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Abstract

If experience tells us when toadd variables to a cost
model, it should also be able to tell us when tothrow
away variables. Data mining methods can intelligently
select variables to discard and so generate reduced mod-
els which are much better at estimating efforts.

Word count: usingdetex thisfile.tex — wc -w, this file
has 3171 words. This, plus five figures at 200 words each,
means this file is 4171 words long.

1 Introduction

Good software cost models can significantly help the
managers of software projects. With such good models,
project stake holders can make informed decisions about
(e.g.) “buy-or-make”, how to manage resources, how to
control and plan the project, and how to deliver the project
on time, on schedule and on budget.

As we learn more above software, it is natural that
we add in new variables to our software cost models. Re-
cently, the COCOMO team updated their model [1] and
added in more variables to explain how software engineer-
ing practice has changed in the period 1981-2000 [2]. For
example, areusevariable was added since it has become
common to reuse and modify existing code rather than re-
build from scratch. Also, apmat(process maturity) vari-
able was added since we now know that software is built
in organizations with a wide range of process maturity.

0Submitted to IEEE Software, May 20, 2005. Earlier drafts available
at: http://menzies.us/pdf/05lessismore.pdf .

%estimates within
30% of actuals

data set #projects before after after
before

1. nasa60 60 68% 82% 120%
2. coc81 63 44% 51% 116%
3. cii04 119 68% 72& 106%
4. cii00 161 75% 76% 101%

mean 64% 70% 110%

data set #projects before after after
before

5. t03 10 28% 62% 221%
6. p03 12 8% 52% 650%
7. c02 12 11% 48% 436%
8. c01 13 20% 58% 290%
9. t02 14 19% 81% 426%

10. p04 14 25% 63% 252%
11. p02 22 15% 97% 646%
12. c03 31 88% 95% 108%

mean 27% 70% 379%

Figure 1: Cost estimation effectives before and after re-
moving some variables on the ten data sets.

But if experience can tell us when toaddvariables,
it should also be able to tell us when toremovevariables.
If not, then our models may grow forever and become
needlessly complex. In this paper we explore methods
for throwing away attributes. Ignoring variables can be
a surprisingly powerful strategy. Figure 1 shows the per-
centage improvement in estimation effectivenessbefore
and after certain variables were thrown away from the
model. For data sets containing many projects, variable
removal made little difference (around 110%). But for
data sets containing just a few dozen projects (or less),
the improvement was dramatic (on average, a 379% im-
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provement). This increased improvement in the smaller
data sets is an important result since, typically, organiza-
tions only have data on a small number of projects.

2 When Less is NOTMore

The observed improvements estimation effectiveness
shown in Figure 1 are quite large. The rest of this pa-
per discusses data mining methods for intelligently se-
lecting which variables to remove. Before that, we first
describe situations in which variables should not be dis-
carded,even it removing them improves estimation effec-
tiveness.

If a cost model ignores certain effects that business
users believe are important, then those users may not trust
that model. In that case, even if a variable has no notice-
able impact on predictions, it should be left in the model.

By leaving such variables in a model we are ac-
knowledging that, in many domains, expert business users
hold in their head more knowledge that what may be
available in historical databases. For example, suppose
that there is some rarely occurring combination of factors
which leads to a major productivity improvement. Even
if there is little data on some situation, it still should be
included in the model1.

Another reason not to discard variables is that you
still might need them. For example, the experiments
shown below often discard over half of the attributes in
a COCOMO-I model. As shown in Figure 1, this can dra-
matically improve the effort estimation. However, sup-
pose that a business decision has to be made using some
of thediscarded variables. The reduced model has no in-
formation on those discarded variables so a business user
would have to resort to other information for making their
decisions.

For these reasons, we propose thedecision ladderof
Figure 2. The ladder has three parts: general COCOMO,
followed by local calibration, followed by variable reduc-
tion. The ladder represents how much variable removal is
suitable for different business situations.

At the base of the ladder isgeneral public do-
main knowledge. The 1981 regression co-efficients of
COCOMO-I or the updated co-efficients of COCOMO-
II [2] are the best general-purpose indicators we can

1barry: got an example of this?
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Figure 2: A ladder of decisions in cost modeling.

currently offer for cost estimation. If there isno his-
torical database storing information about past projects
at a certain site, then our variable removal techniques
won’t work. In this case, management decisions can use
that public knowledge to make software process deci-
sions. For example, according to the coefficients on the
COCOMO-II pmatvariable, the increase in cost between
a CMM3 and CMM4 project isLOC3.13/LOC1.56. With
this estimate in hand, a business user could then make
their own assessment about the cost of increased software
process maturity vs the benefits of that increase.

If historical data from the local site is available, then
effort estimation can rise to the next rung in the estima-
tion ladder. COCOMO-I and COCOMO-II contain with
severallocal calibrationvariables that can quickly tune a
model to local project data. Our experience has been that
10 to 20 projects are adequate to achieve such tunings [8].

Local calibration is a simple tuning method that is
supported by many tools2. Currently, ourvariable reduc-
tion methods requires more effort (i.e. some UNIX script-
ing) than local calibration. Figure 1 suggests that the extra
effort may well be worthwhile, particularly when building
models from a handful of projects. Also, when we com-
pare the variable reduction results of Figure 1 with our
prior work on local calibration [9], it is clear that variable
reduction leads to better predictive accuracies than local
calibration (at least for our data sets). However, variable
reduction isnot appropriate when there are business rea-

2e.g. http://sunset.usc.edu/available_tools/
index.html
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sons to use all available variables (e.g. the situations de-
scribed above).

3 Why Remove Variables?

Having made the case forkeepingvariables, we now ex-
plore the other side of the coin. There are many reasons
why removingvariables is useful:

Noise: Data collection was somehow flawed for a partic-
ular variable with the result that one or more vari-
ables arenoisy(i.e. contains spurious signals not as-
sociated with variations to projects). Learning a cost
estimation model is easier when the learner does not
have to struggle with fitting the model to confusing
noisy data.

Correlated variables: The reverse problem of noise is
associated variables. If multiple variables are tightly
correlated, then using all of them will diminish the
likelihood that either variable attains significance. A
repeated result in data mining is that removing some
of the correlated variables increases the effectiveness
of the learned model (the reasons for this are subtle
and vary according to which particular learner is be-
ing used [4]).

Under-sampling: The number of possible influences on
a project is quite large and, usually, historical data
sets on projects for a particular company are quite
small. This motivates the removal of variables, even
if those variables are theoretically useful.

To understand the under-sampling problem, consider
two models for projectp02 (from Figure 1) that use two
variables or four variables. Suppose that each variable
takes one of five values (e.g. they are COCOMO vari-
ables with valuesvery high, high, nominal, low, very low).
The smaller model with two variables has an internal state
space of52 = 25 and the larger model with four variables
has an internal state space of54 = 625. Figure 1 records
that projectp02comprises 22 projects. These 22 projects
could sample a large part of the two-variable model (up
to 22

35 = 63%). However, those same 22 projects can only
ever sample avery small fraction( 22

635 = 4%) of the four-
variable model.

Figure 3 shows that under-sampling is not just a the-
oretical concern. In thenasa60data set, most projects

cluster were rated as having ahigh complexity. There-
fore, this data set would not support conclusions about
the interaction of extra high complex projects with other
variables. A learner would be wise to remove this variable
(and a cost modeling analyst would be wise to suggest to
their NASA clients that they refine the local definition of
“complexity”).

Whatever the reason (noise, correlation, under-
sampling), a repeated result in the data mining commu-
nity is that simpler models with equivalent or higher per-
formance can be built byfeature subset selection(FSS)
algorithms that intelligently remove of useless variables.
For example, Kohavi and John’s WRAPPER [7] builds
models using an increasing number of variables; i.e.N =
1, 2, 3, 4, .... For eachN , there is a currentselectedset
(initially, the empty set) and a set of remaining variables
(those that have not been selected). For each remaining
variable, a new bigger set is tried containing the current
set, plus one of the remaining variables. The set that
yields the best learned model becomes the current set,N
becomesN + 1 and the process continues. WRAPPER
stops when either the remaining set is empty or there has
been no significant improvement in the learned model for
the last five additions (in which case, those last five addi-
tions are deleted).

WRAPPER is thorough and, according to Hall and
Holmes, often yields the best results [4]. However, it can
be too slow to run. It is simple to see why: there are
a large number of possible subsets to explore. A naive
search through all possible subsets of the 15 COCOMO-I
variables would have to explore 32768 subsets. Happily,
our study did not too long. The data sets of Figure 1 are
quite small and our experiments only required only the 6
hours.

The Hall and Holmes results were also negative
about another widely used FSS technique: principle com-
ponent analysis (PCA). FSS methods can be grouped ac-
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Figure 3: Distribution of software complexitycplxwithin
thenasa60data set.
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cording to:

• Whether or not they make special use of the target
attribute in the data set such as “development cost”;

• Whether or not they use the target learner as part of
their FSS analysis.

PCA is unique since, unlike other FSS methods, itdoes
not make special use of the target attribute. WRAPPER
is also unique, but for different reasons: unlike other FSS
methods, itdoesuse the target learner as part of the FSS
analysis. Hall and Holmes found that PCA was one of
the worst performing FSS methods (perhaps because it ig-
nored the target attribute) while WRAPPER was the best
(since it can exploit its special knowledge of the target
learner).

4 Case Study

To test the effectiveness of removing variables, we
WRAPPER to select removable variables from the Fig-
ure 1 projects. Those projects were described in terms of
the COCOMO set of variables.

COCOMO [1,2] is used for estimating software cost,
effort and schedule. COCOMO helps software develop-
ers reason about the cost and schedule implications of
their software decisions such as software investment deci-
sions; setting project budgets and schedules; negotiating
cost, schedule, and performance tradeoffs; making soft-
ware risk management decisions, and making software
improvement decisions.

COCOMO measures effort in calendar months
where one month is 152 hours (and includes develop-
ment and management hours). The core intuition behind
COCOMO-based estimation is that as systems grow in
size, the effort required to create them grows exponen-
tially; i.e.

months = a ∗
“
KSLOCb

”
∗
 Y

i

EMi

!
(1)

Here, EMi is one of 16effort multiplierssuch as
cplx(complexity) orpcap(programmer capability). In the
COCOMO-I model,a andb are domain-specific parame-
ters and KSLOC is estimated directly or computed from a
function point analysis. In COCOMO II,b was expanded
to includescale factors:

b = 0.91 +
X

j

SFj

whereSFj is one of fivescale factorsthat exponentially
influence effort. Examples of scale factors includepmat
(process maturity) orreuse(reusing code).

Various learning methods have been applied to CO-
COMO. Elsewhere [9], we have seen that best results
come from transforming the COCOMO-I equation of
Equation 1 into thelinearized modelof Equation 2:

LN(effort) = b∗LN(Size)+LN(EM1)+LN(EM2)+. . . (2)

For COCOMO-II, the linearized model is:

LN(effort) = SF1 ∗ LN(Size) + SF2 ∗ LN(Size) + ...

LN(EM1) + LN(EM2) + . . . (3)

At each step in the WRAPPER, some learner built
a model from the current set of variables. Elsewhere we
have tried various methods for such learning. In those ex-
periments, simple linear regression on over the linearized
COCOMO models did as well as any other method [9].

4.1 Data

This study used two data sets described using COCOMO I
variables and two using COCOMO-II variables:

• Coc81comes from the COCOMO-I text [1] and in-
cludes data from a variety of domains including en-
gineering, science, financial, etc.

• Thecii00 data set is the COCOMO-II data.
• Thecii04 data set iscii00 without the projects found

in coc81.
• Nasa60comes from 20 years of NASA projects

and is recorded using the COCOMO-I variables.
This data comes from multipleprojectsdeveloped
at NASA centers at different geographicallocations;
performing differenttaskssuch as ground data re-
ceiving, flight guidance,etc.

Figure 1 shows results from the above four data
sets as well as several subsets ofnasa60. Those subsets
come from three NASA centersc01,c02,c03; three NASA
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coc81 p02
# times # times

FSx variable selected FSx variable selected

8 loc 10 7 loc 10
7 sced 10 6 turn 7
7 pcap 10 6 lexp 7
7 time 10 5 time 4
6 virt 9 4 modp 3
5 cplx 6 3 data 2
5 modp 5 3 tool 2
5 acap 5 3 sced 2
5 rely 5 2 rely 1
5 vexp 4 2 vexp 1
4 tool 3 2 cplx 1
4 data 3 1 aexp 0
3 aexp 2 1 pcap 0
3 stor 2 1 virt 0
2 lexp 1 1 acap 0
1 turn 0 1 stor 0

Figure 4: Some of the generated features sets.

projectsp02,p03,p04; and two NASA taskst02,t03. For
reasons of confidentiality, the exact details of those cen-
ters, tasks, and projects cannot be disclosed. The other
centers, projects, and tasks fromnasa60were not in-
cluded for a variety of pragmatic reasons (e.g. suspicious
repeated entries suggesting data entry errors, too few ex-
amples for generalization, etc).

Of these data sets,coc81describes projects from be-
fore 1982;ci04contain data from the most recent projects;
and the NASA data sets (nasa60, pX,cX,tX) described
projects newer thancoc81and beforeci04.

4.2 Using the Data

Our experiments called WRAPPER 30 times, randomiz-
ing the order each time. Many algorithms have anorder
effectsuch that their performance changes dramatically if
the inputs are re-ordered. Kermer reported order effects
in his analysis data from 15 projects: if training was re-
stricted to 9 particular projects, the learning was far more
successful [5]. Randomization avoids such order effects.

For each random oder, we used WRAPPER to
find what the smallest set of variables that most im-
proved PRED(30); i.e. the percentage of estimates in
the test set that are within 30% of the actual values.
We use PRED(30) for two reasons. Firstly, we have
found PRED(30) easier to explain to business than al-
ternate measures. Also, landmark high-water marks in

software cost estimation report their results in terms of
PRED(30) [3].

For each of the 30 trials, the WRAPPER was run
10 times. Variable were then grouped together accord-
ing to how often they wereselected. All the variables
that were selected with the same frequency were placed
together into the samefeature setFSx. The feature sets
are then ordered by their frequency counts and then num-
bered. For example the table of Figure 4 shows the feature
sets found incoc81andp02. Note that different data sets
generate different feature sets (we will comment on this,
below). To these feature sets, two extra sets are added:
“All” (holding all the variables) and FS(last+1) (holding
just lines of code).

The last step in the each of the 30 trials is to learn
models using smaller and smaller sets of variables. To
“top” and “tail” our results, “All” and FS(last+1) were the
first and last sets of variables. In between, we removed
FS1 (the variables that were selected the least number of
times), then FS2, etc. As shown in the top plot of Fig-
ure 5, in the usual case, most of the variables are re-
moved. Usually, the data sets were pruned back to less
than five variables. Three data sets (p03, p04, t02) got
pruned back to just one variable (lines of code). The larger
data sets (cii04,cii00,coc81,nasa60) were pruned back the
least. This is hardly surprising: the more data the more
interesting the inter-relationships and the least the win in
removing variables.

The bottom plot of Figure 5 shows results fromhold-
out experiments conducted for each features set. In those
hold-outs, we divided the project data described using
some FSx set into a23 : 1

3 subsets, trained on the23rd
subset and tested on the1

3rd test subset. The whole point
of cost models is that they can be used to estimate the
cost ofnewprojects. Such hold-out experiments ensure
that we are assessing the learned model on thenew data
in the test subset.

The test PRED(30) results were monitored using t-
tests. Each pair of results from using FSx/FSy were com-
pared. The mean and standard deviation of the different
PRED(30)s seen in FSx and FSy were computed. FSx and
FSy were said to “tie” if there was no statistical difference
(at theα = 0.05 level) detectable. If the comparison did
not “tie”, then the means were numerically compared to
compute “win”s and “loss”es. The “best” FSx set was se-
lected as the one with the highest “total wins- total losses”
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Figure 5: Feature sets. The results from each data set stop at the point of greatest “total wins - total losses”.

score. All the plots in Figure 5 start at “All” and stop at
the feature subset with the maximum ‘total wins - total
loses” (and if two sets score the same “total wins - total
loses”, then the one with highest mean was selected as the
winner). Figure 1 was generated by comparing the “All”
mean PRED(30) to the “best” mean PRED(30).

One interesting feature of Figure 5 was that “best”
PRED never results from using “All” variables. This re-
sult endorses the merits of variable removal: in terms of
generating models with high PRED, we have no evidence
here that there is any down side to always conducting fea-
ture removal (but recall our previous remarks- sometimes
there are business reasons fornot removing features).

5 Related Work

Variable reduction (a.k.a. feature subset selection) has
been widely studied in the data mining literature (e.g. [4,
7]). Mostly those studies have focused on discrete classes.
To the best of our knowledge, the only other work on vari-
able reduction and for continuous class cost estimation
data is Kirsopp & Shepperd’s (K&S) case base reasoning
(CBR) work [6].

In CBR, decisions about the current case are then
made by studying similar historical cases. A common
technique is to use some form of distance metric to extract
the k-th nearest neighbors from the current case within a
case library. Some extrapolation mechanism is then ap-
plied to analyze the nearest neighbors and make some de-
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cision about expected properties of the current case.
K&S explores CBR for cost estimation using fea-

ture subset selection using two small and large data sets
containing 10 attributes and 77 (small) and 456 (large)
projects3. Like us, they found that FSS significantly im-
proves effort estimation. However, and contrary to Fig-
ure 1, they found that FSS improved effort estimation
more in large data sets than in smaller data sets. There
are several possible explanations of why our results are
so different to those of K&S. Firstly, the K&S definition
of “small” is much larger than our definition. For exam-
ple, our “small” data sets contain 10 to 22 projects while
K&S’s “small” data set contains 77 projects. It is possible
that if K&S ran their toolkit over our very small data sets,
they might find a different effect. Secondly, the studied
algorithms are different: K&S use CBR while we use re-
gression over a parametric COCOMO models. It is possi-
ble that CBR is confused by smaller data sets. Thirdly, we
are using different data sets and to really compare K&S
with our results, we need to run COCOMO data through
their toolkit.

6 Discussion

We have documented different reasons to remove and re-
tain variables in cost models:

• Cost models should contain all available variables
when business knowledge argues for retention.

• Cost models should reject some variables (selected
by WRAPPER) when the goal is to improve effort
estimation. As seen in Figure 1, for small data sets
(30 projects or less), the improved effort estimation
can be quite dramatic.

The benefits of variable removal should be carefully
weighed against the business implications of removing
seemingly irrelevant variables.

Figure 4 showed that different data sets reject differ-
ent variables. Hence it would be a mistake to interpret
our results as “variable X is not relevant in all domains”.
Rather, the best variables in different domains should be
found by separate runs of the WRAPPER.

When discussing these results, we are often asked
why we have not run these experiments on more data sets.

3scott: is this right?

Accessing such further data sets is a non-trivial task. It
is hard enough gettingany data fromany organization,
let alone data in the COCOMO format. There is a good
reason for this. Software projects are notoriously difficult
to control. Recall the 1995 report of the Standish group
that described a $250 billion dollar American software in-
dustry where 31% of projects were canceled and 53% of
projects incurred costs exceeding 189% of the original es-
timate [11]. Corporations are therefore reluctant to expose
their own software development record to public scrutiny.

Nevertheless, our goal is to apply our methods to
more data from more projects. For example, we plan
to run our data sets through the K&S toolkit. Also we
are teaming with the University of Ottawa to extend the
PROMISE repository of public-domain data sets relating
to software engineering [10]. For example, if the reader
want us to try our techniques on their data, they just
need to submit it to that repository4 (perhaps with some
anonymization of any business-critical information).
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