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About us 
  Curators of large repositories of SE data 

  Searched for conclusions 

  Shull: NSF-funded CeBase 2001- 2005 
  No longer on-line 

  Menzies: PROMISE 2006-2011 
  If you publish, offer data used in that pub 
  http://promisedata.org/data 

  Our question: 
  What’s next? 
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Summary 

 We need to do more “data mining” 
  Not just on different projects 

  But again and again on the same project 

 And by “data Mining” we really mean 
  Automated agents that implement 

  prediction 

  monitoring 

  diagnosis, 

  Planning 

  Adaptive business intelligence 
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Adaptive Business Intelligence 

   learning, and re-learning, 

   How to…. 
  Detect death march project 
  Repair death march projects 
  Find best  sell/buy point  for software artifacts 
  Invest more (or less) in staff training/dev programs 
  Prioritize software inspections 
  Estimate development cost 
  Change development costs 
  etc 
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This talk 

 A plea for industrial partners to join in  

 A roadmap for my next  decade of research 
  Many long term questions 

  A handful of new results 
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Data Mining & 
Software 

Engineering 
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So many applications  
of data  mining to SE 

  Process data 
  Input: Developer skills, 

platform stability  

  Output: effort estimation 

  Social data 
  Input: e.g. which tester do 

you most respect? 

  Output: predictions of 
what bugs gets fixed first 
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  Product data 
  Input: static code 

descriptions 

  Output: defect predictors 

  Trace data 
  Input: what calls what? 

  Output: call sequences 
that lead to a core dump 

  Usage data 
  Input:  what is everyone  

using? 

  Output: recommendations 
on where to browse next 

  Any textual form 
  Input: text of any artifact 

  Output: e.g. fault 
localization 



The State of the Art 

  If data collected, then usually forgotten 

  Dashboards : visualizations for feature  
extraction; intelligence left the user 

  MapReduce, Hadoop et. al : systems  
support for massive,  parallel execution. 
  http://hadoop.apache.org 
  Implements the bus, but no bus drivers 

  Many SE  data mining publications 

  e.g. Bird, Nagappan, Zimmermann  
and last slide 

  But, no agents that recognize when  
old models are no longer relevant,  

  Or to repair old models using new data 8 of 48 



Of course, DM gets  
it wrong, sometimes 

  Heh, nobody’s perfect 

  E.g. look at all the 
mistakes people make: 
  Wikipidea: list of 

cognitive biases 

  38 decision  
making biases 

  30 biases in probability 

  18 social biases 

  10 memory biases 

  At least with DM, can 
repeat the analysis, 
audit the conclusion. 

  Create agent communities, each 
with novel insights and limitations 
  Data miners working with humans 

  See more together than separately 

  Partnership 
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Does this change 
empirical SE 
research? 
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Ben Shneiderman, Mar’08 

  The growth of the World Wide Web ... continues 
to reorder whole disciplines and industries. ... 

   It is time for researchers in science to take 
network collaboration to the next phase and 
reap the potential intellectual and societal 
payoffs.  

  -B. Shneiderman.  

  Science 2.0.  

  Science, 319(7):1349–1350,  March 2008 
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Science 
2.0 
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A proposal 

 Add roller skates to  software engineering 

 Always use DM (data mining)  on SE data 
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What’s the difference? 

SE research v1.0 

  Case studies 
  Watch, don’t touch 

  Experiments 
  Vary a few conditions in a 

project 

  Simple analysis 
  A little ANOVA, regression, 

maybe a t-test 

SE research v2.0 

  Data generators 
  Case studies 

  Experiments 

  Data analysis 
  10,000 of possible  

data miners 

  Crowd-sourcing 
  10,000 of possible analysts 

    
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Value-added (to case-study-
based research) 

 Case studies: powerful for defining 
problems, highlighting open issues 

 Has documented 100s of candidate 
methods for improving SE 
development 

 e.g. Kitchenham et. Al  IEEE TSE, 2007,  
  Cross versus Within-Company Cost 

Estimation 

  Spawned a sub-culture of researchers  
  checking if what works here also works 

there.  

15 of 48 



Case-Study-based Research:  
Has Limits 

  Too slow  
  Years to produce conclusions 
  Meanwhile, technology base changes 

  Too many candidate methods 

  No guidance on what methods to 
apply to particular projects 

  Little generality 

  Zimmermann et. al,  FSE 2009 
  662 times : learn here, test there 

  Worked in  4% of pairs 

  Many similar no-generality results 
  Chpt1, Menzies & Shull 
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Case-studies + DM =  
Better Research 

 Propose a partnership between  
  case study research  

  And data mining 

 Data mining is stupid 
  Syntactic, no business knowledge 

 Case studies are too slow 
  And to check for generality? Even slower 

 Case study research (on one project) to raise questions 
  Data mining (on many projects) to check the answers 
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Adaptive 
Agents 
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Need for adaptive agents 

 No general rules in SE 
  Zimmermann FSE, 2009 

  But general methods to find the local rules 

  Issues: 
  How quickly can we learn the local models? 

  How to check when local models start failing? 

  How to repair local models? 

 An adaptive agent watching a stream of data, learning 
and relearning as appropriate 
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break  
down 

Agents for adaptive business 
intelligence 

20 of 48 

Data collected over time 

Quality 
(e.g.  
PRED(30))  

mode #1 

break  
down 

learn 

mode #2 

learn 

mode #3 learn 



break  
down 

Agents for adaptive business 
intelligence 

  What is different here? 
  Not “apply data mining to build a predictor” 
  But add monitor and repair tools to recognize and 

handle the breakdown of old predictors 
  Trust = data mining + monitor + repair 21 of 48 
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If crowd sourcing 
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Quality 
(e.g.  
PRED(30))  

mode #1 
mode #2 

mode 
#3 

Quality 
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Quality 
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With DM, we could recognize that e.g.  1=4=7 
•  i.e. when some “new” situation has happened before 
•      So we’d know what experience base to exploit 



Research Questions. 
How to handle…. 

  Anonymization 
  Make data public, without 

revealing private data  

  Volume of data  
  Especially if working from 

“raw” project artifacts 

  Especially if crowd 
sourcing 

  Explanation : of complex 
patterns 

  Noise: from dad data 
collection 

  Mode recognition 

  Is when new is stuff is new, 
or a a repeat of old stuff 

  Trust : you did not collect 
the data   
  Must surround the learners 

with assessment agents 
  Anomaly detectors 

  Repair 
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Most of the technology 

required for this approach 

can be implemented via 

data mining 
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So it would scale 

 to large data sets 
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Organizing the 
artifacts  
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Visual Wiki (“Viki”) concept 
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Enterprise Artifacts example 

  Add documents; organize; search; navigate 

  Edit properties, documents, add links, extract links 
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Various Vikis 
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  Bottom left: business process descriptions 



VikiBuilder – generating Vikis 
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Text mining 
 Key issue: dimensionality reduction 

  In some domains, can be done in linear time 

 Use standard data miners, applied to top 
100 terms in each corpus 31 of 48 



Details 
32 



break  
down 

Agents for adaptive business 
intelligence 

  Q1: How to learn faster? 
  Technology: active learning: reflect on examples 

to date to ask most informative next question 
  Q2: How to recognize breakdown? 

  Technology: bayesian anomaly detection 
  Focusing on frequency counts of contrast sets  33 of 48 
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break  
down 

Agents for adaptive business 
intelligence 

  Q3: How to classify  a mode?  
  Recognize if you’ve arrived at a mode seen before 
  Technology: Bayes classifier 

  Q4: How to make predictions?  
  Using the norms of a mode, report expected behavior 
  Technology: table look-up of data inside Bayes classifier 
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break  
down 

Agents for adaptive business 
intelligence 

  Q5: What went wrong? (diagnosis) 
  Delta between current and  prior, better, mode 

  Q6: What to do? (planning)  
  Delta between current and  other, better, mode 

  Technology: contrast set learning 35 of 48 
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break  
down 

Agents for adaptive business 
intelligence 

  Q7: How to understand a mode (explanation) 
  Presentation of essential features of a mode 

  Technology: contrast set learning 
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Prototypes 
Bits and pieces 
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Contrast set learning 

  Minimal contrast set  learning = 
diagnosis &planning 

  A decision tree with weighted leaves 
  Treatment = decisions that prune branches 

 Culls bad weights 

 Keeps  good weights 

  E.g. Simulator + C4.5 + 10-way 
  10 * 1000 node trees 

  TAR1: tiny rules: decision on 4 ranges 

  Why so small? 
  Higher decisions prune more branches 

  touch fewer nodes 
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Contrast Set Learning  
Succinct Explanations 
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Contrast Set Learning 
(10 years later) 

  No longer a post-processor to a 
decision tree learner 

  TAR3: Branch pruning operators 
applied directly to discretized 
data  

  Summer’09 

  Shoot ‘em up at NASA AMES  

  State-of-the-art numerical 
optimizer 

  TAR3 
  Ran 40 times faster 

  Generated better solutions 

  Powerful succinct explanation tool 
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Contrast Set Learning  
Anomaly Detection 

  Recognize when old ideas  
are now out-dated 

  SAWTOOTH:  

  read data in “eras” of 100 instances 
  Classify all examples as “seen it” 

  SAWTOOTH1: 

  Report average likelihood of 
examples belong to “seen it” 

  Alert if that likelihood drops 

  SAWTOOTH2: 

  Back-end to TAR3 

  Track frequency  of contrast sets 
  Some uniformity between contrast 

sets and anomaly detection 41 of 48 



Contrast sets  noise management 

 CLIFF: post-processor to TAR3 

  Linear time instance selector 

  Finds the attribute ranges that change classification 

 Delete all instances that lack the “power ranges” 
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Contrast Sets  CLIFF  
Active Learning 

  Many examples, too few 
labels 

  Reduce the time required 
for business users to offer 
judgment on business 
cases 

  Explore the reduced 
space generated by 
CLIFF. 

  Randomly ample the 
instances half-way 
between different 
classes 

  Fast (in the reduced 
space)  43 of 48 



Contrast sets  CLIFF  
Statistical databases 

  Anonymize the data: Preserving its distributions 

  For KNN, that means keep the boundaries between classes 
  Which we get from CLIFF 

  Also, CLIFF empties out the instance space 
  Leaving us space to synthesize new instances   
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And so… 
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We seek industrial partners 

1.  That will place textual versions of their products 
in a wiki 

2.  That will offer joins of those products to quality 
measures 

3.  That will suffer us interviewing their managers, 
from time to time, to learn the control points. 

(Note: 1,2 can be behind your firewalls.)  
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In return, we offer 

 Agents for  
  automatic, adaptive, business intelligence  

  that tunes itself to your local domain 
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Questions? 
Comments? 
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