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Abstract
We study the succinct approximation of convex Pareto
curves of multiobjective optimization problems. We
propose the concept of ε-convex Pareto (ε-CP) set as the
appropriate one for the convex setting, and observe that
it can offer arbitrarily more compact representations
than ε-Pareto sets in this context. We characterize when
an ε-CP can be constructed in polynomial time in terms
of an efficient routine Comb for optimizing (exactly or
approximately) monotone linear combinations of the
objectives. We investigate the problem of computing
minimum size ε-convex Pareto sets, both for discrete
(combinatorial) and continuous (convex) problems, and
present general algorithms using a Comb routine. For
bi-objective problems, we show that if we have an exact
Comb optimization routine, then we can compute the
minimum ε-CP for continuous problems (this applies
for example to bi-objective Linear Programming and
Markov Decision Processes), and factor 2 approximation
to the minimum ε-CP for discrete problems (this applies
for example to bi-objective versions of polynomial-time
solvable combinatorial problems such as Shortest Paths,
Spanning Tree, etc.). If we have an approximate
Comb routine, then we can compute factor 3 and 6
approximations respectively to the minimum ε-CP for
continuous and discrete bi-objective problems. We
consider also the case of three and more objectives and
present some upper and lower bounds.

1 Introduction
Decision making involves the evaluation of different al-
ternative solutions from a design space, and the selec-
tion of a solution that is “best” according to the criteria
of interest. In most situations there are usually more
than one criteria that matter. For example, in network
design we are concerned with its cost, capacity, relia-
bility; in investments we care about return and risk; in
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radiation therapy we care about the effects on the tumor
on the one hand, and healthy organs on the other; and
so forth. Such multicriteria (or multiobjective) problems
are pervasive across many diverse disciplines, in eco-
nomics and management, engineering, manufacturing,
healthcare, etc. The area of multiobjective optimiza-
tion has been (and continues to be) extensively inves-
tigated with many papers, conferences and books (see
e.g. [Cli, Ehr, EG, FGE, Miet]).

In multiobjective problems, there is typically no so-
lution that is uniformly best in all the objectives; rather,
there is a trade-off between the different objectives,
which is captured by the trade-off or Pareto curve (sur-
face), the set of all feasible solutions whose vector of val-
ues for the objective functions is not dominated by any
other solution. Usually the Pareto curve (set) has ex-
ponential size for discrete optimization problems (even
for two objectives), and is infinite for continuous prob-
lems (and typically there is no closed form expression
for it). Thus, we cannot compute the full Pareto curve
and have to contend with approximation. We want to
compute efficiently a small set of solutions (as small
as possible) that provides a “good enough” representa-
tion (as good as possible) of the whole design space, i.e.
the full Pareto curve. In fact, even in cases where the
Pareto set has polynomial size, we may still want a very
small number of solutions that provide the best approx-
imation. Typically the representative set of solutions
are investigated more thoroughly by the decision mak-
ers to assess the different choices and pick a suitable one
based on factors that are perhaps not even formalized
or quantifiable. For example, in radiotherapy planning,
different plans will be assessed by the physician to select
one that provides the best balance [CHSB]. Obviously,
there is a small limit on the number of plans that can
be examined. As another example, when we plan a trip
we want to examine just a few possible routes (in terms
of time, distance, cost), not a polynomial number in
the size of the map. Thus, ideally we want to compute
the smallest set that achieves a desired approximation.
Indeed, this is the underlying goal of much of the re-
search in the multiobjective optimization area, where
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many heuristics have been proposed for this purpose,
usually however without any performance guarantees or
complexity analysis, as we do in TCS.

In recent years, we have initiated a more system-
atic investigation [PY1, VY, DY] to develop a theory
of multiobjective approximation along similar rigorous
lines as the approximation of single objective problems.
The approximation to the Pareto curve is captured by
the concept of an ε-Pareto set, a set Pε of solutions that
approximately dominates every other solution, i.e., for
every other solution s, the set Pε contains a solution s′

that is within a factor 1+ε or better in all the objectives.
This concept was studied earlier for certain problems,
e.g. multiobjective shortest paths, in [Han, Wa]. It
is investigated more systematically in a general frame-
work with respect to the size and polynomial time com-
putability in [PY1]. The problem of computing a mini-
mum ε-Pareto set was raised and studied in [VY, DY].

In several problems, the set of solution values in
the objective space (and/or decision space) is convex,
i.e. if v, v′ are the vectors of objective values for two
solutions, then every convex combination of v, v′ is also
the vector of values for some solution. This is the
case for example for Multiobjective Linear Programming
(MOLP): minimize (or maximize) a collection of linear
functions subject to a set of linear constraints. In
this case, the Pareto curve is a polygonal line for two
objectives (a polyhedral surface for more). Although
there is an infinite set of Pareto points, a finite set
of points, namely the vertices of the curve, suffice
to represent the curve; every other Pareto point is
a convex combination of vertices. Indeed, MOLP
has been studied thoroughly and several algorithms
(e.g. Multiobjective Simplex) have been developed to
generate all the vertices of the Pareto set, see e.g. [Ehr,
Ze]. Another example is the design of optimal policies
for Markov decision processes with multiple objectives
corresponding to the probabilities of satisfaction of a
set of properties of the execution or to given discounted
rewards [EKVY, CMH]; in effect, these problems can be
reduced in both cases to MOLP problems.

Convexity can arise in various other ways, in both
continuous and discrete problems, even if it is not
present originally. In several applications, solutions that
are dominated by convex combinations of other solu-
tions may be regarded as inferior and thus not desirable.
The multicriteria literature uses sometimes the term “ef-
ficient” for a Pareto solution and “supported efficient”
for a solution that is not strictly dominated by the con-
vex combination of other solutions. Thus, sometimes
only supported efficient solutions are sought. These are
the solutions whose values lie on the Pareto set of the
convex hull of all solution points. This “boundary” set

can be represented by its extreme points which we call
the convex Pareto set of the instance. Of course, if the
objective space is convex, then the boundary set coin-
cides with the Pareto set. Second, we note that many
popular methods for generating Pareto points (called
weighted-sum methods) are based on assigning weights
wi ≥ 0 to the different objectives fi (assume for sim-
plicity they are all minimization objectives), and min-
imize the linear combining function

∑

i wifi. This is
done for a sequence of weight tuples and then the ‘dots
are connected’ to form a representation of the bound-
ary (lower envelope) of the objective space. The optimal
solutions of monotone linear combining functions are in-
deed Pareto solutions, though in general not all Pareto
solutions can be so generated, in particular those that
are not supported efficient solutions. Thus, the repre-
sentation that is obtained is actually a representation of
the Pareto set of the convex hull. In some applications
we may actually want to depict this convex trade-off
curve; for example [VV] studies network routing with
multiple QoS criteria (these are essentially multiobjec-
tive shortest path problems) and the associated trade-
off curves, both the exact Pareto curve and the con-
vex (called there relaxed) curve. Third, another case of
convexification is when the decision is randomized, not
deterministic (pure), i.e. the decision is a probability
distribution over the set of solutions, and the figures of
merit are the expected values of the objective function.
Randomization has the effect of taking the convex hull
of the set of solution points. Note that this holds for all
types of objectives (both linear and nonlinear).

In the case of combinatorial optimization problems
with linear objectives the convex Pareto set is closely
related to parametric optimization [Gus, Meg1, Meg2].
For example, consider the parametric s − t shortest
path problem where each edge e has cost ce + λde that
depends on the parameter λ. The length of the shortest
path is a piecewise linear concave function of λ whose
pieces correspond to the vertices of the convex Pareto
curve for the bi-objective shortest path problem with
cost vectors c, d on the edges. The size (number of
vertices) of the convex Pareto set may be much smaller
than the size of the Pareto set. For example, the
Pareto set for the bi-objective shortest path problem has
exponential size in the worst-case, and the same is true
for essentially all common combinatorial problems (bi-
objective knapsack, spanning trees, etc.) In contrast,
the convex Pareto set for bi-objective shortest paths
has quasi-polynomial size, nΘ(log n) (upper and lower
bound) [Gus, Car]; for bi-objective spanning trees it
has polynomial size [Chan, Gus]. On the other hand,
for bi-objective minimum cost flows (and for LP) the
convex Pareto set, which coincides with the vertices
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of the Pareto set, has exponential size in the worst-
case [Ru].

Regarding the approximation of the convex Pareto
set, the notion of ε-Pareto set is not the right one, as it
can be very wasteful. For example consider the case of
two objectives, and suppose that the Pareto set P is just
a straight line segment ab. The two vertices a, b are not
enough to form an ε-Pareto set Pε: we may need to add
many points along (or close to) the segment ab so that
every point of P is almost dominated by a point of Pε.
This is obviously redundant and ignores the convexity
of the setting.

A natural definition of approximation in the convex
setting is the following: A set S of solution points is a
ε-convex Pareto set if for every solution point p there
is a convex combination of members of S that almost
dominates p in all objectives (i.e., is within a factor 1+ε
of p or better). Such a set of points S can be arbitrarily
smaller than the smallest ε-Pareto set. Note that for
every instance there is a unique convex Pareto set, but
not a unique ε-convex Pareto set; there are usually
many different (nonredundant) such sets and they could
have very different sizes. We want to compute one that
has the smallest possible size. This is the problem we
address in this paper.

There is extensive literature in the optimization and
management areas on the approximation of (convex)
Pareto curves, both in terms of general methods and
for specific (continuous and combinatorial) problems;
see e.g. [EG, RW] for some references. The bulk of the
literature concerns bi-objective problems; only a very
small fraction considers 3 or more objectives. There are
several methods proposed in the multicriteria literature
which compute a sequence of solution points by opti-
mizing weighted linear combinations of the objectives,
and then ‘connect the dots’. The underlying goal of
the methods is basically the same, to obtain a good ap-
proximation of the convex Pareto curve with few points.
Usually however there are no quantitative guarantees on
the approximation error that is achieved by the meth-
ods and the size of the computed set. Also in many
cases the methods try explicitly to get an even distri-
bution of the points on the surface. However, for the
purposes of minimizing the approximation error with a
limited number of points, it is better to have an uneven
distribution, with a denser representation in the areas
of high curvature, and fewer points in the flat areas.
The problem is of course that we are not given explic-
itly the Pareto surface (the whole point is to construct
a good, succinct representation), but can only access it
indirectly.

The problem of computing an approximate convex
Pareto curve of minimum cardinality has some similar-

ities to the problem of computing minimal approxima-
tions to polytopes and convex surfaces (which has been
studied in computational geometry, e.g. [ABRSY, Cl,
MitS]), but some important differences also, the main
ones being (i) the reference surface (the convex Pareto
curve) is given implicitly, not explicitly, (ii) we have
an asymmetric dominance relation here, as opposed to
proximity. Also the metrics of proximity used in geom-
etry are usually different than the ratio measure here
(which is common in the analysis of approximation al-
gorithms). Some of the techniques developed there how-
ever are still useful in our context.

We summarize now the results and the organization
of the rest of the paper. In Section 2 we give basic addi-
tional definitions and background. In Section 3 we pro-
vide a simple necessary and sufficient condition for the
polynomial-time constructibility of an ε-convex Pareto
set (anyone, not necessarily a small one), in terms of
the approximate optimization of monotone linear com-
bining functions of the objectives. Sections 4-6 con-
cern the computation/approximation of the smallest ε-
convex Pareto set CP ∗

ε . There are two variants of this
problem, depending on whether the (objective) space
is continuous (convex) or discrete. It turns out that
the corresponding problems are related, but not identi-
cal. In Section 4 we address the bi-objective problem
when the Pareto set is given explicitly in the input. We
show that, in both the continuous and the discrete case,
a minimum ε-convex Pareto set can be computed effi-
ciently. In Section 5 we consider the bi-objective prob-
lem when the Pareto set is not given explicitly, but is
only accessible through a routine Comb that optimizes
(exactly or approximately) monotone linear combina-
tions of the objectives; we seek general-purpose algo-
rithms that use Comb as a black box and achieve guar-
anteed performance in terms of the approximation er-
ror of the convex Pareto set and its size. Note that
the Comb-based model is the one used typically in the
multicriteria literature, it is consistent with the charac-
terization of Section 3, and applies to a broad class of
continuous and discrete multiobjective problems: Lin-
ear Programming, Markov Decision Processes, Shortest
Paths, Spanning Trees, etc.; all of these have an exact
Comb routine. If the Comb routine is exact, we show
that in the continuous case we can compute a minimum
ε-convex Pareto set (with a polynomial number of calls
to the Comb routine). In the important special case of
Bi-objective Linear Programming, our algorithm uses
roughly 2 LP calls per generated point of the minimum
ε-convex Pareto set. In the discrete case, we can com-
pute a factor 2 approximation, and the factor 2 is in-
trinsic, in the sense that no general-purpose algorithm
can improve it; we show also NP-hardness specifically
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for the bi-objective shortest path problem. If we have
an approximate Comb routine, we present an approxi-
mation algorithm for the construction of the minimum
ε-convex Pareto set that achieves factor 3 in the contin-
uous case and factor 6 in the discrete case; for both cases
we show a lower bound of 2. In Section 6 we discuss the
problem for d ≥ 3 objectives. We present upper and
lower bounds, both for explicitly given point sets, and
for implicitly specified instances. For explicitly given
points we provide a constant factor approximation for
d = 3, and an approximation with logarithmic factor
for fixed d ≥ 4; for arbitrary (unbounded) number d
of objectives, the approximation problem is at least as
hard as Set Cover (thus is not approximable better than
Ω(log n)). For implicitly given instances we show that
no bounded factor can be achieved for the same ε; but
if we relax the allowed error to any ε′ > ε, we can com-
pute an ε′-convex Pareto set which achieves the same
approximation factors (with respect to the minimum ε-
CP) as the explicit point case. Due to space constraints,
most proofs are omitted.

2 Preliminaries
A multiobjective optimization problem (MOP) Π has
a set IΠ of valid instances, and every instance I ∈ IΠ

has an associated set of feasible solutions S(I), usually
called the solution or decision space. There are d objec-
tive functions, f1, f2, . . . , fd, each of which maps every
instance I ∈ IΠ and solution s ∈ S(I) to a real num-
ber fj(I, s). The problem specifies for each objective
whether it is to be maximized or minimized. We denote
by f = [f1, f2, . . . , fd] the d-vector of objective values,
and by X(I) the set

⋃

s∈S(I) f(s) of the solution values,
usually called the objective space. As usual in approx-
imation, we assume that the objective functions have
positive values. For combinatorial problems, we assume
also as usual that the values are rational and can be
computed in polynomial time, and we use m to denote
the maximum number of bits in the numerator and de-
nominator of a solution value; thus, all values are be-
tween 2−m and 2m. We will consider in this paper also
continuous problems, and for these we assume that the
objective space X(I) is a closed set that is bounded also
between 2−m and 2m in all the objectives.

We say that a d-vector u dominates another d-vector
v if it is at least as good in all the objectives, i.e.
uj ≥ vj if fj is to be maximized (uj ≤ vj if fj is to
be minimized); the domination is strict if at least one of
the inequalities is strict. Given a (not necessarily finite)
set of points A ⊆ Rd

+, the Pareto set of A, denoted by
P (A), is the set of undominated points in A. We will use
the term envelope of A for the Pareto set of the convex
hull CH(A) of A. The convex Pareto set of A, denoted

by CP (A), is the set of extreme points of the envelope
of A, i.e., the points of A that are not dominated by
convex combinations of other points. For example, for
a discrete problem, the envelope of A is a polyhedral
surface and CP (A) is its set of vertices.

We say that a d-vector u c-covers another d-vector
v if u is at least as good as v up to a factor of c in all
the objectives, i.e. uj ≥ vj/c if fj is to be maximized
(uj ≤ cvj if fj is to be minimized). Given A ⊆ Rd

+ and
ε > 0, an ε-Pareto set of A, Pε(A), is a set of points in A
that (1 + ε)-cover all vectors in A. An ε-convex Pareto
set of A, CPε(A), is a set of points in A, whose convex
combinations (1+ε)-cover all points in A. Clearly, an ε-
Pareto set is also an ε-convex Pareto set, but the inverse
does not generally hold. For a given set A, there may
exist many ε-(convex) Pareto sets, and they may have
very different sizes.

The above definitions apply to any set A ⊆ Rd
+.

For a multiobjective optimization problem, A is the
objective space X(I) of an instance I. We stress that
A is not given explicitly, but rather implicitly through
the instance I. For example in Multiobjective Linear
programming, I is a set of linear constraints and linear
objective functions, and A is the (infinite) set of values
of all feasible solutions. In the Bi-objective Shortest
Path problem, I is a graph G with two (positive) cost
functions c, d on its edges (e.g. cost, delay), source
node s, target t; the set S(I) of solutions is the set
of s − t paths, and A is the set of the corresponding
costs and delays of all the s − t paths. Of course, the
objective functions do not have to be linear, for example
the function c could represent the capacity of the edges,
and the capacity of a path (which we want to maximize)
is the minimum capacity of an edge along the path.

It is shown in [PY1] that for every MOP in the
aforementioned framework, for every instance I and
ε > 0, there exists an ε-Pareto set (thus, also an ε-
convex Pareto set) of size O((4m/ε)d−1), i.e. polynomial
for fixed d. An approximate (convex) Pareto set always
exists, but it may not be constructible in polynomial
time. We say that the problem of computing an ε-
(convex) Pareto set for a multiobjective problem Π
has a PTAS (resp. FPTAS) if there is an algorithm
that for every instance I and ε > 0 constructs an ε-
(convex) Pareto set in time polynomial in the size |I|
of the instance I (resp. in time polynomial in |I|, the
representation size |ε| of ε, and in 1/ε). As shown
in [PY1], there is a PTAS or FPTAS for constructing
an ε-Pareto set iff there is one for the following GAP
Problem: given an instance I of Π, a (positive rational)
d-vector b, and a rational δ > 0, either return a solution
whose vector dominates b or report that there does not
exist any solution whose vector is better than b by at
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least a (1 + δ) factor in all of the coordinates.
The problem of computing efficiently not just any ε-

Pareto set, but one of approximately minimum size was
investigated in [VY, DY], and both algorithms and lower
bounds were given for the general class of problems
that have a GAP routine, as well as for subclasses
that include many important well-studied problems like
shortest paths and others.

As noted in the introduction, for convex problems
the appropriate notion of approximation is the ε-convex
Pareto set, which is the subject of this paper. A first
question is, when can we construct such a set in (fully)
polynomial time? Since every ε-Pareto set is also an
ε-convex Pareto set, an (F)PTAS for the GAP prob-
lem is a sufficient condition. However, as shown in Sec-
tion 3, it is not a necessary condition. In that section,
we give a necessary and sufficient condition when all the
objectives are of the same type (minimization or maxi-
mization), in terms of the approximate optimization of
positive linear combinations of the objectives. Second,
we do not want just any ε-convex Pareto set, but we
would like to compute the smallest one if possible. We
consider both continuous and discrete (combinatorial)
problems. For combinatorial problems there are two
variants, depending on whether the ε-convex Pareto set
is allowed to include only the discrete solution points
in A = X(I) or also their convex combinations, which
in effect makes the problem continuous. We denote by
QD(A, ε) the former variant, and by QC(A, ε) the latter
variant, and denote by CP ∗

D(A, ε), CP ∗
C(A, ε) respec-

tively the minimum size solutions. Thus, for example if
in the bi-objective shortest path problem we may use a
probability distribution on the paths, then in effect the
problem at hand is the continuous version QC(A, ε).

Notation: We will often assume for concreteness
and simplicity that the objectives at hand are mini-
mization objectives, and use the term lower envelope
of the set A, denoted by LE(A), for the Pareto set of
the convex hull of A, i.e. LE(A) = P (CH(A)). For
two points p, q ∈ Rd

+ the ratio distance between p and
q is defined by: RD(p, q) = max{maxi(pi/qi), 1}. The
ratio distance between p and q is the minimum value
ρ∗ = 1 + ε∗ of the ratio ρ such that p ρ-covers q. In
the bi-objective case, we will use x and y to denote the
coordinates of the plane corresponding to the two ob-
jectives. Every solution is mapped to a point p on this
plane and we use x(p), y(p) to denote its coordinates;
that is, p =

(

x(p), y(p)
)

.

3 Efficient Computability
Let Π be an optimization problem with d minimization
objectives. We define the following associated problem
Comb: Given an instance I of Π and (a weight-vector)

w ∈ Rd
+, minimize the combined objective v = w · f .

Analogously, if the fj ’s are all maximization objectives,
the problem is defined in a similar way, the only
difference being that v is to be maximized. (The case of
mixed objectives requires more care - see below.) We say
that the problem Comb has a PTAS (resp. FPTAS) if
there is an algorithm, which given I ∈ IΠ, w and δ > 0,
computes a (1 + δ)-approximate optimum and runs in
time polynomial in |I| and |w| (resp. |I|, |w|, |δ| and
1/δ). Note that the convex Pareto set CP (I) is the set
of all optima for all (infinitely many) possible positive
weight-vectors; thus, if we could solve Comb exactly for
all such w, we would obtain CP (I). On the other hand,
it is easy to see that any ε-convex Pareto set contains
an (1 + ε)-approximate optimum for any w ∈ Rd

+. We
show that the converse is also true, and a polynomial
number of calls to an approximate Combδ routine for
a suitable set of weight-vectors suffices to obtain an
ε-convex Pareto set. The algorithm is essentially the
same as an algorithm given in [PY1], albeit in a more
restricted context there where all the objectives are
linear. We show however that the algorithm works
in general, giving a different (more general) proof of
correctness, which is also much simpler.

Theorem 3.1. Let the number of objectives d be fixed
and of the same type. There is a (F)PTAS for con-
structing an ε-convex Pareto set iff the problem Comb
admits a (F)PTAS.

An important corollary of Theorem 3.1 is that the
class of problems for which an ε-convex Pareto set is
efficiently constructible is broader than the correspond-
ing class for the ε-Pareto set. Consider for example the
multi-objective s − t min-cut problem. Given a graph
with a d-vector of weights on each edge and a pair of
nodes (s, t), find an s− t cut such that the total weight
of the edges crossing the cut (for each of the objectives)
is minimized. By Theorem 3.1, for any fixed d there
is an FPTAS for constructing an ε-convex Pareto set
for the problem. However, as shown in [PY1], even for
d = 2, there is no FPTAS for constructing an ε-Pareto
set (unless P=NP).

We comment on the case of mixed objectives: In
this case the weights in the Comb problem must be pos-
itive for the one type of objectives and negative for the
other. If we have an exact algorithm for Comb then
we can construct again in polynomial time an ε-convex
Pareto set; also, all the results in the following sections
that use an exact Comb routine hold. However, as far as
approximate Comb is concerned, note that the weighted
linear combination for mixed objectives may take neg-
ative values, and technically speaking, approximation
ratios are defined only for positive functions. We can
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circumvent this by using absolute values, and requiring
that the absolute difference between the value of the
computed solution and OPT be bounded by δ|OPT|.
Such an approximate Comb routine is also sufficient for
the polynomial time construction of an ε-CP, and for
the relevant algorithms of the following sections.

4 Two Objectives - Explicitly Given Points
We are a given a set A of (rational) points in objec-
tive space and ε > 0, and we want to compute a mini-
mum ε-convex Pareto set CP ∗

ε of A. Recall that there
are two versions of the problem, the continuous version
QC(A, ε), where we may include in CP ∗

ε convex combi-
nations of points in A, and the discrete versionQD(A, ε),
where we can only include points in A. We examine the
two versions separately and show:

Theorem 4.1. Given a set of points in the plane and a
rational parameter ε > 0, the problem of computing the
smallest ε-convex Pareto set can be solved in polynomial
time in both the continuous and the discrete case.

4.1 Convex (Objective) Space - Problem QC.
Assume for concreteness that we have minimization
objectives (the same methods apply in the other cases).
Let CP (A) = {p1, . . . , pn} be the convex Pareto set
of A with the points ordered left to right. Thus, the
lower envelope of A is a polygonal chain denoted as
LE = 〈p1, . . . , pn〉. Viewed as a function of x, LE is
strictly decreasing and convex. We also consider the
curve LE′

ε obtained from LE by scaling its points by a
factor of (1 + ε) in each coordinate, i.e. LE′

ε
.= {p′ |

p′/(1+ ε) ∈ LE}. We say that a point q lies between the
curves LE and LE′

ε if q is dominated by some point of
LE and is not strictly dominated by any point of LE′

ε.
As a first observation, note that there always exists
an optimal solution to the problem that uses points
only from LE. We now proceed to show an equivalent
reformulation of the problem QC that forms the basis
for the algorithm.

Lemma 4.1. The problem QC(A, ε) is equivalent to the
following: Compute a convex polygonal chain C with
minimum number of vertices in LE having the following
properties: (i) its leftmost (resp. rightmost) vertex
(1 + ε)-covers the leftmost (resp. rightmost) point of
P (A) (ii) the curve C lies between LE and LE′

ε.

We say that a point p ε-sees a point q (or q is
ε-visible from p) if no point of the line segment pq is
strictly dominated by a point of LE′

ε. (In other words,
this means that pq does not intersect the region in
R2 that is strictly “above and to the right” of LE′

ε.)
Lemma 4.1 motivates the following simple algorithm:

Given CP (A) and ε, construct the polygonal chain LE′
ε

and compute a set of points Q = {q1, q2, . . . , qk} as
follows: If pn has x(pn) ≤ (1 + ε)x(p1), select pn and
halt. Otherwise, the leftmost point q1 ∈ Q is the point
of LE having x-coordinate x(q1) = (1 + ε)x(p1). Point
qi+1 is the rightmost point of LE that is ε-visible from
qi. The algorithm terminates when the point pn ∈ LE
is (1 + ε)-covered by the current point qk ∈ Q.

The optimality of this algorithm can be shown by
induction. It is not hard to see that the algorithm
uses a linear number of arithmetic operations (i.e. has
time complexity O(n) in the real RAM model). This
is not enough however: we need to bound also the bit
precision of the computed points because n operations
can generate in principle numbers with an exponential
number of bits. We show that this does not happen
here: the computed points have rational coordinates
with polynomially bounded bit complexity.

Lemma 4.2. The solution set Q computed by the above
algorithm has total bit complexity O(k2m), where k =
|Q| and m is the maximum number of bits required to
describe any vertex p ∈ CP (A) and the error ε.

4.2 Discrete (Objective) Space - Problem QD.
In this case, one needs to consider only points of P (A) =
{p1, . . . , pn} for inclusion in the ε-CP, but the optimal
solution may need points that are not on the lower
envelope (if we ignore such points, we may lose at most
a factor of 2 - this holds for more general reasons, see
Section 6.) It can be shown that a structural lemma
parallel to Lemma 4.1 holds in this setting also. In
view of this similarity, a naive approach would involve
selecting qi+1 to be the rightmost point of P (A) ε-visible
from qi. It is not hard to construct examples for which
this approach is suboptimal.

We now describe a modified method that works. We
restrict attention to points of P (A) that are not strictly
dominated by LE′

ε. For two such points p, q ∈ P (A) we
say that p is at least as good as q (p ( q) if either (i)
the rightmost vertex vp ∈ LE′

ε ε-visible from p, is equal
to or lies to the right of the corresponding vertex vq for
q, or (ii) vp = vq = v and the line pv is equal to or lies
above the line qv to the right of v. Given a set of points
S, we say that the point p ∈ S is a best point in the set
if for any q ∈ S it holds p ( q. (Note that there may
exist more than one points with this property; in such
a case we can arbitrarily pick one of them.)

The algorithm selects a set of points Q ⊆ P (A)
as follows: For the computation of the leftmost point
q1 ∈ Q, consider the set of eligible points E1 = {σ ∈
P (A) | x(σ) ≤ (1 + ε)x(p1)}. If there exists a point in
E1 that (1 + ε)-covers pn, select it and halt. Otherwise,
select a best point in E1. For each i ≥ 2, select qi
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from the set (of eligible points) Ei = {σ ∈ P (A) |
x(σ) > x(qi−1) and σ is ε − visible from qi−1}. If one
of the points in Ei (1 + ε)-covers pn, select it and halt.
Otherwise, select a best point in Ei and iterate. This
modified algorithm is easily seen to run in O(n2) time
and its optimality can be shown by induction.

5 Two Objectives - General Results
In Section 5.1, we consider the case that an exact Comb
routine is available and Section 5.2 considers the case
of an approximate Combδ routine. We design generic
algorithms, i.e. algorithms which use Comb as a black
box.

5.1 Exact Comb routine. We consider separately
the discrete and continuous cases.

5.1.1 Discrete Space. We first give a lower bound
showing that no generic algorithm can guarantee a ratio
better than 2. We then give a matching upper bound
(an efficient 2-competitive algorithm).

Computing the smallest ε-convex Pareto set is typi-
cally NP-hard for common problems even for two objec-
tives. The following proposition is an illustration of this
fact. Consider the bi-objective Shortest Path (BSP)
problem: Given a graph, “costs” and “delays” for each
edge and two specified nodes s and t, compute an s − t
path trying to minimize both cost and delay.

Proposition 5.1. For the BSP problem, for any k ≥
1, it is NP-hard to distinguish the case that the mini-
mum size of the optimal ε-convex Pareto set is k from
the case that it is k + 1.

The NP-hardness also holds for the bi-objective
spanning tree and many other common combinatorial
problems. For generic algorithms, factor 2 is the best
we can hope for:

Theorem 5.1. For two objectives, no generic algo-
rithm having oracle access to Comb for constructing
a small ε-convex Pareto set can be better than 2-
competitive.

We now sketch a generic algorithm that computes
an ε-convex Pareto set of size at most twice the optimal.
The algorithm applies to all discrete bi-objective prob-
lems with an exact Comb routine. The idea is to appro-
priately use the routine so as to “simulate” the optimal
algorithm of Section 4 for problem QD. Because of the
lower bound, this is not exactly possible, since, using
the given routine as a black box, we cannot access the
solution points that do not lie in the convex Pareto set.
However, if we ignore such points we do not lose more

than a factor of 2. With that in mind, the generic algo-
rithm outputs a set Q of solution points as follows: We
first compute the leftmost and rightmost points of the
convex Pareto set (pleft and pright respectively). If these
two points do not constitute an ε-convex Pareto set, we
select as q1 the rightmost solution point in CP (I) that
lies at most (1 + ε) to the right of pleft. The remaining
points are selected by the following iterative procedure:
The point qi+1 is the rightmost point of CP (I) that is
ε-visible from qi. To find qi+1, the algorithm has an
operation Next(qi) that simulates visibility by using a
“binary search procedure on the slopes” with an appli-
cation of the given routine at each step of the search. At
every step of the search, it calls Comb(λ, 1) to compute
the point pλ minimizing the linear objective (λ, 1). Let
λ′ be the (absolute value of the) slope of the line segment
qipλ. Then, r = Comb(λ′, 1) is the solution point whose
ratio distance from qipλ is maximum among all solution
points (with x-value) between qi and pλ. That is, pλ is
ε-visible from qi iff RD(qipλ, r) ≤ 1 + ε. This criterion
guides the binary search which terminates the first time
we find two adjacent vertices qYES, qNO ∈ CP (I) such
that qYES is ε-visible from qi and qNO is not. At this
point, we set qi+1 = qYES. The discreteness of the space
guarantees that this happens after a polynomial number
of calls to the Comb routine. Therefore,

Theorem 5.2. For any discrete bi-objective problem
possessing an exact Comb routine, for any ε > 0, we
can compute a 2-approximation to the optimal ε - convex
Pareto set in polynomial time.

5.1.2 Continuous Space. If the objective space is
convex, in particular a convex polytope, then we can
compute in polynomial time an ε-convex Pareto set of
minimum cardinality by an adaptation of the above
scheme. The generic algorithm is similar in spirit to
the previous case, the difference being that it simulates
the optimal algorithm for QC. For the simulation we use
a similar binary search procedure. In this case, after we
compute the adjacent vertices qYES and qNO such that
qYES is ε-visible from qi and qNO is not (as above), we
compute the rightmost convex combination q∗ of qYES

and qNO that is ε-visible from qi. By convexity, we
know that q∗ corresponds to a solution point and we
set qi+1 = q∗. Lemma 4.2 guarantees that the points q∗

selected in this manner have polynomial bit complexity
(in |I| and 1/ε) given that the size of the smallest ε-
convex Pareto set is polynomial in |I| and 1/ε. We thus
have the following:

Theorem 5.3. For any bi-objective problem with poly-
hedral objective space and an exact Comb routine, for
any ε > 0, we can compute the optimal ε - convex Pareto
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set in polynomial time.

5.1.3 Bi-objective Linear Programming. An im-
portant special case of the continuous space setting is
Bi-objective Linear Programming. Even though there
has been extensive work on this problem, we are not
aware of any optimal approximation algorithm. Many
existing algorithms use variations of an intuitive ap-
proach which starts with the segment connecting the
leftmost and rightmost points of the Pareto curve
(which can be found by LP), and then iteratively refines
the current polygonal line by introducing additional
points that optimize judiciously chosen linear combi-
nations of the objectives, until the desired approxima-
tion error ε is achieved. Various versions have been in-
troduced under various names (ES, sandwich method,
chord rule). Such a method has been studied analyti-
cally in [RF] in the context of the bi-objective min cost
flow problem (a special case of LP). They use the same
multiplicative metric for the approximation error ε as we
do, and show that the number of points generated is at
most pseudopolynomial in the size of the instance and
1/ε; they do not compare it with the size of the min-
imum ε-CP. With a slightly more careful analysis one
can show actually that the number of points is polyno-
mial, however it is suboptimal and it is unclear in fact if
it is within any constant factor of OPT . (We can show
that by post processing, we can extract a subset of size
at most 2 · OPT .)

Theorem 5.3 implies that we can compute the
optimal ε-convex Pareto set for bi-objective LP in
polynomial time. We show now that we can in fact
do it using essentially 2 LP calls per generated point.

Theorem 5.4. For bi-objective LP, we can efficiently
compute the optimal ε-convex Pareto set by solving a
linear number of LP’s. In particular, if k is the size
of the optimal ε-convex Pareto set, our algorithm solves
2k + 3 LP’s whose size is of the same order as the size
of the initial LP.

Sketch: We have a decision space Z = {z ∈ Rn×1 | A ·
z ≥ b, z ≥ 0n×1} where A ∈ Qm×n and b ∈ Q1×m, and
two minimization objectives c, d ∈ R1×n. The objective
space is X = {(x, y) ∈ R2

+ | x = c · z, y = d · z, z ∈ Z}.
The main ingredient of the algorithm is the efficient
implementation of the Next operation: Given a point
p on P (X), the Pareto curve of X, and ε > 0, compute
the rightmost point q ∈ P (X) that is ε-visible from p.
Let r∗x + y = t∗, r∗, t∗ > 0 be the equation of the
line pq. Since p belongs to this line, it follows that
r∗x(p) + y(p) = t∗ (x(p), y(p) are constants and r∗, t∗

variables in this equation). By construction, r∗ is the
minimum absolute value of the slope such that for all

solution points (x, y) ∈ X it holds r∗x + y ≥ t∗/(1 + ε).
In other words, we want the following implication to
hold: z ∈ Z ⇒ r∗(c ·z)+(d ·z) ≥ t∗/(1+ ε). By duality,
this implication holds iff there exists a vector w ∈ R1×m

+

(the dual variables corresponding to the rows of A) such
that r∗c + d ≥ wA and w · b ≥ t∗/(1 + ε). Therefore,
we first solve the LP: min r∗ s.t. {r∗x(p) + y(p) =
t∗, r∗c + d ≥ wA, w · b ≥ t∗/(1 + ε), w ≥ 01×m, r∗ ≥ 0}.
The solution gives the equation of the line pq. The
point q is the solution point on this line with minimum
y-value. To compute it, we solve the following LP:
min y s.t. {r∗x + y = t∗, x = c · z, y = d · z, z ∈ Z}.
(Note that the x and y are now variables and r∗, t∗ are
the parameters of the line computed by the previous
LP.) The solution of this LP gives the coordinates of
the point q. !

5.2 Approximate Comb routine. We first point
out that no generic algorithm can be better than 2-
competitive in this setting, even if it has access to
the GAPδ routine. Our main result is a generic
algorithm that efficiently computes a 6-approximation
to the optimal ε-convex Pareto set in the discrete
case (3 in the continuous) and is applicable to all bi-
objective problems (in our general framework) that have
a polynomial approximate Combδ routine. (We remark
that if the GAPδ routine is available, we can get a 3-
approximation for the discrete case as well.)

By adapting the argument in Theorem 5.1, we show
the following:

Theorem 5.5. For two objectives, no generic algo-
rithm having oracle access to GAPδ for construct-
ing a small ε-convex Pareto set can be better than 2-
competitive.

To compute an approximation to the optimal set
we will proceed in two phases. In the first phase we
compute a δ-convex Pareto set for a particular δ < ε. In
the second phase, we delete points from this set until we
are left with a small ε-convex Pareto set. In particular,
the algorithm is the following:

1. Compute a δ-convex Pareto set Rδ by using the
generic algorithm of Section 3 for δ = 4

√
1 + ε − 1

(≈ ε/4 for small ε). If 4
√

1 + ε is not rational, then
we pick δ to be a rational satisfying (1+δ)4 ≤ 1+ ε
and has bit representation O(|ε|).

2. Use the optimal algorithm for problem QD to
compute the smallest ε′′-convex Pareto set Q of Rδ

for 1 + ε′′ = (1 + ε)/(1 + δ). Output Q.

The above described algorithm runs in polynomial
time and it is not difficult to see that the set Q is an
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ε-convex Pareto set for the given instance. To prove
the desired guarantee we proceed in two phases: In
the first phase, we show that the cardinality of the set
Q is at most twice the cardinality of the optimal ε′-
convex Pareto set for the given instance, where 1 + ε′ =
(1 + ε)/(1 + δ)2. The second and main part of the
argument involves showing that the optimal ε′-convex
Pareto set has size at most 3 times the size of the
optimal ε-convex Pareto set. Intuitively, this means
that, as ε decreases, the size of the optimal ε-convex
Pareto set (for the same instance) does not increase
too fast. This holds because of the following geometric
lemma that applies to both versions of the problem (i.e.
both QC and QD):

Lemma 5.1. Let A ⊆ R2
+ be a discrete set of points.

For any ε > 0 and any ε′ > 0 satisfying 1+ ε′ ≥
√

1 + ε,
we have: |CP ∗(A, ε′)| ≤ 3 · |CP ∗(A, ε)|.

Unfortunately, the above lemma is dimension-
specific; there is no analogue for three or more dimen-
sions, which makes it impossible to guarantee a constant
factor in this case, unless we relax ε (Theorem 6.3).

If the objective space is convex, we can instead use
the algorithm for problem QC in the second step and
save a factor of 2 in the approximation.

Theorem 5.6. For any bi-objective problem possessing
a (fully) polynomial Combδ routine, for any ε > 0, we
can compute a 6-approximation in the discrete case (3
in the continuous case) to the smallest ε - convex Pareto
set in (fully) polynomial time.

If a GAPδ routine is available, we can save a factor
of 2 by computing a δ-Pareto set in Step 1.

Theorem 5.7. For any bi-objective problem possessing
a (fully) polynomial GAPδ routine, for any ε > 0,
we can compute a 3-approximation to the smallest ε -
convex Pareto set in (fully) polynomial time.

6 d Objectives
In Section 6.1 we analyze the case of explicitly given
points. In Section 6.2 we give our generic results.

6.1 Explicitly Given Points. Our main result for
this section is the following theorem that applies to both
the discrete and continuous versions QD and QC. We
use the notation Od() below to indicate that the hidden
constant of the big-Oh depends on d.

Theorem 6.1. a. For any fixed d, we can efficiently
approximate the size OPTε of the optimal ε-convex
Pareto set within a factor of Od(log OPTε).
b. For d = 3, we can efficiently approximate OPTε

within a constant factor.

First note that QC is a continuous problem and it
is not clear that, for d > 2, it is even in NP. However, if
we only consider points in CP (A), we do not lose more
than a factor of d in the approximation. To phrase this
claim formally, we define the (intermediate) problem
QC,R(A, ε) (a restriction to both QC and QD) as follows:
Given A ⊆ Rd

+ and ε > 0, compute the smallest ε-
convex Pareto set of A that is allowed to use points
only from CP (A). Denote the optimal solution to this
problem by CP ∗

C,R(A, ε). It is not hard to argue that
|CP ∗

C,R(A, ε)| ≤ d · |CP ∗
C(A, ε)|, which in turn implies

|CP ∗
C,R(A, ε)| ≤ d · |CP ∗

C(A, ε)| ≤ d · |CP ∗
D(A, ε)|. Hence,

an r-approximation algorithm for QC,R implies a dr-
approximation for QC.

To prove Theorem 6.1 we formulate the problem QD

(and as a consequence QC,R) as a hitting set problem
on a set system F of bounded VC-dimension. The
reduction goes as follows. We consider the class of
“supporting” hyperplanes of (1+ε)·LE(A) with positive
coefficients and partition it into equivalence classes
according to the points of P (A) that lie below each
class. F has an “element” for each point in P (A) and a
subset of P (A) for each equivalence class; in particular,
the subset that lies below it. (We remark that F is of
size O(|A|d), and is not given explicitly. It is therefore
crucial for the dimension d to be fixed so that it is
constructible in polynomial time.) The described set
system has VC-dimension at most d. This implies part
(a) of Theorem 6.1 by [BG]. In particular, for d = 3, F ,
being a special case of half-spaces in Rd, admits a 1/r-
net of size O(r) that is efficiently constructible [MSW],
which in conjunction with [BG] implies part (b) of the
theorem.

The following theorem indicates that the problems
QD and QC become very hard in high dimensions.

Theorem 6.2. If d is unbounded, even if all the so-
lution points are given explicitly in the input, for any
ε > 0, we cannot approximate the smallest ε-convex
Pareto set on d objectives in polynomial time to a fac-
tor better than Ω(log n), unless P=NP.

6.2 General Results. In this section we consider
multiobjective problems possessing either a Combδ rou-
tine or a GAPδ routine. We first show that, for d ≥ 3
objectives, we are forced to compute an ε′-convex Pareto
set, where ε′ > ε, if we are to have a guarantee on its
size.

Theorem 6.3. For d ≥ 3, any polynomial generic
algorithm having oracle access to GAPδ (or Combδ)
cannot be c-competitive for any c.

As our main positive result in this section, we show
that for any ε′ > ε, we can get a constant factor approx-
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imation to OPTε for d = 3 and a logarithmic approxi-
mation for any fixed d, if we spend time polynomial in
1/(ε′ − ε).

Theorem 6.4. a. For any ε′ > ε there exists a poly-
nomial generic algorithm that computes an ε′-convex
Pareto set Q such that |Q| ≤ Od(log OPTε) · OPTε.
b. For d = 3, we can efficiently compute a constant
factor approximation to OPTε.

The following lemma relates the approximability of
problem QC,R with the problem in hand. Let ε > 0
be a given rational number. For any ε′ > ε, we can
find a δ > 0 such that 1/ δ = O(1/(ε′ − ε)) satisfying
1 + ε′ ≥ (1 + ε)(1 + δ)2.

Lemma 6.1. Suppose that there exists an r-factor ap-
proximation algorithm for QC,R. Then, for any ε′ > ε,
we can compute an ε′-convex Pareto set Q, such that
|Q| ≤ drOPTε using O((m/δ)d) Combδ calls.

To prove the lemma, consider the following two-
phase generic algorithm: In the first-phase, compute a
δ-convex Pareto set using the generic algorithm of Sec-
tion 3 and in the second-phase use the r-approximation
algorithm for QC,R to (1 + ε)(1 + δ)-cover this set. It
can be shown that this scheme produces an ε′-convex
Pareto set of the desired cardinality. By Theorem 6.1,
problem QC,R can be approximated within a factor of
Od(log(OPTε)) for general d and within a constant fac-
tor for d = 3. Theorem 6.4 follows by combining this
fact with Lemma 6.1.
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