
A Tutorial on Evolutionary Multiobjective
Optimization

Eckart Zitzler, Marco Laumanns, and Stefan Bleuler

Swiss Federal Institute of Technology (ETH) Zurich,
Computer Engineering and Networks Laboratory (TIK),

Gloriastrasse 35, CH-8092 Zurich, Switzerland
{zitzler,laumanns,bleuler}@tik.ee.ethz.ch

Abstract. Multiple, often conflicting objectives arise naturally in most
real-world optimization scenarios. As evolutionary algorithms possess
several characteristics that are desirable for this type of problem, this
class of search strategies has been used for multiobjective optimization
for more than a decade. Meanwhile evolutionary multiobjective optimiza-
tion has become established as a separate subdiscipline combining the
fields of evolutionary computation and classical multiple criteria decision
making.
This paper gives an overview of evolutionary multiobjective optimiza-
tion with the focus on methods and theory. On the one hand, basic prin-
ciples of multiobjective optimization and evolutionary algorithms are
presented, and various algorithmic concepts such as fitness assignment,
diversity preservation, and elitism are discussed. On the other hand,
the tutorial includes some recent theoretical results on the performance
of multiobjective evolutionary algorithms and addresses the question of
how to simplify the exchange of methods and applications by means of
a standardized interface.

1 Introduction

The term evolutionary algorithm (EA) stands for a class of stochastic optimiza-
tion methods that simulate the process of natural evolution. The origins of EAs
can be traced back to the late 1950s, and since the 1970s several evolution-
ary methodologies have been proposed, mainly genetic algorithms, evolutionary
programming, and evolution strategies [1]. All of these approaches operate on a
set of candidate solutions. Using strong simplifications, this set is subsequently
modified by the two basic principles: selection and variation. While selection
mimics the competition for reproduction and resources among living beings, the
other principle, variation, imitates the natural capability of creating ”new” living
beings by means of recombination and mutation.

Although the underlying mechanisms are simple, these algorithms have proven
themselves as a general, robust and powerful search mechanism [1]. In particu-
lar, they possess several characteristics that are desirable for problems involving
i) multiple conflicting objectives, and ii) intractably large and highly complex



search spaces. As a result, numerous algorithmic variants have been proposed
and applied to various problem domains since the mid-1980s. The rapidly grow-
ing interest in the area of multiobjective evolutionary algorithms (MOEAs) is
reflected by, e.g., a conference series [40] and two recent books dedicated to this
subject [6, 4].

This paper gives an overview of this relatively new field with the focus on
methods and theory. Section 2 summarizes basic principles of multiobjective op-
timization and evolutionary computation and forms the basis for the remainder
of this tutorial. The following section focuses on algorithm design issues and
presents concepts and techniques that have been developed to deal with the ad-
ditional complexity caused by multiple objectives. These issues will be illustrated
on the basis of a specific algorithmic variant, namely SPEA2 [41]. Afterwards,
we will discuss some recent theoretical results with respect to the performance
of multiobjective EAs: limit behavior, run-time complexity, and quality mea-
sures. Finally, a practically important issue will be addressed: a platform and
programming language independent interface for search algorithms that allows
to provide search procedures and test problems in a precompiled format.

2 Basic Principles

2.1 Multiobjective Optimization

The scenario considered in this paper involves an arbitrary optimization problem
with k objectives, which are, without loss of generality, all to be maximized
and all equally important, i.e., no additional knowledge about the problem is
available. We assume that a solution to this problem can be described in terms of
a decision vector (x1, x2, . . . , xn) in the decision space X. A function f : X → Y
evaluates the quality of a specific solution by assigning it an objective vector
(y1, y2, . . . , yk) in the objective space Y (cf. Fig. 1).

Now, let us suppose that the objective space is a subset of the real numbers,
i.e., Y ⊆ IR, and that the goal of the optimization is to maximize the single
objective. In such a single-objective optimization problem, a solution x1 ∈ X
is better than another solution x2 ∈ X if y1 > y2 where y1 = f(x1) and
y2 = f(x2). Although several optimal solutions may exist in decision space,
they are all mapped to the same objective vector, i.e., there exists only a single
optimum in objective space.

In the case of a vector-valued evaluation function f with Y ⊆ IRk and k > 1,
the situation of comparing two solutions x1 and x2 is more complex. Following
the well known concept of Pareto dominance, an objective vector y1 is said
to dominate another objective vectors y2 (y1 $ y2) if no component of y1 is
smaller than the corresponding component of y2 and at least one component is
greater. Accordingly, we can say that a solution x1 is better to another solution
x2, i.e., x1 dominates x2 (x1 $ x2), if f (x1) dominates f(x2). Here, optimal
solutions, i.e., solutions not dominated by any other solution, may be mapped
to different objective vectors. In other words: there may exist several optimal
objective vectors representing different trade-offs between the objectives.



Fig. 1. Illustration of a general multiobjective optimization problem

The set of optimal solutions in the decision space X is in general denoted
as the Pareto set X∗ ⊆ X, and we will denote its image in objective space
as Pareto front Y ∗ = f(X∗) ⊆ Y . With many multiobjective optimization
problems, knowledge about this set helps the decision maker in choosing the best
compromise solution. For instance, when designing computer systems, engineers
often perform a so-called design space exploration to learn more about the Pareto
set. Thereby, the design space is reduced to the set of optimal trade-offs: a first
step in selecting an appropriate implementation.

Although there are different ways to approach a multiobjective optimization
problem, e.g., by aggregation of the objectives into a single one, most work in
the area of evolutionary multiobjective optimization has concentrated on the
approximation of the Pareto set. Therefore, we will assume in the following that
the goal of the optimization is to find or approximate the Pareto set. Accordingly,
the outcome of an MOEA is considered to be a set of mutually nondominated
solutions, or Pareto set approximation for short.

2.2 Evolutionary Computation

Generating the Pareto set can be computationally expensive and is often in-
feasible, because the complexity of the underlying application prevents exact
methods from being applicable. For this reason, a number of stochastic search
strategies such as evolutionary algorithms, tabu search, simulated annealing,
and ant colony optimization have been developed: they usually do not guarantee
to identify optimal trade-offs but try to find a good approximation, i.e., a set
of solutions whose objective vectors are (hopefully) not too far away from the
optimal objective vectors.

Roughly speaking, a general stochastic search algorithm consists of three
parts: i) a working memory that contains the currently considered solution can-
didates, ii) a selection module, and iii) a variation module as depicted in Fig. 2.



Fig. 2. Components of a general stochastic search algorithm

As to the selection, one can distinguish between mating and environmental se-
lection. Mating selection aims at picking promising solutions for variation and
usually is performed in a randomized fashion. In contrast, environmental se-
lection determines which of the previously stored solutions and the newly cre-
ated ones are kept in the internal memory. The variation module takes a set
of solutions and systematically or randomly modifies these solutions in order to
generate potentially better solutions. In summary, one iteration of a stochastic
optimizer includes the consecutive steps mating selection, variation, and envi-
ronmental selection; this cycle may be repeated until a certain stopping criterion
is fulfilled.

Many stochastic search strategies have been originally designed for single-
objective optimization and therefore consider only one solution at a time, i.e.,
the working memory contains just a single solution. As a consequence, no mat-
ing selection is necessary and variation is performed by modifying the current
solution candidate.

In contrast, an evolutionary algorithm is characterized by three features:

1. a set of solution candidates is maintained,
2. a mating selection process is performed on this set, and
3. several solutions may be combined in terms of recombination to generate

new solutions.

By analogy to natural evolution, the solution candidates are called individ-
uals and the set of solution candidates is called the population. Each individual
represents a possible solution, i.e., a decision vector, to the problem at hand;
however, an individual is not a decision vector but rather encodes it based on
an appropriate representation.

The mating selection process usually consists of two stages: fitness assign-
ment and sampling. In the first stage, the individuals in the current population
are evaluated in the objective space and then assigned a scalar value, the fitness,
reflecting their quality. Afterwards, a so-called mating pool is created by ran-
dom sampling from the population according to the fitness values. For instance,
a commonly used sampling method is binary tournament selection. Here, two
individuals are randomly chosen from the population, and the one with the bet-
ter fitness value is copied to the mating pool. This procedure is repeated until
the mating pool is filled.

Then, the variation operators are applied to the mating pool. With EAs,
there are usually two of them, namely the recombination and the mutation



Fig. 3. Outline of a general evolutionary algorithm for a problem with four binary
decision variables

operator. The recombination operator takes a certain number of parents and
creates a predefined number of children by combining parts of the parents. To
mimic the stochastic nature of evolution, a crossover probability is associated
with this operator. By contrast, the mutation operator modifies individuals by
changing small parts in the associated vectors according to a given mutation
rate. Note that due to random effects some individuals in the mating pool may
not be affected by variation and therefore simply represent a copy of a previously
generated solution.

Finally, environmental selection determines which individuals of the popula-
tion and the modified mating pool form the new population. The simplest way
is to use the latter set as the new population. An alternative is to combine both
sets and deterministically choose the best individuals for survival. There are
various other possibilities, which will no be discussed in detail here.

Based on the above concepts, natural evolution is simulated by an iterative
computation process as shown in Fig. 3. First, an initial population is created
at random (or according to a predefined scheme), which is the starting point
of the evolution process. Then a loop consisting of the steps evaluation (fitness
assignment), selection, recombination, and/or mutation is executed a certain
number of times. Each loop iteration is called a generation, and often a predefined
maximum number of generations serves as the termination criterion of the loop.
But also other conditions, e.g., stagnation in the population or existence of an
individual with sufficient quality, may be used to stop the simulation. At the
end, the best individuals in the final population represent the outcome of the
EA.

3 Algorithm Design Issues

The goal of approximating the Pareto set is itself multiobjective. For instance,
we would like to minimize the distance of the generated solutions to the Pareto



Fig. 4. Different fitness assignment strategies

set and to maximize the diversity of the achieved Pareto set approximation. This
is certainly a fuzzy statement, and we will see in Section 5.3 that it is impossible
to exactly describe what a good approximation is in terms of a number of criteria
such as closeness to the Pareto set, diversity, etc. Nevertheless, it well illustrates
the two fundamental goals in MOEA design: guiding the search towards the
Pareto set and keeping a diverse set of nondominated solutions.

The first goal is mainly related to mating selection, in particular to the prob-
lem of assigning scalar fitness values in the presence of multiple optimization
criteria. The second goal concerns selection in general because we want to avoid
that the population contains mostly identical solutions (with respect to the ob-
jective space and the decision space). Finally, a third issue which addresses both
of the above goals is elitism, i.e., the question of how to prevent nondominated
solutions from being lost.

In the following, each of these aspects will be discussed: fitness assignment,
diversity preservation, and elitism. Remarkably, they are well reflected by the
development of the field of evolutionary multiobjective optimization. While the
first studies on multiobjective evolutionary algorithms were mainly concerned
with the problem of guiding the search towards the Pareto set [30, 12, 21], all
approaches of the second generation incorporated in addition a niching concept
in order to address the diversity issue [11, 33, 18]. The importance of elitism was
recognized and supported experimentally in the late nineties [26, 42, 39], and
most of the third generation MOEAs implement this concept in different ways,
e.g., [20, 7, 41].

3.1 Fitness Assignment

In contrast to single-objective optimization, where objective function and fitness
function are often identical, both fitness assignment and selection must allow for
several objectives with multi-criteria optimization problems. In general, one can
distinguish aggregation-based, criterion-based, and Pareto-based fitness assign-
ment strategies, cf. Fig 4.



One approach which is built on the traditional techniques for generating
trade-off surfaces is to aggregate the objectives into a single parameterized ob-
jective function. The parameters of this function are systematically varied during
the optimization run in order to find a set of nondominated solutions instead of
a single trade-off solution. For instance, some MOEAs use weighted-sum aggre-
gation, where the weights represent the parameters which are changed during
the evolution process [14, 19].

Criterion-based methods switch between the objectives during the selection
phase. Each time an individual is chosen for reproduction, potentially a different
objective will decide which member of the population will be copied into the
mating pool. For example, Schaffer [30] proposed filling equal portions of the
mating pool according to the distinct objectives, while Kursawe [21] suggested
assigning a probability to each objective which determines whether the objective
will be the sorting criterion in the next selection step—the probabilities can be
user-defined or chosen randomly over time.

The idea of calculating an individual’s fitness on the basis of Pareto domi-
nance goes back to Goldberg [13], and different ways of exploiting the partial
order on the population have been proposed. Some approaches use the domi-
nance rank, i.e., the number of individuals by which an individual is dominated,
to determine the fitness values [11]. Others make use of the dominance depth;
here, the population is divided into several fronts and the depth reflects to which
front an individual belongs to [33, 7]. Alternatively, also the dominance count,
i.e., the number of individuals dominated by a certain individual, can be taken
into account. For instance, SPEA [42] and SPEA2 [41] assign fitness values on
the basis of both dominance rank and count. Independent of the technique used,
the fitness is related to the whole population in contrast to aggregation-based
methods which calculate an individual’s raw fitness value independently of other
individuals.

3.2 Diversity Preservation

Most MOEAs try to maintain diversity within the current Pareto set approxima-
tion by incorporating density information into the selection process: an individ-
ual’s chance of being selected is decreased the greater the density of individuals
in its neighborhood. This issue is closely related to the estimation of probability
density functions in statistics, and the methods used in MOEAs can be classified
according to the categories for techniques in statistical density estimation [32].

Kernel methods [32] define the neighborhood of a point in terms of a so-called
Kernel function K which takes the distance to another point as an argument.
In practice, for each individual the distances di to all other individuals i are
calculated and after applying K the resulting values K(di) are summed up. The
sum of the K function values represents the density estimate for the individual.
Fitness sharing is the most popular technique of this type within the field of
evolutionary computation, which is used, e.g., in MOGA [11], NSGA [33], and
NPGA [18].



Fig. 5. Illustration of diversity preservation techniques

Nearest neighbor techniques [32] take the distance of a given point to its kth
nearest neighbor into account in order to estimate the density in its neighbor-
hood. Usually, the estimator is a function of the inverse of this distance. SPEA2
[41], for instance, calculates for each individual the distance to the kth nearest
individual and adds the reciprocal value to the raw fitness value (fitness is to be
minimized).

Histograms [32] define a third category of density estimators that use a hyper-
grid to define neighborhoods within the space. The density around an individual
is simply estimated by the number of individuals in the same box of the grid.
The hypergrid can be fixed, though usually it is adapted with regard to the
current population as, e.g., in PAES [20].

Each of the three approaches is visualized in Fig. 5. However, due to space-
limitations, a discussion of strengths and weaknesses of the various methods
cannot be provided here—the interested reader is referred to Silverman’s book
[32]. Furthermore, note that all of the above methods require a distance mea-
sure which can be defined on the genotype, on the phenotype with respect to
the decision space, or on the phenotype with respect to the objective space.
Most approaches consider the distance between two individuals as the distance
between the corresponding objective vectors.

3.3 Elitism

Elitism addresses the problem of losing good solutions during the optimization
process due to random effects. One way to deal with this problem is to com-
bine the old population and the offspring, i.e., the mating pool after variation,
and to apply a deterministic selection procedure—instead of replacing the old
population by the modified mating pool. Alternatively, a secondary population,
the so-called archive, can be maintained to which promising solutions in the
population are copied at each generation. The archive may just be used as an
external storage separate from the optimization engine or may be integrated into
the EA by including archive members in the selection process. These two general
approaches are illustrated in Fig. 6.

As the memory resources are usually restricted, with both variants criteria
have to be defined on this basis of which the solutions to be kept are selected.



Fig. 6. Two possible ways to implement elitism

The dominance criterion is most commonly used. If an archive is maintained,
the archive comprises only the current approximation of the Pareto set, i.e.,
dominated archive members are removed. Otherwise, special care is taken to
ensure that nondominated solutions are preferred to dominated ones. However,
the dominance criterion is in general not sufficient (e.g., for continuous problems
the Pareto set may contain an infinite number of solutions); therefore, additional
information is taken into account to reduce the number of stored solutions fur-
ther. Examples are density information [42, 20] and the time that has been passed
since the individual entered the archive [29].

Most elitist MOEAs make use of a combination of dominance and density
to choose the individuals that will be kept in the archive at every generation.
However, these approaches may suffer from the problem of deterioration, i.e.,
solutions contained in the archive at generation t may be dominated by solutions
that were members of the archive at any generation t′ < t and were discarded
later. Recently, Laumanns et al. [24] presented an archiving strategy which avoids
this problem and guarantees to maintain a diverse set of Pareto-optimal solutions
(provided that the optimization algorithm is able to generate the Pareto-optimal
solutions). This approach will be discussed in Section 5.1

4 An Example: SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA) [42] is a relatively recent
technique for finding or approximating the Pareto set for multiobjective opti-
mization problems. In different studies [42, 39], SPEA compared favorably with
other MOEAs and therefore has been a point of reference in various recent in-
vestigations, e.g., [5]. Furthermore, it has been used in different applications,
e.g., [22]. Here, an improved version, namely SPEA2, is described in order to
illustrate how the concepts described in Section 3 can be implemented in an
MOEA.

In the design of SPEA2, the goal was to eliminate the potential weaknesses
of its predecessor and to incorporate most recent results in order to create a
powerful and up-to-date MOEA. The main differences of SPEA2 in comparison
to SPEA are:



– An improved fitness assignment scheme, which takes for each individual into
account how many individuals it dominates and it is dominated by.

– A nearest neighbor density estimation technique, which allows a more precise
guidance of the search process.

– A new archive truncation methods that guarantees the preservation of bound-
ary solutions.

As has been shown in a comparative case study [41], the proposed algorithm
provides good performance in terms of convergence and diversity, outperforms
SPEA, and compares well to PESA and NSGA-II on various, well-known test
problems.

4.1 Differences between SPEA and SPEA2

As SPEA (Strength Pareto Evolutionary Algorithm) [42] forms the basis for
SPEA2, a brief summary of the algorithm is given here. For a more detailed
description the interested reader is referred to [38].

SPEA uses a regular population and an archive (external set). Starting with
an initial population and an empty archive, the following steps are performed
per iteration. First, all nondominated population members are copied to the
archive; any dominated individuals or duplicates (regarding the objective values)
are removed from the archive during this update operation. If the size of the
updated archive exceeds a predefined limit, further archive members are deleted
by a clustering technique which preserves the characteristics of the nondominated
front. Afterwards, fitness values are assigned to both archive and population
members:

– Each individual i in the archive is assigned a strength value S(i) ∈ [0, 1),
which at the same time represents its fitness value F (i). S(i) is the number
of population members j that are dominated by or equal to i with respect
to the objective values, divided by the population size plus one.

– The fitness F (j) of an individual j in the population is calculated by sum-
ming the strength values S(i) of all archive members i that dominate or are
equal to j, and adding one at the end.

The next step represents the mating selection phase where individuals from the
union of population and archive are selected by means of binary tournaments.
Please note that fitness is to be minimized here, i.e., each individual in the
archive has a higher chance to be selected than any population member. Finally,
after recombination and mutation the old population is replaced by the resulting
offspring population.

Although SPEA performed well in different comparative studies [42, 39], this
algorithm has potential weaknesses:

Fitness assignment: Individuals that are dominated by the same archive mem-
bers have identical fitness values. That means in the case when the archive
contains only a single individual, all population members have the same rank



Algorithm 1 SPEA2 Main Loop
Input: M (offspring population size)

N (archive size)
T (maximum number of generations)

Output: A∗ (nondominated set)

Step 1: Initialization
¯

: Generate an initial population P 0 and create the empty archive
(external set) A0 = ∅. Set t = 0.

Step 2: Fitness assignment
¯

: Calculate fitness values of individuals in P t and At

(cf. Section 4.3).
Step 3: Environmental selection

¯
: Copy all nondominated individuals in P t and At to

At+1. If size of At+1 exceeds N then reduce At+1 by means of the truncation
operator, otherwise if size of At+1 is less than N then fill At+1 with dominated
individuals in P t and At (cf. Section 4.4).

Step 4: Termination
¯

: If t ≥ T or another stopping criterion is satisfied then set A∗

to the set of decision vectors represented by the nondominated individuals in
At+1. Stop.

Step 5: Mating selection
¯

: Perform binary tournament selection with replacement on
At+1 in order to fill the mating pool.

Step 6: Variation
¯

: Apply recombination and mutation operators to the mating pool
and set Pt+1 to the resulting population. Increment generation counter (t =
t + 1) and go to Step 2.

independent of whether they dominate each other or not. As a consequence,
the selection pressure is decreased substantially and in this particular case
SPEA behaves almost like a random search algorithm.

Density estimation: If many individuals of the current generation are incom-
parable, i.e., do not dominate each other, none or very little information can
be obtained on the basis of the partial order defined by the dominance rela-
tion. In this situation, which is very likely to occur in the presence of more
than two objectives, density information has to be used in order to guide the
search more effectively. Clustering makes use of this information, but only
with regard to the archive and not to the population.

Archive truncation: Although the clustering technique used in SPEA is able
to reduce the nondominated set without destroying its characteristics, it may
lose outer solutions. However, these solutions should be kept in the archive
in order to obtain a good spread of nondominated solutions.

Next, we will address these issues and describe the improvements made in SPEA2
in detail.

4.2 The SPEA2 Main Loop

Algorithm 1 forms the core of SPEA2. In contrast to SPEA, SPEA2 uses a
fine-grained fitness assignment strategy which incorporates density information
as will be described in Section 4.3. Furthermore, the archive size is fixed, i.e.,



whenever the number of nondominated individuals is less than the predefined
archive size, the archive is filled up by dominated individuals; with SPEA, the
archive size may vary over time. In addition, the clustering technique, which
is invoked when the nondominated front exceeds the archive limit, has been
replaced by an alternative truncation method which has similar features but does
not loose boundary points. Details on the environmental selection procedure will
be given in Section 4.4. Finally, another difference to SPEA is that only members
of the archive participate in the mating selection process.

4.3 SPEA2 Fitness Assignment

To avoid the situation that individuals dominated by the same archive members
have identical fitness values, with SPEA2 for each individual both dominating
and dominated solutions are taken into account. In detail, each individual i in the
archive At and the population Pt is assigned a strength value S(i), representing
the number of solutions it dominates:1

S(i) = |{j | j ∈ Pt + At ∧ i $ j}|

where | · | denotes the cardinality of a set, + stands for multiset union and the
symbol $ corresponds to the Pareto dominance relation extended to individuals
(i $ j if the decision vector encoded by i dominates the decision vector encoded
by j). On the basis of the S values, the raw fitness R(i) of an individual i is
calculated:

R(i) =
∑

j∈Pt+At,j$i

S(j)

That is the raw fitness is determined by the strengths of its dominators in both
archive and population, as opposed to SPEA where only archive members are
considered in this context. It is important to note that fitness is to be minimized
here, i.e., R(i) = 0 corresponds to a nondominated individual, while a high R(i)
value means that i is dominated by many individuals (which in turn dominate
many individuals). This scheme is illustrated in Figure 7.

Although the raw fitness assignment provides a sort of niching mechanism
based on the concept of Pareto dominance, it may fail when most individuals
do not dominate each other. Therefore, additional density information is incor-
porated to discriminate between individuals having identical raw fitness values.
The density estimation technique used in SPEA2 is an adaptation of the k-th
nearest neighbor method [32], where the density at any point is a (decreasing)
function of the distance to the k-th nearest data point. Here, we simply take
the inverse of the distance to the k-th nearest neighbor as the density estimate.
To be more precise, for each individual i the distances (in objective space) to
all individuals j in archive and population are calculated and stored in a list.
1 This (and the following) formula slightly differs from the one presented in [2], where

also individuals which have identical objective values contribute to the strength of
an individual.
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Fig. 7. Comparison of fitness assignment schemes in SPEA and SPEA2 for a max-
imization problem with two objectives f1 and f2. On the left, the fitness values for
a given population according to the SPEA scheme is shown. On the right, the raw
SPEA2 fitness values for the same population are depicted.

After sorting the list in increasing order, the k-th element gives the distance
sought, denoted as σk

i . A common setting is to use the square root of the sample
size for k [32]; however, k = 1 is often sufficient and lead to a more efficient
implementation. Afterwards, the density D(i) corresponding to i is defined by

D(i) =
1

σk
i + 2

In the denominator, two is added to ensure that its value is greater than
zero and that D(i) < 1. Finally, adding D(i) to the raw fitness value R(i) of an
individual i yields its fitness F (i):

F (i) = R(i) + D(i)

The run-time of the fitness assignment procedure is dominated by the den-
sity estimator (O(L2 log L)), while the calculation of the S and R values is of
complexity O(L2), where L = M + N .

4.4 SPEA2 Environmental Selection

The archive update operation (Step 3 in Alg. 1) in SPEA2 differs from the one
in SPEA in two respects: i) the number of individuals contained in the archive is
constant over time, and ii) the truncation method prevents boundary solutions
being removed.

During environmental selection, the first step is to copy all nondominated
individuals, i.e., those which have a fitness lower than one, from archive and
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Fig. 8. Illustration of the archive truncation method used in SPEA2. On the right, a
nondominated set is shown. On the left, it is depicted which solutions are removed in
which order by the truncate operator (assuming that N = 5).

population to the archive of the next generation:

At+1 = {i | i ∈ Pt + At ∧ F (i) < 1}

If the nondominated front fits exactly into the archive (|At+1| = N) the envi-
ronmental selection step is completed. Otherwise, there can be two situations:
Either the archive is too small (|At+1| < N) or too large (|At+1| > N). In the
first case, the best N −|At+1| dominated individuals in the previous archive and
population are copied to the new archive. This can be implemented by sorting
the multiset Pt +At according to the fitness values and copy the first N −|At+1|
individuals i with F (i) ≥ 1 from the resulting ordered list to At+1. In the sec-
ond case, when the size of the current nondominated (multi)set exceeds N , an
archive truncation procedure is invoked which iteratively removes individuals
from At+1 until |At+1| = N . Here, at each iteration that individual i is chosen
for removal for which i ≤d j for all j ∈ At+1 with

i ≤d j :⇔ ∀ 0 < k < |At+1| : σk
i = σk

j ∨
∃ 0 < k < |At+1| :

[(

∀ 0 < l < k : σl
i = σl

j

)

∧ σk
i < σk

j

]

where σk
i denotes the distance of i to its k-th nearest neighbor in At+1. In other

words, the individual which has the minimum distance to another individual is
chosen at each stage; if there are several individuals with minimum distance the
tie is broken by considering the second smallest distances and so forth. How this
truncation technique works is illustrated in Figure 8.

The worst run-time complexity of the truncation operator is O(L3) (L = M+
N); however, an efficient implementation can lead to a substantially smaller av-
erage run-time complexity. This can be achieved by, e. g., a lazy evaluation of the



k-th nearest neighbors. Normally, the individuals’ k-th nearest neighbors are al-
ready different for very low k values, thus the more distant neighbors are only cal-
culated when they are actually used and not in advance. Hence, an a priori com-
putation, sorting, and update of the nearest neighbor lists is avoided. An efficient
implementation of SPEA2 can be found on http://www.tik.ee.ethz.ch/pisa/.

5 Performance of Multiobjective Evolutionary
Algorithms

Basically, there are two ways to assess the performance of MOEAs: i) theoreti-
cally by analysis or ii) empirically by simulation. In the following, we will present
some recent results with respect to both approaches. On the one hand, we will
discuss the limit behavior of MOEAs and provide a run-time analysis of two sim-
ple MOEAs. On the other hand, we will address the question of how to assess
the quality of the outcome of an MOEA from a theoretical perspective.

5.1 Limit Behavior

The limit behavior of MOEAs is of interest when we want to investigate their
global convergence properties. It refers to the question what the algorithm is
able to achieve in the limit, i.e., when unlimited time resources are available.

Global Convergence Roughly speaking, an MOEA is called globally conver-
gent if the sequence of Pareto front approximations A(t) it produces converges to
the true Pareto front Y ∗ while the number of generations t goes to infinity. It is
intuitively clear that this property can only be fulfilled with unlimited memory
resources, as the cardinality of the Pareto front can be arbitrary large in gen-
eral [29]. Practical implementations, however, always have to deal with limited
memory resources. In this case one is restricted to finding a subset of the Pareto
front, and a globally convergent algorithm should guarantee A(t) −→ Y ′ ⊆ Y ∗.

In the single-objective case, two conditions are sufficient to guarantee global
convergence:

1. A strictly covering mutation distribution, which ensures that any solution
x′ ∈ X can be produced from every x ∈ X by mutation with a positive
probability, and

2. An elitist (environmental) selection rule, which ensures that an optimal so-
lution is not lost and no deterioration can occur.

While the mutation condition transfers easily to the multiobjective case, the
elitist selection rule does not. This is due to the fact that a total order of the
solutions is not given anymore and solutions can become incomparable to each
other. If too many nondominated solutions arise than can be stored in the pop-
ulation, some have to be discarded. This environmental selection strategy essen-
tially determines whether an algorithm is globally convergent or not.



Fig. 9. A possible deterioration of a hypothetical population of size 3: In generation
t, a forth nondominated solution is found and a truncation operation is invoked, e.g.,
based on density information, to reduce the population to its maximum size. In gener-
ation t + 1, another solution is found that is dominated by the former, now discarded
solution. The new solution, however, is not dominated by the current population mem-
bers. Now, the truncation procedure again has to decide which solution to discard and
might take a decision to keep this new solution (e.g., as it has a lower density around
it). In comparing the new situation after generation t + 1 with the situation before
generation t, one immediately notices that the population became worse: the outer
solutions remained the same, while the inner solution ’deteriorated’.

Rudolph [28], Hanne [15, 16] and Rudolph and Agapie [29] proposed different
selection schemes that preclude deterioration and guarantee convergence. The
basic idea is that solutions are only discarded if they are replaced by a domi-
nating alternative. This ensures the sufficient monotonicity in the sequence of
accepted solutions. However, no statements could be made with respect to the
final distribution of solutions.

Most state-of-the-art MOEAs, though, take in addition to the dominance cri-
terion density information into account. Nevertheless, for all of these algorithms
it can be proven that a succession such selection steps can lead to deterioration,
as depicted in Fig. 9. Hence, convergence can no longer be guaranteed for any
of these algorithms.

In order to design a selection rule that enables global convergence with limited
memory resources together with a well distributed subset of solutions we have to
define what we understand by a well distributed Pareto set approximation and
then define a selection algorithm which respects this and fulfills the monotonicity
condition to preclude deterioration.

Concept of Pareto Set Approximation Since finding the Pareto front of
an arbitrary objective space Y is usually not practical because of its size, one
needs to be less ambitious in general. Therefore, the ε-approximate Pareto set
was proposed in [23] as practical solution concept as it not only represents all
vectors Y ∗ but also consists of a smaller number of elements. The ε-approximate



Fig. 10. The concept of ε-dominance and ε-Pareto fronts

Pareto front is based on the following generalization of the dominance relation
(see also Figure 10):

Definition 1 (ε-Dominance). Let a, b ∈ Y . Then a is said to ε-dominate b
for some ε > 0, denoted as a $ε b, if

ε · ai ≥ bi ∀i ∈ {1, . . . , k} (1)

Definition 2 (ε-approximate Pareto front). Let Y ⊆ IR+k be a set of vec-
tors and ε ≥ 1. Then a set Y ε is called an ε-approximate Pareto front of Y , if
any vector b ∈ Y is ε-dominated by at least one vector a ∈ Y ε, i.e.

∀b ∈ Y ∃a ∈ Y ε : a $ε b. (2)

The set of all ε-approximate Pareto fronts of Y is denoted as P ε(Y ).

Of course, the set Y ε is not unique. Many different concepts for ε-efficiency
and the corresponding Pareto front approximations exist in the operations re-
search literature, a survey is given by [17]. As most of the concepts deal with
infinite sets, they are not practical for our purpose of producing and maintaining
a representative subset. Nevertheless, they are of theoretical interest and have
nice properties which can for instance be used in convergence proofs, see [15] for
an application in MOEAs.

Note that this concept of approximation can also be used with slightly dif-
ferent definitions of ε-dominance, e.g. the following additive approximation

εi + ai ≥ bi ∀i ∈ {1, . . . , k} (3)

where εi are constants, separately defined for each coordinate.
A further refinement of the concept of ε-approximate Pareto sets leads to the

following definition.

Definition 3 (ε-Pareto front). Let Y ⊆ IR+m be a set of vectors and ε > 0.
Then a set Y ∗

ε ⊆ Y is called an ε-Pareto front of Y if

1. Y ∗
ε is an ε-approximate Pareto set of Y , i.e. Y ∗

ε ∈ P ε(Y ), and
2. Y ∗

ε contains Pareto points of Y only, i.e. Y ∗
ε ⊆ Y ∗.

The set of all ε-Pareto fronts of Y is denoted as P ∗
ε (Y ).



Fig. 11. Grid on the objective space induced by Alg. 3

A Selection Algorithm for Guaranteed Convergence and Diversity
Based on the above concept of Pareto front approximation a selection strat-
egy can be constructed that fulfills the second sufficient condition for global
convergence. The following algorithm (Alg. 2) has a two level concept. On the
coarse level, the search space is discretized by a division into boxes (see Alg. 3
and Fig. 11), where each vector uniquely belongs to one box. Using a generalized
dominance relation on these boxes, the algorithm always maintains a set of non-
dominated boxes, thus guaranteeing the ε-approximation property. On the fine
level at most one element is kept in each box. Within a box, each representative
vector can only be replaced by a dominating one, thus guaranteeing convergence.

The following theorem shows that an MOEA using the above selection strat-
egy fulfills the monotonicity criterion and never loses ’important’ solutions.

Theorem 1 ([24]). Let Y (t) =
⋃t

j=1 y(j), 1 ≤ y(j)
i ≤ B, be the set of all objec-

tive vectors created by an MOEA and given to the selection operator as defined
in Alg. 2. Then A(t) is an ε-Pareto set of Y (t) with bounded size, i.e.,

1. A(t) ∈ P ∗
ε (Y (t))

2. |A(t)| ≤
(

log B
log ε

)(k−1)

Now, if the mutation distribution guarantees that every solution will be pro-
duced we can prove global convergence of this MOEA.

Though the limit behavior might be of mainly theoretical interest, it is of
high practical relevance that now the problem of partial deterioration, which
is imminent even in most modern MOEAs, can be solved. Using the proposed
archiving strategy maintaining an ε-Pareto front, the user can be sure to have
in addition to a representative, well distributed approximation also a true elitist
algorithm in the sense that no better solution had been found and subsequently
lost during the run.

5.2 Run-Time Analysis

In addition to limit behavior, we are often interested in a quantitative analy-
sis, specifically the expected running time for a given class of problems and the



Algorithm 2 Selection function for ε-Pareto front
1: Input: A, y
2: D := {y′ ∈ A|box(y) $ box(y′)}
3: if D %= ∅ then
4: A′ := A ∪ {y} \ D
5: else if ∃y′ : (box(y′) = box(y) ∧ y $ y′) then
6: A′ := A ∪ {y} \ {y′}
7: else if % ∃y′ : box(y′) = box(y) ∨ box(y′) $ box(y) then
8: A′ := A ∪ {y}
9: else

10: A′ := A
11: end if
12: Output: A′

Algorithm 3 function box
1: Input: y
2: for all i ∈ {1, . . . , k} do
3: bi := * log yi

log ε +
4: end for
5: b := (b1, . . . , bk)
6: Output: b {box index vector}

success probability for a given optimization time. For single-objective evolution-
ary algorithms many such results are contained in [27]. For the optimization
of pseudo-Boolean functions an extensive theory has been built up by Wegener
et al., see e.g. [37], and Droste, Jansen, and Wegener [8, 9]; a methodological
overview is given in [36].

For the multiobjective case, no run-time analysis was available until recently.
Scharnow et al. [31] analyzed a (1+1)-EA under multiple, non-conflicting objec-
tives.2 A first analysis of different population-based MOEAs on a two-objective
problem with conflicting objectives was given by [25], which will be described
here.

The model problem for this investigation, Lotz, is a multiobjective general-
ization of the LeadingOnes problem which has been thoroughly analyzed for
example in [27] and [9]. The algorithms are instances of a steady state (µ + 1)-
EA with variable population size and differ in the manner how the parents are
sampled from the population.

The Model Problem As the example problem for this analysis, we consider
the maximization of a 2-dimensional vector valued function, Lotz, which maps
n binary decision variables to 2 objective functions.

2 The term (µ + λ) means that i) the population contains µ individuals, ii) λ new
individuals are created by means of variation in each iteration, and iii) the best µ
individuals among parents and offspring survive.
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Fig. 12. Objective space of the Lotz function with n = 8

Definition 4. The pseudo-Boolean function Lotz : {0, 1}n → IN2 is defined as

Lotz(x1, . . . , xn) =





n
∑

i=1

i
∏

j=1

xj ,
n

∑

i=1

n
∏

j=i

(1 − xj)





The abbreviation Lotz stands for “Leading Ones, Trailing Zeroes” and
means that we want to simultaneously maximize the number of leading ones
and trailing zeroes in a bit-string.

The objective space of this problem can be partitioned into n+1 sets F i, i =
0, . . . , n (see Fig. 12). The index i corresponds to the sum of both objective
values, i.e., (f1, f2) ∈ F i if i = f1+f2. Obviously, F n represents the Pareto front
Y ∗. The sub-domains Xi are defined as the sets containing all decision vectors
which are mapped to elements of F i. They are of the form 1a0 ∗(n−i−2) 10b with
a + b = i for i < n, and 1a0b with a + b = n for Xn.

Multi-start Strategies How long does it take to optimize the Lotz function?
Droste et al. [9] have proven that the expected running time of a (1+1)-EA on
LeadingOnes is Θ(n2). Using the same algorithm with an appropriate gener-
alization of the acceptance criterion (either accepting only dominating offspring
or by using a weighted sum as a scalar surrogate objective) will certainly lead
to finding one element of the Pareto set in the same amount of time.

To find the entire Pareto set with such a (1+1) EA we can consider the multi-
start option, i.e. to run to the EA several times, and collect all non-dominated
solutions in an archive. For the acceptance criterion based on the dominance



relation, the random variable describing the number of ones in the final solution
of each single run follows a binomial distribution with p = 0.5. Hence the prob-
ability of finding the “outer” points of the Pareto set decreases exponentially.
This would mean that the running time of this strategy until all Pareto optimal
points are found is exponentially large in n.

Another possibility would be to use the multi-start option together with a
weighted sum of the objective values. However, an appropriate choice of the
weights is very difficult. In our case, equal weights would lead to the same sit-
uation as before, with a very low probability to reach the outer points. Any
other selection of weights will let the sequence of search points converge to one
of the outer points of the Pareto set. The remaining points must be found “on
the way”, but the probability of such events is not easy to calculate. Even if we
could supply n + 1 different weights corresponding to each of the n + 1 optimal
objective vectors, this strategy would still need (n + 1) ·Θ(n2) = Θ(n3) steps.

A last possibility would be to use a simple strategy known from classical mul-
tiobjective function optimization. In this case, we optimize only one objective,
e.g. the number of leading ones, and constrain the other objective to be strictly
larger than its value obtained in the previous optimization run. Therefore, we
find all n + 1 Pareto vectors in n + 1 runs of a single-objective EA with an
additional constraint. At the best, this strategy again needs Θ(n3) steps.

The above discussion indicates that a (1+1) strategy may not be the best
approach to find the Pareto set. Moreover, most of the current multiobjective
optimization algorithms use the concept of an archive that maintains a set of
vectors nondominated among all decision vectors visited so far. This indicates
that the concept of a population is vital in multiobjective evolutionary optimiza-
tion. In the next sections, we analyze two simple population-based steady state
EAs.

Two Population-based MOEAs In this section, the running time analysis of
two population-based MOEAs is presented, SEMO (see Alg. 4) and FEMO (see
Alg. 5). The two algorithm are the same except for the fact that SEMO uses
uniform sampling from the population while FEMO always chooses the parent
that has produced the least number of children so far. For the running time
analysis, we consider the the number of necessary evaluations of the objective
function until the optimum is reached.

For the analysis, we divide the run of SEMO into two distinct phases: the
first phase lasts until the first individual representing an optimal objective vector
has entered the population, and the second phase ends when the whole Pareto
set has been found.

Theorem 2 (Expected running time of SEMO [25]). The expected run-
ning time of SEMO until the first optimal objective vector is found is O(n2).

After the first optimal objective vector has been found, the expected running
time of SEMO until the entire Pareto front is generated is Θ(n3).

The total expected running time of Alg. 4 until all Pareto-optimal points are
found is Θ(n3).



Algorithm 4 Simple Evolutionary Multiobjective Optimizer (SEMO)
1: Choose an initial individual x uniformly from X = {0, 1}n

2: P ← {x}
3: loop
4: Select one element x out of P uniformly.
5: Create offspring x′ by flipping a randomly chosen bit.
6: P ← P \ {x′′ ∈ P |x′ $ x′′}
7: if % ∃x′′ ∈ P such that (x′′ $ x′ ∨ f (x′′) = f (x′)) then
8: P ← P ∪ {x′}
9: end if

10: end loop

The proof is based on the fact that in the first phase the population always
consists of one individual only. Here we have to wait for at most n events of
choosing the leftmost zero or the rightmost one for mutation, each of which
happens with a probability of 1/n. In the second phase, the population grows
with the generation of new Pareto-optimal solutions from which only the outer
ones regarding the objective space can mutate to a new solution that is not
already in the population. This event has a probability of Θ(1/(n|P |)), and
summing over all sizes of P from 1 to n + 1 leads to the total running time of
Θ(n3).

The main weakness of SEMO for the optimization problem under consider-
ation lies in the fact that a large number of mutations are allocated to parents
whose neighborhood has already been explored sufficiently. On the other hand,
an optimal sampling algorithm would use always the most promising parent at
the border of the current population. Of course, this information is not available
in a black box optimization scenario.

The uniform sampling leads to a situation, where individuals representing
optimal objective vectors have been sampled unevenly depending on when each
individual entered the population. The following fair sampling strategy guaran-
tees that the end all individuals receive about the same number of samples.

Alg. 5 implements this strategy by counting the number of offspring each
individual produces (line 6). The sampling procedure deterministically chooses
the individual which has produced the least number of offspring so far, ties are
broken randomly (line 5).

For the analysis of Alg. 5, we focus only on the second phase as the first
phase is identical to the simple Alg. 4 described before.

Once the first two optimal objective vectors have been found, there is exactly
one possible parent for each of the remaining n − 1 objective vectors. We are
interested in the number of mutations that must be allocated to each of these
n−1 parents in order to have at least one successful mutation each that leads to
the desired child. The following lemma provides a lower bound on the probability
that a certain number of mutations per parent are sufficient.



Algorithm 5 Fair Evolutionary Multiobjective Optimizer (FEMO)
1: Choose an initial individual x uniformly from X = {0, 1}n

2: w(x) ← 0 {Initialize offspring count}
3: P ← {x}
4: loop
5: Select one element x out of {y ∈ P |w(y) ≤ w(x′′) ∀x′′ ∈ P } uniformly.
6: w(x) ← w(x) + 1 {Increment offspring count}
7: Create offspring x′ by flipping a randomly chosen bit.
8: P ← P \ {x′′ ∈ P |x′ $ x′′}
9: if % ∃x′′ ∈ P such that (x′′ $ x′ ∨ f (x′′) = f (x′)) then

10: P ← P ∪ {x′}
11: w(x′) ← 0 {Initialize offspring count}
12: end if
13: end loop

Lemma 1 (Minimal success probability [25]). Let p be the success proba-
bility for each single mutation and c > 0 an arbitrary constant. With probability
at least 1 − n1−c all n − 1 remaining offspring have been constructed in at most
c · 1/p · log n mutation trials for each corresponding parent.

Now we can translate the number of mutations that are needed into the
running time of Alg. 5.

Theorem 3 (Running time bounds of FEMO [25]). With probability at
least 1 − O(1/n) the number of objective function evaluations T Alg. 5 needs
from the discovery of the first two optimal solutions until the whole Pareto set
has been found lies in the interval [1/4 · 1/p · n log n, 2 · 1/p · n log n]. Hence,
Prob{T = Θ(1/p ·n log n)} = 1−O(1/n). Furthermore, E(T ) = O(1/p ·n log n).

The time to find the first one (or two) elements of the Pareto set can be
neglected and the total running time is mainly determined by Theorem 3. For
our case the mutation success probability is p = 1/n, which leads to a run-time of
Θ(n2 log n). This is a considerable improvement in comparison to any multi-start
strategy of a single-objective EA and to SEMO.

5.3 Quality Assessment of Pareto set approximations

The notion of performance includes both the quality of the outcome as well as
the computational resources needed to generate this outcome. Concerning the
latter aspect, it is common practice to monitor either the number of fitness
evaluations or the overall run-time on a particular computer—in this respect,
there is no difference between single- and multiobjective optimization. As to
the quality aspect, however, there is a difference. In single-objective optimiza-
tion, we can define quality by means of the objective function: the smaller (or
larger) the value, the better the solution. If we compare two solutions in the
presence of multiple optimization criteria, the concept of Pareto dominance can



be used, though, the possibility of two solutions being incomparable, i.e., nei-
ther dominates the other, complicates the situation. However, it gets even more
complicated when we compare two sets of solutions because some solutions in
either set may be dominated by solutions in the other set, while others may be
incomparable. Accordingly, it is not clear what quality means with respect to
Pareto set approximations: closeness to the optimal solutions in objective space,
coverage of a wide range of diverse solutions, or other properties? It is difficult
to define appropriate quality measures for Pareto set approximations, and as a
consequence graphical plots have been used to compare the outcomes of MOEAs
until recently, as Van Veldhuizen and Lamont point out [35].

Nevertheless, quality measures are necessary in order to compare the out-
comes of multiobjective optimizers in a quantitative manner, and meanwhile
several quality measures have been proposed in the literature. Certainly, the
simplest comparison method would be to check whether an outcome entirely
dominates another. The reason, however, why quality measures have been used
is to be able to make more precise statements in addition to that, which are
inevitably based on certain assumptions about the decision maker’s preferences:

– If one algorithm is better than another, can we express how much better it
is?

– If no algorithm can be said to be better than the other, are there certain
aspects in which respect we can say the former is better than the latter?

Hence, the key question when designing quality measures is how to best sum-
marize Pareto set approximations by means of a few characteristic numbers—
similarly to statistics where the mean, the standard deviation, etc. are used to
describe a probability distribution in a compact way. It is unavoidable to lose
information by such a reduction, and the crucial point is not to lose the infor-
mation one is interested in.

Most popular are unary quality measures, i.e., the measure assigns each
Pareto set approximation a number that reflects a certain quality aspect, and
usually a combination of them is used, e.g., [42, 35, 7]. For instance, the genera-
tional distance measure [34] gives the average distance of the objective vectors
in the Pareto front approximation under consideration to the closest optimal
objective vector, and the hypervolume measure [42] considers the volume of the
objective space dominated by a Pareto front approximation. Often, different
unary quality measures are combined, and as a result two Pareto set approxima-
tions S, T ⊆ X are compared by comparing the corresponding quality measures
as depicted in Fig. 13. The question is, though, what statements can be made
on the basis of the information provided by these quality measure values. Is it,
for instance, possible to conclude from the quality “measurements” that S is
undoubtedly better than T in the sense that S, loosely speaking, entirely dom-
inates T ? This is a crucial issue in any comparative study, and implicitly most
papers in this area rely on the assumption that this property is satisfied for the
measures used.



Fig. 13. Transformation of Pareto front approximations into real vectors by means of
unary quality measures

Recently, Zitzler et al. [43] investigated quality measures from this perspec-
tive and proved theoretical limitations of unary quality measures. In particular,
they showed that

– there exists no unary quality measure that is able to indicate whether a
Pareto set approximation S is better than a Pareto set approximation T ;

– the above statement even holds if we consider a finite combination of unary
measures;

– most quality measures that have been proposed to indicate that S is better
than T at best allow to infer that S is not worse than T , i.e., S is better
than or incomparable to T ;

– unary measures being able to detect that S is better than T exist, but their
use is in general restricted;

– binary quality measures overcome the limitations of unary measures and, if
properly designed, are capable of indicating whether S is better than T .

This means that in general the quality of a Pareto set approximation set can-
not be completely described by a (finite) set of distinct criteria such as diversity
and distance. Consider, e.g., the following combination of unary quality measures
used in [35]: average distance to the Pareto front, diversity of the Pareto front
approximation, and the number of vectors in the Pareto front approximation. In
Fig. 14, the Pareto set approximation S dominates all solutions of the Pareto
set approximation T (the corresponding images in the objective space are shown
in the figure). On the left hand side, S is assessed better than T with respect
to all of the three quality measures; on the right hand side, T is assigned better
quality values. Thus, this quality measure combination does not allow to make
any conclusions about whether one outcome is better than another in terms of
Pareto dominance.

One possibility to overcome the limitations of unary measure is to use binary
quality measures. For instance, a binary ε-quality measure can be defined on the
basis of the concept of ε-Pareto dominance (cf. Def. 1):

Definition 5 (Binary ε-quality measure). Let S, T ⊆ X. Then the binary ε-
quality measure Iε(S, T ) is defined as the minimum ε ∈ IR such that any solution
b ∈ T is ε-dominated by at least one solution a ∈ S:

Iε(S, T ) = min{ε ∈ IR | ∀b ∈ T ∃a ∈ S : a $ε b} (4)



Fig. 14. Two scenarios where a Pareto front approximation entirely dominates another
Pareto front approximation

In the light of the previous dicussion, this quality measure possesses several
desirable features. Whenever Iε(S, T ) < 1, we know that all solutions in T are
dominated by a solution in S; if Iε(S, T ) = 1 and Iε(T , S) = 1, then S and T
represent the same Pareto front approximation; if Iε(S, T ) > 1 and Iε(T , S) > 1,
then S and T are incomparable, i.e., both contain solutions not dominated by
the other set. Furthermore, the Iε measure represents a natural extension to the
evaluation of approximation schemes in theoretical computer science [10] and
gives the factor by which an outcome is worse than another. In addition to that,
it is cheap to compute. However, there may be particular scenarios where the
ε-quality measure is not appropriate.

6 A Text-based Interface for Search Algorithms

6.1 Current Situation

As discussed in Section 3, current MOEAs use increasingly complex opera-
tors. Re-implementing these algorithms for each usage scenario becomes time-
consuming and error-prone. Mainly two groups are affected by this problem:

– Application engineers who need to choose, implement, and apply state-of-
the-art algorithms without in-depth programming knowledge and expertise
in the optimization domain.

– Developers of optimization methods who want to evaluate algorithms on
different test problems and compare a variety of competing methods.

There is a clear need for a method to provide and distribute ready-to-use
implementations of optimization methods and ready-to-use benchmark and real-
world problems. These modules should be freely combinable. Since the above-
mentioned issues are not constrained to evolutionary optimization a candidate
solution should be applicable to a broader range of search algorithms.

Programming libraries have been designed to facilitate the implementation of
optimization algorithms. They are usually geared to a particular technique, e.g.,



Fig. 15. Illustration of the concept underlying PISA. The optimizers on the left hand
side and the applications on the right hand side are examples only and can be replaced
arbitrarily. Each optimizer can be connected to each application.

evolutionary algorithms, and provide reusable and extendible program compo-
nents that can be combined in different ways. If a specific optimization method is
to be tailored to a specific application and knowledge in both algorithm domain
and application domain is available, then these libraries provide valuable tools to
reduce the programming effort. However, still considerable implementation work
is necessary, if we intend to test various algorithms on a certain application or
apply a specific algorithm to different test problems. Furthermore, programming
libraries require a certain training period, and their use is restricted to specific
programming languages and often also to specific computing platforms.

A different approach, called PISA (A Platform and programming language
independent Interface for Search Algorithms), was presented in [3]. The under-
lying concept is discussed in the following section.

6.2 Concept of PISA

The basic idea is to divide the implementation of an optimization method into
an algorithm-specific part and an application-specific part as shown in Fig. 15.
The former contains the selection procedure, while the latter encapsulates the
representation of solutions, the generation of new solutions, and the calculation of
objective function values. All problem-specific operators reside in the application
part, which is called variator; the problem-independent part is called selector.
These two parts are realized by distinct programs that communicate via a text-
based interface. Selector and variator programs can be compiled independently
and distributed as binaries and they are freely interchangeable as long as they
adhere to the interface specification.

6.3 Implementation of PISA

As mentioned in the previous section the variator performs all operations which
are specific to the optimization problem. It starts by generating a initial popu-
lation and calculating the objective values for each individual. It then writes the



IDs of all individuals and the corresponding objective vectors to a file. Since the
selector is problem-independent this data is sufficient for the selection operator.
The selector reads this file and chooses a collection of promising parent individ-
uals and writes their IDs to another file. The variator generates the offspring
by variating these parents. The IDs and objective vectors of the offspring are
again communicated to the selector. This loop continues until some termination
criterion is met.

The synchronization of the two programs is achieved through a handshake
protocol. A common state variable is written to a text file which both processes
regularly read. When one process is finished with an optimization step it updates
the state variable, thus signaling to the other module that the latter can perform
the next step. This simple scheme ensures that only one process is active at the
time and data files are only read after they have been completely written.

6.4 Benefits and Limitations

Since all communication between the selector and the variator is established
through text files the only requirement for combining two modules is that both
of them have access to the same file system. The two modules can be programmed
in different programming languages and can run on different machines and even
on different platforms. Nevertheless it is easy to add the interface functionality to
an existing algorithm or application since the whole communication only consists
of a few text file operations.

As a negative consequence, the data transfer introduces an additional over-
head into the optimization. Since only IDs and objective values are exchanged
the amount of data is minimal. In practically relevant applications this overhead
is small compared to the intrinsic run-time of the optimization [3]. Another
drawback is that the interface poses certain limitations on the structure of the
optimization process. Most but not all evolutionary algorithms and many others
(e.g. simulated annealing, tabu search) fit into the proposed scheme. Further-
more, the file format leaves room for extensions so that particular details such as
diversity measures in decision space can be implemented on the basis of PISA.

As mentioned, PISA allows to use pre-compiled, ready-to-use executable files,
which, in turn, minimizes the implementation overhead and avoids the problem
of implementation errors. As a result, an application engineer can easily ex-
change the optimization method and try different variants, while an algorithm
designer has the opportunity to test a search algorithm on various problems
without additional programming effort (cf. Fig. 15). Certainly, this concept is
not meant to replace programming libraries. It represents a complementary ap-
proach that allows to build collections of optimizers and applications, all of them
freely combinable across computing platforms.

Crucial, though, for the success of the proposed approach is the availability of
optimization algorithms and applications compliant with the interface. To this
end, the authors maintain a website at http://www.tik.ee.ethz.ch/pisa/
which contains example implementations for download.



7 Conclusions

Optimization problems involving multiple objectives are common. In this con-
text, evolutionary computation represents a valuable tool, in particular

– if we would like to be flexible with respect to the problem formulation,
– if we are interested in approximating the Pareto set, and
– if the problem complexity prevents exacts methods from being applicable.

Flexibility is important if the underlying model is not fixed and may change
or needs further refinement. The advantage of evolutionary algorithms is that
they have minimum requirements regarding the problem formulation; objectives
can be easily added, removed, or modified. Moreover, due the fact that they
operate on a set of solution candidates, evolutionary algorithms are well-suited
to generate Pareto set approximations. This is reflected by the rapidly increasing
interest in the field of evolutionary multiobjective optimization. Finally, it has
been demonstrated in various applications that evolutionary algorithms are able
to tackle highly complex problems and therefore they can be seen as an approach
complementary to traditional methods such as integer linear programming.
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E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke,
and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolution-
ary Computation Conference, pages 439–447, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

25. M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running time analysis of
multi-objective evolutionary algorithms on a simple discrete optimization problem.
In Parallel Problem Solving From Nature — PPSN VII, 2002.

26. G. T. Parks and I. Miller. Selective breeding in a multiobjective genetic algorithm.
In A. E. Eiben et al., editors, Parallel Problem Solving from Nature – PPSN V,
pages 250–259, Berlin, 1998. Springer.

27. G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovač,
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