Software Cost Models: When Less is More

Zhihao Cheh, Tim Menzies, Dan Port, Barry Boehnf
fCenter for Software Engineering, University. of Southern California, USA
*Computer Science, Portland State University
*Computer Science, University of Hawaii
zhihaoch@cse.usc.edu;tim@timmenzies.net;dport@hawaii.edu;boehm@cse.usc.edu

Abstract %estimates within
30% of actuals

. . dataset #projects before after| -after
If experience tells us when tadd variables to a cost proj . o | efere
del, it should also be able to tell us when sob- 3 hasa® o0 ook |
model, 1t shou b us whe 2. coc8l 63| 44% 51% | 116%
tract variables. Data mining methods can intelligently se- 3. ciio4 119 | 68% 72% | 106%
lect variables to subtract and so generate reduced models 4. cii00 161 75% 76% | 101%
. 0, 0, 0,
which are much better at estimating efforts within an or- mean | 64% 70%| 110%
ganization’s part-|cular context. . .) dataset #projects before after b?}ZETTe
Word count: 3850 words+ (7 figures*200)=5150 5103 101 28% 6596 3210
6. po3 12| 8% 52% | 650%
7. c02 12| 11% 48% | 436%
1 Introduction 8. co01 13| 20% 58% | 290%
9. to2 14| 19% 81% | 426%
N 10. po4 14| 25% 63% | 252%
Good software cost modgls can _S|gn|f|cantly help the p02 22| 15% 97% | 646%
managers of software projects. With such good models, 12. o3 31| 88% 95% | 108%
project stake holders can make informed decisions about mean| 27% 70% | 379%

(e.g.) “buy-or-make”, how to manage resources, how to
control and plan the project, and how to deliver the project
on time, on schedule and on budget.

As we learn more about software, the number of pa-
rameters in those models tends to grow. In going from
the 1981 COCOMO model [1] to the 2000 COCOMA book [2] also provides capabilities and guidelines for an
Il model [2], one parameter, “Turnaround Time”, wagrganization to add new parameters, reflecting their par-
dropped to reflect the almost-universal use of interdisular situations.
tive software development. Another parameter, “Mod- gyt i experience can tell us when aaldvariables, it
ern Programming Practices”, was dropped in favor ofsgoyid also be able to tell us whenstabtractvariables. If
more general “Process Maturity” parameter. But sevei@lt then our models may grow forever and become need-
more parameters were added to reflect the subsequenglysly complex. Figure 1 shows that subtracting variables
experienced influences of such factors as “Developmeqt, pe surprisingly useful. For data sets containing many

for Reuse”, *Multisite Development”, “Architecture an‘%)rojects, variable subtraction made little difference. But
Risk Resolution”, and “Team Cohesion”. The COCOM®,; gata sets containing just a few dozen projects (or less),

OSubmitted to IEEE Software, May 27, 2005. Earlier drafts availabi€ improvement in e;timation effectiveness was dramatic
at: http://menzies.us/pdf/05lessismore.pdf . (on average, a 379% improvement).

Figure 1: Estimation and variable subtraction.

2 When Less is NOTMore variable ___ gy
reduction

The improvements seen in Figure 1 are quite large and
the rest of this paper discusses the data mining methods
used to find which variables to subtract. Before that, we
first describe situations in which variables should not be ")_C""] -
subtractedeven it subtracting them improves estimation calibration
effectiveness

Firstly, our variable subtraction methods require
an historical database of projects. If therenis such general
database,then our variable subtraction techniques won't cocomMO —
work.

Secondly, even a historical database exists and our
techniques suggest subtracting variafile then it may Figure 2: A ladder of decisions in cost modeling.
still be important to ignore that advice. If a cost model
ignorescertain effects that business users believe are im- . _ . N
portant, then those users magt trustthat model. In Is suitable for different business situations.

that case, even if a variable has no noticeable impact on. Atk thel bdase _ﬁ: thlegéidder ige_neral pL#?".C do- f
predictions, it should be left in the model. By leavin ain knowledge the regression co-efficients o

such variables in a model we are acknowledging that, i COMO-I or the updated co-efficients of COCOMO-

many domains, expert business users hold in their hdh]I are];fthef best gener.al-pl_eroslc\e/l|nd|cators Ws can cur-

more knowledge that what may be available in historicgity offer for CO.St estimation. Management decisions

databases. Suppose that there is some rarely occur ﬁg use that public knowledge to make software process
e

combination of factors which leads to a major producti h Iélgré;sé)hlzoor I?xample, _ack:)(lzordrl]ng_to the co_efﬂmen'gs on
ity improvement. Even if there is little data on some sitd"e lipmatvariable, the increase in cost be-

ation, it still should be included in the model. For exarﬁ‘-’veen a CMM3 and CMM4 project contaiN lines of

H 3.13 1.56 i i i i i
ple, even though some studies have shown that reduc%%qe ISV®17/ 120, With this estimate in hand, a busi-

parameter function point counting rules are equally 908853 user could then make their own assessment about the

in most situations [2], COCOMO Il supports the full \n.cost of increased software process maturity vs the benefits

ternational Function Point Users’ Group (IFPUG) set &fthat Increase.

parameters due to their wide usage and acceptance in the If historical data from the local site is available, then

IFPUG community effort estimation can rise to the next rung in the estima-
Thirdly, another reason not to subtract variables fion ladder. CO,COMO'I qnd COCOMO-II c_ontaln with
everalocal calibrationvariables that can quickly tune a

that you still might need them. For example, the expesr

iments shown below often subtract over half of the 6{{r]odel to local project data. Our experience has been that

tributes in a COCOMO-I model. As shown in Figure 1%0 020 projegts are a_dequgte to achi_eve such tunings_[g].
this can dramatically improve the effort estimation. How- -0cal calibration ('ﬂs a simple tuning method that is
ever, suppose that a business decision has to be madéﬂgported by many to sCurrentIyz ounariable reduc-.

ing some of the subtracted variables. The reduced moff@f methods requires more _effort (1.e. some UNIX script-
has no information on those subtracted variables so a bL'Bg) than local calibration. Figure 1 suggests that the extra

ness user would have to resort to other information ngfort may well be worthwhile, particularly when building
making their decisions models from a handful of projects. Also, we have found

For these reasons, we proposedeeision laddenof that it is easier to extrapolated costs from old projects to

Figure 2. The ladder has three parts: general cocoMBW projects with reduced variable sets [8,10]. Neverthe-

fpllowed by local calibration, followed by \{ariable reduc'- leg. http://sunset.usc.edu/available_tools/
tion. The ladder represents how much variable subtractiogex.html

. L . 50
less, variable reduction isot appropriate when there are 4
business reasons to use all available variables (e.g. theso
three reasons described above). 20

low nominal

3 Why Subtract Variables?
Figure 3: Distribution of software complexigplx within

Having made th_e case fdiee_pingvariables, W€ NOW €X- tha nasa6Odata set.
plore the other side of the coin. There are many reasons to

subtractingvariables. For example, fromlaisiness per-

spectivethere are several situations where managing lé43der-sampling: The number of possible influences on
variables is useful. For example: a project is quite large and, usually, historical data

sets on projects for a particular company are quite
* When monitoring an out-sourced project at a remote small. This motivates the subtraction of variables,
site, it is useful to have minimized the reporting re- even if those variables are theoretically useful.

guirements to just the variables that matter the most.))
Such a minimized reporting structure reduces the To understand the under-sampling problem, consider
overhead in managing a contract. two models for projecp02 (from Figure 1) that use two

« When assessing competing bids, a knowledge \griables or four variables. Suppose that each variable
what is most important can simplify the task of ad@kes one of five values (e.g. they are COCOMO vari-
sessing the bids. For example: ables with valuesery high, high, nominal, low, very Igw

] . .) The smaller model with two variables has an internal state

— All material relating to irrelevant variables carynace o2 = 25 and the larger model with four variables
be safely ignored. _ has an internal state spaceidf= 625. Figure 1 records

— When doubling-checking the contractor$yat projecp02 comprises 22 projects. These 22 projects
quotes against industrial standards, it is only,,1g sample a large part of the two-variable model (up
necessary to check the variables that matter %e% — 88%). However, those same 22 projects can only

most. ever sample aery small fraction(Z2 = 3.5%) of the

Also, from atechnical perspectivethere are good four-variable mode. o _
reasons to subtract variables: Figure 3 shows that under-sampling is not just a the-

oretical concern. In th@asa60data set, most projects

Noise: Data collection was somehow flawed for a particluster were rated as havinghéigh complexity. There-
ular variable with the result that one or more varfore, this data set would not support conclusions about the
ables aranoisy(i.e. contains spurious signals not agnteraction of extra high complex projects with other vari-
sociated with variations to projects). Learning a coables. A learner would be wise to subtract this variable
estimation model is easier when the learner does ifahd a cost modeling analyst would be wise to suggest to
have to struggle with fitting the model to confusingheir NASA clients that they refine the local definition of
noisy data. “complexity”).

Correlated variables: The reverse problem of noise is Whatever the reason (business or technical), a re-
associated variables. If multiple variables are tightlyeated result in the data mining community is that sim-
correlated, then using all of them will diminish theler models with equivalent or higher performance can be
likelihood that either variable attains significancdauilt by feature subset selectid®SS) algorithms that in-

A repeated result in data mining is that subtractirtglligently subtraction of useless variables. For example,
some of the correlated variables increases the effé&@havi and John’'s WRAPPER [7] builds models using an
tiveness of the learned model (the reasons for this @mereasing number of variables; i®. = 1,2,3,4, For
subtle and vary according to which particular learneachN, there is a currergelectedset (initially, the empty

is being used [4]). set) and a set of remaining variables (those that have not

been selected). For each remaining variable, a new Higeir software decisions such as software investment deci-

ger set is tried containing the current set, plus one of thiens; setting project budgets and schedules; negotiating

remaining variables. The set that yields the best learnsmbt, schedule, and performance tradeoffs; making soft-

model becomes the current séf, becomesV + 1 and ware risk management decisions, and making software

the process continues. WRAPPER stops when either thgprovement decisions.

remaining setis empty or there has been no significantim- COCOMO measures effort in calendar months

provement in the learned model for the last five additiomhere one month is 152 hours (and includes develop-

(in which case, those last five additions are deleted). ment and management hours). The core intuition behind
WRAPPER is thorough and, according to Hall an@OCOMO-based estimation is that as systems grow in

Holmes, often yields the best results [4]. However, it catize, the effort required to create them grows exponen-

be too slow to run. It is simple to see why: there atlly; i.e.

a large number of possible subsets to explore. A naive

search through all possible subsets of the 15 COCOMO-| months — a % (K5L00b> ¥ <H EM¢> @

variables would have to explore 32768 subsets. Happily,

our study did not too long. The data sets of Figure 1 are

. :) Here, EM; is one of 15effort multiplierssuch as
quite small and our experiments only required around %le(com lexity) omcap(programmer capability). In the
minutes per data set. P p rpcap(prog pability).

The Hall and Holmes results were also negati COCOMO-I modelg andb are domain-specific parame-

\&rs and KSLOC is estimated directly or computed from a

about another widely used FSS technique: principle oM™ tion point analysis. In COCOMO I, was expanded

pone_nt an.aly5|s (PCA). FSS methods can be grOUpedt%Clhcludescale factors
cording to:

. b=1091+) SF;
« Whether or not they make special use of the target EJ: !

attribute in the data set such as “development cost”; i i)
« Whether or not they use the target learner as part. ereSF; is one of fivescale factorghat exponentially

their FSS analysis. influence effort.. Examples of scale factors incILm‘egt
(process maturity) oresl (attempts to resolve project

PCA is unique since, unlike other FSS methodsldes risks).

not make special use of the target attribute. WRAPPER Various learning methods have been applied to CO-

is also unique, but for different reasons: unlike other FEOMO. Elsewhere [10], we have seen that best results

methods, itdoesuse the target learner as part of the FS®me from transforming the COCOMO-I equation of

analysis. Hall and Holmes found that PCA was one &Quation 1 into théinearized modebf Equation 2:

the worst performing FSS methods (perhaps because it ig-

nored the target attribute) while WRAPPER was the besty (¢ s fort) = b« LN(Size) + LN(EM1)+ LN(EMa) +... (2)

(since it can exploit its special knowledge of the target

learner).
For COCOMO-II, the linearized model is:

4 Case Study LN(effort) = SFi*LN(Size) + SFy* LN(Size) + ...

: . . LN(EM) + LN(EM2) + ... 3
To test the effectiveness of subtracting variables, we (EM) (EM>) ®)

WRAPPER to select subtractable variables from the Fig-

ure 1 projects. Those projects were described in terms of At each step in the WRAPPER, some learner built

the COCOMO set of variables. a model from the current set of variables. Elsewhere we
COCOMO [1,2] is used for estimating software coshave tried various methods for such learning. In those ex-

effort and schedule. COCOMO helps software developeriments, simple linear regression on over the linearized

ers reason about the cost and schedule implicationsG8COMO models did as well as any other method [10].

4.1 Data cocBl poz__

i ‘ #Ittlarzsesd FSx | variable ‘ siluergsesd
. . . FS bl se

This study used two data sets described using COCOMO | 13 Valr; = = = — =
variables and two using COCOMO-II variables: 9 | sced 10 6| ftun 7
9 pcap 10 6 lexp 7
» Coc81comes from the COCOMO-I text [1] and in- 9| tme 10 5| tme 4
. . . . 8 virt 9 4 modp 3
cludes data from a variety of domains including en- 7 cpix 5 3T data >
gineering, science, financial, etc. 6 | modp 5 3 toold ;
+ Thecii0O0 data set is the COCOMO-II data. o e -
* Thecii04 data set includes the 72 projects fraii®0 5 [vexp 2 2 | vexp 1
developed after 1990, plus 47 new projects. a2 oo 42 ;gt‘p =
¢ Nasa60comes from 20 years of NASA projects 3 | aexp 2 1| pcap 0
and is recorded using the COCOMO-I variables. 3 | stor 2 1] it 0
. . . 2 lexp 1 1 acap 0
This data comes from multiplprojects developed T turn 0 T stor 0

at NASA centers at different geographitatations
performing differenttaskssuch as ground data re-

ceiving, flight guidance, etc. Figure 4: Some of the generated features sets.

Figure 1 shows results from the above four d . .
ariable were then grouped together according to how
sets as well as several subsetsna6a60 Those subsets
often they wereselectedn the 10 sub-samples. All the

come from three NASA centec®1,c02,c03three NASA variables that were selected with the same frequency were

projectsp02,p03,pOfand two NASA taskd02,103 For laced together into the sarfeature seFSx. The feature

reasons of confidentiality, the exact details of those cdl L< are then ordered by their frequency counts and then
ters, tasks, and projects cannot be disclosed. The other y q Y

centers. proiects. and tasks fromasagowere not in- numbered. To these feature sets, an extra sets are added:
» Projecss, rona "_«all” (holding all the variables). For example the table of
cluded for a variety of pragmatic reasons (e.g. suspicigus

.) igure 4 shows the feature sets founccot8landp02
repeated entries sgggt_astmg data entry errors, too few ﬁ)gte that different data sets generate different feature sets
amples for generalization, etc).

Of these data setespc8ldescribes projects from be—(We wil cgmment on-this, below). Note also that, in all
fore 1982;ci04 contain data from the most recent projectg'ur experimentsioc (lines of code) was always selected

. every time.
anq the NASA data sete¢sa60, p_X ,CX,)Xdescribed After generation camefeature set subtraction30
projects newer thaococ8land beforeciO4.

times, we randomized the order of the data. Next, start-
ing with all the features, we subtracted each feature set
4.2 Using the Data in turn. For each set, we conducted a hold-out experi-
ments to assess the value of that particular subset of the

For each datase;t, our experiments were in two p@&. variables. In those hold-outs, we divided the project data
ture set generatiorfollowed byfeature set subtraction . . ; 1 :
o . . described using some FSx set |nt§ a: subsets, trained
Randomization was used extensively in our experi- > 3
. on thezrd subset and tested on tléed test subset. The
ments. Many algorithms have amder effectsuch that 3

.) : : whole point of cost models is that they can be used to esti-
their performance changes dramatically if the inputs are :)
o mate the cost aofiewprojects. Such hold-out experiments
re-ordered. Kermer reported order effects in his analysis ;
ensure that we are assessing the learned model oretie

dgta from .15 projects: if Fralmng was restricted to 9 pal; tain the test subset. For each set, the mean and stan-
ticular projects, the learning was far more successful [5. -
rd deviation of the performance score on the test set was

Randomization avoids such order effects. collected. Scores from different sets were then compared
In feature set orderingthe WRAPPER was called ™. L P
u8|_ng t-tests:

on 10 randomly sub-samples of the data set. Each su
sample contained 90% of the data (selected at random)s The performance of each model was scored using

Number of remaining variables after substracting feature set FSx

nasa60 I
coc8l —+— c03 . -
t02 a
p03 ------ t03 s
p04 -z cii00 ——
) aos “ = = .
0 T | X | | | i

All FSO1 FS02 FS03 FS04 FS05 FS06 FSO7

mean PRED(30) after subtracting feature set FSx (over 30 hold-outs)

100 T , > | | : :
.,,,,,_.__,,__,,_’,u"’—’

80 B i

60 - A . T B8 |

A Tt R nasaé0 -
40 F 7 i coc8l —+— c03 e |
o t02 4
i S : ‘ p03 ------ t03 4
& - A
O | | | | | | |

All FSO01 FS02 FS03 FS04 FSO05 FS06 FSO7

Figure 5: Feature sets. The results from each data set stop at the point of greatest “total wins - total losses”.

PRED(30); i.e. the percentage of estimates in the All the plots in Figure 5 start at “All” and stop at
test set that are within 30% of the actual values. Wee feature subset with the maximum ‘total wins - total
have found PRED(30) easier to explain to businelses” (and if two sets score the same “total wins - total
than alternate measures. Also, landmark high-wateses”, then the one with highest mean was selected as the
marks in software cost estimation report their resuliginner). Figure 1 was generated by comparing the “All”

in terms of PRED(30) [3]. mean PRED(30) to the “best” mean PRED(30).

To conduct the t-tests, the mean and standard devi- As shown in the top “number of remaining variables”
ation of the different PRED(30)s seen in all pairs gilot of Figure 5, in the usual case, most of the variables
FSx and FSy were computed. FSx and FSy wesee subtracted. Usually, the data sets were pruned back to
said to “tie” if there was no statistical difference (dess than five variables. Three data sp@3(p04, tO2got

thea = 0.05 level) detectable. If the comparison digbruned back to just one variable (lines of code). The larger
not “tie”, then the means were numerically comparethta setsdji04,cii00,coc81,nasaf@vere pruned back the

to compute “win”s and “loss”es. The “best” FSx sdieast. This is hardly surprising: the more data the more
was selected as the one with the highest “total wingteresting the inter-relationships and the less the win in
total losses” score. subtracting variables.

standard deviation on

PRED(30) in 30 hold-outs

dataset #projects before after b‘;&ffe
nasa60 60| 11% 8% 68%
ciioo 161 9% 7% 83%
coc8l 63 11% 10% 89%
ciio4 119 5% 5% 94%

mean 9% 7% 83%
data set #projects before after b‘y}fr’e
p02 22 12% 6% 49%
c03 31 12% 6% 51%
t02 14 26% 19% 74%
c01 13 21% 21% 100%
p03 12 15% 16% 105%
p04 14 21% 26% 126%
c02 12 17% 24% 139%
t03 10 22% 32% 150%

mean 18% 19% 99%

Figure 6: Effects on standard deviation of variable sub-

traction.

To the best of our knowledge, the only other work on vari-
able reduction and for continuous class cost estimation
data is Kirsopp & Shepperd’s (K&S) case base reasoning
(CBR) work [6].

In CBR, decisions about the current case are then
made by studying similar historical cases. A common
technique is to use some form of distance metric to extract
the k-th nearest neighbors from the current case within a
case library. Some extrapolation mechanism is then ap-
plied to analyze the nearest neighbors and make some de-
cision about expected properties of the current case.

K&S explores CBR for cost estimation using feature
subset selection using two data sets:

» The smalldata set containing 10 variables and data
from 77 projects;

» Thelarge data set containing 48 variables and data
from 407 projects.

Like us, K&S found that FSS significantly improves effort
estimation. However, and contrary to Figure 1, they found

The bottom “mean PRED(30)" plot of Figure ghat FSS improved effort estimation more in taege data

shows results from 3Bold-outexperiments conducted forSets than in themalldata set. There are several possible
each features set. One interesting feature of this “me&iiPlanations of why our results are so different to those
plost is that “best” PRED never results from using “All0f K&S. Firstly, the K&S definition of “small” is much
variables. This result endorses the merits of variable si@9er than our definition. For example, our “small” data
traction: in terms of generating models with high PREIFEtS contain 10 to 22 projects while K&3malldata set
we have no evidence here that there is any down sideff§1tains 77 projects. Itis possible that if K&S ran their
always conducting feature subtraction (but recall our pf@Olkit over our very small data sets, they might find a dif-

vious remarks- sometimes there are business reasond@f#t effect. Secondly, the studied algorithms are differ-

notsubtracting features). . .] .
When we looked at the standard deviations in ofJ}€tric COCOMO models. It is possible that CBR is con-

30 hold-outs (see Figure 6), we found no extra evide
for or against variable subtraction. For larger data s
variable substraction always reduced standard deviatid

ent: K&S use CBR while we use regression over a para-

nfé@ed by smaller data sets. Thirdly, we are using different
eggata sets and to really compare K&S with our results, we
ged to run COCOMO data through their toolkit.

For smaller data sets, there was no clear pattern: subtrac-

tion changed standard deviation anywhere from 49%

Discussion

150% and, on average, there was little change (last=99%

of first).

5 Related Work

The benefits of variable subtraction should be carefully
weighed against the business implications of subtracting
seemingly irrelevant variables:

» Cost models should contain all available variables

Variable subtraction (a.k.a. feature subset selection) has when business knowledge argues for retention.
been widely studied in the data mining literature (e.g. [4, * Cost models should reject some variables (selected
7]). Mostly those studies have focused on discrete classes. by WRAPPER) when the goal is to improve effort

estimation. As seen in Figure 1, for small data sets
(30 projects or less), the improved effort estimation
can be quite dramatic. This increased improvement
in the smaller data sets is an important result since

typically, organizations only have data on a smal

number of projects.

f3

When discussing these results, we are often asked
why we have not run these experiments on more data sets.

Accessing such further data sets is a non-trivial task.
is hard enough gettingny data fromany organization,

I¢]

let alone data in the COCOMO format. There is a good
reason for this. Software projects are notoriously diffi-

cult to control. Recall the 2001 report of the Standis
group that described a software industry where 23%

i

projects totally fail, 28% meet all expectations, and the re-
maining 49% were significantly challenged in some way
(e.g. over-budget, over the time estimate, fewer featurgg]
and functions that initially specified) [12]. Corporations
are therefore reluctant to expose their own less-successful

software development practices to public scrutiny.

Nevertheless, our goal is to apply our methods to

more data from more projects.

For example, we plan

to run our data sets through the K&S toolkit. Also wel7]

are teaming with the University of Ottawa to extend th

e

PROMISE repository of public-domain data sets relating
to software engineering [11]. For example, if the reade(]
want us to try our techniques on their data, they jus

need to submit it to that repositdryperhaps with some
anonymization of any business-critical information).
We end with an important methodological note. Fig

ure 4 showed that different data sets reject different vari-
ables. Hence it would be a mistake to interpret our resul{®]

as “variable X is not relevant in all domains”.

Rather,

the best variables in different domains should be found by

separate runs of the WRAPPER.

References

[1] B. Boehm.Software Engineering Economiddren-
tice Hall, 1981.

[2] Barry Boehm, Ellis Horowitz, Ray Madachy, Don-

ald Reifer, Bradford K. Clark, Bert Steece, A. Winf11]

2http://promise.site.uottawa.ca/SERepository/
dataset-software-donation-page.html

[10]

sor Brown, Sunita Chulani, and Chris AbtSoft-
ware Cost Estimation with Cocomo Prentice Hall,
2000.

S. Chulani, B. Boehm, and B. Steece. Bayesian anal-
ysis of empirical software engineering cost mod-
els. IEEE Transaction on Software Engineerinjng
25(4), July/August 1999.

M.A. Hall and G. Holmes. Benchmarking attribute
selection techniques for discrete class data mining.
IEEE Transactions On Knowledge And Data Engi-
neering 15(6):1437— 1447, 2003.

C.F. Kemerer. An empirical validation of software
cost estimation models. Communications of the
ACM, 30(5):416-429, May 1987.

C. Kirsopp and M. Shepperd. Case and feature sub-
set selection in case-based software project effort
prediction. InProc. of 22nd SGAI International
Conference on Knowledge-Based Systems and Ap-
plied Artificial Intelligence, Cambridge, UKR002.

Ron Kohavi and George H. John. Wrappers for fea-
ture subset selectionAtrtificial Intelligence 97(1-
2):273-324, 1997.

T. Menzies, D. Port, Z. Chen, J. Hihn, and
S. Stukes. Automatically learning softwate cost
extrapolations. 2005. Submitted, IEEE ASE,
2005, Available from http://menzies.us/
pdf/O5learncost.pdf

T. Menzies, D. Port, Z. Chen, J. Hihn, and
S. Stukes. Validation methods for calibrating
software effort models. IrProceedings, ICSE
2005. Available fromhttp://menzies.us/
pdf/04coconut.pdf

Tim Menzies, Zhihao Chen, Dan Port, and Jairus
Hihn. Simple software cost estimation: Safe or un-
safe? InProceedings, PROMISE workshop, ICSE
2005 2005. Available fromhttp://menzies.
us/pdf/05safewhen.pdf

J. Sayyad Shirabad and T.J. Menzies. The
PROMISE Repository of Software Engineering
Databases. School of Information Technology

[12]

and Engineering, University of Ottawa, Canada,
2005. Available fromhttp://promise.site.
uottawa.ca/SERepository

The Standish Group Report: Chaos 2001, 2001.
Available from http://standishgroup.
com/sample_research/PDFpages/
extreme_chaos.pdf

