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a b s t r a c t

The aggregation of objectives in multiple criteria programming is one of the simplest and
widely used approach. But it is well known that this technique sometimes fail in different
aspects for determining the Pareto frontier. This paper proposes a new approach for mul-
ticriteria optimization, which aggregates the objective functions and uses a line search
method in order to locate an approximate efficient point. Once the first Pareto solution
is obtained, a simplified version of the former one is used in the context of Pareto domi-
nance to obtain a set of efficient points, which will assure a thorough distribution of solu-
tions on the Pareto frontier. In the current form, the proposed technique is well suitable for
problems having multiple objectives (it is not limited to bi-objective problems) and require
the functions to be continuous twice differentiable. In order to assess the effectiveness of
this approach, some experiments were performed and compared with two recent well
known population-based metaheuristics namely ParEGO and NSGA II. When compared
to ParEGO and NSGA II, the proposed approach not only assures a better convergence to
the Pareto frontier but also illustrates a good distribution of solutions. From a computa-
tional point of view, both stages of the line search converge within a short time (average
about 150 ms for the first stage and about 20 ms for the second stage). Apart from this,
the proposed technique is very simple, easy to implement and use to solve multiobjective
problems.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction

The field of multicriteria programming abounds in methods for dealing with different kind of problems. Nevertheless,
there is still space for new approaches, which can better deal with some of the difficulties encountered by the existing ap-
proaches. There are twomain classes of approaches suitable for multiobjective optimization: scalarization methods and non-
scalarizing methods. These approaches convert the Multiobjective Optimization Problem (MOP) into a Single Objective
Optimization Problem (SOP), a sequence of SOPs, or into another MOP. There are several scalarization methods reported
in the literature: weighted sum approach, weighted sth power approach, weighted quadratic approach, e-constraint ap-
proach, elastic constraint approach, Benson approach, etc. are some of them [12]. Since the standard weighted sum encoun-
ters some difficulties, several other methods have been proposed to overcome the major drawbacks of this method. These
include: Compromise Programming [3], Physical Programming [21–27], Normal Boundary Intersection (NBI) [4–7], and
the Normal Constraint (NC) [28,29] methods. There is also a huge amount of work reported on population-based metaheu-
ristics for MOP [1,2,10–12,16,34,37–41]. Comprehensive surveys can be found in [18,30,36].
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In this paper, we propose a new approach, which uses a scalarization of the objectives in a way similar to the weighted sth
power approach (where s is 2 and the coefficients values are 1). A line search based technique is used to obtain an efficient
solution. Starting with this solution, a set of efficient points are further generated, which are widely distributed along the
Pareto frontier using again a line search based method but involving Pareto dominance relationship.

Empirical and graphical results and illustrations obtained by the proposed approach are compared with two well known
population-based metaheuristics namely ParEGO [19] and NSGA II [8].

The paper is structured as follows: in Section 2 the proposed modified Line Search is presented. Numerical experiments
considering standard benchmarks are performed in Section 3. A set of 8 multiobjective optimizations problems are consid-
ered. Sections 4 and 5 present the application of the proposed approach for solving two practical multiobjective optimization
problems. Conclusions and further research plans are presented in Section 6.

2. Line search generator of Pareto frontier

The line search [13] is a standard and well established optimization technique [14,15]. The standard line search technique
is modified in this paper so that it is able to generate the set of nondominated solutions for a MOP. The approach proposed is
called Line search Generator of Pareto frontier (LGP) and it comprises of two phases: first, the problem is transformed into a
SOP and a solution is found using a line search based approach. This is called as convergence phase. Second, a set of Pareto
solutions are generated starting with the solution obtained at the end of convergence phase. This is called as spreading phase.
The convergence and spreading phases are described below.

Consider the MOP formulated as follows:
Let Rm and Rn be Euclidean vector spaces referred to as the decision space and the objective space. Let X ! Rm be a fea-

sible set and let f be a vector-valued objective function f : Rm ! Rn composed of n real-valued objective functions
f = (f1, f2, . . . , fn), where fk : Rm ! R, for k = 1,2, . . . ,n. A MOP is given by:

min ðf1ðxÞ; f2ðxÞ; . . . ; fnðxÞÞ
subject to x 2 X:

2.1. Convergence phase

The MOP is transformed into a SOP by aggregating the objectives using an approach similar to the weighted tth power
approach. We consider s = 2 and the values of weights equal to 1. The obtained SOP is:

min F ¼
Xn

i¼1

f 2i ðxÞ

subject to x 2 X:

Remark. In our experiments the value 2 for s fits very well. But when negative objectives are to be taken into consideration,
then an odd value should be used for s (an even value can alter the results).

A modified line search method is used to find the optimum of this problem. The modification proposed in this paper for
the standard line search technique refers to direction and step setting and also the incorporation of a re-start procedure. To
fine tune the performance, the first partial derivatives of the function to optimize are also made use of. The proposed
modifications refer to:

% The setting of the direction and step.
% The re-starting of the line search method.

After a given number of iterations, the process is re-started by reconsidering other arbitrary starting point which is
generated by taking into account the result obtained at the end of previous set of iterations.

2.1.1. Direction and step setting
Initially, several experiments were performed in order to set an adequate value for the direction. The standard value +1 or

&1 was used and for some functions the value &1 was favourable to obtain good performance. Some experiments were also
performed by setting the direction value as being a random number between 0 and 1. It was found that the usage of random
number helped to obtain overall very good performance for the entire considered test functions. But usage of the value &1
for direction, obtains almost the same performance similar to that obtained with a random value. So, either of these values
(the random one and the value &1) may be used for better performance.

The step is set as follows:

ak ¼ 2þ 3
22k þ 1

; ð1Þ
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where k refers to the iteration number.
The modified line search technique is summarized as follows:

Line_search()
Set k = 1 (Number of iterations)
Repeat

for i = 1 to No. of variables
pk = random; //or p = &1;
ak ¼ 2þ 3

22kþ1
xkþ1
i ¼ xki þ pk ( ak

endfor
if F(xk+1) < F(xk) then xk+1 = xk.

k = k + 1
Until k = Number of iterations (a priori known).

Remarks

(i) The condition:

if Fðxkþ1Þ < FðxkÞ then xkþ1 ¼ xk

allows to move to the new generated point only if there is an improvement in the quality of the objective function.
(ii) Number of iterations for which line search is applied is apriori known and is usually a small number. For the exper-

iments reported in this paper, the number of these iterations was set to 10.
(iii) When re-starting the line search method (after the insertion of the re-start technique) the value of the iterations num-

ber starts again from 1 (this should not be related to the value of a after the first set of iterations (and after each of the
following iterations)).

Several experiments were attempted to set a value for the step, starting with random values (until a point is reached for
which the objective function achieves a better value); using a starting value for the step and generating random numbers
with Gaussian distribution around this number, etc. As a result of the initial experiments performed, it was decided to
use Eq. (1) to compute the step size. But, of course, there are also several other ways to set this.

2.1.2. Incorporation of re-start procedure
In order to re-start the algorithm the result obtained in the previous set of iterations (denote it by x) is taken into account

and the steps given below are followed:

1. For each dimension i of the point x, the first partial derivative with respect to this dimension is calculated. This means the
gradient of the objective function is calculated which is denoted by g. Taking this into account, the bounds of the defini-
tion domain for each dimension are re-calculated as follows:

if gi ¼
@F
@xi

> 0 then upper bound ¼ xi;

if gi ¼
@F
@xi

< 0 then lower bound ¼ xi:

2. The search process is re-started by re-initializing a new arbitrary point between the newly obtained boundaries.

2.2. Spreading phase

At the end of the convergence phase, a solution is obtained. This solution is considered as an efficient (or Pareto) solu-
tion. During this phase and taking into account of the existing solution, more efficient solutions are to be generated so as
to have a thorough distribution of all several good solutions along the Pareto frontier. In this respect, the line search tech-
nique is made use of to generate one solution at the end of each set of iterations. This procedure is applied several times in
order to obtain a larger set of nondominated solutions. The following steps are repeated in order to obtain one nondom-
inated solution:

Step 1. A set of nondominated solutions found so far is archived. Let us denote it by NonS. Initially, this set will have the size
one and will only contain the solution obtained at the end of convergence phase.

Step 2. We apply line search for one solution and one dimension of this solution at one time. For this:
Step 2.1. A random number i between one and |NonS| (|(| denotes the cardinal) is generated. Denote the correspond-

ing solution by nonSi.
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Step 2.2. A random number j between one and the number of dimensions (the number of decision variables) is gen-
erated. Denote this by nonSij.

Step 3. Line search is applied for nonSij.
Step 3.1. Set a random value for p between [&0.5,1].
Step 3.2. Set a (which depends on the problem, on the number of total nondominated solutions which are to be gen-

erated, etc.).
Step 3.3. The new obtained solution new_sol is identical to nonSi in all dimensions except dimension j which is:

new solj ¼ nonSij þ a ( p:

Step 3.4. If (new_solj > upper bound) or (new_solj < lower bound)then new_solj = lower bound + random ( (upper
bound & lower bound).

Step 4. If F(new_sol) > F(nonS1)then discard new_solelse if new_sol is nondominated with respect to the set NonS
then add new_sol to NonS and increase the size on NonS by 1.
Go to step 2.

Step 5. Stop

These steps are repeated until a set on nondominated solutions of a required size is obtained. In our experiments the size
of this set is 100.

Note that this procedure it very fast and it takes less than 20 ms to obtain 100 nondominated solutions.

2.2.1. Estimating the value of a using a fuzzy logic controller
The use of fuzzy logic controllers to adapt the a value is useful to improve the performance. An FLC is composed by a

knowledge base, that includes the information given by the expert in the form of linguistic control rules, a fuzzyfication
interface, which has the effect of transforming crisp data into fuzzy sets, an inference system, that uses them together with
the knowledge base to make inference by means of a reasoning method, and a defuzzyfication interface, that translates the
fuzzy control action thus obtained to a real control action using a defuzzyfication method. The generic structure of an FLC is
shown in Fig. 1.

In order to set an adequate value for a so that the solutions will have a good distribution on the Pareto front, we are pro-
ceeding as follows:

% Select a sample set of solutions uniform distributed on the Pareto front (denoted by SPS) of size equal to the size of the
approximation set obtained by the our approach.

% For each point from the approximation set obtained by our approach identify the closest point in SPS.
% Mark each such identified point from SPS.
% Set the value of distribution indices (Di) as being equal to the number of marked points from SPS.

Our strategy for updating the a value is to consider the changes of the value of maximum distribution indices (Dim) and
average distribution indices (Dia) in two consecutive iterations. The performance may be measured using two error indices:

Fig. 1. Generic structure of an FLC.
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e1ðtÞ ¼
DimðtÞ & DiaðtÞ

DimðtÞ
; ð2Þ

e2ðtÞ ¼
DiaðtÞ & Diaðt & 1Þ

DimðtÞ
; ð3Þ

where t is time step, Dim(t) is the maximum distribution index at iteration t, Dia(t) is the average distribution index at iter-
ation t and Dia(t & 1) is the average distribution index at iteration (t & 1).

A two-dimension FLC system is used, in which there are two parameters e1 and e2. The membership functions are shown
in Fig. 2, where NL is Negative large, NS is Negative small, ZE is Zero, PS is Positive small and PL is Positive large.

For the controlling the performance, the output a(t) of the fuzzy logic controller is translated using fuzzy if–then rules as
illustrated in Fig. 3. Center of gravity is used as defuzzyfication method. Then we use the crisp value to modify the param-
eters a as follows:

aðtÞ ¼ aðt & 1Þ þ Da:

For applying the procedure described above, the Pareto front it is supposed to be known (and this is the case in all our exper-
iments considered). In Fig. 4, two approximation sets A and B and a sample set of Pareto points (SPS) of size 10 are consid-
ered. The value of Di for the set A is 6 (which means 6 solutions from the SPS are marked) while the value of Di for the set B is
10. This means set B is obtaining a better distribution on the Pareto front than the set A.

Example. An illustrative example for calculation of a is presented in Fig. 5. Suppose we have an approximation set
containing 100 solutions. This involves the size of the selected Pareto sample points will be also 100. Let us also suppose
that are at the third iteration and we obtained the value 60 for Di for a = 0.1 in the first iteration and value 63 for Di for
a = 0.15 in the second iteration. It should be mentioned that the value of a in the first iteration was randomly chosen
and for the value of a in the second iteration we had the chance to increase or decrease de current value; so, we
increased it to 0.15.

10

1

0-1.0

1

(a)

0.6

0-0.1

1

0.05 0.06 0.3 0.4

-0.6 -0.4 0.4 1.0

-0.06 -0.04 0.04 0.10.06

(b)

(c)

ZE

ZE

PS

PS

PL

PL

ZE PS PLNL NS

NL NS

Fig. 2. Membership functions. (a) For e1; (b) e2; (c) for Da.
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Starting with the third iteration we can apply our fuzzy rules to calculate the next value fora. By using the formulas (2)
and (3), the membership functions from Fig. 2 and the fuzzy rules from Fig. 3, the value 0.04 forDa is obtained. Based on this,
the value of a at the iteration 3 will be 0.15 + 0.04 = 0.19.

3. Experiments and comparisons

In order to assess the performance of LGP, some experiments were performed using some well known bi-objective and
three-objective test functions [17,31], which are adapted from [9,16]. These test functions were also used by the authors of
ParEGO [19] and NSGA II [8], which are well known in the computational intelligence community as very efficient techniques
for multiobjective optimization. Details about implementation of these two techniques may obtained from [8,19]. Parame-
ters used by ParEGO and NSGA II (given in Table 1) and the results obtained by these two techniques are adapted from [19].

A set of 100 nondominated solutions obtained by LGP, ParEGO, NSGA II is compared in terms of dominance and conver-
gence to the Pareto set. For the first comparison, two indices were computed for each set of two comparisons: number of
solution obtained by the first technique which dominate solutions obtained by the second technique and number of solu-
tions obtained by the first technique which are dominated by the solutions obtained by the second technique.

For two sets of A and B of solutions, which are compared, indices are denoted by DominateðA;BÞ and DominatedðA;BÞ,
respectively. Visualization plots are used to illustrate the distribution of solutions on the Pareto frontier.

LGP uses only three parameters:

– number of re-starts: 20 (10 for KNO1);
– number of iteration per each re-start: 10;
– a for the spreading phase (which is set independent for each test function).

Fig. 3. Fuzzy rules for Da.

Fig. 4. Illustration of Pareto approximation used for Di calculation.
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3.1. Test function KNO1

This test function has two variables and two objectives. It is given by:

minimize f 1 ¼ 20& r ( cosð/Þ;
minimize f 2 ¼ 20& r ( sinð/Þ;

where

r ¼ 9& 3 sin
5ðx1 þ x2Þ2

2

 !
þ 3 sinð4ðx1 þ x2ÞÞ þ 5 sinð2ðx1 þ x2ÞÞ þ 2

 !
;

/ ¼ pðx1 & x2 þ 3Þ
12

:

The distance from the Pareto front is controlled by r and is a function of the sum of the decision variables. The location trans-
verse to the Pareto front is controlled by the difference between the decision variables. Pareto set consists of all pairs whose
sum is 4.4116. There are 15 local Pareto fronts and the true Pareto front lies just beyond a local Pareto front which has a
larger basin of attraction.

Fig. 5. Example of a calculation.

Table 1
Parameters used in experiments by ParEGO and NSGA II. d denotes the number of decision parameter dimensions.

ParEGO NSGA II

Parameter Value Parameter Value

Initial population in latin hypercube 11d & 1 Population size 20
Total maximum evaluations 250 Maximum generations 13
Number of scalarizing vectors 11 for 2 objectives

15 for 3 objectives
Crossover probability 0.9

Scalarizing function Augmented Tchebycheff Real value mutation probability 1/d
Internal genetic algorithm evaluations per iteration 200,000 Real value SBX parameter 10
Crossover probability 0.2 Real value mutation parameter 50
Real value mutation probability 1/d
Real value SBX parameter 10
Real value mutation parameter 50
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The convergence to the Pareto frontier and the distribution of solutions obtained by LGP, ParEGO and NSGA II for the test
function DTLZ1a is depicted in Fig. 6. Different sizes of the objective space are illustrated in order to incorporate all solutions
obtained by all techniques. The value 0.6 is considered for a for this test function. The behavior of the merit function during
the 10 re-starts is depicted in Fig. 7. From the results presented in Table 2 it can be observed that 7 of the solutions obtained
by LGP are dominated by solutions obtained by ParEGO and 2 are dominated by solutions obtained by NSGA II. Solutions
obtained by LGP dominate all 100 solutions obtained by both ParEGO and NSGA II. 59 of the solutions obtained by NSGA
II are dominated by solutions obtained by ParEGO while 42 of the solutions obtained by ParEGO are dominated by solutions
obtained by NSGA II.

3.2. Test function OKA1

This test function and the test function OKA2 have been proposed in [29]. It is a bi-objective test function having two
variables and it is defined as:

minimize f 1 ¼ x01;

minimize f 2 ¼
ffiffiffiffiffiffiffi
2p

p
&

ffiffiffiffiffiffiffiffi
x01
"" ""

q
þ 2 x02 & 3 cos x01

# $
& 3

"" ""13;

Fig. 6. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function KNO1.

Fig. 7. Behavior of the merit function for test function KNO1 during the convergence phase.

Table 2
The dominance between solutions obtained by LGP, ParEGO and NSGA II for test function KNO1.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO
LGP 100 100 ParEGO 7 59 NSGA II 2 42

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO
LGP 7 2 ParEGO 100 42 NSGA II 100 59
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where

x01 ¼ cos
p
12

% &
x1 & sin

p
12

% &
x2;

x02 ¼ sin
p
12

% &
x1 þ cos

p
12

% &
x2;

x1 2 6 sin
p
12

% &
;6 sin

p
12

% &
þ 2p ( cos p

12

% &h i
;

x2 2 &2p ( sin p
12

% &
;6 cos

p
12

% &h i
:

The Pareto optimal set lies on the curve x02 ¼ 3 cos x01
# $

þ 2; x01 2 ½0;2p*.
The solutions obtained by LGP, ParEGO and NSGA II for the test function DTLZ1a are depicted in Fig. 8. Different sizes of

the objective space are illustrated in order to incorporate all solutions obtained by all techniques. The value of parameter a
used by LGP in the spreading phase is set to 1. The behavior of the merit function during the 20 re-starts is depicted in Fig. 9.
From the results presented in Table 3 it can be observed that none of the solutions obtained by LGP are dominated by solu-
tions obtained by either ParEGO or NSGA II. Solutions obtained by LGP dominate 83 solutions obtained by both ParEGO and
64 solutions obtained by NSGA II. Seventy-seven of the solutions obtained by NSGA II are dominated by solutions obtained
by ParEGO while 59 of the solutions obtained by ParEGO are dominated by solutions obtained by NSGA II.

Fig. 8. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function OKA1.

Fig. 9. Behavior of merit function for test function OKA1 during the convergence phase.

Table 3
The dominance between solutions obtained by LGP, ParEGO and NSGA II for test function OKA1.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO
LGP 83 64 ParEGO 0 77 NSGA II 0 59

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO
LGP 0 0 ParEGO 83 59 NSGA II 64 77
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3.3. Test function OKA2

Test function OKA2 is given by:

minimize f 1 ¼ x1;

minimize f 2 ¼ 1& 1
4p2 ðx1 þ pÞ2 þ jx2 & 5 ( cosðx1Þj

1
3 þ jx3 & 5 ( sinðx1Þj

1
3;

x1 2 ½&p;p*; x2; x3 2 ½&5;5*:

The Pareto optima lie on a spiral-shaped curve in the three-dimensional variable space.
The Pareto front is given by

f2 ¼ 1& 1
4p2 ðf1 þ pÞ2; f 1 2 ½&p;p*:

The convergence to the Pareto frontier and the distribution of solutions obtained by LGP, ParEGO and NSGA II for the test
function DTLZ1a is depicted in Fig. 10. The value 1 is considered for a for this test function. The behavior of the merit function
during the 20 re-starts is depicted in Fig. 11. From the results presented in Table 4 it can be observed that 28 of the solutions
obtained by LGP are dominated by solutions obtained by ParEGO while 37 solutions obtained by ParEGO and 41 solutions

Fig. 10. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function OKA2.

Table 4
The dominance between solutions obtained by LGP, ParEGO and NSGA II for test function OKA2.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO
LGP 37 41 ParEGO 28 31 NSGA II 0 69

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO
LGP 28 0 ParEGO 37 69 NSGA II 41 31

Fig. 11. Behavior of merit function for test function OKA2 during the convergence phase.
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obtained by NSGA II are dominated by solutions obtained by LGP. Thirty-one of the solutions obtained by NSGA II are dom-
inated by solutions obtained by ParEGO while 69 of the solutions obtained by ParEGO are dominated by solutions obtained
by NSGA II.

It can be observed that this function is a difficult one. LGP converges very close to the Pareto frontier but does not obtain a
very good distribution of solutions while both ParEGO and NSGA II are far from the frontier.

3.4. Test function VLMOP2

This test function has been proposed in [39]. It is a bi-objective problem having scalable number decision variables. We
use two variables:

minimize f 1 ¼ 1& exp
Xn

i¼1

xi &
1ffiffiffi
n

p
' (2

 !
;

minimize f 2 ¼ 1& exp
Xn

i¼1

xi þ
1ffiffiffi
n

p
' (2

 !
;

x1; x2 2 ½&2;2*; n ¼ 2:

The Pareto front is concave and the Pareto optima lie on the diagonal passing from & 1ffiffi
n

p ;& 1ffiffi
n

p
% &

to 1ffiffi
n

p ; 1ffiffi
n

p
% &

in the decision
variable space.

The convergence to the Pareto frontier and the distribution of solutions obtained by LGP, ParEGO and NSGA II for the test
function DTLZ1a is depicted in Fig. 12. The value 1 is considered for a for this test function. The behavior of the merit function
during the 20 re-starts is depicted in Fig. 13. From the results presented in Table 5 it can be observed that six of the solutions
obtained by LGP are dominated by solutions obtained by ParEGO. Solutions obtained by LGP dominate 49 solutions obtained
by ParEGO and 75 solutions obtained by NSGA II. Seventy-five of the solutions obtained by NSGA II are dominated by solu-
tions obtained by ParEGO while 37 of the solutions obtained by ParEGO are dominated by solutions obtained by NSGA II.

Fig. 12. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function VLMOP2.

Fig. 13. Behavior of merit function for test function VLMOP2 during the convergence phase.
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3.5. Test function VLMOP3

Test function VLMOP3 has been proposed by Veldhuizen and Lamont [39] and consists of three-objective functions of two
variables given by:

minimize f 1 ¼ 0:5ðx2 þ y2Þ þ sinðx2 þ y2Þ;

minimize f 2 ¼ ð3x& 2yþ 4Þ2

8
þ ðx& yþ 1Þ2

27
þ 15;

minimize f 2 ¼ 1
x2 þ y2 þ 1

& 1:1 ( expð&x2 & y2Þ;

x; y 2 ½&3;3*:

This test function has a disconnected Pareto optimal set and the Pareto-optimal front is a curve following a convoluted path
through objective space.

The convergence to the Pareto frontier and the distribution of solutions obtained by LGP, ParEGO and NSGA II for the test
function DTLZ1a is depicted in Fig. 14. The value of a for this test function is 1. Pareto front obtained by LGP considering a set
of 1000 solutions is depicted in Fig. 15. The behavior of the merit function during the 20 re-starts is depicted in Fig. 16. From
the results presented in Table 6 it can be observed that six of the solutions obtained by LGP are dominated by solutions ob-
tained by ParEGO. Solutions obtained by LGP dominate 49 solutions obtained by ParEGO and 75 solutions obtained by NSGA
II. Seventy-five of the solutions obtained by NSGA II are dominated by solutions obtained by ParEGOwhile 37 of the solutions
obtained by ParEGO are dominated by solutions obtained by NSGA II.

Table 5
The dominance between solutions obtained by LGP, ParEGO and NSGA II for test function VLMOP2.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO
LGP 49 75 ParEGO 6 75 NSGA II 0 37

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO
LGP 6 0 ParEGO 49 37 NSGA II 75 75

Fig. 14. Pareto front obtained by LGP, ParEGO and NSGA II for the test function VLMOP3.

Fig. 15. Pareto front obtained by LGP for VLMOP3 test problem with a final set of 1000 solutions.
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3.6. Test function DTLZ1a

The test function DTLZ1a is a two objective test function and has six variables [19]. It is given by:

minimize f 1 ¼ 1
2
x1ð1þ gÞ;

minimize f 2 ¼ 1
2
ð1& x1Þð1þ gÞ;

g ¼ 100 5þ
X6

i¼2

ððxi & 0:5Þ2 & cosð2pðxi & 0:5ÞÞÞ
" #

;

xi 2 ½0;1*; i ¼ 1; . . . ;n; n ¼ 6:

The Pareto set for this function consists of all solutions where all by the first decision variables are equal to 0.5 and the first
decision variable may take any value between 0 and 1.

For this test function, the value of a for the spreading phase is set to 0.01. The convergence to the Pareto frontier and the
distribution of solutions obtained by LGP, ParEGO and NSGA II for the test function DTLZ1a is depicted in Fig. 17. Different
sizes of the objective space are illustrated in order to incorporate all solutions obtained by all techniques. It is obvious that
LGP assure a very good convergence and distribution for this function. The convergence of the merit function during the 20
re-starts is depicted in Fig. 18. From the results presented in Table 7 it can be observed that none of the solutions obtained by
LGP are dominated neither by ParEGO or by NSGA II, while solutions obtained by LGP dominate all 100 solutions obtained by
ParEGO and NSGA II. Ninety-one of the solutions obtained by NSGA II are dominated by solutions obtained by ParEGO while
75 of the solutions obtained by ParEGO are dominated by solutions obtained by NSGA II.

3.7. Test function DTLZ4a

Test function DTLZ4a has three-objective functions and eight decision variables and is given by:

minimize f 1 ¼ ð1þ gÞ cos x1001 p
2

' (
cos

x1002 p
2

' (
;

minimize f 2 ¼ ð1þ gÞ cos x1001 p
2

' (
sin

x1002 p
2

' (
;

minimize f 3 ¼ ð1þ gÞ sin x1001 p
2

' (
;

g ¼
X8

i¼3

ðxi & 0:5Þ2;

xi 2 ½0;1*; i ¼ 1; . . . ;n; n ¼ 8:

Fig. 16. Behavior of merit function for test function VLMOP3 during the convergence phase.

Table 6
The dominance between solutions obtained by LGP, ParEGO and NSGA II for test function VLMOP3.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO
LGP 44 91 ParEGO 15 33 NSGA II 20 39

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO
LGP 15 20 ParEGO 44 39 NSGA II 91 33
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The Pareto front is 1/8 of the unit sphere centered in origin. The Pareto optimal set consist of all solutions but the first two
decision variables are equal to 0.5 and the first two decision variables may take any value between 0 and 1.

For test function DTLZ4a the value of a is set to 0.2. The distribution of solutions on the Pareto frontier and the conver-
gence to the Pareto frontier for all the three algorithms is depicted in Fig. 19. The distribution on the Pareto frontier obtained

Fig. 17. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and NSGA II for test function DTLZ1.

Fig. 18. Behavior of merit function for test function DTLZ1a during the convergence phase.

Table 7
The dominance between solutions obtained by LGP, ParEGO and NSGA II for test function DTLZ1a.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO
LGP 100 100 ParEGO 0 75 NSGA II 0 91

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO
LGP 0 0 ParEGO 100 91 NSGA II 100 75
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for different other values of a is depicted in Fig. 21. With a higher number of nondominated solutions (1000) LGP assure a
better coverage of the Pareto frontier (as evident from Fig. 22). The convergence of the merit function is depicted in Fig. 20.

From Fig. 19 it can be observed that, compared to ParEGO and NSGA II, LGP is assuring a very good convergence. The latter
two approaches are not converging very well with the parameters used.

As evident from Table 8 none of the solutions obtained by LGP are dominated neither by ParEGO or by NSGA II while solu-
tions obtained by LGP dominate all 100 solutions obtained by ParEGO and NSGA II. Ninety-eight of the solutions obtained by
NSGA II are dominated by solutions obtained by ParEGO while 60 of the solutions obtained by ParEGO are dominated by
solutions obtained by NSGA II.

3.8. Test function DTLZ7a

This test function has three objectives and eight decision variables and it is given by:

minimize f 1 ¼ x1;
minimize f 2 ¼ x2;
minimize f 3 ¼ ð1þ gÞh;

g ¼ 1þ 9
6

X8

i¼3

xi;

h ¼ 3&
X2

i¼1

fi
1þ g

ð1þ sinð3pfiÞÞ
) *

;

xi 2 ½0;1*; i ¼ 1; . . . ;n; n ¼ 8:

Fig. 19. Convergence to the Pareto frontier and distribution of solutions obtained by LGP, ParEGO and NSGA II on the Pareto frontier for test function
DTLZ4a (view from different angles).

Fig. 20. Behavior of merit function for test function DTLZ4 during the convergence phase.
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The Pareto front has four discontinuous regions and the Pareto set consists of all solutions where all by the first two decision
variables are equal to 0.

The test function DTLZ7a has four discontinuous Pareto regions. LGP is able to converge very well and it is able to spread
into the all four disconnected Pareto regions from a single starting point. The value of a used is 1, but there is not much dif-
ference between different values of a as in the case of DTLZ4a test function. Fig. 23 depicts the distribution of LGP solutions
for two different values of a. As evident from Fig. 24, both ParEGO and NSGA II ar far from the Pareto front in terms of con-
vergence. Forty-four of the solutions obtained by LGP dominates solutions obtained by ParEGO while 15 solutions obtained
by ParEGO dominates solutions obtained by LGP. Ninety-one solutions obtained by NSGA II are dominated by solutions ob-
tained by LGP and 20 solutions obtained by LGP are dominated by solutions obtained by NSGA II. Thirty-nine solutions ob-
tained by ParEGO are dominated by solutions obtained by NSGA II while 33 of the solutions obtained by NSGA II are

Fig. 21. Distribution of solutions on the Pareto frontier obtained by LGP by considering different values for a in the spreading phase for test function
DTLZ4a.

Fig. 22. Distribution of solutions obtained by LGP for DTLZ4 test function considering a set of 1000 nondominated solutions (view from different angles).
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dominated by solutions obtained by ParEGO (as evident from Table 9). The convergence of the merit function is depicted in
Fig. 25.

As evident from the graphical representation of the results obtained by all the three techniques, ParEGO and NSGA II and
not always providing a very good convergence to the Pareto front. This means that they require a higher number of gener-
ations (which, in turn, involves a higher computational time) in order to assure a good convergence to the true Pareto front.
LGP converge very fast and require less than 200 ms (milliseconds) to obtain a set of Pareto solutions. Also, the convergence
is very good and not all 20 re-starts are required in the convergence phase (for test functions KNO1 and VLMOP3 4 re-starts
are enough while for test functions DTLZ1, DTLZ4 and OKA1 5 re-starts assure the convergence to the first Pareto optimal
solution).

4. Investigation of LGP performances for optimization of a flow injection system for determining hydroquinone

This problem requires optimizing the determination of hydroquinone by using a flow injection system with amperomet-
ric detection. There are three factors that affect the analytical signal:

% the carrier solution flow rate, U (mL min&1);
% the conditioning cell potential, Ea (mV);
% the working electrode potential, EL1 (mV), of the analytical cell.

The experimental conditions taken are:

% central values equal to 0.75 mL/min for the flow rate U;
% &100 mV for the conditioning cell potential, Ea;
% 175 mV for the working electrode potential, EL1, with steps of 0.25 mL/min, 50 and 125 mV.

The task is to find experimental conditions for the three factors so that:

(i) Maximize the signal size estimated as the average value (the peak height of the diagram in lA) of five signals obtained
under the same experimental conditions.

(ii) Minimize the relative variability estimated as the coefficient of variation of the signal, measured as a percentage.

Table 8
The dominance between solutions obtained by LGP, ParEGO and NSGA II for test function DTLZ4a.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO
LGP 100 100 ParEGO 0 98 NSGA II 0 60

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO
LGP 0 0 ParEGO 100 60 NSGA II 100 98

Fig. 23. Distribution of solutions on the Pareto frontier obtained by LGP by considering different values for a in the spreading phase for test function
DTLZ7a.
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Fig. 24. Convergence to the Pareto frontier and distribution of solutions obtained by LGP, ParEGO and NSGA II on the Pareto frontier for test function
DTLZ7a (view from different angles).

Table 9
The dominance between solutions obtained by LGP, ParEGO and NSGA II for test function DTLZ7a.

Dominate ParEGO NSGA II Dominate LGP NSGA II Dominate LGP ParEGO
LGP 100 100 ParEGO 0 97 NSGA II 0 13

Dominated ParEGO NSGA II Dominated LGP NSGA II Dominated LGP ParEGO
LGP 0 0 ParEGO 100 13 NSGA II 100 97

Fig. 25. Behavior of merit function for test function DTLZ7 during the convergence phase.
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It is known that, in general, when increasing the size of an analytical signal, its variability is also increased, thus the two
objectives are conflicting.

More details about this problem and about the optimization conditions can be found in [32,35]. The authors estimated
that the peak height should be below 1.89 lA and the coefficient of variation below 1.5%.

By using the notations:

U ! x1;
Ea ! x2;
EL1 ! x3;

the optimization problem can be formulated as follows:
maximize the peak height (lA):

f1 ¼ 1:51þ 0:25x1 & 0:05x2 þ 0:06x3 & 0:03x21 þ 0:02x22 þ 0:02x23 þ 0:03x1x2 þ 0:07x1x3 & 0:02x2x3;

minimize the coefficient of variation (%):

f2 ¼ 0:70& 0:41x1 & 0:13x2 & 0:23x3 þ 0:44x21 & 0:07x22 þ 0:13x23 þ 0:24x1x2 þ 0:08x1x3 & 0:14x2x3:

The mathematical analysis of the models provides the stationary point ð0:49;&0:57;&3:04Þ for the peak height and
ð0:55;&0:46;0:47Þ for the coefficient of variation. The stationary point of the model for the peak height is outside the exper-
imental domain, whereas that of the model for the coefficient of variation is inside it. However, both of them are saddle
points.

We are applying LGP for solving this optimization problem by considering 10 re-starts and 10 iterations per each re-start.
Fig. 26 shows the Pareto-optimal front (consisting of 1000 solutions) for the peak height (objective f1) and the coefficient

of variation (objective f2): when the peak height increases, the coefficient of variation also increases and vice versa. The value
of a used in the spreading phase is 0.5.

The corresponding level of factors in the experimental domain is depicted in Fig. 27. In the graphical representation x1cor-
responds to the carrier solution flow rate U, x2 corresponds to the conditioning cell potential Ea and x3 corresponds to the
working electrode potential EL1 of the analytical cell.

The results obtained by LGP offer the user the possibility to choose the desired solution based on the expected values for
the peak height and the coefficient of variation. Some authors consider that peak heights below 1.5 lA are unacceptable and
values above 1.8 lA are good. Also, they look for values for coefficient of variation below 1.5% [32]. Desirability values are
defined to increase (or decrease) linearly between the two limits. Given all the required conditions for solving this problem,
we generated an approximation of the Pareto front and set so that the user can select depending on further preferences.

5. LGP for the optimization of the formulation of an oral solution

The application studied in this section comes from pharmaceutics and is described in detail in [20,32]. The problem refers
to the formulation of a solution of slightly soluble drug mainly depending on the percentage of surfactant (polysorbate 80),
propylene glycol (%) and invert sugar medium (mL). The central values of the factors that define the experimental domain are
4.0% of polysorbate 80, 20% of propylene glycol and 55 mL of sucrose invert medium with steps 0.3%, 3% and 6 mL, respec-
tively. With a central composite design (spherical and with a = 1.68), two response surfaces (quadratic models) are fitted for
the turbidity (ppm) and cloud point ("C) of the resulting solutions.

Fig. 26. Pareto-optimal front obtained by LGP for the optimization of a flow injection system for determining hydroquinone.
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For fitting the model for the cloud point two experimental points had to be removed with abnormal residuals that pro-
duce the regression model to be nonsignificant. These points were, in codified variables ð0;&1:68;0Þ and ð0;1:68;0Þ.

Based on some experimental results, the authors of [32] reduced the size of variation of the second factor (propylene gly-
col) to ½&1:3;1:3*.

The goal of the fitting of the response surfaces is to find experimental conditions to reduce the turbidity and to increase
the cloud point.

By using the notations:

polysorbate 80? x1,
propylene glycol? x2,
invert sugar medium? x3,

the optimization problem can be formulated as follows:
maximize the turbidity:

f1 ¼ 3:04& 0:59x1 & 0:15x2 þ 0:12x3 þ 0:24x21 þ 0:49x22 & 0:06x23 þ 0:05x1x2 & 0:40x1x3 & 0:65x2x3;

minimize the cloud point:

f2 ¼ 72:22þ 0:84x1 þ 3:03x2 & 5:58x3 þ 0:63x21 þ 1:03x22 & 0:68x23 & 0:15x1x2 þ 0:92x1x3 & 0:72x2x3:

The analysis of the quadratic models (the standard mathematical methodology) provides the stationary or critical points
(points where gradient vector is equal to the null vector) which are ð0:82;&0:23;&0:51Þ for turbidity and
ð0:81;&2:24;&2:37Þ for the cloud point. The stationary point for turbidity is inside the experimental domain and that of
the cloud point is outside it. In any case, both of them are saddle points (nor maximum nor minimum). As mentioned in
[32], according to the generalization (Theorem 2, p. 16 in [2]) of the Weierstrass Extreme Value Theorem (e.g. Theorem 3.9,
p. 57 in [33]), both continuous functions in the experimental domain (which is a compact set) attain its maximum and

Fig. 27. The level of factors obtained by LGP: x1 corresponds to U, x2 corresponds to Ea and x3 corresponds to EL1.

Fig. 28. Pareto front obtained by LGP for turbidity and cloud point conditions.
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minimum values at points within the compact region; therefore in this case in the boundary of the experimental domain.
This theorem, although guaranteeing that there are extreme points in the experimental domain for both models, does not
provide any indication about the experimental conditions (the level of the factors) to obtain such extreme points, that means
that we do not have any idea about how to move the experimental conditions for minimizing turbidity and maximizing
cloud point [32].

From the mathematical experiments performed in [20,32] it is obvious that there are no experimental conditions for the
three factors that simultaneously provide the minimum value for turbidity and the maximum value for cloud point. The pairs
of values which can be obtained is in the Pareto-optimal front estimated for these two functions depicted in Fig. 24 (the value
of a in the spreading phase was set to 1).

In the Pareto-optimal front, turbidity ranges from 1.11 to 4.38 ppm and the cloud point from 64.7 to 83.8 "C, but it is
clearly observed in Fig. 28 how an increase in cloud point is linked to an increase in turbidity and if we want to decrease
turbidity, cloud point is also decreased.

The solutions obtained by LGP are depicted in Fig. 29. Knowing the experimental conditions (inside the experimental do-
main) that estimate values optimal in one or the other response, the user can choose according to the needs (for instance,
solutions for which the turbidity is above some limits and the cloud point is below some limits and vice versa).

6. Conclusions

The paper proposed a new approach for multiobjective optimization, which uses an aggregation of objectives and trans-
forms the MOP into a SOP. A line search based technique is applied in order to obtain one solution. Starting from this solution
a simplified version of the initial line search is used in order to generate solutions with a well distribution on the Pareto fron-
tier. Numerical experiments performed show that the proposed approach is able to converge very fast and provide a very
good distribution (even for discontinuous Pareto frontier) while compared with state of the art population-based metaheu-
ristics such as ParEGO and NSGA II.

Compared to NSGA II and ParEGO, LGP has only few parameters to adjust. It is computationally inexpensive, taking less
than 200 ms to generate a set of nondominated solutions well distributed on the Pareto frontier.

We also considered two practical problems to illustrate the performance of LGP. The first problem refers to the optimi-
zation of a flow injection system for determining hydroquinone. LGP is able to generate a very good approximation of the
Pareto front and provide results which clearly fulfill all the problem requirements. The second application is from the phar-
maceutical design and requires the optimization of an oral solution. LGP obtained a good Pareto front and thus offering the
user the possibility to select from a wide range of solutions.

The only inconvenience is that LGP involves first partial derivatives, which make it be restricted to a class of problems
which are continuous twice differentiable. One of the further work ideas is to extend LGP to deal with constraint multiob-
jective optimization problems.

Acknowledgement

The first author acknowledges the support from the research grant CNCSIS IDEI 2412, Romania.

References

[1] A. Abraham, L. Jain, R. Goldberg (Eds.), Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, 12 Chapters, Springer Verlag,
London, 2005, pp. 135, ISBN 1852337877, 173 Illustrations.

Fig. 29. Solutions (in the variable space) obtained by LGP for the optimization of an oral solution application.

2694 C. Grosan, A. Abraham / Information Sciences 180 (2010) 2674–2695
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