
Finding the Right Data for
Software Cost Modeling

Zhihao Chen†, Tim Menzies?, Dan Port‡, Barry Boehm†

†Center for Software Engineering, University. of Southern California
?Computer Science, Portland State University

‡Computer Science, University of Hawaii
zhihaoch@cse.usc.edu;tim@timmenzies.net

dport@hawaii.edu;boehm@cse.usc.edu

Abstract

Strange to say, when building a software cost model, sometimes it is 5

useful to ignore much of the available cost data.
Word count: 4000 words+ (5 figures*200)=5000

1 Introduction
Good software cost models can significantly help the managers of software projects.
With s good models, project stakeholders can make informed decisions about 10

(e.g.) how to manage resources, how to control and plan the project, and how
to deliver the project on time, on schedule and on budget.

Off-the-shelf “untuned” models have been up to 600% inaccurate in their
estimates, e.g. [6]. Hence, the wise manager uses a cost model built from local
data. But what data should we use to build a good cost model? Real-world data 15

sets, such as what comes from a software engineering project, often contain noisy
or irrelevant or redundant variables.

Prior to getting the data, it is hard to know what parts of the data are most
important. However, once a database is available, automatic tools can be used
to prune the data back to the most important values. Therefore this paper pro- 20

poses a change to current practice. Often, cost models are built using all available

1

scott
Polygonal Line

scott
Polygonal Line

scott
Polygonal Line

scott
Note
delete?

scott
Note
delete "a"
Change project to projects?

variables
1 2 3 ... 17

sub analyst process required lines development
project system ability maturity reliability ... of code effort(months)
proj1 DBapi high low high ... 100, 000 467
proj1 GUI high low low ... 200, 000 847
proj2 guidance high high nominal ... 50, 000 174

...

Figure 1: Some project data.

data. Here, we propose that after data collection and before model building, cost
modelers perform some data pruning experiments. As shown below, such pruning
experiments are simple and fast to perform.

Our process starts with a table of historical data divided into columns and 25

rows. Each column is a different variable describing some aspect of a software
project. Each row shows data from different software sub-systems, so one project
can contribute many rows. For example, Figure 1 shows data from 17 variables
and rows from three sub-systems from two projects. The data in such a table can
be pruned by removing columns or removing rows: 30

1. In row pruning (also known as stratification), rows from related projects are
collected together and different cost models are learned from these different
subsets.

2. In column pruning (also known as feature subset selection), the columns
are sorted left-to-right according to their “usefulness”; i.e. how well that 35

column’s variable predicts for the target variable (in our case, software
development effort). Column pruning then proceeds left to right across
the sorted columns, each time removing some less-useful left-hand-side
columns. At each step of the pruning, a cost model is learned from the
remaining columns. 40

The benefits of row pruning have been reported previously. For example, Shep-
perd and Schofeld [14] report experiments with row pruning where estimator per-
formance improved by up to 28% (measured in terms of the “PRED” measure
described later in this article), However, and this is the point of this paper, we find
that much larger improvements result from pruning both rows and columns. For 45

example, the experiments presented here include one data set called p02 where
estimator performance improved from 15% to 97% (!!).

2

Further, often, these large improvements were seen when most of the columns
are pruned away. For example, on average, column pruning removed 65% of all
columns. That is, surprisingly, when building a software cost model it is usually 50

useful useful to ignore over half of the available cost data.
More importantly, row and column pruning leads to the largest improvements

in estimator performance in the smallest training sets (less than 30 examples). This
is a result of tremendous practical significance. Modern software practices are
change so rapidly that most organizations can’t access large databases of relevant 55

project data. Our results suggest that this is not necessarily a problem, provided
models are learned via row and column pruning.

This rest of this paper describes experiments with our tool for column prun-
ing. This tool is a set of UNIX scripts that use the WRAPPER variable subtraction
algorithm from the public-domain WEKA data mining toolkit [15]. The tool is 60

fully automated, runs on a standard LINUX installation, and is available from the
authors.

2 Background
This paper expands on a prior workshop publication [3] in two ways. Firstly, this
paper explores more data than before (double the number of COCOMO-I project 65

analyzed, two new COCOMO-II data sets). Secondly, it includes an expanded
discussion on the business implications of column pruning.

To the best of our knowledge, the only other work on column pruning for
cost estimation was an experiment by Kirsopp & Shepperd [7]. Kirsopp & Shep-
perd extended a case-based reasoning tool with column pruning. Like this study, 70

they found that column pruning significantly improves effort estimation. There
experimental base was much more restrictive than this study (they ran only two
data sets and we ran 15). Also, this work is more reproducible than Kirsopp &
Shepperd: their data sets are hard to access and all our COCOMO-I data sets can
be downloaded from the PROMISE repository. 75

Data mining researchers have studied column pruning, mostly for data sets
with discrete target classes. Our results are consistent with that work: in the usual
case, most of the columns can be pruned away without damaging the predictive
power of a model [5, 9].

3

scott
Polygonal Line

scott
Note
There is be Their ?

3 Pruning: Why? 80

The case for pruning rows is quite simple. Software projects are not all the same.
For example, real-time safety critical systems are very different to batch financial
processors. Given a database of different kinds of software, it is just good sense
to divide up the rows into different project types and learn different cost models
for each type. 85

The case for pruning columns is slightly more complex. If a learned cost
model uses all the variables in the database then the only way to use that cost
model on future sub-systems is to collect information on all those variables. In
many business situations, the cost of reaching some goal is a function of how
much data you have to collect or monitor along the way. If the learned model uses 90

only some of the variables then using that model in the future means collecting
less data. This would be useful in several scenarios. For example, when monitor-
ing an out-sourced project at a remote site, it is useful to minimize the reporting
requirements to just the variables that matter the most. Such a reporting structure
reduces the overhead in managing a contract. 95

From a technical perspective, there are also good reasons to subtract vari-
ables:

Reducing Variance: Miller offers an extensive survey of column pruning for lin-
ear models and regression [12]. That survey includes a very strong argument
for column pruning: the variance of a linear model learned by minimizing 100

least squares error decreases as the number of columns in the model. That
is, the fewer the columns, the more restrained are the model predictions.

Under-sampling: The number of possible influences on a project is quite large
and, usually, historical data sets on projects for a particular company are
quite small. Hence, a variable that is theoretically useful may be practically 105

useless. For example, in our na60 data set, most projects cluster were rated
as having a high complexity. Therefore, this data set would not support
conclusions about the interaction of extra high complex projects with other
variables. A learner would be wise to subtract this variable (and a cost
modeling analyst would be wise to suggest to their NASA clients that they 110

refine the local definition of “complexity”).
Irrelevancy: Sometimes, modelers are incorrect in their beliefs about what vari-

ables effect some outcome. In this case, they might add irrelevant variables
to a database. If that database is then used to build a cost model using all
the variables in that cost model. Hence, anyone trying to use that model in 115

4

scott
Note
in order to estimate future projects, which have similar natures with those were used to calibrate the local model...

For example, if we use a general model to estimate project type 02, the accuracy is, if we use the calibrated model to estimate the project type 02, the accuray is

0
10
20
30
40
50

2
low

5

nominal

50

high
2

v.high
1

x.high

Figure 2: Distribution of software complexity cplx within the nasa60 data set.

the future will be forced into excessive data collection.
Noise: Learning a cost estimation model is easier when the learner does not have

to struggle with fitting the model to confusing noisy data (i.e. when the
data contains spurious signals not associated with variations to projects).
Noise can come from many sources such clerical errors or missing data. 120

For example, organizations that only build word processors may have little
data on software projects with high reliability requirements.

Correlated variables: If multiple variables are tightly correlated, then using all
of them will diminish the likelihood that either variable attains significance.
A repeated result in data mining is that pruning away some of the corre- 125

lated variables increases the effectiveness of the learned model (the reasons
for this are subtle and vary according to which particular learner is being
used [5]).

4 Pruning: How?
The column pruning method used in this study was the WRAPPER [8]. The 130

WRAPPER selects combinations of columns and asks some learner to build a cost
model using just those columns. The WRAPPER then grows the selected columns
and checks if a better model comes from learning over the larger set of columns.
The WRAPPER stops when there are no more columns to select, or there has
been no significant improvement in the learned model for the last five additions 135

(in which case, those last five additions are deleted). Technically speaking, this is
a forward select hill-climbing search with a “stale” parameter set to 5.

WRAPPER is thorough and, according to Hall and Holmes, often works bet-
ter than other features subset selection algorithms [5]. Theoretically, it is quite
slow since (in the worst case), it has to explore all subsets of the available columns. 140

However, all the data sets in this study are quite small. Our experiments only re-
quired around 20 minutes per data set.

The Hall and Holmes results were also negative about another widely used

5

scott
Polygonal Line

scott
Note
it should be Best First search

Hill-climbing search is different with BFS.

FSS technique: principle component analysis (PCA). FSS methods can be grouped
according to: 145

• Whether or not they make special use of the target attribute in the data set
such as “development cost”;

• Whether or not they use the target learner as part of their FSS analysis.

PCA is unique since it does not make special use of the target attribute. WRAP-
PER is also unique, but for different reasons: unlike other FSS methods, it does 150

use the target learner as part of the FSS analysis. Hall and Holmes found that
PCA was one of the worst performing FSS methods (perhaps because it ignored
the target attribute) while WRAPPER was the best (since it can exploit its special
knowledge of the target learner).

5 Cost Modeling with COCOMO 155

Before pruning data, we first need to understand how cost model might use that
data. This study uses COCOMO for our cost modeling. COCOMO stands for
Constructive Cost Model [1, 2]. COCOMO helps software developers reason
about the cost and schedule implications of their software decisions such as soft-
ware investment decisions; setting project budgets and schedules; negotiating 160

cost, schedule, and performance tradeoffs; making software risk management de-
cisions, and making software improvement decisions. On advantage of COCOMO
(and this is why we us it) is that unlike other many other costing models such as
SLIM or SEER, COCOMO is an open model with numerous published data [1,2].

There are two versions of COCOMO: COCOMO-I and COCOMO-II. In go- 165

ing from the 1981 COCOMO-I model [1] to the 2000 COCOMO-II model [2], one
parameter, “Turnaround Time”, was dropped to reflect the almost-universal use
of interactive software development. Another parameter, “Modern Programming
Practices”, was dropped in favor of a more general “Process Maturity” parameter.
But several more parameters were added to reflect the subsequently-experienced 170

influences of such factors as “Development for Reuse”, “Multisite Development”,
“Architecture and Risk Resolution”, and “Team Cohesion”. The COCOMO-II
book [2] also provides capabilities and guidelines for an organization to add new
parameters, reflecting their particular situations.

COCOMO measures effort in calendar months where one month is 152 hours 175

(and includes development and management hours). The core intuition behind
COCOMO-based estimation is that as systems grow in size, the effort required to

6

increase acap: analysts capability
these to pcap: programmers capability
decrease aexp: application experience
effort modp: modern programming practices

tool: use of software tools
vexp: virtual machine experience
lexp: language experience
sced: schedule constraint

decrease data: data base size
these to turn: turnaround time
decrease virt: machine volatility
effort stor: main memory constraint

time: time constraint for cpu
rely: required software reliability
cplx: process complexity

Figure 3: COCOMO I effort multipliers.

very very extra
low low nominal high high high

ACAP 1.46 1.19 1.00 0.86 0.71
PCAP 1.42. 1.17 1.00 0.86 0.70
AEXP 1.29 1.13 1.00 0.91 0.82
MODP 1.24. 1.10 1.00 0.91 0.82
TOOL 1.24 1.10 1.00 0.91 0.83
VEXP 1.21 1.10 1.00 0.90
LEXP 1.14 1.07 1.00 0.95
SCED 1.23 1.08 1.00 1.04 1.10
DATA 0.94 1.00 1.08 1.16
TURN 0.87 1.00 1.07 1.15
VIRT 0.87 1.00 1.15 1.30
STOR 1.00 1.06 1.21 1.56
TIME 1.00 1.11 1.30 1.66
RELY 0.75 0.88 1.00 1.15 1.40
CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Figure 4: COCOMO-I effort multiplier values.

create them grows exponentially. More specifically, Equation 1 shows the CO-
COMO I model [1]:

months = a ∗
“
KSLOCb

”
∗

0@Y
j

EMj

1A (1)

180

Here, EMi is one of 15 effort multipliers such as cplx (complexity) or pcap
(programmer capability). The COCOMO-I effort multipliers are shown defined
in Figure 3 and their numeric values are shown in Figure 4. In COCOMO-II, the
number of effort multipliers changed from 15 to 17.

7

In the COCOMO-I model, a and b are domain-specific variables and KSLOC 185

(thousands of lines of non-commented source code) is estimated directly or com-
puted from a function point analysis. In COCOMO-II, b was expanded to include
scale factors:

b = 0.91 +
∑

j

SFj

where SFj is one of five scale factors that exponentially influence effort. Exam-
ples of scale factors include pmat (process maturity) or resl (attempts to resolve 190

project risks).
A standard method for assessing COCOMO performance is PRED(30). PRED(30)

is calculated from the relative error, or RE, which is the relative size of the differ-
ence between the actual and estimated value:

RE =
estimate− actual

actual

195

The mean magnitude of the relative error, or MMRE, is the average percent-
age of the absolute values of the relative errors over an entire data sets. PRED(N)
reports the average percentage of estimates that were within N% of the actual
values. If a data set has R rows, then:

PRED(N) =
100
R

R∑
i

{
1 if MREi ≤ N

100
0 otherwise

200

For example, a PRED(30)=50% means that half the estimates are within 30%
of the actual. Note that, we report results in terms of PRED(N), not MMRE.
This is a pragmatic decision- we have found PRED(N) easier to explain to busi-
ness users than MMRE. Also, there are more PRED(N) reports in the literature
than MMRE. This is perhaps due to the influence of the COCOMO researchers 205

who reported their 1999 landmark study using PRED(N) [4]. Further, we report
here PRED(30) results since the major experiments of that 1999 study also used
PRED(30). The results for PRED(25) are similar with those for PRED(30) except
that the accuracies for PRED(30) is a little better than those for PRED(25).

In order to use the linear least squares regression, which is the most widely 210

used and the simplest modeling method, it is common to transform COCOMO
model into linear model by taking the logs of Equation 1.

LN(effort) = b ∗ LN(Size) + LN(EM1) + LN(EM2) + . . . (2)

8

Note that, if Equation 2 is used, then before computing PRED(N), the esti-
mated effort has to be converted back from a logarithm. 215

6 Case Study Data
This study uses datasets in both COCOMO-I and COCOMO-II format:

• The cii0 data set was used to build the COCOMO-II model.
• The cii4 data set is also in the COCOMO-II format and includes the 72

projects from cii0 developed after 1990, plus 47 new projects. 220

The COCOMO-II data is not published since it was collected on condition of
confidentiality with the companies supplying the data. Further research must be
conducted in terms of the same conditions. In contrast, several COCOMO-I data
sets are available in the PROMISE repository [13]:

• Coci comes from the COCOMO-I text [1] and includes data from a variety 225

of domains including engineering, science, financial, etc.
• na60 comes from 20 years of NASA projects and is recorded using the

COCOMO-I variables.
• The na60 data can be stratified into the following data sets:

– c01,c02,c03 store data from three different NASA geographical loca- 230

tions;
– p02,p03,p04 stores data from three different NASA projects;
– t02,t03 stores data from two tasks such as ground data receiving and

flight guidance.
– For experimental purposes, we group the above as follows: 235

* call combines all the center data; i.e. call = c1 + c2 + c3;
* tall combines all the task data; i.e. tall = t02 + t03;
* pall combines all the project data; i.e. pall = p02 + p03;

– For reasons of confidentiality, the exact details of those centers, tasks,
and projects cannot be disclosed. The other centers, projects, and tasks 240

from na60 were not included in cX, pX, or tX for a variety of prag-
matic reasons (e.g. suspicious repeated entries suggesting data entry
errors, too few examples for generalization, etc).

9

Of these data sets, coci describes projects from before 1982; cii4 contain
data from the most recent projects; and the NASA data sets (na60, pX,cX,tX) 245

described projects newer than coci and before cii4. Also, the COCOMO-I data
sets (coci, na60, c01, c02, c03, p02, p03, p04, t02, t03, call, pall, tall) have the 15
columns of Figure 3 COCOMO-II data sets (cii0, cii4) have 24 columns.

7 Experimental Method
Having described COCOMO, the WRAPPER, and our data sets, we can now de- 250

scribe the inner details of our experiment.
Column pruning using the WRAPPER was discussed above. Recall that the

WRAPPER sorts columns are sorted left-to-right according how well that col-
umn’s variable predicts for the target variable (in our case, software development
effort). Column pruning then proceeds left to right across the sorted columns, 255

each time removing some less-useful left-hand-side columns. At each step of the
pruning, a cost model is learned from the remaining columns. Column pruning
stops when removing more columns does not improve the best result seen so far.

To find the relative value of each column, we ran the WRAPPER ten times
(each time using a randomly selected 90% of the rows). The value of a column 260

was then set to the number of times (out of ten) that the WRAPPER selected that
column. Once the WRAPPER ordered the columns, we randomized the order of
the rows and starting column pruning. To ensure statistical validity, randomization
(followed by column pruning) was repeated 30 times. For each repeat, at each
stage of the pruning, the lowest value column was removed. The rows in the 265

remaining columns were then divided into training and test sets (each time using a
randomly selected 67% of the rows for the training set). A cost model was learned
(using linear regression) from the training set and then assessed, using PRED, on
the test set. Once the 30 repeats were completed, a best model was selected by
looking at the mean and standard deviation of model performance at each pruning 270

step. The best model was the one that t-tests confirmed out-performed all the other
states of the column pruning. The mean value of that model over the 30 repeats
was then reported.

The above process was fully automated using our own Unix scripts which
control a JAVA data mining library called the WEKA [15]. The WEKA comes 275

complete with a linear regression learner and an implementation of the WRAP-
PER. The whole rig is available, on request, from the authors.

10

 100

 80

 60

 40

 20

 0

p0
3

p0
2

c0
2

t0
2

p0
4

t0
3

c0
1

c0
3

ta
ll

pa
ll

ca
ll

na
60

co
ci

ci
i4

ci
i0

data set

B=before
A=after

100*(B-A)/B

Figure 5: Number of columns.

8 Results
The results of our column pruning are shown in Figure 5. The red and green lines
of show the number of columns in our data sets before and after pruning. The data 280

sets are on the x-axis. The before values are 22 for the COCOMO-II data sets
(cii0 and cii4) while the before values for the COCOMO-I data sets are all 15.
The blue line shows the percentage of the before columns removed by pruning
(so the higher this number, the fewer columns remain after pruning). On average,
over 65% of the columns were pruned. Sometimes, the pruning was quite heavy 285

with over 80% of the columns pruned away.
A concern with such large scale pruning is that the resulting models would

be somehow sub-standard. This proved not to the case. The PRED(30) results
associated with the pruned data sets are shown in Figure 6 (for space reasons, only
the PRED(30) results are shown- a longer version of this paper, in preparation, 290

includes PRED(20) and PRED(25) results).
The red lines on Figure 6 show the mean PRED(30) seen in 30 trials using

all the columns. These are the baseline results for learning cost models before
applying any pruning method. The green lines show the best mean PRED(30)
seen after automatic column pruning. The difference between the red and the 295

green lines is the improvement produced by pruning.
The data sets are sorted by pruning method into three plots. Within each plot,

the data sets are sorted left-to-right in increasing value of after−before
before

. The x-axis
shows the names of the data sets used in these studies. The blue lines show the
number of rows in each data set. 300

11

 160

 120

 80

 40

 0

na
60

co
ci

ci
i4

ci
i0

#r
ow

s

 100

 75

 50

 25

P
R

E
D

(3
0)

pruning just
columns

ta
ll

ca
ll

pa
ll

#rows

pruning columns
 and some rows

before
after

p0
3

p0
2

c0
2

t0
2

p0
4

t0
3

c0
1

c0
3

pruning columns
 and many rows

Figure 6: Effects on PRED(30) of different pruning methods.

The plots of Figure 6 have three labels: “pruning just columns”, “pruning
columns and some rows”, and “pruning colums and many rows”. The data sets
are sorted into three labels according to their stratification. The left-hand-side re-
sults labeled “pruning just columns” come from the largest data sets that combing
project information form many sources (i.e. cii0, cii4, coc1, na60). These data 305

sets are not divided up into data from similar sources. Hence, there is no row
pruning used on these data sets.

The right-hand-side results labeled “pruning columns and many rows” come
from eight data sets that have been heavily stratified into just specific NASA cen-

12

ters (i.e. c01, c02, c03); or specific NASA projects (i.e. p01, p02, p03); or specific 310

NASA software tasks (i.e. t02, to3).
The middle results labeled “pruning columns and some rows” show data sets

that have been somewhat stratified. The data sets in this group combine together
data all the NASA centers (i.e. call); or all the NASA projects (i.e. pall); or all
the NASA tasks (i.e. tall). This middle group samples a point half-way between 315

the unstratified data sets on the left and the heavily stratified data sets on the right.
With one exception (c03), the general trend across the three graphs is clear:

as data set size shrinks, the improvement increases. Column pruning by itself
seems of little value. However, column pruning combined with row pruning can
result in dramatic improvements of effort estimation. 320

9 Discussion
The specific goal of this paper is to encourage more column pruning in cost mod-
eling, particularly when dealing with very small data sets. The improvements seen
in Figure 6 seem quite impressive. Row and column and pruning, in combination,
are very useful for cost modeling- particularly when dealing with small data sets. 325

The more general goal of our work is to encourage repeatable, refutable, and
improbable experiments in software engineering. To that end, as much as possible,
we use public domain tools and public domain data sets. Hence, this paper uses
COCOMO for its cost modeling since, Further, much our data can be downloaded
from the PROMISE repository [13]. We encourage other researchers in the field 330

to increase access to their models and data.
In closing, it is appropriate to discuss when column proving can not or should

not be applied:

1. Our variable subtraction methods require an historical database of projects.
If there is no such database,then our column pruning techniques won’t work. 335

2. Even if a historical database exists and our techniques suggest pruning vari-
able X , then it may still be important to ignore that advice. If a cost model
ignores certain effects that business users believe are important, then those
users may not trust that model. In that case, even if a variable has no no-
ticeable impact on predictions, it should be left in the model. By leaving 340

such variables in a model we are acknowledging that, in many domains,
expert business users hold in their head more knowledge that what may be
available in historical databases. Suppose that there is some rarely occur-

13

scott
Note
??
Row pruning is used to estimate future projects, which have similar natures with those were used to calibrate the local model.
If ... then ...

scott
Note
The differences between stratification and row pruning, local calibration and column pruning??

ring combination of factors which leads to a major productivity improve-
ment. Even if there is little data on some situation, it still should be in- 345

cluded in the model. For example, even though some studies have shown
that reduced-parameter function point counting rules are equally good in
most situations [2], COCOMO II supports the full International Function
Point Users’ Group (IFPUG) set of parameters due to their wide usage and
acceptance in the IFPUG community. 350

3. Another reason not to prune variables is that you still might need them. For
example, the experiments shown above often subtract over half of the at-
tributes in a COCOMO-I model while (usually) improve effort estimation.
However, suppose that a business decision has to be made using some of
the pruned variables. The reduced model has no information on those sub- 355

tracted variables so a business user would have to resort to other information
for making their decisions.

Hence, we propose using column pruning with some care. If there is no his-
torical data for learning specialized data sets, then managers should use the gen-
eral background knowledge within COCOMO. The 1981 regression co-efficients 360

of COCOMO-I or the updated co-efficients of COCOMO-II [2] are the best general-
purpose indicators we can currently offer for cost estimation. Management deci-
sions can use that public knowledge to make software process decisions. For
example, according to the coefficients on the COCOMO-II pmat variable, the in-
crease in cost between a CMM3 and CMM4 project contain N lines of code is 365

N3.13/N1.56. With this estimate in hand, a business user could then make their
own assessment about the cost of increased software process maturity vs the ben-
efits of that increase.

If historical data from the local site is available, then managers could tune the
general COCOMO background knowledge by adjusting the coefficients within the 370

COCOMO equations. COCOMO-I and COCOMO-II contain with several local
calibration variables that can quickly tune a model to local project data. Our ex-
perience has been that 10 to 20 projects are adequate to achieve such tunings [10].

Local calibration is a simple tuning method that is supported by many tools1.
Currently, our toolkit methods requires more effort (i.e. some UNIX scripting) 375

than local calibration. Figure 6 suggests that the extra effort may well be worth-
while, particularly when building models from a handful of projects. Also, we
have found that it is easier to extrapolated costs from old projects to new projects

1e.g. http://sunset.usc.edu/available_tools/index.html

14

with reduced variable sets [11]. Nevertheless, column pruning is not appropri-
ate when there are business reasons to use all available variables (e.g. the three 380

reasons described above).

Acknowledgements
The advice of the anonymous reviewers helped to clarify an earlier draft of this
paper. Helen Burgess offered invaluable editorial assistance.

References 385

[1] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[2] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K.
Clark, Bert Steece, A. Winsor Brown, Sunita Chulani, and Chris Abts. Soft-
ware Cost Estimation with Cocomo II. Prentice Hall, 2000.

[3] Zhihoa Chen, Tim Menzies, and Dan Port. Feature subset selection can im- 390

proves software cost estimation. In Proceedings, PROMISE workshop, ICSE
2005, 2005. Available from http://menzies/pdf/05/fsscocomo.
pdf.

[4] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical soft-
ware engineering cost models. IEEE Transaction on Software Engineerin- 395

ing, 25(4), July/August 1999.

[5] M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for
discrete class data mining. IEEE Transactions On Knowledge And Data
Engineering, 15(6):1437– 1447, 2003.

[6] C.F. Kemerer. An empirical validation of software cost estimation models. 400

Communications of the ACM, 30(5):416–429, May 1987.

[7] C. Kirsopp and M. Shepperd. Case and feature subset selection in case-
based software project effort prediction. In Proc. of 22nd SGAI Interna-
tional Conference on Knowledge-Based Systems and Applied Artificial In-
telligence, Cambridge, UK, 2002. 405

15

[8] R. Kohavi, D. Sommerfield, and J. Dougherty. Data minining using mlc++:
A machine learning library in c++. In Tools with AI 1996, 1996.

[9] Ron Kohavi and George H. John. Wrappers for feature subset selection.
Artificial Intelligence, 97(1-2):273–324, 1997.

[10] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Validation methods for 410

calibrating software effort models. In Proceedings, ICSE, 2005. Available
from http://menzies.us/pdf/04coconut.pdf.

[11] Tim Menzies, Zhihao Chen, Dan Port, and Jairus Hihn. Simple soft-
ware cost estimation: Safe or unsafe? In Proceedings, PROMISE work-
shop, ICSE 2005, 2005. Available from http://menzies.us/pdf/ 415

05safewhen.pdf.

[12] A. Miller. Subset Selection in Regression (second edition). Chapman & Hall,
2002.

[13] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering, 420

University of Ottawa, Canada, 2005. Available from http://promise.
site.uottawa.ca/SERepository.

[14] M. Shepperd and C. Schofield. Estimating software project effort using
analogies. IEEE Transactions on Software Engineering, 23(12), Novem-
ber 1997. Available from http://www.utdallas.edu/˜rbanker/ 425

SE_XII.pdf.

[15] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 1999.

16

