
Software Cost Models: When Less is More

Zhihao Chen†, Tim Menzies?, Dan Port‡, Barry Boehm†
†Center for Software Engineering, University. of Southern California, USA

?Computer Science, Portland State University
‡Computer Science, University of Hawaii

zhihaoch@cse.usc.edu;tim@timmenzies.net;dport@hawaii.edu;boehm@cse.usc.edu

Abstract

If experience tells us when toadd variables to a cost
model, it should also be able to tell us when tosub-
tract variables. Data mining methods can intelligently se-
lect variables to subtract and so generate reduced models
which are much better at estimating efforts within an or-
ganization’s particular context.

Word count: 3850 words+ (7 figures*200)=5150

1 Introduction

Good software cost models can significantly help the
managers of software projects. With such good models,
project stake holders can make informed decisions about
(e.g.) “buy-or-make”, how to manage resources, how to
control and plan the project, and how to deliver the project
on time, on schedule and on budget.

As we learn more about software, the number of pa-
rameters in those models tends to grow. In going from
the 1981 COCOMO model [1] to the 2000 COCOMO
II model [2], one parameter, “Turnaround Time”, was
dropped to reflect the almost-universal use of interac-
tive software development. Another parameter, “Mod-
ern Programming Practices”, was dropped in favor of a
more general “Process Maturity” parameter. But several
more parameters were added to reflect the subsequently-
experienced influences of such factors as “Development
for Reuse”, “Multisite Development”, “Architecture and
Risk Resolution”, and “Team Cohesion”. The COCOMO

0Submitted to IEEE Software, May 27, 2005. Earlier drafts available
at: http://menzies.us/pdf/05lessismore.pdf .

%estimates within
30% of actuals

data set #projects before after after
before

1. nasa60 60 68% 82% 120%
2. coc81 63 44% 51% 116%
3. cii04 119 68% 72% 106%
4. cii00 161 75% 76% 101%

mean 64% 70% 110%

data set #projects before after after
before

5. t03 10 28% 62% 221%
6. p03 12 8% 52% 650%
7. c02 12 11% 48% 436%
8. c01 13 20% 58% 290%
9. t02 14 19% 81% 426%

10. p04 14 25% 63% 252%
11. p02 22 15% 97% 646%
12. c03 31 88% 95% 108%

mean 27% 70% 379%

Figure 1: Estimation and variable subtraction.

II book [2] also provides capabilities and guidelines for an
organization to add new parameters, reflecting their par-
ticular situations.

But if experience can tell us when toaddvariables, it
should also be able to tell us when tosubtractvariables. If
not, then our models may grow forever and become need-
lessly complex. Figure 1 shows that subtracting variables
can be surprisingly useful. For data sets containing many
projects, variable subtraction made little difference. But
for data sets containing just a few dozen projects (or less),
the improvement in estimation effectiveness was dramatic
(on average, a 379% improvement).

1

2 When Less is NOTMore

The improvements seen in Figure 1 are quite large and
the rest of this paper discusses the data mining methods
used to find which variables to subtract. Before that, we
first describe situations in which variables should not be
subtracted,even it subtracting them improves estimation
effectiveness.

Firstly, our variable subtraction methods require
an historical database of projects. If there isno such
database,then our variable subtraction techniques won’t
work.

Secondly, even a historical database exists and our
techniques suggest subtracting variableX, then it may
still be important to ignore that advice. If a cost model
ignorescertain effects that business users believe are im-
portant, then those users maynot trust that model. In
that case, even if a variable has no noticeable impact on
predictions, it should be left in the model. By leaving
such variables in a model we are acknowledging that, in
many domains, expert business users hold in their head
more knowledge that what may be available in historical
databases. Suppose that there is some rarely occurring
combination of factors which leads to a major productiv-
ity improvement. Even if there is little data on some situ-
ation, it still should be included in the model. For exam-
ple, even though some studies have shown that reduced-
parameter function point counting rules are equally good
in most situations [2], COCOMO II supports the full In-
ternational Function Point Users’ Group (IFPUG) set of
parameters due to their wide usage and acceptance in the
IFPUG community.

Thirdly, another reason not to subtract variables is
that you still might need them. For example, the exper-
iments shown below often subtract over half of the at-
tributes in a COCOMO-I model. As shown in Figure 1,
this can dramatically improve the effort estimation. How-
ever, suppose that a business decision has to be made us-
ing some of the subtracted variables. The reduced model
has no information on those subtracted variables so a busi-
ness user would have to resort to other information for
making their decisions.

For these reasons, we propose thedecision ladderof
Figure 2. The ladder has three parts: general COCOMO,
followed by local calibration, followed by variable reduc-
tion. The ladder represents how much variable subtraction

variable

COCOMO
general

calibration
local

reduction

Figure 2: A ladder of decisions in cost modeling.

is suitable for different business situations.
At the base of the ladder isgeneral public do-

main knowledge. The 1981 regression co-efficients of
COCOMO-I or the updated co-efficients of COCOMO-
II [2] are the best general-purpose indicators we can cur-
rently offer for cost estimation. Management decisions
can use that public knowledge to make software process
decisions. For example, according to the coefficients on
the COCOMO-IIpmatvariable, the increase in cost be-
tween a CMM3 and CMM4 project containN lines of
code isN3.13/N1.56. With this estimate in hand, a busi-
ness user could then make their own assessment about the
cost of increased software process maturity vs the benefits
of that increase.

If historical data from the local site is available, then
effort estimation can rise to the next rung in the estima-
tion ladder. COCOMO-I and COCOMO-II contain with
severallocal calibrationvariables that can quickly tune a
model to local project data. Our experience has been that
10 to 20 projects are adequate to achieve such tunings [9].

Local calibration is a simple tuning method that is
supported by many tools1. Currently, ourvariable reduc-
tion methods requires more effort (i.e. some UNIX script-
ing) than local calibration. Figure 1 suggests that the extra
effort may well be worthwhile, particularly when building
models from a handful of projects. Also, we have found
that it is easier to extrapolated costs from old projects to
new projects with reduced variable sets [8,10]. Neverthe-

1e.g. http://sunset.usc.edu/available_tools/
index.html

2

less, variable reduction isnot appropriate when there are
business reasons to use all available variables (e.g. the
three reasons described above).

3 Why Subtract Variables?

Having made the case forkeepingvariables, we now ex-
plore the other side of the coin. There are many reasons to
subtractingvariables. For example, from abusiness per-
spective, there are several situations where managing less
variables is useful. For example:

• When monitoring an out-sourced project at a remote
site, it is useful to have minimized the reporting re-
quirements to just the variables that matter the most.
Such a minimized reporting structure reduces the
overhead in managing a contract.

• When assessing competing bids, a knowledge of
what is most important can simplify the task of as-
sessing the bids. For example:

– All material relating to irrelevant variables can
be safely ignored.

– When doubling-checking the contractor’s
quotes against industrial standards, it is only
necessary to check the variables that matter the
most.

Also, from a technical perspective, there are good
reasons to subtract variables:

Noise: Data collection was somehow flawed for a partic-
ular variable with the result that one or more vari-
ables arenoisy(i.e. contains spurious signals not as-
sociated with variations to projects). Learning a cost
estimation model is easier when the learner does not
have to struggle with fitting the model to confusing
noisy data.

Correlated variables: The reverse problem of noise is
associated variables. If multiple variables are tightly
correlated, then using all of them will diminish the
likelihood that either variable attains significance.
A repeated result in data mining is that subtracting
some of the correlated variables increases the effec-
tiveness of the learned model (the reasons for this are
subtle and vary according to which particular learner
is being used [4]).

0
10
20
30
40
50

2

low

5

nominal

50

high
2

v.high
1

x.high

Figure 3: Distribution of software complexitycplxwithin
thenasa60data set.

Under-sampling: The number of possible influences on
a project is quite large and, usually, historical data
sets on projects for a particular company are quite
small. This motivates the subtraction of variables,
even if those variables are theoretically useful.

To understand the under-sampling problem, consider
two models for projectp02 (from Figure 1) that use two
variables or four variables. Suppose that each variable
takes one of five values (e.g. they are COCOMO vari-
ables with valuesvery high, high, nominal, low, very low).
The smaller model with two variables has an internal state
space of52 = 25 and the larger model with four variables
has an internal state space of54 = 625. Figure 1 records
that projectp02comprises 22 projects. These 22 projects
could sample a large part of the two-variable model (up
to 22

25 = 88%). However, those same 22 projects can only
ever sample avery small fraction(22

625 = 3.5%) of the
four-variable model.

Figure 3 shows that under-sampling is not just a the-
oretical concern. In thenasa60data set, most projects
cluster were rated as having ahigh complexity. There-
fore, this data set would not support conclusions about the
interaction of extra high complex projects with other vari-
ables. A learner would be wise to subtract this variable
(and a cost modeling analyst would be wise to suggest to
their NASA clients that they refine the local definition of
“complexity”).

Whatever the reason (business or technical), a re-
peated result in the data mining community is that sim-
pler models with equivalent or higher performance can be
built by feature subset selection(FSS) algorithms that in-
telligently subtraction of useless variables. For example,
Kohavi and John’s WRAPPER [7] builds models using an
increasing number of variables; i.e.N = 1, 2, 3, 4, For
eachN , there is a currentselectedset (initially, the empty
set) and a set of remaining variables (those that have not

3

been selected). For each remaining variable, a new big-
ger set is tried containing the current set, plus one of the
remaining variables. The set that yields the best learned
model becomes the current set,N becomesN + 1 and
the process continues. WRAPPER stops when either the
remaining set is empty or there has been no significant im-
provement in the learned model for the last five additions
(in which case, those last five additions are deleted).

WRAPPER is thorough and, according to Hall and
Holmes, often yields the best results [4]. However, it can
be too slow to run. It is simple to see why: there are
a large number of possible subsets to explore. A naive
search through all possible subsets of the 15 COCOMO-I
variables would have to explore 32768 subsets. Happily,
our study did not too long. The data sets of Figure 1 are
quite small and our experiments only required around 20
minutes per data set.

The Hall and Holmes results were also negative
about another widely used FSS technique: principle com-
ponent analysis (PCA). FSS methods can be grouped ac-
cording to:

• Whether or not they make special use of the target
attribute in the data set such as “development cost”;

• Whether or not they use the target learner as part of
their FSS analysis.

PCA is unique since, unlike other FSS methods, itdoes
not make special use of the target attribute. WRAPPER
is also unique, but for different reasons: unlike other FSS
methods, itdoesuse the target learner as part of the FSS
analysis. Hall and Holmes found that PCA was one of
the worst performing FSS methods (perhaps because it ig-
nored the target attribute) while WRAPPER was the best
(since it can exploit its special knowledge of the target
learner).

4 Case Study

To test the effectiveness of subtracting variables, we
WRAPPER to select subtractable variables from the Fig-
ure 1 projects. Those projects were described in terms of
the COCOMO set of variables.

COCOMO [1,2] is used for estimating software cost,
effort and schedule. COCOMO helps software develop-
ers reason about the cost and schedule implications of

their software decisions such as software investment deci-
sions; setting project budgets and schedules; negotiating
cost, schedule, and performance tradeoffs; making soft-
ware risk management decisions, and making software
improvement decisions.

COCOMO measures effort in calendar months
where one month is 152 hours (and includes develop-
ment and management hours). The core intuition behind
COCOMO-based estimation is that as systems grow in
size, the effort required to create them grows exponen-
tially; i.e.

months = a ∗
“
KSLOCb

”
∗
 Y

i

EMi

!
(1)

Here, EMi is one of 15effort multiplierssuch as
cplx(complexity) orpcap(programmer capability). In the
COCOMO-I model,a andb are domain-specific parame-
ters and KSLOC is estimated directly or computed from a
function point analysis. In COCOMO II,b was expanded
to includescale factors:

b = 0.91 +
X

j

SFj

whereSFj is one of fivescale factorsthat exponentially
influence effort. Examples of scale factors includepmat
(process maturity) orresl (attempts to resolve project
risks).

Various learning methods have been applied to CO-
COMO. Elsewhere [10], we have seen that best results
come from transforming the COCOMO-I equation of
Equation 1 into thelinearized modelof Equation 2:

LN(effort) = b∗LN(Size)+LN(EM1)+LN(EM2)+. . . (2)

For COCOMO-II, the linearized model is:

LN(effort) = SF1 ∗ LN(Size) + SF2 ∗ LN(Size) + ...

LN(EM1) + LN(EM2) + . . . (3)

At each step in the WRAPPER, some learner built
a model from the current set of variables. Elsewhere we
have tried various methods for such learning. In those ex-
periments, simple linear regression on over the linearized
COCOMO models did as well as any other method [10].

4

4.1 Data

This study used two data sets described using COCOMO I
variables and two using COCOMO-II variables:

• Coc81comes from the COCOMO-I text [1] and in-
cludes data from a variety of domains including en-
gineering, science, financial, etc.

• Thecii00 data set is the COCOMO-II data.
• Thecii04 data set includes the 72 projects fromcii00

developed after 1990, plus 47 new projects.
• Nasa60comes from 20 years of NASA projects

and is recorded using the COCOMO-I variables.
This data comes from multipleprojectsdeveloped
at NASA centers at different geographicallocations;
performing differenttaskssuch as ground data re-
ceiving, flight guidance,etc.

Figure 1 shows results from the above four data
sets as well as several subsets ofnasa60. Those subsets
come from three NASA centersc01,c02,c03; three NASA
projectsp02,p03,p04; and two NASA taskst02,t03. For
reasons of confidentiality, the exact details of those cen-
ters, tasks, and projects cannot be disclosed. The other
centers, projects, and tasks fromnasa60were not in-
cluded for a variety of pragmatic reasons (e.g. suspicious
repeated entries suggesting data entry errors, too few ex-
amples for generalization, etc).

Of these data sets,coc81describes projects from be-
fore 1982;ci04contain data from the most recent projects;
and the NASA data sets (nasa60, pX,cX,tX) described
projects newer thancoc81and beforeci04.

4.2 Using the Data

For each dataset, our experiments were in two parts:fea-
ture set generation, followed byfeature set subtraction.

Randomization was used extensively in our experi-
ments. Many algorithms have anorder effectsuch that
their performance changes dramatically if the inputs are
re-ordered. Kermer reported order effects in his analysis
data from 15 projects: if training was restricted to 9 par-
ticular projects, the learning was far more successful [5].
Randomization avoids such order effects.

In feature set ordering, the WRAPPER was called
on 10 randomly sub-samples of the data set. Each sub-
sample contained 90% of the data (selected at random).

coc81 p02
times # times

FSx variable selected FSx variable selected

10 loc 10 7 loc 10
9 sced 10 6 turn 7
9 pcap 10 6 lexp 7
9 time 10 5 time 4
8 virt 9 4 modp 3
7 cplx 6 3 data 2
6 modp 5 3 tool 2
6 acap 5 3 sced 2
6 rely 5 2 rely 1
5 vexp 4 2 vexp 1
4 tool 3 2 cplx 1
4 data 3 1 aexp 0
3 aexp 2 1 pcap 0
3 stor 2 1 virt 0
2 lexp 1 1 acap 0
1 turn 0 1 stor 0

Figure 4: Some of the generated features sets.

Variable were then grouped together according to how
often they wereselectedin the 10 sub-samples. All the
variables that were selected with the same frequency were
placed together into the samefeature setFSx. The feature
sets are then ordered by their frequency counts and then
numbered. To these feature sets, an extra sets are added:
“All” (holding all the variables). For example the table of
Figure 4 shows the feature sets found incoc81andp02.
Note that different data sets generate different feature sets
(we will comment on this, below). Note also that, in all
our experiments,loc (lines of code) was always selected
every time.

After generation, camefeature set subtraction. 30
times, we randomized the order of the data. Next, start-
ing with all the features, we subtracted each feature set
in turn. For each set, we conducted a hold-out experi-
ments to assess the value of that particular subset of the
variables. In those hold-outs, we divided the project data
described using some FSx set into a2

3 : 1
3 subsets, trained

on the 2
3rd subset and tested on the13rd test subset. The

whole point of cost models is that they can be used to esti-
mate the cost ofnewprojects. Such hold-out experiments
ensure that we are assessing the learned model on thenew
data in the test subset. For each set, the mean and stan-
dard deviation of the performance score on the test set was
collected. Scores from different sets were then compared
using t-tests:

• The performance of each model was scored using

5

 0

 5

 10

 15

 20

All FS01 FS02 FS03 FS04 FS05 FS06 FS07

Number of remaining variables after substracting feature set FSx

nasa60
coc81

p02
p03
p04
c01

c02
c03
t02
t03

cii00
cii04

 0

 20

 40

 60

 80

 100

All FS01 FS02 FS03 FS04 FS05 FS06 FS07

mean PRED(30) after subtracting feature set FSx (over 30 hold-outs)

nasa60
coc81

p02
p03
p04
c01

c02
c03
t02
t03

cii00
cii04

Figure 5: Feature sets. The results from each data set stop at the point of greatest “total wins - total losses”.

PRED(30); i.e. the percentage of estimates in the
test set that are within 30% of the actual values. We
have found PRED(30) easier to explain to business
than alternate measures. Also, landmark high-water
marks in software cost estimation report their results
in terms of PRED(30) [3].

• To conduct the t-tests, the mean and standard devi-
ation of the different PRED(30)s seen in all pairs of
FSx and FSy were computed. FSx and FSy were
said to “tie” if there was no statistical difference (at
theα = 0.05 level) detectable. If the comparison did
not “tie”, then the means were numerically compared
to compute “win”s and “loss”es. The “best” FSx set
was selected as the one with the highest “total wins-
total losses” score.

All the plots in Figure 5 start at “All” and stop at
the feature subset with the maximum ‘total wins - total
loses” (and if two sets score the same “total wins - total
loses”, then the one with highest mean was selected as the
winner). Figure 1 was generated by comparing the “All”
mean PRED(30) to the “best” mean PRED(30).

As shown in the top “number of remaining variables”
plot of Figure 5, in the usual case, most of the variables
are subtracted. Usually, the data sets were pruned back to
less than five variables. Three data sets (p03, p04, t02) got
pruned back to just one variable (lines of code). The larger
data sets (cii04,cii00,coc81,nasa60) were pruned back the
least. This is hardly surprising: the more data the more
interesting the inter-relationships and the less the win in
subtracting variables.

6

standard deviation on
PRED(30) in 30 hold-outs

data set #projects before after after
before

nasa60 60 11% 8% 68%
cii00 161 9% 7% 83%
coc81 63 11% 10% 89%
cii04 119 5% 5% 94%

mean 9% 7% 83%

data set #projects before after after
before

p02 22 12% 6% 49%
c03 31 12% 6% 51%
t02 14 26% 19% 74%
c01 13 21% 21% 100%
p03 12 15% 16% 105%
p04 14 21% 26% 126%
c02 12 17% 24% 139%
t03 10 22% 32% 150%

mean 18% 19% 99%

Figure 6: Effects on standard deviation of variable sub-
traction.

The bottom “mean PRED(30)” plot of Figure 5
shows results from 30hold-outexperiments conducted for
each features set. One interesting feature of this “mean”
plost is that “best” PRED never results from using “All”
variables. This result endorses the merits of variable sub-
traction: in terms of generating models with high PRED,
we have no evidence here that there is any down side to
always conducting feature subtraction (but recall our pre-
vious remarks- sometimes there are business reasons for
notsubtracting features).

When we looked at the standard deviations in our
30 hold-outs (see Figure 6), we found no extra evidence
for or against variable subtraction. For larger data sets,
variable substraction always reduced standard deviation.
For smaller data sets, there was no clear pattern: subtrac-
tion changed standard deviation anywhere from 49% to
150% and, on average, there was little change (last=99%
of first).

5 Related Work

Variable subtraction (a.k.a. feature subset selection) has
been widely studied in the data mining literature (e.g. [4,
7]). Mostly those studies have focused on discrete classes.

To the best of our knowledge, the only other work on vari-
able reduction and for continuous class cost estimation
data is Kirsopp & Shepperd’s (K&S) case base reasoning
(CBR) work [6].

In CBR, decisions about the current case are then
made by studying similar historical cases. A common
technique is to use some form of distance metric to extract
the k-th nearest neighbors from the current case within a
case library. Some extrapolation mechanism is then ap-
plied to analyze the nearest neighbors and make some de-
cision about expected properties of the current case.

K&S explores CBR for cost estimation using feature
subset selection using two data sets:

• The small data set containing 10 variables and data
from 77 projects;

• The large data set containing 48 variables and data
from 407 projects.

Like us, K&S found that FSS significantly improves effort
estimation. However, and contrary to Figure 1, they found
that FSS improved effort estimation more in thelargedata
sets than in thesmalldata set. There are several possible
explanations of why our results are so different to those
of K&S. Firstly, the K&S definition of “small” is much
larger than our definition. For example, our “small” data
sets contain 10 to 22 projects while K&S’ssmalldata set
contains 77 projects. It is possible that if K&S ran their
toolkit over our very small data sets, they might find a dif-
ferent effect. Secondly, the studied algorithms are differ-
ent: K&S use CBR while we use regression over a para-
metric COCOMO models. It is possible that CBR is con-
fused by smaller data sets. Thirdly, we are using different
data sets and to really compare K&S with our results, we
need to run COCOMO data through their toolkit.

6 Discussion

The benefits of variable subtraction should be carefully
weighed against the business implications of subtracting
seemingly irrelevant variables:

• Cost models should contain all available variables
when business knowledge argues for retention.

• Cost models should reject some variables (selected
by WRAPPER) when the goal is to improve effort

7

estimation. As seen in Figure 1, for small data sets
(30 projects or less), the improved effort estimation
can be quite dramatic. This increased improvement
in the smaller data sets is an important result since,
typically, organizations only have data on a small
number of projects.

When discussing these results, we are often asked
why we have not run these experiments on more data sets.
Accessing such further data sets is a non-trivial task. It
is hard enough gettingany data fromany organization,
let alone data in the COCOMO format. There is a good
reason for this. Software projects are notoriously diffi-
cult to control. Recall the 2001 report of the Standish
group that described a software industry where 23% of
projects totally fail, 28% meet all expectations, and the re-
maining 49% were significantly challenged in some way
(e.g. over-budget, over the time estimate, fewer features
and functions that initially specified) [12]. Corporations
are therefore reluctant to expose their own less-successful
software development practices to public scrutiny.

Nevertheless, our goal is to apply our methods to
more data from more projects. For example, we plan
to run our data sets through the K&S toolkit. Also we
are teaming with the University of Ottawa to extend the
PROMISE repository of public-domain data sets relating
to software engineering [11]. For example, if the reader
want us to try our techniques on their data, they just
need to submit it to that repository2 (perhaps with some
anonymization of any business-critical information).

We end with an important methodological note. Fig-
ure 4 showed that different data sets reject different vari-
ables. Hence it would be a mistake to interpret our results
as “variable X is not relevant in all domains”. Rather,
the best variables in different domains should be found by
separate runs of the WRAPPER.

References

[1] B. Boehm.Software Engineering Economics. Pren-
tice Hall, 1981.

[2] Barry Boehm, Ellis Horowitz, Ray Madachy, Don-
ald Reifer, Bradford K. Clark, Bert Steece, A. Win-

2http://promise.site.uottawa.ca/SERepository/
dataset-software-donation-page.html

sor Brown, Sunita Chulani, and Chris Abts.Soft-
ware Cost Estimation with Cocomo II. Prentice Hall,
2000.

[3] S. Chulani, B. Boehm, and B. Steece. Bayesian anal-
ysis of empirical software engineering cost mod-
els. IEEE Transaction on Software Engineerining,
25(4), July/August 1999.

[4] M.A. Hall and G. Holmes. Benchmarking attribute
selection techniques for discrete class data mining.
IEEE Transactions On Knowledge And Data Engi-
neering, 15(6):1437– 1447, 2003.

[5] C.F. Kemerer. An empirical validation of software
cost estimation models. Communications of the
ACM, 30(5):416–429, May 1987.

[6] C. Kirsopp and M. Shepperd. Case and feature sub-
set selection in case-based software project effort
prediction. In Proc. of 22nd SGAI International
Conference on Knowledge-Based Systems and Ap-
plied Artificial Intelligence, Cambridge, UK, 2002.

[7] Ron Kohavi and George H. John. Wrappers for fea-
ture subset selection.Artificial Intelligence, 97(1-
2):273–324, 1997.

[8] T. Menzies, D. Port, Z. Chen, J. Hihn, and
S. Stukes. Automatically learning softwate cost
extrapolations. 2005. Submitted, IEEE ASE,
2005, Available from http://menzies.us/
pdf/05learncost.pdf .

[9] T. Menzies, D. Port, Z. Chen, J. Hihn, and
S. Stukes. Validation methods for calibrating
software effort models. InProceedings, ICSE,
2005. Available fromhttp://menzies.us/
pdf/04coconut.pdf .

[10] Tim Menzies, Zhihao Chen, Dan Port, and Jairus
Hihn. Simple software cost estimation: Safe or un-
safe? InProceedings, PROMISE workshop, ICSE
2005, 2005. Available fromhttp://menzies.
us/pdf/05safewhen.pdf .

[11] J. Sayyad Shirabad and T.J. Menzies. The
PROMISE Repository of Software Engineering
Databases. School of Information Technology

8

and Engineering, University of Ottawa, Canada,
2005. Available fromhttp://promise.site.
uottawa.ca/SERepository .

[12] The Standish Group Report: Chaos 2001, 2001.
Available from http://standishgroup.
com/sample_research/PDFpages/
extreme_chaos.pdf .

9

