
Finding the Right Data for
Software Cost Modeling

Zhihao Chen†, Tim Menzies?, Dan Port‡, Barry Boehm†

†Center for Software Engineering, University. of Southern California
?Computer Science, Portland State University

‡Computer Science, University of Hawaii
zhihaoch@cse.usc.edu;tim@timmenzies.net

dport@hawaii.edu;boehm@cse.usc.edu

Abstract

Strange to say, when building a software cost model, sometimes it is 5

useful to ignore much of the available cost data.
Word count: 4000 words+ (5 figures*200)=5000

1 Introduction
Good software cost models can significantly help the managers of software projects.
With good models, project stakeholders can make informed decisions about how 10

to manage resources; how to control and plan the project; or how to deliver the
project on time, on schedule and on budget.

Off-the-shelf “untuned” models have been up to 600% inaccurate in their
estimates [6]. Hence, the wise manager uses a cost model built from local data.
But what data should we use to build a good cost model? Real-world data sets, 15

such as what comes from software engineering projects, often contain noisy or
irrelevant or redundant variables.

Prior to getting the data, it is hard to know what parts of the data are most
important. However, once a database is available, automatic tools can be used
to prune the data back to the most important values. Therefore this paper pro- 20

poses a change to current practice. Often, cost models are built using all available

1



variables
1 2 3 ... 17

sub analyst process required lines development
project system ability maturity reliability ... of code effort(months)
proj1 DBapi high low high ... 100, 000 467
proj1 GUI high low low ... 200, 000 847
proj2 guidance high high nominal ... 50, 000 174

... ... ... ... ... ... ... ...

Figure 1: Some project data.

data. Here, we propose that after data collection and before model building, cost
modelers should perform some data pruning experiments. As shown below, such
pruning experiments are simple and fast to perform.

Our process starts with a table of historical data divided into columns and 25

rows. Each column is a different variable describing some aspect of a software
project. Each row shows data from different software sub-systems, so one project
can contribute many rows. For example, Figure 1 shows data from 17 variables
and rows from three sub-systems from two projects. The data in such a table can
be pruned by removing columns or removing rows: 30

1. In row pruning (also known as stratification), rows from related projects are
collected together and different cost models are learned from these different
subsets.

2. In column pruning (also known as feature subset selection), the columns
are sorted left-to-right according to their “usefulness”; i.e. how well that 35

column’s variable predicts for the target variable (in our case, software
development effort). Column pruning then proceeds left to right across
the sorted columns, each time removing some less-useful left-hand-side
columns. At each step of the pruning, a cost model is learned from the
remaining columns. 40

The benefits of row pruning have been reported previously. For example, Shep-
perd and Schofeld [14] report experiments with row pruning where estimator per-
formance improved by up to 28% (measured in terms of the “PRED” measure
described later in this article), However, and this is the point of this paper, we find
that much larger improvements result from pruning both rows and columns. For 45

example, the experiments presented here include one data set called p02 where
estimator performance improved from 15% to 97%.

2



Further, these large improvements were seen when most of the columns are
pruned away. For example, in our experiments, column pruning removed 65% of
all columns (on average). Surprisingly, when building a software cost model, it is 50

usually useful to ignore over half of the available cost data.
More importantly, row and column pruning leads to the largest improvements

in estimator performance in the smallest training sets (less than 30 examples). This
is a result of tremendous practical significance. Modern software practices change
so rapidly that most organizations can’t access large databases of relevant project 55

data. Our results suggest that this is not necessarily a problem, provided models
are learned via row and column pruning.

This rest of this paper describes experiments with our tool for column prun-
ing. This tool is a set of UNIX scripts that use the WRAPPER variable subtraction
algorithm from the public-domain WEKA data mining toolkit [15]. The tool is 60

fully automated, runs on a standard LINUX installation, and is available from the
authors.

2 Background
This paper applies column pruning methods to cost estimation. These pruning
methods were evolved by the data mining community. While these methods have 65

been explored extensively [5, 9], there is very little prior work on column pruning
and software cost modeling.

To the best of our knowledge, the only other work on column pruning for cost
estimation was a limited experiment by Kirsopp and Shepperd [7]. Like this study,
they found that column pruning significantly improves effort estimation. How- 70

ever, their experimental base was much more restrictive than this study (they ran
only two data sets while we ran 15). Also, unlike our work, their experiment is not
reproducible. The Kirsopp & Shepperd data sets are not public domain while all
our COCOMO-I data sets can be downloaded from the PROMISE repository [13].

An earlier draft of this paper appeared previously in a workshop publica- 75

tion [3]. This paper extends that earlier draft in two ways. Firstly, this paper ex-
plores more data than before (double the number of COCOMO-I project analyzed,
two new COCOMO-II data sets). Secondly, it includes an expanded discussion on
the business implications of column pruning.

3



0
10
20
30
40
50

2
low

5

nominal

50

high
2

v.high
1

x.high

Figure 2: Distribution of software complexity cplx within the na60 data set.

3 Pruning: Why? 80

The case for pruning rows is quite simple. Software projects are not all the same.
For example, real-time safety critical systems are very different to batch financial
processors. Given a database of different kinds of software, it is just good sense to
divide up the rows into different project types and learn different cost models for
each type. Then, in the future, managers can use different cost models depending 85

on what type of software they are developing.
The case for pruning columns is slightly more complex. If a learned cost

model uses all the variables in the database then the only way to use that cost
model on future sub-systems is to collect information on all those variables. In
many business situations, the cost of reaching some goal is a function of how 90

much data you have to collect or monitor along the way. But if the learned model
uses only some of the variables, then using that model in the future means col-
lecting less data. This would be useful in several scenarios. For example, when
monitoring an out-sourced project at a remote site, it is useful to minimize the
reporting requirements to just the variables that matter the most. Such a reporting 95

structure reduces the overhead in managing a contract.
From a technical perspective, there are also good reasons to subtract vari-

ables:

Under-sampling: The number of possible influences on a project is quite large
and, usually, historical data sets on projects for a particular company are 100

quite small. Hence, a variable that is theoretically useful may be practi-
cally useless. For example, Figure 2 shows how in na60 data set, nearly
all those those NASA projects were rated as having a high complexity (see
Figure 2). Therefore, this data set would not support conclusions about
the interaction of, say, extra high complex projects with other variables. A 105

learner would be wise to subtract this variable (and a cost modeling analyst
would be wise to suggest to their NASA clients that they refine the local
definition of “complexity”).

4



Reducing Variance: Miller offers an extensive survey of column pruning for lin-
ear models and regression [12]. That survey includes a very strong argument 110

for column pruning: the variance of a linear model learned by minimizing
least squares error decreases as the number of columns in the model. That
is, the fewer the columns, the more restrained are the model predictions.

Irrelevancy: Sometimes, modelers are incorrect in their beliefs about what vari-
ables effect some outcome. In this case, they might add irrelevant variables 115

to a database. Without column pruning, a cost model learned from that
database might contain these irrelevant variables. Anyone trying to use that
model in the future would then be forced into excessive data collection.

Noise: Learning a cost estimation model is easier when the learner does not have
to struggle with fitting the model to confusing noisy data (i.e. when the 120

data contains spurious signals not associated with variations to projects).
Noise can come from many sources such clerical errors or missing data.
For example, organizations that only build word processors may have little
data on software projects with high reliability requirements.

Correlated variables: If multiple variables are tightly correlated, then using all 125

of them will diminish the likelihood that either variable attains significance.
A repeated result in data mining is that pruning away some of the corre-
lated variables increases the effectiveness of the learned model (the reasons
for this are subtle and vary according to which particular learner is being
used [5]). 130

4 Pruning: How?
The column pruning method used in this study was is called the “WRAPPER” [8].
The WRAPPER selects combinations of columns and asks some learner to build
a cost model using just those columns. The WRAPPER then grows the selected
columns and checks if a better model comes from learning over the larger set of 135

columns.
The WRAPPER stops when there are no more columns to select, or there has

been no significant improvement in the learned model for the last five additions
(in which case, those last five additions are deleted). Technically speaking, this is
a forward select search with a “stale” parameter set to 5. 140

WRAPPER is thorough but, theoretically, it is quite slow since (in the worst
case), it has to explore all subsets of the available columns. However, all the
data sets in this study are quite small. Our experiments only required around 20

5



minutes per data set.
We use the WRAPPER since other experiments by other researchers strongly 145

suggest that it is superior to many other column pruning methods. For example,
Hall and Holmes [5] compare the WRAPPER to several other column pruning
methods including principal component analysis (PCA- a widely used technique).
Column pruning methods can be grouped according to:

• Whether or not they make special use of the target attribute in the data set 150

such as “development cost”;
• Whether or not they use the target learner as part of their pruning.

PCA is unique since it does not make special use of the target attribute. WRAP-
PER is also unique, but for different reasons: unlike other pruning methods, it
does use the target learner as part of its analysis. Hall and Holmes found that 155

PCA was one of the worst performing methods (perhaps because it ignored the
target attribute) while WRAPPER was the best (since it can exploit its special
knowledge of the target learner).

5 Cost Modeling with COCOMO
Before pruning data, we first need to understand how cost models might use 160

that data. This study uses COCOMO for our cost modeling. COCOMO stands
for Constructive Cost Model [1, 2]. COCOMO helps software developers rea-
son about the cost and schedule implications of their software decisions such as
software investment decisions; setting project budgets and schedules; negotiat-
ing cost, schedule, and performance tradeoffs; making software risk management 165

decisions, and making software improvement decisions. One advantage of CO-
COMO (and this is why we use it) is that unlike other many other costing models
such as SLIM or SEER, COCOMO is an open model with numerous published
data [1, 2].

There are two versions of COCOMO: COCOMO-I and COCOMO-II. In go- 170

ing from the 1981 COCOMO-I model [1] to the 2000 COCOMO-II model [2], one
parameter, “Turnaround Time”, was dropped to reflect the almost-universal use
of interactive software development. Another parameter, “Modern Programming
Practices”, was dropped in favor of a more general “Process Maturity” parameter.
But several more parameters were added to reflect the subsequently-experienced 175

influences of such factors as “Development for Reuse”, “Multisite Development”,
“Architecture and Risk Resolution”, and “Team Cohesion”. The COCOMO-II

6



increase acap: analysts capability
these to pcap: programmers capability
decrease aexp: application experience
effort modp: modern programming practices

tool: use of software tools
vexp: virtual machine experience
lexp: language experience
sced: schedule constraint

decrease data: data base size
these to turn: turnaround time
decrease virt: machine volatility
effort stor: main memory constraint

time: time constraint for cpu
rely: required software reliability
cplx: process complexity

Figure 3: COCOMO I effort multipliers.

book [2] also provides capabilities and guidelines for an organization to add new
parameters, reflecting their particular situations.

COCOMO measures effort in calendar months where one month is 152 hours 180

(and includes development and management hours). The core intuition behind
COCOMO-based estimation is that as systems grow in size, the effort required to
create them grows exponentially. More specifically, Equation 1 shows the CO-
COMO I model [1]:

months = a ∗
“
KSLOCb

”
∗

0@Y
j

EMj

1A (1)

185

Here, EMi is one of 15 effort multipliers such as cplx (complexity) or pcap
(programmer capability). The COCOMO-I effort multipliers are shown defined
in Figure 3 and their numeric values are shown in Figure 4. In COCOMO-II, the
number of effort multipliers changed from 15 to 17.

In the COCOMO-I model, a and b are domain-specific variables and KSLOC 190

(thousands of lines of non-commented source code) is estimated directly or com-
puted from a function point analysis. In COCOMO-II, b was expanded to include
scale factors:

b = 0.91 +
∑

j

SFj

where SFj is one of five scale factors that exponentially influence effort. Exam-
ples of scale factors include pmat (process maturity) or resl (attempts to resolve 195

project risks).

7



very very extra
low low nominal high high high

ACAP 1.46 1.19 1.00 0.86 0.71
PCAP 1.42. 1.17 1.00 0.86 0.70
AEXP 1.29 1.13 1.00 0.91 0.82
MODP 1.24. 1.10 1.00 0.91 0.82
TOOL 1.24 1.10 1.00 0.91 0.83
VEXP 1.21 1.10 1.00 0.90
LEXP 1.14 1.07 1.00 0.95
SCED 1.23 1.08 1.00 1.04 1.10
DATA 0.94 1.00 1.08 1.16
TURN 0.87 1.00 1.07 1.15
VIRT 0.87 1.00 1.15 1.30
STOR 1.00 1.06 1.21 1.56
TIME 1.00 1.11 1.30 1.66
RELY 0.75 0.88 1.00 1.15 1.40
CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Figure 4: COCOMO-I effort multiplier values.

A standard method for assessing COCOMO performance is PRED(30). PRED(30)
is calculated from the relative error, or RE, which is the relative size of the differ-
ence between the actual and estimated value:

RE =
estimate− actual

actual

200

The mean magnitude of the relative error, or MMRE, is the average percent-
age of the absolute values of the relative errors over an entire data sets. PRED(N)
reports the average percentage of estimates that were within N% of the actual
values. If a data set has R rows, then:

PRED(N) =
100
R

R∑
i

{
1 if MREi ≤ N

100
0 otherwise

205

For example, a PRED(30)=50% means that half the estimates are within 30%
of the actual. Note that, we report results in terms of PRED(N), not MMRE.
This is a pragmatic decision- we have found PRED(N) easier to explain to busi-
ness users than MMRE. Also, there are more PRED(N) reports in the literature
than MMRE. This is perhaps due to the influence of the COCOMO researchers 210

who reported their 1999 landmark study using PRED(N) [4]. Further, we report
here PRED(30) results since the major experiments of that 1999 study also used
PRED(30). The results for PRED(25) are similar with those for PRED(30) except
that the accuracies for PRED(30) is a little better than those for PRED(25).

8



In order to use the linear least squares regression, which is the most widely 215

used and the simplest modeling method, it is common to transform COCOMO
model into linear model by taking the logs of Equation 1.

LN(effort) = b ∗ LN(Size) + LN(EM1) + LN(EM2) + . . . (2)

Note that, if Equation 2 is used, then before computing PRED(N), the esti-
mated effort has to be converted back from a logarithm. 220

6 Case Study Data
This study uses datasets in both COCOMO-I and COCOMO-II format:

• The cii0 data set was used to build the COCOMO-II model.
• The cii4 data set is also in the COCOMO-II format and includes the 72

projects from cii0 developed after 1990, plus 47 new projects. 225

The COCOMO-II data is not published since it was collected on condition of
confidentiality with the companies supplying the data. Further research must be
conducted in terms of the same conditions. In contrast, several COCOMO-I data
sets are available in the PROMISE repository [13]:

• Coci comes from the COCOMO-I text [1] and includes data from a variety 230

of domains including engineering, science, financial, etc.
• na60 comes from 20 years of NASA projects and is recorded using the

COCOMO-I variables.

The na60 data contains the following subsets:

• c01,c02,c03 store data from three different NASA geographical locations; 235

• p02,p03,p04 stores data from three different NASA projects;
• t02,t03 stores data from two tasks such as ground data receiving and flight

guidance.

For reasons of confidentiality, the exact details of those centers, tasks, and projects
cannot be disclosed. The other centers, projects, and tasks from na60 were not 240

included in cX, pX, or tX for a variety of pragmatic reasons (e.g. suspicious
repeated entries suggesting data entry errors, too few examples for generalization,
etc).

9



Of these data sets, coci describes projects from before 1982; cii4 contain
data from the most recent projects; and the NASA data sets (na60, pX,cX,tX) 245

described projects newer than coci and before cii4. Also, the COCOMO-I data
sets (coci, na60, c01, c02, c03, p02, p03, p04, t02, t03, call, pall, tall) have the 15
columns of Figure 3 COCOMO-II data sets (cii0, cii4) have 24 columns.

For experimental purposes, we group the above as follows:

• call combines all the center data; i.e. call = c1 + c2 + c3; 250

• tall combines all the task data; i.e. tall = t02 + t03;
• pall combines all the project data; i.e. pall = p02 + p03;

7 Experimental Method
Having described COCOMO, the WRAPPER, and our data sets, we can now de-
scribe how an analyst can use them all together to find better cost models. 255

Column pruning using the WRAPPER was discussed above. Recall that the
WRAPPER sorts columns are sorted left-to-right according how well that col-
umn’s variable predicts for the target variable (in our case, software development
effort). Column pruning then proceeds left to right across the sorted columns,
each time removing some less-useful left-hand-side columns. At each step of the 260

pruning, a cost model is learned from the remaining columns. Column pruning
stops when removing more columns does not improve the best result seen so far.

To find the relative value of each column, we ran the WRAPPER ten times
(each time using a randomly selected 90% of the rows). The value of a column
was then set to the number of times the WRAPPER selected that column. 265

Once the WRAPPER ordered the columns, we randomized the order of the
rows and starting column pruning. To ensure statistical validity, randomization
(followed by column pruning) was repeated 30 times.

For each repeat, at each stage of the pruning, the lowest value column was
removed. The rows in the remaining columns were then divided into training and 270

test sets (each time using a randomly selected 67% of the rows for the training
set). A cost model was learned (using linear regression) from the training set and
then assessed, using PRED, on the test set.

Once the 30 repeats were completed, a best model was selected by looking at
the mean and standard deviation of model performance at each pruning step. The 275

best model was the one that t-tests confirmed out-performed all the other states of
the column pruning. The mean value of that model over the 30 repeats was then
reported.

10



 100

 80

 60

 40

 20

 0

p0
3

p0
2

c0
2

t0
2

p0
4

t0
3

c0
1

c0
3

ta
ll

pa
ll

ca
ll

na
60

co
ci

ci
i4

ci
i0

data set

B=before
A=after

100*(B-A)/B

Figure 5: Number of columns.

The above process is fully automated using our own Unix scripts which con-
trol a JAVA data mining library called the WEKA [15]. The WEKA comes com- 280

plete with a linear regression learner and an implementation of the WRAPPER.
The whole system is available from the authors.

8 Results
The results of our column pruning are shown in Figure 5. The red and green lines
of show the number of columns in our data sets before and after pruning. The data 285

sets are on the x-axis. The before values are 22 for the COCOMO-II data sets
(cii0 and cii4) while the before values for the COCOMO-I data sets are all 15.
The blue line shows the percentage of the before columns removed by pruning.
For example, very little was pruned from cii while most of the columns were
pruned from p03. On average, over 65% of the columns were pruned. Sometimes, 290

the pruning was quite heavy with over 80% of the columns pruned away.
A concern with such large scale pruning is that the resulting models would

be somehow sub-standard. This proved not to the case. The PRED(30) results
associated with the pruned data sets are shown in Figure 6. This figure shows
mean values in 30 experiments where the learned model was tested on rows not 295

seen during training. Note that pruning always improved PRED.
The red lines on Figure 6 show the mean PRED(30) seen in 30 trials using

all the columns. These are the baseline results for learning cost models before
applying any pruning method. The green lines show the best mean PRED(30)

11



 160

 120

 80

 40

 0

na
60

co
ci

ci
i4

ci
i0

#r
ow

s

 100

 75

 50

 25

P
R

E
D

(3
0)

pruning just
columns

ta
ll

ca
ll

pa
ll

#rows

pruning columns
 and some rows

before
after

p0
3

p0
2

c0
2

t0
2

p0
4

t0
3

c0
1

c0
3

pruning columns
 and many rows

Figure 6: Effects on PRED of different pruning methods. For space reasons, only
the PRED(30) results are shown. A longer version of this paper, in preparation,
includes PRED(20) and PRED(25) results.

seen after automatic column pruning. The difference between the red and the 300

green lines is the improvement produced by pruning.
The data sets are sorted by pruning method into three plots. Within each plot,

the data sets are sorted left-to-right in increasing value of after−before
before

. The x-axis
shows the names of the data sets used in these studies. The blue lines show the
number of rows in each data set. 305

The plots of Figure 6 have three labels: “pruning just columns”, “pruning

12



columns and some rows”, and “pruning columns and many rows”. The data sets
are sorted into three labels according to their stratification. The left-hand-side re-
sults, labeled “pruning just columns”, come from the largest data sets that comb-
ing project information form many sources (i.e. cii0, cii4, coc1, na60). These 310

data sets are not divided up into data from similar sources. Hence, there is no row
pruning used on these data sets.

The right-hand-side results, labeled “pruning columns and many rows”, come
from eight data sets that have been heavily stratified into just specific NASA cen-
ters (i.e. c01, c02, c03); or specific NASA projects (i.e. p01, p02, p03); or specific 315

NASA software tasks (i.e. t02, to3).
The middle results, labeled “pruning columns and some rows”, show data

sets that have been somewhat stratified. The data sets in this group combine to-
gether data from either:

• All the NASA centers (i.e. call); 320

• Or all the NASA projects (i.e. pall);
• Or all the NASA tasks (i.e. tall).

This middle group samples a point half-way between the unstratified data sets on
the left and the heavily stratified data sets on the right.

Three are three features of Figure 6: 325

1. Pruning always improved estimation effectiveness. That is, in all our case
studies, it was always useful to ignore a portion of the available data.

2. Column pruning by itself can offer some improvements to PRED. However,
column pruning combined with row pruning can result in dramatic improve-
ments of effort estimation. 330

3. With one exception (c03), the general trend across the three graphs is clear:
as data set size shrinks, the improvement increases. That is, pruning is most
important when dealing with small data sets.

9 When Not to Prune
While column pruning is clearly useful, sometimes it cannot or should not be 335

applied. Firstly, our variable subtraction methods require an historical database of
projects. If there is no such database, then our column pruning techniques won’t
work.

Secondly, even if a historical database exists and our techniques suggest
pruning variable X , then it may still be important to ignore that advice. If a cost 340

13



model ignores certain effects that business users believe are important, then those
users may not trust that model. In that case, even if a variable has no noticeable
impact on predictions, it should be left in the model. By leaving such variables in
a model we are acknowledging that, in many domains, expert business users hold
in their head more knowledge that what may be available in historical databases. 345

Suppose that there is some rarely occurring combination of factors which leads to
a major productivity improvement. Even if there is little data on some situation,
it still should be included in the model. For example, even though some studies
have shown that reduced-parameter function point counting rules are equally good
in most situations [2], COCOMO II supports the full International Function Point 350

Users’ Group (IFPUG) set of parameters due to their wide usage and acceptance
in the IFPUG community.

Thirdly, another reason not to prune variables is that you still might need
them. For example, the experiments shown above often subtract over half of the
attributes in a COCOMO-I model while (usually) improve effort estimation. How- 355

ever, suppose that a business decision has to be made using some of the pruned
variables. The reduced model has no information on those subtracted variables so
a business user would have to resort to other information for making their deci-
sions.

Hence, we propose using column pruning with some care. If there is no his- 360

torical data for learning specialized data sets, then managers should use the gen-
eral background knowledge within COCOMO. The 1981 regression co-efficients
of COCOMO-I or the updated co-efficients of COCOMO-II [2] are the best general-
purpose indicators we can currently offer for cost estimation. Management deci-
sions can use that public knowledge to make software process decisions. For 365

example, according to the coefficients on the COCOMO-II pmat variable, the in-
crease in cost between a CMM3 and CMM4 project contain N lines of code is
N3.13/N1.56. With this estimate in hand, a business user could then make their
own assessment about the cost of increased software process maturity vs the ben-
efits of that increase. 370

If historical data from the local site is available, then managers could tune the
general COCOMO background knowledge by adjusting the coefficients within the
COCOMO equations. COCOMO-I and COCOMO-II contain with several local
calibration variables that can quickly tune a model to local project data. Our ex-
perience has been that 10 to 20 projects are adequate to achieve such tunings [10]. 375

Local calibration is a simple tuning method that is supported by many tools1.

1e.g. http://sunset.usc.edu/available_tools/index.html

14



Currently, our toolkit methods requires more effort (i.e. some UNIX scripting)
than local calibration. Figure 6 suggests that the extra effort may well be worth-
while, particularly when building models from a handful of projects. Also, we
have found that it is easier to extrapolated costs from old projects to new projects 380

with reduced variable sets [11]. Nevertheless, column pruning is not appropri-
ate when there are business reasons to use all available variables (e.g. the three
reasons described above).

10 Conclusion
The specific goal of this paper was to encourage more column pruning in cost 385

modeling, particularly when dealing with very small data sets. The improvements
seen in Figure 6 seem quite impressive. Row and column and pruning, in com-
bination, are very useful for cost modeling- particularly when dealing with small
data sets. Hence, we propose a change to current practice. Cost models should
not be built using all available data. Rather, after data collection and before model 390

building, cost modelers perform some data pruning experiments.
The more general goal of our work is to encourage repeatable, refutable, and

improvable experiments in software engineering. To that end, as much as possible,
we use public domain tools and public domain data sets. Hence, this paper uses a
open source cost model (COCOMO) and, as much as possible, publicly available 395

data. All the COCOMO-I data sets used in this study can be downloaded from
the PROMISE repository [13]. We urge other researchers to produce more results
based on open source models and data sets.

Acknowledgments
The advice of the anonymous reviewers helped to clarify an earlier draft of this 400

paper. Helen Burgess offered invaluable editorial assistance.

15



Biographies
Zhihao Chen is a Research Assistant at the Center for Software Engi-
neering and a PhD candidate of Computer Science Department at the
University of Southern California. His research interests lie in system 405

& software engineering, models development and integration in gen-
eral. Particularly, he focus on software cost estimation, product line
investment models, process modeling and risk management for soft-
ware application development. He also investigate empirically based
Software Engineering - empirical methods and model integration. His 410

research supports the generation of an empirically based software development process
covering high level lifecycle models to low level techniques, provide validated guide-
lines/knowledge for selecting techniques and models and serves, and help people better
understand such issues as what variables affect cost, reliability, and schedule, and integrat-
ing existing data and models from the participants and all collaborators. Previously, he got 415

his bachelor and master of computer science from South China University of Technology.
He previously worked for HP, CA and EMC. He can reach on zhihaoch@usc.edu.

Dr. Tim Menzies is a associate research professor at Portland
State University in the United States, and has been working with NASA
on software quality issues since 1998. He has a CS degree and a PhD 420

from the University of New South Wales. His recent research concerns
modeling and learning with a particular focus on light weight modeling
methods. His doctoral research aimed at improving the validation of,
possibly inconsistent, knowledge-based systems in the QMOD speci-
fication language. He also has worked as a object-oriented consultant 425

in industry and has authored over 150 publications and served on nu-
merous conference and workshop programs and well as guest editor of

journal special issues. He can be reached at tim@timmenzies.net.
Dr. Daniel Port, is an Assistant Professor of IT Management at

University of Hawaii at Manoa. Prior to this, he was a Research As- 430

sistant Professor working with Barry Boehm at USC’s Center for Soft-
ware Engineering, where he now holds the title of Visiting Scholar. Dr.
Port has been involved in software development process research, and
in the development and assessment of innovative pedagogic techniques
for software engineering education. His primary research activities lie 435

in strategic and economic based software engineering. His primary research activities lie
in strategic and economic based software engineering. He has applied the strategic method
to COTS assessment and COTS process selection, IV&V, architecture flexibility, software
dependability, and to IT security risk management with collaborators from NASA, JPL,
and the Japanese Space Exploration Administration (JAXA). Dr. Port is the co-founder, 440

16



with Dr. Rick Kazman, of the proposed new Center for Strategic Software Engineering at
the University of Hawaii. He can be reached at dport@hawaii.edu.

Professor Barry Boehm received his B.A. degree from Harvard in
1957, and his M.S. and Ph.D. degrees from UCLA in 1961 and 1964,
all in Mathematics. Between 1989 and 1992, he served within the U.S. 445

Department of Defense (DoD) as Director of the DARPA Informa-
tion Science and Technology Office, and as Director of the DDR&E
Software and Computer Technology Office. He worked at TRW from
1973 to 1989, culminating as Chief Scientist of the Defense Systems
Group, and at the Rand Corporation from 1959 to 1973, culminating as 450

Head of the Information Sciences Department. He was a Programmer-
Analyst at General Dynamics between 1955 and 1959. His current

research interests include software process modeling, software requirements engineer-
ing, software architectures, software metrics and cost models, software engineering en-
vironments, and knowledge-based software engineering. His honors and awards include 455

Guest Lecturer of the USSR Academy of Sciences (1970), the AIAA Information Sys-
tems Award (1979), the J.D. Warnier Prize for Excellence in Information Sciences (1984),
the ISPA Freiman Award for Parametric Analysis (1988), the NSIA Grace Murray Hop-
per Award (1989), the Office of the Secretary of Defense Award for Excellence (1992),
the ASQC Lifetime Achievement Award (1994), and the ACM Distinguished Research 460

Award in Software Engineering (1997). He is an AIAA Fellow, an ACM Fellow, an IEEE
Fellow, and a member of the National Academy of Engineering. He can be reached at
boehm@sunset.usc.edu.

References
[1] B. Boehm. Software Engineering Economics. Prentice Hall, 1981. 465

[2] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert
Steece, A. Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation
with Cocomo II. Prentice Hall, 2000.

[3] Zhihoa Chen, Tim Menzies, and Dan Port. Feature subset selection can improves
software cost estimation. In Proceedings, PROMISE workshop, ICSE 2005, 2005. 470

Available from http://menzies/pdf/05/fsscocomo.pdf.

[4] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical software
engineering cost models. IEEE Transaction on Software Engineerining, 25(4),
July/August 1999.

17



[5] M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for dis- 475

crete class data mining. IEEE Transactions On Knowledge And Data Engineering,
15(6):1437– 1447, 2003.

[6] C.F. Kemerer. An empirical validation of software cost estimation models. Commu-
nications of the ACM, 30(5):416–429, May 1987.

[7] C. Kirsopp and M. Shepperd. Case and feature subset selection in case-based soft- 480

ware project effort prediction. In Proc. of 22nd SGAI International Conference
on Knowledge-Based Systems and Applied Artificial Intelligence, Cambridge, UK,
2002.

[8] R. Kohavi, D. Sommerfield, and J. Dougherty. Data minining using mlc++: A
machine learning library in c++. In Tools with AI 1996, 1996. 485

[9] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324, 1997.

[10] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Validation methods for
calibrating software effort models. In Proceedings, ICSE, 2005. Available from
http://menzies.us/pdf/04coconut.pdf. 490

[11] Tim Menzies, Zhihao Chen, Dan Port, and Jairus Hihn. Simple software cost esti-
mation: Safe or unsafe? In Proceedings, PROMISE workshop, ICSE 2005, 2005.
Available from http://menzies.us/pdf/05safewhen.pdf.

[12] A. Miller. Subset Selection in Regression (second edition). Chapman & Hall, 2002.

[13] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software Engi- 495

neering Databases. School of Information Technology and Engineering, University
of Ottawa, Canada, 2005. Available from http://promise.site.uottawa.
ca/SERepository.

[14] M. Shepperd and C. Schofield. Estimating software project effort using analogies.
IEEE Transactions on Software Engineering, 23(12), November 1997. Available 500

from http://www.utdallas.edu/˜rbanker/SE_XII.pdf.

[15] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 1999.

18


