
Software Cost Models: When Less is More

Zhihao Chen†, Tim Menzies?, Dan Port‡, Barry Boehm†

†Center for Software Engineering, University. of Southern California
?Computer Science, Portland State University

‡Computer Science, University of Hawaii
zhihaoch@cse.usc.edu;tim@timmenzies.net

dport@hawaii.edu;boehm@cse.usc.edu

Abstract

If experience tells us when to add variables to a cost model, it should
also be able to tell us when to subtract variables. Data mining methods
can intelligently select variables to subtract and so generate reduced models
which are much better at estimating efforts within an organization’s particu-
lar context.

Word count: 3975 words+ (7 figures*200)=5375

1 Introduction
Good software cost models can significantly help the managers of software projects.
With such good models, project stake holders can make informed decisions about
(e.g.) “buy-or-make”, how to manage resources, how to control and plan the
project, and how to deliver the project on time, on schedule and on budget.

As we learn more about software, the number of parameters in those models
tends to grow. In going from the 1981 COCOMO model [1] to the 2000 CO-
COMO II model [2], one parameter, “Turnaround Time”, was dropped to reflect
the almost-universal use of interactive software development. Another parameter,
“Modern Programming Practices”, was dropped in favor of a more general “Pro-
cess Maturity” parameter. But several more parameters were added to reflect the

0Submitted to IEEE Software, May 31, 2005. Earlier drafts available at: http://menzies.
us/pdf/05lessismore.pdf.

1

%estimates within
30% of actuals

data set #projects before after after
before

1. nasa60 60 68% 82% 120%
2. coc81 63 44% 51% 116%
3. cii04 119 68% 72% 106%
4. cii00 161 75% 76% 101%

mean 64% 70% 110%

data set #projects before after after
before

5. t03 10 28% 62% 221%
6. p03 12 8% 52% 650%
7. c02 12 11% 48% 436%
8. c01 13 20% 58% 290%
9. t02 14 19% 81% 426%

10. p04 14 25% 63% 252%
11. p02 22 15% 97% 646%
12. c03 31 88% 95% 108%

mean 27% 70% 379%

Figure 1: Estimation and variable subtraction.

subsequently-experienced influences of such factors as “Development for Reuse”,
“Multisite Development”, “Architecture and Risk Resolution”, and “Team Cohe-
sion”. The COCOMO II book [2] also provides capabilities and guidelines for an
organization to add new parameters, reflecting their particular situations.

But if experience can tell us when to add variables, it should also be able
to tell us when to subtract variables. If not, then our models may grow forever
and become needlessly complex. Figure 1 shows that subtracting variables can be
surprisingly useful. For data sets containing many projects, variable subtraction
made little difference. But for data sets containing just a few dozen projects (or
less), the improvement in estimation effectiveness was dramatic (on average, a
379% improvement).

The rest of this paper describes experiments with our tool for variable sub-
traction. This tool, called CMP, is a set of UNIX scripts that use the WRAP-
PER variable subtraction algorithm from the public-domain WEKA data mining
toolkit [14]. This paper expands on a prior workshop publication [11] in two
ways. Firstly, it includes an expanded discussion on the business implications of
subtracting variables. Secondly, this paper explores more data than before (double
the number of COCOMO-I project analyzed, two new COCOMO-II data sets).

2

2 When Less is NOT More
The improvements seen in Figure 1 are quite large and the rest of this paper dis-
cusses the data mining methods used to find which variables to subtract. Before
that, we first describe situations in which variables should not be subtracted, even
it subtracting them improves estimation effectiveness.

Firstly, our variable subtraction methods require an historical database of
projects. If there is no such database,then our variable subtraction techniques
won’t work.

Secondly, even a historical database exists and our techniques suggest sub-
tracting variable X , then it may still be important to ignore that advice. If a cost
model ignores certain effects that business users believe are important, then those
users may not trust that model. In that case, even if a variable has no noticeable
impact on predictions, it should be left in the model. By leaving such variables in
a model we are acknowledging that, in many domains, expert business users hold
in their head more knowledge that what may be available in historical databases.
Suppose that there is some rarely occurring combination of factors which leads to
a major productivity improvement. Even if there is little data on some situation,
it still should be included in the model. For example, even though some studies
have shown that reduced-parameter function point counting rules are equally good
in most situations [2], COCOMO II supports the full International Function Point
Users’ Group (IFPUG) set of parameters due to their wide usage and acceptance
in the IFPUG community.

Thirdly, another reason not to subtract variables is that you still might need
them. For example, the experiments shown below often subtract over half of the
attributes in a COCOMO-I model. As shown in Figure 1, this can dramatically
improve the effort estimation. However, suppose that a business decision has
to be made using some of the subtracted variables. The reduced model has no
information on those subtracted variables so a business user would have to resort
to other information for making their decisions.

For these reasons, we propose the decision ladder of Figure 2. The ladder has
three parts: general COCOMO, followed by local calibration, followed by vari-
able reduction. The ladder represents how much variable subtraction is suitable
for different business situations.

At the base of the ladder is general public domain knowledge. The 1981 re-
gression co-efficients of COCOMO-I or the updated co-efficients of COCOMO-
II [2] are the best general-purpose indicators we can currently offer for cost esti-
mation. Management decisions can use that public knowledge to make software

3

variable

COCOMO
general

calibration
local

reduction

Figure 2: A ladder of decisions in cost modeling.

process decisions. For example, according to the coefficients on the COCOMO-II
pmat variable, the increase in cost between a CMM3 and CMM4 project contain
N lines of code is N3.13/N1.56. With this estimate in hand, a business user could
then make their own assessment about the cost of increased software process ma-
turity vs the benefits of that increase.

If historical data from the local site is available, then effort estimation can
rise to the next rung in the estimation ladder. COCOMO-I and COCOMO-II con-
tain with several local calibration variables that can quickly tune a model to lo-
cal project data. Our experience has been that 10 to 20 projects are adequate to
achieve such tunings [9].

Local calibration is a simple tuning method that is supported by many tools1.
Currently, our variable reduction methods requires more effort (i.e. some UNIX
scripting) than local calibration. Figure 1 suggests that the extra effort may well be
worthwhile, particularly when building models from a handful of projects. Also,
we have found that it is easier to extrapolated costs from old projects to new
projects with reduced variable sets [8, 10]. Nevertheless, variable reduction is not
appropriate when there are business reasons to use all available variables (e.g. the
three reasons described above).

1e.g. http://sunset.usc.edu/available_tools/index.html

4

3 Why Subtract Variables?
Having made the case for keeping variables, we now explore the other side of
the coin. There are many reasons for subtracting variables. For example, from a
business perspective, there are several situations where managing less variables is
useful. For example:

• When monitoring an out-sourced project at a remote site, it is useful to
have minimized the reporting requirements to just the variables that matter
the most. Such a minimized reporting structure reduces the overhead in
managing a contract.

• When assessing competing bids, a knowledge of what is most important can
simplify the task of assessing the bids. For example:

– All material relating to irrelevant variables can be safely ignored.
– When doubling-checking the contractor’s quotes against industrial stan-

dards, it is only necessary to check the variables that matter the most.

Also, from a technical perspective, there are good reasons to subtract vari-
ables:

Irrelevancy: Sometimes, modelers are incorrect in their beliefs about what vari-
ables effect some outcome. In this case, they might add irrelevant variables
to a model.

Noise: Data collection was somehow flawed for a particular variable with the re-
sult that one or more variables are noisy (i.e. contains spurious signals not
associated with variations to projects). Noise can come from many sources
including the situation when data collectors have to guess (a.k.a. “make
up”) values for a variables that is not collected in a particular domain/ orga-
nization/ projects. For example, organizations that only build word proces-
sors may have little data on software projects with high reliability require-
ments. Learning a cost estimation model is easier when the learner does not
have to struggle with fitting the model to confusing noisy data.

Correlated variables: The reverse problem of noise is associated variables. If
multiple variables are tightly correlated, then using all of them will diminish
the likelihood that either variable attains significance. A repeated result in
data mining is that subtracting some of the correlated variables increases the
effectiveness of the learned model (the reasons for this are subtle and vary
according to which particular learner is being used [4]).

5

0
10
20
30
40
50

2
low

5

nominal

50

high
2

v.high
1

x.high

Figure 3: Distribution of software complexity cplx within the nasa60 data set.

Under-sampling: The number of possible influences on a project is quite large
and, usually, historical data sets on projects for a particular company are
quite small. This motivates the subtraction of variables, even if those vari-
ables are theoretically useful.

To understand the under-sampling problem, consider two models for project
p02 (from Figure 1) that use two variables or four variables. Suppose that each
variable takes one of five values (e.g. they are COCOMO variables with values
very high, high, nominal, low, very low). The smaller model with two variables
has an internal state space of 52 = 25 and the larger model with four variables has
an internal state space of 54 = 625. Figure 1 records that project p02 comprises
22 projects. These 22 projects could sample a large part of the two-variable model
(up to 22

25
= 88%). However, those same 22 projects can only ever sample a very

small fraction (22
625

= 3.5%) of the four-variable model.
Figure 3 shows that under-sampling is not just a theoretical concern. In the

nasa60 data set, most projects cluster were rated as having a high complexity.
Therefore, this data set would not support conclusions about the interaction of
extra high complex projects with other variables. A learner would be wise to
subtract this variable (and a cost modeling analyst would be wise to suggest to
their NASA clients that they refine the local definition of “complexity”).

Whatever the reason (business or technical), a repeated result in the data min-
ing community is that simpler models with equivalent or higher performance can
be built by feature subset selection (FSS) algorithms that intelligently subtrac-
tion of useless variables. For example, Kohavi and John’s WRAPPER [7] builds
models using an increasing number of variables; i.e. N = 1, 2, 3, 4, For each
N , there is a current selected set (initially, the empty set) and a set of remaining
variables (those that have not been selected). For each remaining variable, a new
bigger set is tried containing the current set, plus one of the remaining variables.
The set that yields the best learned model becomes the current set, N becomes
N + 1 and the process continues. WRAPPER stops when either the remaining set
is empty or there has been no significant improvement in the learned model for

6

the last five additions (in which case, those last five additions are deleted).
WRAPPER is thorough and, according to Hall and Holmes, often yields the

best results [4]. However, it can be too slow to run. It is simple to see why:
there are a large number of possible subsets to explore. A naive search through
all possible subsets of the 15 COCOMO-I variables would have to explore 32768
subsets. Happily, our study did not too long. The data sets of Figure 1 are quite
small and our experiments only required around 20 minutes per data set.

The Hall and Holmes results were also negative about another widely used
FSS technique: principle component analysis (PCA). FSS methods can be grouped
according to:

• Whether or not they make special use of the target attribute in the data set
such as “development cost”;

• Whether or not they use the target learner as part of their FSS analysis.

PCA is unique since, unlike other FSS methods, it does not make special use of the
target attribute. WRAPPER is also unique, but for different reasons: unlike other
FSS methods, it does use the target learner as part of the FSS analysis. Hall and
Holmes found that PCA was one of the worst performing FSS methods (perhaps
because it ignored the target attribute) while WRAPPER was the best (since it can
exploit its special knowledge of the target learner).

4 Case Study
To test the effectiveness of subtracting variables, we used WRAPPER to select
subtractable variables from the Figure 1 projects. Those projects were described
in terms of the COCOMO set of variables.

COCOMO [1, 2] is used for estimating software cost, effort and schedule.
COCOMO helps software developers reason about the cost and schedule impli-
cations of their software decisions such as software investment decisions; setting
project budgets and schedules; negotiating cost, schedule, and performance trade-
offs; making software risk management decisions, and making software improve-
ment decisions.

COCOMO measures effort in calendar months where one month is 152 hours
(and includes development and management hours). The core intuition behind
COCOMO-based estimation is that as systems grow in size, the effort required to
create them grows exponentially; i.e.

7

months = a ∗
(
KSLOCb

)
∗

(∏
i

EMi

)
(1)

Here, EMi is one of 15 effort multipliers such as cplx (complexity) or pcap
(programmer capability). In the COCOMO-I model, a and b are domain-specific
parameters and KSLOC is estimated directly or computed from a function point
analysis. In COCOMO II, b was expanded to include scale factors:

b = 0.91 +
∑

j

SFj

where SFj is one of five scale factors that exponentially influence effort. Exam-
ples of scale factors include pmat (process maturity) or resl (attempts to resolve
project risks).

Various learning methods have been applied to COCOMO. Elsewhere [10],
we have seen that best results come from transforming the COCOMO-I equation
of Equation 1 into the linearized model of Equation 2:

LN(effort) = b ∗ LN(Size) + LN(EM1) + LN(EM2) + . . . (2)

For COCOMO-II, the linearized model is:

LN(effort) = SF1 ∗ LN(Size) + SF2 ∗ LN(Size) + ...

LN(EM1) + LN(EM2) + . . . (3)

At each step in the WRAPPER, some learner built a model from the cur-
rent set of variables. Elsewhere we have tried various methods for such learning.
In those experiments, simple linear regression on over the linearized COCOMO
models did as well as any other method [10].

4.1 Data
This study used two data sets described using COCOMO I variables and two using
COCOMO-II variables:

• Coc81 comes from the COCOMO-I text [1] and includes data from a variety
of domains including engineering, science, financial, etc.

• The cii00 data set is the COCOMO-II data.

8

coc81 p02
times # times

FSx variable selected FSx variable selected
10 loc 10 7 loc 10

9 sced 10 6 turn 7
9 pcap 10 6 lexp 7
9 time 10 5 time 4
8 virt 9 4 modp 3
7 cplx 6 3 data 2
6 modp 5 3 tool 2
6 acap 5 3 sced 2
6 rely 5 2 rely 1
5 vexp 4 2 vexp 1
4 tool 3 2 cplx 1
4 data 3 1 aexp 0
3 aexp 2 1 pcap 0
3 stor 2 1 virt 0
2 lexp 1 1 acap 0
1 turn 0 1 stor 0

Figure 4: Some of the generated features sets.

• The cii04 data set includes the 72 projects from cii00 developed after 1990,
plus 47 new projects.

• Nasa60 comes from 20 years of NASA projects and is recorded using the
COCOMO-I variables. This data comes from multiple projects developed
at NASA centers at different geographical locations; performing different
tasks such as ground data receiving, flight guidance,etc.

Figure 1 shows results from the above four data sets as well as several sub-
sets of nasa60. Those subsets come from three NASA centers c01,c02,c03; three
NASA projects p02,p03,p04; and two NASA tasks t02,t03. For reasons of con-
fidentiality, the exact details of those centers, tasks, and projects cannot be dis-
closed. The other centers, projects, and tasks from nasa60 were not included for
a variety of pragmatic reasons (e.g. suspicious repeated entries suggesting data
entry errors, too few examples for generalization, etc).

Of these data sets, coc81 describes projects from before 1982; ci04 contain
data from the most recent projects; and the NASA data sets (nasa60, pX,cX,tX)
described projects newer than coc81 and before ci04.

9

 0

 5

 10

 15

 20

All FS01 FS02 FS03 FS04 FS05 FS06 FS07

Number of remaining variables after substracting feature set FSx

nasa60
coc81

p02
p03
p04
c01

c02
c03
t02
t03

cii00
cii04

 0

 20

 40

 60

 80

 100

All FS01 FS02 FS03 FS04 FS05 FS06 FS07

mean PRED(30) after subtracting feature set FSx (over 30 hold-outs)

nasa60
coc81

p02
p03
p04
c01

c02
c03
t02
t03

cii00
cii04

Figure 5: Feature sets. The results from each data set stop at the point of greatest
“total wins - total losses”.

4.2 Using the Data
For each dataset, our experiments were in two parts: feature set generation, fol-
lowed by feature set subtraction.

Randomization was used extensively in our experiments. Many algorithms
have an order effect such that their performance changes dramatically if the in-
puts are re-ordered. Kermer reported order effects in his analysis data from 15
projects: if training was restricted to 9 particular projects, the learning was far
more successful [5]. Randomization avoids such order effects.

In feature set ordering, the WRAPPER was called on 10 randomly sub-
samples of the data set. Each sub-sample contained 90% of the data (selected at

10

random). Variable were then grouped together according to how often they were
selected in the 10 sub-samples. All the variables that were selected with the same
frequency were placed together into the same feature set FSx. The feature sets are
then ordered by their frequency counts and then numbered. To these feature sets,
an extra sets are added: “All” (holding all the variables). For example the table of
Figure 4 shows the feature sets found in coc81 and p02 (note that different feature
sets are found in different data sets, a point we will return to in the conclusion).

After generation, came feature set subtraction. 30 times, we randomized the
order of the data. Next, starting with all the features, we subtracted each feature
set in turn. For each set, we conducted a hold-out experiments to assess the value
of that particular subset of the variables. In those hold-outs, we divided the project
data described using some FSx set into a 2

3
: 1

3
subsets, trained on the 2

3
rd subset

and tested on the 1
3
rd test subset. The whole point of cost models is that they can

be used to estimate the cost of new projects. Such hold-out experiments ensure
that we are assessing the learned model on the new data in the test subset. For
each set, the mean and standard deviation of the performance score on the test set
was collected. Scores from different sets were then compared using t-tests:

• The performance of each model was scored using PRED(30); i.e. the per-
centage of estimates in the test set that are within 30% of the actual val-
ues. We have found PRED(30) easier to explain to business than alternate
measures. Also, landmark high-water marks in software cost estimation re-
port their results in terms of PRED(30) [3]. A longer version of this paper
(in preparation), scores our models on a wider range of criteria including
PRED(20), PRED(25), and MMRE (these were not included here for space
reasons).

• To conduct the t-tests, the mean and standard deviation of the different
PRED(30)s seen in all pairs of FSx and FSy were computed. FSx and FSy
were said to “tie” if there was no statistical difference (at the α = 0.05
level) detectable. If the comparison did not “tie”, then the means were nu-
merically compared to compute “win”s and “loss”es. The “best” FSx set
was selected as the one with the highest “total wins- total losses” score.

All the plots in Figure 5 start at “All” and stop at the feature subset with the
maximum ‘total wins - total loses” (and if two sets score the same “total wins -
total loses”, then the one with highest mean was selected as the winner). Fig-
ure 1 was generated by comparing the “All” mean PRED(30) to the “best” mean
PRED(30).

11

As shown in the top “number of remaining variables” plot of Figure 5, in the
usual case, most of the variables are subtracted. Usually, the data sets were pruned
back to less than five variables. Three data sets (p03, p04, t02) got pruned back to
just one variable (lines of code). The larger data sets (cii04,cii00,coc81,nasa60)
were pruned back the least. This is hardly surprising: the more data the more
interesting the inter-relationships and the less the win in subtracting variables.

The bottom “mean PRED(30)” plot of Figure 5 shows results from 30 hold-
out experiments conducted for each features set. One interesting feature of this
“mean” plost is that “best” PRED never results from using “All” variables. This
result endorses the merits of variable subtraction: in terms of generating models
with high PRED, we have no evidence here that there is any down side to always
conducting feature subtraction (but recall our previous remarks- sometimes there
are business reasons for not subtracting features).

When we looked at the standard deviations in our 30 hold-outs (see Figure 6),
we found no extra evidence for or against variable subtraction. For larger data
sets, variable substraction always reduced standard deviation. For smaller data
sets, there was no clear pattern: subtraction changed standard deviation anywhere
from 49% to 150% and, on average, there was little change (last=99% of first).

5 Related Work
Variable subtraction (a.k.a. feature subset selection) has been widely studied in the
data mining literature (e.g. [4, 7]). Mostly those studies have focused on discrete
classes. To the best of our knowledge, the only other work on variable reduction
and for continuous class cost estimation data is Kirsopp & Shepperd’s (K&S) case
base reasoning (CBR) work [6].

In CBR, decisions about the current case are then made by studying similar
historical cases. A common technique is to use some form of distance metric
to extract the k-th nearest neighbors from the current case within a case library.
Some extrapolation mechanism is then applied to analyze the nearest neighbors
and make some decision about expected properties of the current case.

K&S explores CBR for cost estimation using feature subset selection using
two data sets:

• The small data set containing 10 variables and data from 77 projects;
• The large data set containing 48 variables and data from 407 projects.

Like us, K&S found that FSS significantly improves effort estimation. However,

12

standard deviation on
PRED(30) in 30 hold-outs

data set #projects before after after
before

nasa60 60 11% 8% 68%
cii00 161 9% 7% 83%
coc81 63 11% 10% 89%
cii04 119 5% 5% 94%

mean 9% 7% 83%

data set #projects before after after
before

p02 22 12% 6% 49%
c03 31 12% 6% 51%
t02 14 26% 19% 74%
c01 13 21% 21% 100%
p03 12 15% 16% 105%
p04 14 21% 26% 126%
c02 12 17% 24% 139%
t03 10 22% 32% 150%

mean 18% 19% 99%

Figure 6: Effects on standard deviation of variable subtraction.

and contrary to Figure 1, they found that FSS improved effort estimation more
in the large data sets than in the small data set. There are several possible ex-
planations of why our results are so different to those of K&S. Firstly, the K&S
definition of “small” is much larger than our definition. For example, our “small”
data sets contain 10 to 22 projects while K&S’s small data set contains 77 projects.
It is possible that if K&S ran their toolkit over our very small data sets, they might
find a different effect. Secondly, the studied algorithms are different: K&S use
CBR while we use regression over a parametric COCOMO models. It is possible
that CBR is confused by smaller data sets. Thirdly, we are using different data
sets and to really compare K&S with our results, we need to run COCOMO data
through their toolkit.

6 Discussion
The benefits of variable subtraction should be carefully weighed against the busi-
ness implications of subtracting seemingly irrelevant variables:

• Cost models should contain all available variables when business knowl-

13

edge argues for retention.
• Cost models should reject some variables (selected by WRAPPER) when

the goal is to improve effort estimation. As seen in Figure 1, for small data
sets (30 projects or less), the improved effort estimation can be quite dra-
matic. This increased improvement in the smaller data sets is an important
result since, typically, organizations only have data on a small number of
projects.

For most of our data sets, variable subtraction selected different variables.
For example, Figure 4 showed that different feature sets were selected in different
data sets (exception: loc, or lines of code, was always selected). To date, we
have found no general conclusions of the form “it is always useful to remove
variable X”. If our goal was a single reduced-COCOMO model, then this lack of
selection repeatability in different data sets would reflect poorly on our technique.
However, our generality comes not from the created model but from the methods
used to create that model. While it is true that different data sets select for different
variables, the same method (WRAPPER) can be used to find them in all data sets.

When discussing these results, we are often asked why we have not run these
experiments on more data sets. Accessing such further data sets is a non-trivial
task. It is hard enough getting any data from any organization, let alone data
in the COCOMO format. There is a good reason for this. Software projects
are notoriously difficult to control. Recall the 2001 report of the Standish group
that described a software industry where 23% of projects totally fail, 28% meet
all expectations, and the remaining 49% were significantly challenged in some
way (e.g. over-budget, over the time estimate, fewer features and functions that
initially specified) [13]. Corporations are therefore reluctant to expose their own
less-successful software development practices to public scrutiny.

Nevertheless, our goal is to apply our methods to more data from more
projects. For example, we plan to run our data sets through the K&S toolkit. Also
we are teaming with the University of Ottawa to extend the PROMISE repository
of public-domain data sets relating to software engineering [12]. For example, if
the reader want us to try our techniques on their data, they just need to submit
it to that repository2 (perhaps with some anonymization of any business-critical
information).

2http://promise.site.uottawa.ca/SERepository/
dataset-software-donation-page.html

14

References
[1] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[2] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K.
Clark, Bert Steece, A. Winsor Brown, Sunita Chulani, and Chris Abts. Soft-
ware Cost Estimation with Cocomo II. Prentice Hall, 2000.

[3] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical soft-
ware engineering cost models. IEEE Transaction on Software Engineerin-
ing, 25(4), July/August 1999.

[4] M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for
discrete class data mining. IEEE Transactions On Knowledge And Data
Engineering, 15(6):1437– 1447, 2003.

[5] C.F. Kemerer. An empirical validation of software cost estimation models.
Communications of the ACM, 30(5):416–429, May 1987.

[6] C. Kirsopp and M. Shepperd. Case and feature subset selection in case-
based software project effort prediction. In Proc. of 22nd SGAI Interna-
tional Conference on Knowledge-Based Systems and Applied Artificial In-
telligence, Cambridge, UK, 2002.

[7] Ron Kohavi and George H. John. Wrappers for feature subset selection.
Artificial Intelligence, 97(1-2):273–324, 1997.

[8] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Automatically learning
softwate cost extrapolations. 2005. Submitted, IEEE ASE, 2005, Available
from http://menzies.us/pdf/05learncost.pdf.

[9] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Validation methods for
calibrating software effort models. In Proceedings, ICSE, 2005. Available
from http://menzies.us/pdf/04coconut.pdf.

[10] Tim Menzies, Zhihao Chen, Dan Port, and Jairus Hihn. Simple soft-
ware cost estimation: Safe or unsafe? In Proceedings, PROMISE work-
shop, ICSE 2005, 2005. Available from http://menzies.us/pdf/
05safewhen.pdf.

15

[11] Tim Menzies, Zhihoa Chen, and Dan Port. Feature subset selection can
improves software cost estimation. In Proceedings, PROMISE workshop,
ICSE 2005, 2005.

[12] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering,
University of Ottawa, Canada, 2005. Available from http://promise.
site.uottawa.ca/SERepository.

[13] The Standish Group Report: Chaos 2001, 2001. Available from
http://standishgroup.com/sample_research/PDFpages/
extreme_chaos.pdf.

[14] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 1999.

16

