

Web Curator Tool
Software Architecture Document

Version 1.0 FINAL

31/05/2006

 Page 1
Web Curator Tool - Software Architecture Document

Table of Contents

1. Introduction 3
1.1 Purpose 3
1.2 Scope 3
1.3 Definitions, Acronyms and Abbreviations 3
1.4 References 3

2. Architectural Goals and Constraints 4
2.1 Architecturally Significant Design Decisions 4
2.2 Architecturally Significant Open Source Products/Frameworks utilised by WCT 7

3. Use-Case View 9
3.1 Actors 9
3.2 Use Cases 10
3.3 Use-Case Realizations 12

4. Logical View 13
4.1 Overview 13
4.2 Package and system decomposition 14
4.3 Common Functionality 15
4.4 Architecturally Significant Design Packages 16

5. Process View 20
5.1 WCT Process 20
5.2 Scheduler Thread 20
5.3 Harvest Agent Process 20
5.4 Heritrix Thread 20
5.5 ARC Digital Asset Store Process 20
5.6 OMS Archive Process 21

6. Deployment View 21
6.1 Operating Systems 21
6.2 Database Servers 21
6.3 Logical Deployment 21

7. Data View 23

8. Size and Performance 24
8.1 Performance Requirements 24
8.2 ARC File Transfer 24
8.3 Bandwidth Conservation 24

9. Quality 24
9.1 Resiliency 24
9.2 Regression Testing 24
9.3 Load Testing 24

 Page 2
Web Curator Tool - Software Architecture Document

Revision History
Date Version Description Author

21/03/2006 0.1 Initial High Level draft Brendon Price

27/03/2006 0.2 Include original non-functional
requirements

Brendon Price

04/04/2006 0.3 Initial Review Nic Waight

31/05/2006 1.0 Updates due to Variation 001 and
Variation 002

Brendon Price

 Page 3
Web Curator Tool - Software Architecture Document

Software Architecture Document

1. Introduction
The Software Architecture document outlines all the key design decisions made in creating the
web curator system. The web curator system is a joint effort by the National Library of New
Zealand and other international Libraries to build a system for the management and
harvesting of digital web assets for preservation into the future.

1.1 Purpose
This document provides a comprehensive architectural overview of the system, using a
number of different architectural views to depict different aspects of the system. It is intended
to capture and convey the significant architectural decisions that have been made on the
system.

1.2 Scope
This document only discusses the key use cases that affect the software architecture and how
the application will be deployed. Focus has been given to those use cases that are deemed
technically challenging. The simpler use cases are not covered in this document.

1.3 Definitions, Acronyms and Abbreviations

WCT = Web Curator Tool
SOAP = Simple Object Access Protocol
RPC = Remote Procedure Call
OMS = National Library of New Zealand’s Object Management System

1.4 References

RFP Requirement document - v3A-Web_Curator_Tool__RFP[1].DOC
Use Case Realisation: UCR1 Manager sites and permissions
Use Case Realisation: UCR4 Quality review
Use Case Realisation: UCR5 Submit to archive
Use Case Realisation: UCR8 Monitor and Manage Web Harvests
Use Case Realisation: UCR9 Logon
Use Case Realisation: UCR10 Scheduler
Use Case Realisation: UCR11 Manage users and roles

 Page 4
Web Curator Tool - Software Architecture Document

2. Architectural Goals and Constraints

2.1 Architecturally Significant Design Decisions

The Web Curator Tool specifies several key requirements that influence the way the system is
designed. These key requirements can be grouped into the following categories described in
the subsequent sections:

• Modularity/Plugability
• Supportability
• Security
• User Interface
• Resource Use

2.1.1 Modularity/Pugability
Modularity and Plugability requirements relate to the flexibility of the system and the ability to
interchange components and external tools without additional coding effort. The requirement
6.4.4 has lead to the use of the following patterns and frameworks to deliver these
requirements.

Making objects as independent as possible will support modularity. All objects will have clearly
defined roles and behaviours, and will collaborate with other objects through clearly defined
interfaces. A lightweight dependency injection framework will be used to provide “plugability”
making it both easy and non-pervasive to change between different implementations of a
module.

Interfaces (fulfills requirement 6.4.4)

An interface is a Java type that defines a “contract” between an object and its consumer. An
object that implements an interface declares that it will meet the requirements of that interface.
Consumer objects reference their collaborators via interfaces, so any object that implements
the interface can be plugged in. As far as the consumer object is concerned, it does not care
about the specific implementation as long as it fulfils this interface contract. In some cases, it
may be desirable to split an interface between mandatory and optional behaviour.

The Web Curator Tool can query the implementation classes to see which interfaces are
supported by that specific implementation. This allows the WCT to be independent of the
implementations and still support the fact that different implementations may offer different
levels of services.

Adapter Design Pattern (fulfills requirement 6.4.4)

The Adapter Design Pattern is a pattern that is used to simplify the integration with external
systems. The Adapter Pattern specifies the creation of an interface to define the behaviour of
the external system. For example, the Digital Archive System interface will define a method
called submitHarvestResult. Whenever the Web Curator Tool must submit a harvest result, it
will do so by making a call to this interface. The Adapter Pattern then calls for an adapter
implementation that will convert between the system-defined interface and the real interface of
the external system. To support a different external system simply requires that a new adapter
be built and plugged into the application. Other external systems, including the Harvester
implementation, will also be hidden behind an adapter pattern styled interface. For example,
the Harvester will define methods such as (among others) the following:

• Run Harvest Job
• Set Bandwidth restrictions
• Monitor Throughput

 Page 5
Web Curator Tool - Software Architecture Document

Dependency Injection (fulfills requirement 6.4.4)

Objects rarely achieve anything in isolation. Instead, an application ties many objects into a
network of collaborators that work together to achieve the goals of the system. The use of
interfaces to isolate an object’s behaviour from its implementation has already been
discussed. However, this leaves the problem of how an object knows about its collaborators.

A solution to this problem is to use a pattern called dependency injection (or Inversion of
Control). In this pattern, a management or framework layer is responsible for looking up the
collaborating classes and tying them together. These frameworks are generally lightweight
and remove all the lookup logic from the domain objects. This allows the domain objects to
focus purely on solving the business problem at hand.

The dependency injection framework selected for the WCT implementation is the Spring
Framework. Spring is configured through one or more XML files that declaratively describe
which implementations should be wired together.

The combination of interfaces and Spring provide a powerful mechanism to build modular
applications. For example, to use a different harvester or digital archive system, developers
would build a new adapter that implements the defined interface and make a relatively simple
change to the Spring configuration files. No changes to the rest of the WCT would be required.

2.1.2 Supportability

Requirements 6.7.4 and 6.7.5 relate to the support for multiple database systems.

Hibernate Persistence Layer (fulfills requirement 6.7.4, 6.7.5)

Another standard feature of an application is the ability to persist information to a database (or
other storage facility). The storage and retrieval logic is rarely complex, but it is often time
consuming and the error handling can be error prone. Instead of custom-building the
persistence layer using JDBC (Java’s database connectivity API), Hibernate an Object
Relational Mapping (O/RM) tool will be used for this purpose. In combination with XDoclet (a
source-code markup tool), Hibernate allows developers to tag properties that need to be
stored in the database. The Hibernate framework then builds the SQL statements required for
persisting objects to the database. Hibernate has a very wide range of support for different
database dialects (variations on the standard SQL language), so helps to meet the database
independence requirements of the WCT project.

In order to make Hibernate Persistence layer database agnostic it is important that all query
logic be kept to the SQL-92 standard with no proprietary SQL extension being used. In
general HQL will be used to define the Query logic, which is Hibernates own Query Language
to provide another layer of abstraction.

2.1.3 Security

The identified security requirements 6.5.1 and 6.5.2 allow for a pluggable security framework
that integrates with either an Enterprise Directory Service or DBMS repository.

Acegi Security Framework (fulfills requirement 6.5.1, 6.5.2)

The Acegi Security System provides authentication and authorization capabilities for Spring-
based projects, with optional integration with popular web containers.

Security involves two distinct operations, authentication and authorization. The former relates
to resolving whether or not a caller is who they claim to be. Authorization on the other hand
relates to determining whether or not an authenticated caller is permitted to perform a given
operation.

 Page 6
Web Curator Tool - Software Architecture Document

The Acegi Security Framework provides a very powerful pluggable interface that meets the
requirements for fall-through authentication of different authentication sources. The framework
provides interception filters to intercept authentication requests and act upon the security
principle and request URL information provided.

The Acegi Security Framework also allows the Implementer to build and deploy a custom
group, role and permission structure that can be configured and managed via the XML
configuration file and some custom built classes.

2.1.4 User Interface

Requirements 6.2.1 and 6.2.10 enforce that the Web Curator Tool provide a web interface to
the application that is compatible with as many browsers versions as possible.

General MVC Web Architecture (fulfills requirement 6.2.1, 6.2.10)

Web applications share requirements for a large number of features including validation,
presentation frameworks, security, and controller logic. As these requirements are
independent of the application itself, a large number of design frameworks have been built that
can be reused to provide this functionality. Many of these frameworks are modelled on the
Model-View-Controller (MVC) pattern. This pattern dictates a separation between the business
logic (model) and presentation logic (view). The controller is then responsible for bringing the
model and view together to provide the application. The view layer will be developed using
Java Server Pages for presentation within the browser.

The MVC pattern ensures “separation of concerns” between the different layers. By separating
the view component, its development can be assigned to a graphic design team, which
requires a different skill set than development of the model or controller. The design team’s
work can be easily integrated back into the application with minimum effort. The model is also
entirely separated, allowing it to be tested independent of the user interface. Finally, the
controller logic is built to bring the model and view together, assembling the full product into a
usable web application.

The Spring Framework has been proposed to meet the modularity and extensibility
requirements of the Web Curator Tool. The Spring Framework also provides a web MVC
framework, which will be used as the framework for building the web component of the WCT.
The Spring Framework provides a standard mechanism for implementing features such as the
following:

• Per page security, in combination with Acegi Security Framework
• Automated parsing of parameter values
• Validation framework for validating parameter values
• Pluggable controllers, allowing for simple extension of the WCT
• View selection framework.

2.1.5 Resource Use

In order to make the Web Curator Tool flexible requirements 6.8.1 and 6.8.2 specify that the
Web harvesting subsystem can be deployed onto physically separate machines to distribute
the load.

Requirements 6.4.1 and 6.4.2 relate to the support of multiple platforms allowing for the wide
adoption of the code running on varying platforms. Java provides the capability to build once
run anywhere.

 Page 7
Web Curator Tool - Software Architecture Document

SOAP RPC (6.8.1, 6.8.2)

The Harvesting subsystem has the requirement that Harvests can be managed and
configured from a central location, yet run from distributed physical machines. This drives the
requirement for remote procedure calls to communicate with the remote devices.

Both the distributed Harvest Agent and the central Harvest Agent coordinator need to
communicate using a standards based communication protocol, that can traverse through
Network Infrastructure and Firewalls. SOAP over HTTP allows this type of behaviour. SOAP is
also language agnostic, meaning that non-java based Harvest Agents could be built in the
future to the same Interface.

For more information on the deployment of the web harvest agent, refer to the Deployment
section of the document.

The other component that requires a remote interface is the WCT Digital Asset Store for
storing the gathered web harvest materials. The WCT Digital Asset Store will also use SOAP
with attachments for the transfer of ARC files from the Harvest.

2.1.6 Other Non-Functional Requirements

While there are additional non-functional requirements specified, that have not been covered
in this section, they have been deemed not to affect the architectural components of the Web
Curator Tool in any significant way.

2.2 Architecturally Significant Open Source Products/Frameworks utilised by WCT
Requirements 6.6.1 and 6.6.2 specify that the code developed for the Web Curator Tool will
be released under an Open Source License and its license be compatible with those other
open source products used in its development.

Below are listed the Architecturally significant Open Source components used:

Product Version Description
Hibernate 3.0.X Hibernate is an open source Object

Relational Mapping tool that handles
persistence of Java objects directly to a
database without the direct coding of a JDBC
layer. This increases the efficiency and lowers
the error rate in developing the data layer for
the WCT. Hibernate supports a wide variety of
database dialects, including Oracle and
MySQL. The JDBC code generated by
Hibernate can be changed from one dialect to
another by changing a configuration file and
requires no application changes.

Spring Application
Framework

1.2.X The Spring Application Framework provides
both a Dependency Injection framework and
web application framework. Dependency
injection promotes a loosely coupled and highly
pluggable development architecture. The web
model-view-controller (MVC) architecture
supports a clearly defined and well understood
model for developing web applications. The
benefits include ease of extensions and
maintainability.

Acegi Security System 1.0.0 The Acegi Security System is a security
mechanism that ties into the Spring
Framework. It is capable of providing both

 Page 8
Web Curator Tool - Software Architecture Document

resource-level and method-level security
constraints. Furthermore, it is easily extensible
to support alternative authentication and
authorisation mechanisms, which is critical to
provide for the pass-through authentication
described in use case 9.

Apache Axis 1.3 Apache Axis is an implementation of the SOAP
("Simple Object Access Protocol") submission
to W3C. The Apache Axis implementation of
SOAP also supports SOAP attachments that
provide a way to stream large amounts of data
via SOAP.

Apache commons
logging

1.0.4 The Logging package is an ultra-thin bridge
between different logging implementations. A
library that uses the commons-logging API can
be used with any logging implementation at
runtime. It is intended that Log4j be used to
carry out the actual logging.

Quartz 1.5.2 Quartz is a full-featured, open source job
scheduling system that can be integrated with,
or used along side virtually any J2EE or J2SE
application.

Heritrix 1.8 Heritrix is the Internet Archive's open-source,
extensible, web-scale, archival-quality web
crawler project. This is the default Harvester
implementation selected for use with the WCT.

 Page 9
Web Curator Tool - Software Architecture Document

3. Use-Case View
The following is taken from the Requirements document for the Web Curator Tool and shows
the high level Use Cases and Actor interaction. These use cases form the basis of the Web
Curator Tool.

3.1 Actors

 Page 10
Web Curator Tool - Software Architecture Document

3.1.1 Nominator

The Nominator is the primary actor of the WCT. They are responsible for identifying and
describing Targets to harvest, recording copying permissions and access rights, reviewing the
quality of the Harvest Result, submitting the Harvest Result to the Digital Archive System as
well as other related tasks. Note that the role based security access mechanism of the WCT
will be used to control the functionality available to individual users. This will allow the WCT to
support many different classes of Nominator, some of whom may only require access to a
subset of the functionality illustrated by the Nominator actor.

3.1.2 Web Harvester Administrator

The Web Harvester Administrator manages aspects of the Web Harvester System including
monitoring it to ensure it is performing adequately. This actor also configures harvest profiles
and has overall control of the Web Harvester System schedule.

3.1.3 System Administrator

The system administrator for the WCT. This actor is responsible for configuring the WCT
system data and parameters, managing users and security roles as well as any other system
administration tasks that may be required.

3.1.4 Web Harvester System

The system responsible for collecting web content. The WCT will support the Internet
Archive’s open source web crawler Heritrix as its Web Harvester System.

3.1.5 Digital Archive System

The system that will preserve the Harvest Result. For the National Library of New Zealand this
will be the National Digital Heritage Archive (NDHA). An interface will be provided for
interaction with this system actor, as it will differ from Library to Library.

3.1.6 System Clock

The clock of the operating system hosting the WCT. The system clock triggers scheduled
events in the WCT.

3.1.7 Directory Services System

The Directory Services System used to authenticate user credentials.

3.1.8 Email/Fax/Printer System

Peripheral devices used to send and/or print notifications and reports from the WCT.

3.2 Use Cases
The following is a high level description of each use case identified in the Web Curator Tool.

3.2.1 UC1 - Manage Copying Permissions and Access Rights

Nominators can record and/or view details about web sites that require owner permission to

 Page 11
Web Curator Tool - Software Architecture Document

harvest as well as any access right restrictions that apply to the harvested web content. In
some cases a Nominator will delegate the responsibility of seeking copying permissions and
access rights for the web site to another user of the WCT.

3.2.2 UC2 - Manage Targets

Targets describe the web content a Nominator wishes to harvest. A Nominator
can perform various tasks that assist with the workflow and day to day
management of Targets.

3.2.3 UC3 - Manage Target Instances

Target Instances represent the harvests that have or will occur for a Target. A Nominator or
Web Harvester Administrator can monitor and control Target Instances before, during and
after their processing by the Web Harvester System.

3.2.4 UC4 - Quality Review

The Nominator checks the Harvest Result to verify it is of suitable quality and corrects any
noticeable errors and/or omissions in the output. If the Harvest Result is not suitable, the
Nominator deletes it. The Nominator can then optionally review and update the Target and
schedule a new Target Instance for another harvest.

3.2.5 UC5 - Submit to Archive

Once the Nominator is satisfied the Harvest Result is of a suitable standard they use the WCT
to submit it to the Digital Archive System. This submission process will involve converting the
Target Instance Harvest Result and metadata into a common Submission Information
Package format suitable for most Digital Archive Systems to receive.

3.2.6 UC6 - Manage Groups

Groups associate two or more Targets that are related in some way (e.g. Targets that have a
common web content theme). A Nominator can use Groups to synchronise the harvest of
multiple related Targets or indicate relationships between Targets that may be of benefit to the
Digital Archive System.

3.2.7 UC7 - Manage Profiles

Profiles contain predefined settings for harvest control parameters. Nominators with the
appropriate privilege can select profiles to use for their Targets. Nominators without the
privilege to select profiles are forced to use the default profile of the WCT. A Web Harvester
Administrator can create and modify profiles as well as set the default profile of the WCT.

3.2.8 UC8 - Monitor & Manage Web Harvester System

A Web Harvester Administrator can monitor the progress of the Web Harvester System,
configure bandwidth restrictions and pause all Running Target Instances on the Web
Harvester System.

3.2.9 UC9 - Logon

All users must authenticate with the WCT before they are granted access to any functionality.

 Page 12
Web Curator Tool - Software Architecture Document

The WCT will operate a simple credential management system but will also support
integration with an enterprise directory services system for pass-through authentication.

3.2.10 UC10 - Scheduler

The WCT includes a Scheduler that initiates harvests for Target Instances by the Web
Harvester System(s). It also purges the Harvest Result from the WCT after the associated
Target Instance is archived and a set period has elapsed.

3.2.11 UC11 - Administer Users & Roles

A System Administrator can register users, manage user accounts and configure and assign
roles to users. Roles are sets of WCT privileges configured by the System Administrator.
Roles can be used to restrict the access individual users have to WCT functionality.

3.2.12 UC12 - Administer System Data

A System Administrator can change configuration parameters of the WCT, claim ownership of
records and create and modify message templates.

3.2.13 UC13 - Notifications

A user can view and delete automated notifications from the WCT. The WCT sends
notifications to users via their preferred delivery method(s). Delivery methods for internal
notifications include email and via the messages section of the users In Tray. Notifications can
also be sent to external individuals and organisations via email, fax or print.

3.2.14 UC14 - Reporting

A user with the appropriate report privilege can request a report from the WCT, print, or email
the report and/or export the report to the local file system in an open format.

3.3 Use-Case Realizations

For more information on the use case realizations, refer to each of the use case realization
documents.

 Page 13
Web Curator Tool - Software Architecture Document

4. Logical View

This section of the document discusses the important logical components of the Web Curator
Tool. It also touches on the packaging and communication paths for key components of the
system.

4.1 Overview
The following diagram provides a high level overview of the components of the Web Curator
Tool. The diagram represents the four main components of the system:

• Users who access the Web Curator Tool via a Browser (A)
• Web Curator Tool Application Server (B)
• Web Curator Data Server (C)
• External Systems/Tools (D)

All system access will be carried out by the end-users from a web browser over HTTPS

 Page 14
Web Curator Tool - Software Architecture Document

(encrypted connection) in order to protect the Logon credentials of the user. Based on the
user’s privileges they will be presented with the appropriate menu options within the Web
Curator Tool. There are three main views of the system, the:

• System Administrator view (20)
• WCT Administrator view (9)
• WCT User view (10)

The System Administrator view (20) provides functions and features to manage the Web
Curator Tool users and system specific settings.

The WCT Administration view (9) provides functions for managing aspects of the Web
Harvester System and the configuration of harvest profiles.

The user view (10) provides an in-tray view of work to be completed by the individual and
provides integration with external components.

The External Interface Tools layer (8) provides access to all external systems and tools
required by the Web Curator Tool. These include Interfaces for:

• Directory Access for user authentication (3)
• Digital Archive System storage (5)
• Web Harvester Sub-system for distributing harvesting activity (6)

Component (C) of the diagram provides the ability to break out the data server onto different
physical hardware, for load and performance reasons. The Data server is responsible for
holding all of the Web Curator Tool data, including the ARC files (19) themselves. The ARC
files are to be stored on the physical disk.

4.2 Package and system decomposition
The following section describes the packaging of the Web Curator Tool java components into
logical groupings. The base package will be org.webcurator

The Core packages of the web curator consist of all the central components of the system,
that are essential to its functioning. These include the scheduler, notification system, harvester
coordinator and harvest agents and the classes used to communicate with the internal WCT
digital asset store.

org.webcurator.core.common
org.webcurator.core.exception
org.webcurator.core.harvester
org.webcurator.core.harvester.coordinator
org.webcurator.core.harvester.agent
org.webcurator.core.profiles
org.webcurator.core.scheduler
org.webcurator.core.scheduler.servlet
org.webcurator.core.notification
org.webcurator.core.store
org.webcurator.core.store.arc
org.webcurator.core.store.tools
org.webcurator.core.util

The External package holds all the java components used to communicate with external
system like the digital archive systems used to hold the end result of a harvest.

org.webcurator.external.archive
org.webcurator.external.archive.oms

The Authentication package holds all the components required for the authentication of users
into the WCT. The WCT has the ability to communicate with both a directory server and/or the

 Page 15
Web Curator Tool - Software Architecture Document

WCT internal database for user authentication.

org.webcurator.auth
org.webcurator.auth.ldap
org.webcurator.auth.dbms

The Common package holds all the components needed by multiple parts of the system. In
particular this includes the Audit component and utilities for manipulating ARC files.

org.webcurator.common
org.webcurator.common.arc
org.webcurator.common.audit

The Domain package holds all the domain layer objects, those that represent the business
objects that make up the web curator system. This layer is also where hibernate is used to
automatically manage and persist these objects to the database.

org.webcurator.domain
org.webcurator.domain.model.audit
org.webcurator.domain.model.auth
org.webcurator.domain.model.core
org.webcurator.domain.model.dto

The User Interface package hold all the classes related to rendering and managing the User
Interface of the web application. The classes are broken into command objects, controllers,
validators. These represent the model and controller objects that form part of the MVC pattern.
The view component of the MVC pattern is represented by JSP’s that do not have a package.
The xxxx in the package structure below represent an occurrence of the MVC pattern. For
example the home page would be org.webcurator.ui.home.controller.

org.webcurator.ui
org.webcurator.ui.util
org.webcurator.ui.xxxx.command
org.webcurator.ui.xxxx.controller
org.webcurator.ui.xxxx.validator

4.3 Common Functionality

The following section defines common functional classes within the WCT.

4.3.1 Auditing

The Auditing function is common across almost all use cases of the system. The auditing
function will be provided through the org.webcurator.core.util.Auditor Interface. A
single implementation of the interface will be provided that records all audit information to the
database.

4.3.2 Ownable Objects

The security system of WCT relies on the concept of owners for objects within WCT. There
are two types of Owner, an Agency or a User. Some objects in the system are owned by
Users whilst others are owned by Agencies.

Two Interfaces will be provided to help make ownable object consistent. There will be an
Interface for Agency owned objects called org.webcurator.domain.AgencyOwnable
Similarly there will be an Interface for User owned objects called

 Page 16
Web Curator Tool - Software Architecture Document

org.webcurator.domain.UserOwnable.

A domain object in the system that has an owner must implement one of these two Interfaces.
This allows the org.webcurator.auth.AuthorityManager to determine what functional
actions can be taken on the object, based on the users privilege and the privilege scope.

4.3.3 AuthorityManager

The AuthorityManager is responsible for determining what actions can be taken on ownable
objects within the WCT. The AuthorityManager is also responsible for determining if a User
has the correct privileges to view or act upon screens and/or objects within WCT.
The AuthorityManager makes its decisions based on the privileges and scopes, as defined by
the User role associations. Refer to Use Case Realisation 11 for more detail on Users, Roles,
Privileges and scopes.

4.4 Architecturally Significant Design Packages

The following are the architecturally significant Use Cases of the Web Curator Tool. They are
deemed architecturally significant due to either their complexity, unique requirements or the
way they impact the design of the system.

4.4.1 UC4 – Quality Review

Due to the evolution of quality review strategies for large harvests, modularity and extensibility
are critical requirements for the Quality Review component. To support extensibility, it is
proposes the development of an Application Programming Interface (API) that quality review
tools can use to access and manipulate the harvest results in a controlled manner. This allows
new quality review tools to be created over time and plugged into the Web Curator Tool with
minimum effort. The API will be built to encapsulate all of the ARC file and Harvest Result
processing to ensure that the quality review tools only need to deal with the quality review
itself, and do not need to manage the harvest results.

In addition to the development of new tools, the availability of a standard API also allows the
community to integrate existing tools by building custom adapters. These adapters will be
responsible for translating between the Quality Review API of the Web Curator Tool and the
interface for the tool.

A limitation of the Quality Review Tool API, is that the API is only available local to the WCT
core. There will be no way interface with the API remotely, therefore resulting in Quality review
tools only being made available via the browser. Fat client Quality Review tools will not be an
option with the WCT. However the API could be enhanced in future releases to allow this.

4.4.2 UC5 – Submit to Archive

The archive submission feature must cater for the fact that different libraries may choose to
use different archival systems.

As such the submission system will make use of the adapter pattern. The adapter is a simple
design pattern wherein an adapter class translates an external system’s interface into the
interface expected by the client system. In this case, the WCT will define a very simple
interface to allow this. For each Digital Archive System with which the WCT must interact, an
adapter class will be written that implements this interface.

Two main Archive adapters will be created, the FileSystemArchive that simply takes a
TargetInstance and the ARC file and creates a Submission Information Package (SIP) and
writes it to a local disk. The other will carry out a similar function to the FileSystemArchive

 Page 17
Web Curator Tool - Software Architecture Document

but will also export the SIP into the external OMS system.

The functionality to take a TargetInstance and an ARC file and turn it into a SIP will be
extracted into a utility class to ensure other adapters can reuse it in the future.

4.4.3 UC8 – Monitor & Manage Web Harvester System

Registration and Management

Each harvest process will be required to register itself against the Web Curator server on
start-up, identifying itself by host name, process name, and listen port number. These details
will provide enough information for both the WCT and users to independently identify the
harvester processes. The registration process will ensure that every harvester process has a
unique name.

Once the harvester is registered, it will request the WCT to send the appropriate time of day
bandwidth restrictions.

Throughput Monitoring

Some status tools only generate the statistics upon request. However, it is usually more useful
to see the changes in the statistics over time. Having a history available is also important for
tracking down and resolving performance or other issues. As such the Harvester Agents will
regularly submit throughput information back to the WCT server.

System Alerts

The Notifications System (UC13) has been designed to support notifications directly to
individual users or to roles. The Harvesters will use the notification system to register notices
should any of the specified events occur.

Several monitoring requirements, including monitoring of available disk space, and
CPU/memory utilisation, cannot be supported directly in Java due to its platform
independence. To support these machine-wide monitoring requirements, a machine based
monitoring agent will be created. Java interfaces will be developed to allow interchangeable
implementations of monitoring technique, allowing different monitoring solutions to be plugged
in via a configuration file. For Unix flavoured machines, external system commands such as df
(for determining available disk space), and sar (for CPU and memory statistics) can be
invoked through the Java Runtime utility. The output of these commands can be read and
parsed by the monitor, which can raise alerts if the results become unacceptable. A monitoring
agent will be built for the Unix flavoured environments based on the df and sar utilities. No
other OS machine based agent will be implemented at this stage.

4.4.4 UC9 – Logon

The proposed architecture contains an Authentication and Authorisation module as a common
component. This component will be responsible for authenticating users.

The Authentication and Authorisation module will rely on the Acegi Security System
framework. This framework plugs into the Spring Application Framework to provide both page-
based and, if necessary, method-based authentication and authorisation.

Where passwords are specified in the WCT database, they will be hashed using a one-way
hash algorithm (such as MD5 or SHA-1) to protect the password. This ensures that even
direct access to the database will not allow passwords to be compromised, as the one-way
hash cannot be reversed to reveal the password.

 Page 18
Web Curator Tool - Software Architecture Document

The Acegi framework uses declarative security to define authorisation levels required to
access certain areas of functionality. This is useful as it allows the security requirements to be
changed without code changes. The privileges assigned to a user via their role will dictate
what features and functions are exposed to the end user.

The Reporting Use Case requires the ability to report on the amount of time a user has been
logged into the system. This requires that all login/logoff times be recorded. This will be
handled by defining a session listener to register all logins and logouts in the database.
Because of the stateless nature of the HTTP protocol, users will sometimes close a browser
without specifically logging out of an application. To counter this, web applications define a
session timeout period that states the period of non-activity before a user is forcefully logged
out of the application. The Session Listener interface will allow the application to capture both
forced and manual logout times.

4.4.5 UC10 – Scheduler

The diagram below provides a high-level overview of the proposed design for managing the
distributed nature of Harvesters as described UC8 and UC10, and the non-functional
requirements described in section 6.8.

Store Interface

Store SOAP RPC

Harvest Coordinator SOAP Service

Harvest Agent Interface

Harvest Agent SOAP RPC

Store SOAP Service

S
O

A
P

H
TT

P

Harvest Coordinator SOAP RPC
Harvest Agent SOAP Service

Harvest Coordinator Interface

S
O

A
P

H
TT

P

S
O

A
P

H
T T

P

S
O

A
P

H
TT

P

Store SOAP RPC

Store Interface

Heritr ix

(C) WCT Data System

(D) External System/Tools

Heri tr ix Heri trix

Harvest Agent

(B) WCT System

4.4.5.1 Isolated Communication Strategy

 Page 19
Web Curator Tool - Software Architecture Document

The Harvester Manager and Agent components will isolate all of the distributed
communication strategy. This simplifies modifying the communication strategy at a later date
should that be desirable. Furthermore, it ensures that the Harvester implementations need to
know nothing about how to communicate with the rest of the system.
SOAP over HTTP will be utilised to communicate between the distributed components. Using
SOAP over HTTP offers the advantage of being able to stream the harvest data into the
Digital Asset Store without having to load the entire archive into memory. Other
communication strategies such as RMI do not provide the low level access to allow streaming,
while SOAP provides a good, open standard for communication (as opposed to custom
socket-based communication).

4.4.5.2 Manageability

Each Harvester will register itself against the WCT on start-up. This simplifies deployment
effort and remote management. The registration is also necessary to allow the WCT to
actively monitor the harvester throughput as described in UC8.

4.4.5.3 Distributed Harvest Indexing

To support the extensible Quality Review framework discussed in UC4, it is necessary to
create an index that specifies how to extract individual resources from the harvest result.
Because the creation of such an index is potentially time-consuming and CPU intensive, it has
been decided to distribute this task out to the harvester agents.

4.4.5.4 Store File Server

The Store File Server component is a dedicated service for storing and querying digital
archive files. It is highly independent of the rest of the Web Curator Tool and is not concerned
with the fact that a single harvest may be made up of multiple files. The Store File Server is
specifically responsible for the following things:

• Storage and retrieval of full ARC files
• Random access of the ARC files, given a start point and end point.

The Store File Server may be deployed either locally or remotely to the Web Curator Tool. It is
desirable to store the ARC File Server remotely to separate the data and business segments
of the deployment. Furthermore, the Store File Server will have very large storage
requirements. The complete independence of the Store File Server from the WCT allows for
enhancements or changes in the storage mechanism to be made without large impact.

 Page 20
Web Curator Tool - Software Architecture Document

5. Process View
The process diagram below shows the main processes and threads of execution in the Web
Curator Tool. If this model is used in combination with the deployment view, a picture of how
the components interact and are deployed should be gained.

5.1 WCT Process
The central process is the WCT, an application process running on Tomcat. This runs the core
processing of the web curator tool and is responsible for the web UI.

5.2 Scheduler Thread
This component handles all the scheduled events in the system, it is a Thread pool
responsible for starting scheduled events based on the system clock.

5.3 Harvest Agent Process
The Harvest Agent is a distributable component that can run on one or more servers, to
manage the harvesting of Target Instances. Spawning a Heritrix instance starts the Harvest
process.

5.4 Heritrix Thread
The Heritrix thread is a single call to Heritrix to carry out a specified harvest of a Target
Instance. Each request to Harvest a TargetInstance will result in a new Heritrix job thread.

5.5 ARC Digital Asset Store Process
This component is responsible for storing and retrieving ARC files created by the Harvest
Agent process. This component implements the DigitalAssetStore Interface. In
combination with the DigitalArchive Interface the ARC Digital Asset Store will also be
able to create SIP files for export to an external Digital Archive System.

 Page 21
Web Curator Tool - Software Architecture Document

5.6 OMS Archive Process
This component is an implementation of the DigitalArchive Interface for exporting a SIP
to an external Digital Archive System, in this case the Object Management System (OMS).

6. Deployment View

6.1 Operating Systems
The Web Curator Tool and Harvester System will be developed in Java. The platform
independence of the Java language means that the Web Curator is deployable on any
operating system for which a Java Virtual Machine is available. However, despite the platform
independence of Java, it is critical that the Web Curator Tool is tested upon multiple platforms.
The WCT will be deploy and tested on the following platforms to ensure Solaris and Unix-
based compatibility:

• SPARC Solaris 9, 10
• Red Hat Linux Enterprise Linux 3

The Windows platform should also work, but no full end-to-end testing will be completed on
the Windows platform. A large proportion of the development will be undertaken on the
Windows 2000 platform.

6.2 Database Servers
The Web Curator Tool will rely on Hibernate to provide the persistence layer. Hibernate is an
object relational mapping tool that supports multiple database dialects. As such, the Web
Curator Tool will be compatible with any database supported by Hibernate. The Hibernate
Team officially support and QA against the following databases:

Database Version
Oracle 8i, 9i, 10g
DB2 7.1, 7.2, 8.1
Microsoft SQL Server 2000
Sybase 12.5 (JConnect 5.5)
MySQL 3.23, 4.0, 4.1, 5.0
PostgreSQL 7.1.2, 7.2, 7.3, 7.4, 8.0, 8.1
TimesTen 5.1
HypersonicSQL 1.61, 1.7.0, 1.7.2, 1.7.3, 1.8
SAP DB 7.3

(from http://www.hibernate.org, 19/01/2006)

The Hibernate tool is known to support other databases that are not in the official list.
For development and testing purposes, the Web Curator Tool will be tested against the
following databases:

• Oracle 10g
• MySQL 5.0

6.3 Logical Deployment

The diagram below shows the logical mapping of components on each of the nodes for the
Web Curator Tool. It also identifies the interfaces into external systems like a digital archive.

 Page 22
Web Curator Tool - Software Architecture Document

Harvester Layer

External Interfaces

Application Layer

Data Layer

Harvester B

Web Curator Tool Server

WCT Digital Asset Store

Repository

HarvestAgent

Harvester A

HarvestAgent

UIScheduler Tools

Database Server

Database

Directory Server

DirectoryServer

Digital Archive

DigitalArchive

...

ArchiveAdapter

U
C

8:
 S

to
re

 H
ar

ve
st

UC8: Allocate Jobs

Auth

UC9:
Lo

go
n

UC9: Logon

Al
l u

se
 c

as
es

U
C

4:
 Q

ua
lit

y
R

ev
ie

w

Internet

...

Website(s) Website(s)

Ta
ke

 H
ar

ve
st Take Harvest

WCT
Node

Component

Data Repository

Other
Node

KEY

HarvestCoordinator Notifer

Heritrix Heritrix

UC5: Submit to archive

This logical grouping will result in the creation of three deployment packages that make up the
Web Curator Tool. The three main components are:

• Web Curator Tool Core
• Web Curator Tool Digital Asset Store
• Harvester Agent

Each of these components will be delivered as a standalone WAR file. This allows the
components to be deployed to either a single application server instance as separate web
contexts as shown below:

 Page 23
Web Curator Tool - Software Architecture Document

Application Server

Web Curator Tool WAR

WCT Digital Asset Store WAR

Repository

Harvester WAR

HarvestAgent

UIScheduler Tools

ArchiveAdapter

Auth

WAR

Component

App
Server

KEY

Heritrix

Notifier HarvestCoordinator

The alternative is deployment to separate application server instances on different servers as
shown below:

Application Server A

Application Server C

Application Server B

Web Curator Tool WAR

WCT Digital Asset Store WAR

DigitalAssetStore

Harvester WAR

HarvestAgent

UI

HarvestCoordinator

Tools

ArchiveAdapter

Auth

WAR

Component

App
Server

KEY

Heritrix

Notifier

Scheduler

7. Data View
Hibernate is to be used for all data persistence, so it is not envisaged that the persistence
layer be described in much depth. For more detail around key data structures refer to each of
the Use Case Realisations. In particular UC1 Manage sites and permissions is a key part of
the data model.

 Page 24
Web Curator Tool - Software Architecture Document

8. Size and Performance

8.1 Performance Requirements
The performance requirements of the Web Curator Tool are as follows:

o The WCT must process and respond to login requests in less than 5 seconds 90% of
the time when subjected to peak user volumes.

o The WCT must process and respond to report requests in less than 30 seconds 95%
of the time when subjected to peak user volumes.

o The WCT must process and respond to page requests in less than 5 seconds 95%
of the time when subjected to peak user volumes.

8.2 ARC File Transfer
One of the critical elements of the Web Curator Tool is the collection and submission of large
ARC files. These files may consist of one or more websites, so may be very large. SOAP with
attachments has been determined an appropriate mechanism for transferring large files as it
supports streaming while retaining the flexibility of an application programming interface. The
Apache Axis support library has been used due to its support for streaming attachments.

8.3 Bandwidth Conservation
One of the major requirements of the Web Curator Tool is to limit the bandwidth consumed by
harvesters. The ability to manage bandwidth is limited by the capabilities of the Heretrix Web
Crawler. At the time of writing, the Heritrix crawler only provides support for restricting average
bandwidth over time requirements 6.8.3 – 6.8.6. This strategy does not prevent heavy peaks
and troughs in bandwidth utilisation. The Web Curator Tool does not attempt to provide any
additional level of bandwidth restriction on top of what Heritrix provides.

9. Quality

9.1 Resiliency
It is anticipated that the Web Curator Tool will perform most of its harvests overnight during
off-peak bandwidth periods. The operation of the system will, therefore, be largely
unsupervised, leading to a need for the application to be highly resilient.

To meet this requirement, the harvester processes must attempt to recover from exceptions,
or halt independent components without halting the full system. Specific resiliency
requirements include:

• If the ARC File Server runs out of disk space, any Harvester attempting to store their
ARC files must be able to retry saving the harvest at a later point. This is critical
because a harvest may have taken many hours to collect, and should not be thrown
away due to lack of disk space on the destination server.

• An error from a single harvest thread must not interfere with other harvests.

9.2 Regression Testing
It is always critical to ensure that new development does not break other components of the
software. To ensure this, the Web Curator build scripts optionally execute a set of JUnit test
cases.

9.3 Load Testing
Load testing will also be conducted on the Web Curator Tool’s user interface to ensure that it
meets the performance requirements in 6.10.1 – 6.10.3.

