10E-03 + 1.31E-03 (50)t

7.81E+03 & 2.77E+02 (0)
7.72B+00 & 2.52E+00 (0)
1.26E+00 & 6.31E-01 (7)t
1.67E-02 + 1.91E-02 (16)
3.73E-02 £ 9.07E-02 (38)t
6.53E-01 & 4.17E+00 (39)

-1 The value of ¢ with 49 degrees of freedom is significant at & = 0.05 by two-tailed test.
 means that the corresponding algorithm is better than our proposed DE/BBO method.

ing candidate solution. And then, the DE/BBO algorithm is migration operator shows the potential to accelerate the
proposed based on the hybrid migration operator. From the self-adaptive variants of DE.

experimental results we can summarize that e For function f03, DE/BBO is worse than DE with
DE/rand/1/bin scheme. However, from Tables VI and IX,
we can see that DE/BBO is better than DE for
DE/best/1/bin and scheme described in Eqn. 5. So, we
can expect that the strategy adaptation as proposed in [28]
may be used to make DE/BBO more robust.

e Our proposed DE/BBO approach is effective and effi-
cient. It can obtain the global, or near-global, optimum
for the test functions.

e The overall performance of DE/BBO is superior to or
highly competitive with BBO and other compared state-
of-the-art DE algorithms.

« DE/BBO and DE were compared for different population
sizes. On the majority of functions, DE/BBO is substan-
tial better than DE.

e The scalability studies show that DE/BBO is able to
accelerate DE in general, especially the improvements
are more significant at higher dimensionality.

o Comparison of DE/BBO and DE to different mutation
schemes, the overall performance of DE/BBO is more
robust than that of DE.

o The self-adaptive parameter control can enhance the
performance of DE/BBO and DE. Our proposed hybrid

VI. CONCLUSIONS AND FUTURE WORK

In order to balance the exploration and the exploitation of
DE, in this paper, we propose a hybrid DE approach, called
DE/BBO, which combines the exploration of DE with the
exploitation of BBO. In DE/BBO, a new hybrid migration
operator is proposed to generate the promising solutions.
Since the hybrid migration operator has a good trade-off
between the exploration and the exploitation, it makes our
proposed DE/BBO approach be very effective and efficient. To
verify the performance of DE/BBO, 23 benchmark functions
chosen from literature are employed. Experimental results
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demonstrate the good performance of our approach. Compared
with BBO, DE, DEahcSPX, ODE, and DE/EDA, the results
show that DE/BBO is superior to or at least highly compet-
itive with them. Moreover, the influence of the population
size, dimensionality, different mutation schemes, and the self-
adaptive control parameters of DE/BBO and DE are also
investigated. And the results confirm that DE/BBO exhibits
a higher convergence rate and greater robustness compared
with DE.

In this work, we only consider the unconstrained function
optimization. Our future work consists on adding the diversity
rules into DE/BBO for constrained optimization problems.
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