Finding local lessons in software engineering

Tim Menzies, WVU, USA, tim@menzies.us

CS, Wayne State, Feb'10

Sound bites

- An observation:
 - Surprisingly few general SE results.
- A requirement:
 - Need simple methods for finding local lessons.
- Take home lesson:
 - Finding useful local lessons is remarkably simple
 - E.g. using "W" or "NOVA"

Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

Have we lived up to our PROMISE?

Few general results

- PROMISE 2005 ... 2009 : 64 presentations
- 48 papers
 - tried a new analysis on old data
 - Or reported a new method that worked once for one project.
- 4 papers
 - argued against model generality
- 9 papers
 - questioned validity of prior results
- E.g. Menzies et al. Promise 2006
 - 100 times
 - Select 90% of the training data
 - Find<a,b> in effort = x.a.LOC ^b

Have we lived up to our PROMISE?

Only 11% of papers proposed general models

- E.g. Ostrand, Weyuker, Bell '08, '09
 - Same functional form
 - Predicts defects for generations of AT&T software
- E.g. Turhan, Menzies, Bener '08, '09
 - 10 projects
 - Learn on 9
 - Apply to the 10th
 - Defect models learned from NASA projects work for Turkish whitegoods software
 - Caveat: need to filter irrelevant training examples

Less Promising Results

Lessons learned are very localized

- ASE'09: Green, Menzies et al.
 - Al search for better software project options
 - Conclusions highly dependent on local business value proposition
- And others
 - TSE'06: Menzies, Greenwald
 - Menzies et al. in ISSE 2007
 - Zannier et al ICSE'06

Overall

The gods are (a little) angry

- Fenton at PROMISE' 07
 - "... much of the current software metrics research is inherently irrelevant to the industrial mix ..."
 - "... any software metrics program that depends on some extensive metrics collection is doomed to failure ..."
 - Budgen & Kitchenham:
 - "Is Evidence Based Software Engineering mature enough for Practice & Policy?"
 - Need for better reporting: more reviews.
 - Empirical SE results too immature for making policy.
- Basili : still far to go
 - But we should celebrate the progress made over the last 30 years.
 - And we are turning the corner

Experience Factories

Methods to find local lessons

- Basili'09 (pers. comm.):
 - "All my papers have the same form.
 - "For the project being studied, we find that changing X improved Y."
- Translation (mine):
 - Even if we can't find general models (which seem to be quite rare)....
 - ... we can still research general methods for finding local lessons learned

The rest of this talk: contrast set learning and "W"

W= a local lessons finder

- Bayesian case-based contrast-set learner
 - uses greedy search
 - illustrates the "local lessons" effect
 - offers functionality missing in the effort-estimation literature
- Fast generator of baseline results
 - There are too few baseline results
 - And baseline results can be very interesting (humbling).
- A very (very) simple algorithm
 - Should add it to your toolkit
 - At least, as the "one to beat"

Holte'85

- C4: builds decision trees "N" deep
- 1R: builds decision trees "1" deep
- For datasets with 2 classes, 1R ≈ C4

Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

Problem

Too much information

Tree Pruning

Can you see the big picture?

- Good branches go to good goals
- Bad branches go to bad goals
- Select decisions that select for
 - Most good
 - Least bad
- TARZAN:
 - swings through the trees
 - Post-processor to C4.5

Tree Pruning

Can you see the big picture?

- Good branches go to good goals
- Bad branches go to bad goals
- Select decisions that select for
 - Most good
 - Least bad
- TARZAN:
 - swings through the trees
 - Post-processor to C4.5

Tree Pruning

Can you see the big picture?

- Good branches go to good goals
- Bad branches go to bad goals
- Select decisions that select for
 - Most good
 - Least bad
- TARZAN:
 - swings through the trees
 - Post-processor to C4.5

Comment

Less is best

- Higher decisions prune more branches
- #nodes at level I much smaller than level I+1.
- So tree pruning often yields very small sets of recommendations

Don't bury me in data

Don't show me "what is"; just tell what "to do"

Treatment learning: 9 years later

Gay, Menzies et al. 2010

- TARZAN is no longer a post-processor
 - Branch queries performed directly on discretized data
 - thanks David Poole
 - Stochastic sampling for rule generation
- Benchmarked against state-of-the-art numerical optimizers for GNC control

Metric	Project 1						
]	Rank	Program	50%		
Puntimo			1	TAR4.1	0.13		
		1	2	TAR3	0.31		
realitilite		;	3	QN	6		
		4	1	SA-T4	15		
		4	4	SA-T3	16		
	Rank	Program	50%	Quartiles			
							1
	1	TAR4.1	59			•	
Recall	1	QN	36		•-		
Recall	2	SA-T4	25		•	-	
	3	TAR3	22		•		
	4	SA-T3	20		•		
				0		50	100
	Rank	Program	50%	Quartiles			
P(False Alarm)						1	1
	1	TAR3	1	•			
	2	SA-T3	9		Ð		
	3	TAR4.1	25		•		
	4	QN	34		•		
	4	SA-T4	71		_	•	
				0		50	100

Still generating tiny rules (very easy to read, explain, audit, implement)

Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

"W"= Simple (Bayesian) Contrast Set Learning (in linear time)

Mozina: KDD'04

- "best" = target class (e.g. "survive")
- "rest" = other classes
- x = any range (e.g. "sex=female")
- f(x|c) =frequency of x in class c
- b = f(x | best) / F(best)
- r = f(x | rest) / F(rest)
- LOR= log(odds ratio) = log(b/r)
 - ? normalize 0 to max = 1 to 100
- s = sum of LORs
 - e = 2.7183 ...
 - p = F(B) / (F(B) + F(R))
 - $P(B) = 1 / (1 + e^{(-1)(p/(1 p)) s))$

"W":Simpler (Bayesian) Contrast Set Learning (in linear time)

Mozina: KDD'04

"W" + CBR

Preliminaries

- "Query"
 - What kind of project you want to analyze; e.g.
 - Analysts not so clever,
 - High reliability system
 - Small KLOC
- "Cases"
 - Historical records, with their development effort
- Output:
 - A recommendation on how to change our projects in order to reduce development effort

Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

#1: Brooks's Law

Some tasks have inherent temporal constraints

Which no amount of \$\$\$ can change

Brooks's Law (1975)

"Adding manpower (sic) to a late project makes it later."

Inexperience of new comers

- Extra communication overhead
- Slower progress

"W", CBR, & Brooks's law

Can we mitigate for decreased experience?

- Data:
 - Nasa93.arff (from promisedata.org)
- Query:
 - Applications Experience
 - "aexp=1": under 2 months
 - Platform Experience
 - "plex=1" : under 2 months
 - Language and tool experience
 - "Itex = 1" : under 2 months

- For nasa93, inexperience does not always delay the project
 - if you can reign in the DB requirements.
- So generalities may be false
 - in specific circumstances

Need ways to quickly build and maintain domainspecific SE models

#2,#3,.... #13

Results (distribution of development efforts in q_i*)

Using cases from http://promisedata.org

		X = 8	as is	Y=	to be	(X-Y) / X		
cases	query	median	spread	median	spread	median	spread	
coc81	allSmall	70	920	79	73	-13%	92%	
coc81	flight	87	281	70	0	20%	100%	
nasa93	osp2	409	653	300	376	27%	42%	
coc81	osp2	87	483	60	138	31%	71%	
nasa93	osp	409	781	210	125	49%	84%	
nasa93	allSmall	409	588	162	120	60%	80%	
coc81	allLarge	50	158	18	32	64%	80%	
nasa93	allLarge	300	660	90	150	70%	77%	
nasa93	ground	360	481	82	100	77%	79%	
coc81	osp	88	483	7	446	92%	8%	
coc81	ground	156	478	6	1	96%	100%	
nasa93	flight	360	474					

Cases from promisedata.org/data

Median = 50% percentile Spread = 75% - 25% percentile

Improvement = (X - Y) / X

- X = as is
- Y = to be
- more is better

Usually:

- spread \geq 75% improvement
- median ≥ 60% improvement

Not-so-good news

Local lessons are very localized

Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

More models

USC Cocomo suite (Boehm 1981, 2000)

COCOMO

- Time to build it (calendar months)
- Effort to build it (total staff months)

COQUALMO

• defects per 1000 lines of code

Estimate = model(p, t)

- P = project options
- T = tuning options
- Normal practice: Adjust "t" using local data
- NOVA: Stagger randomly all tunings even seen before

?

More goals

B = BFC

Goal #1:

• better, faster, cheaper

Try to minimize:

- Development time <u>and</u>
- Development effort <u>and</u>
- # defects

X = XPOS

Goal #2

• minimize risk exposure

Rushing to beat the competition

- Get to market, soon as you can
- Without too many defects

More search engines

Not greedy search

Simulated Annealling

ISSAMP

ASTAR

BEAM

MaxWalkSat

SEESAW : MaxWalkSat + boundary mutation

- Local favorite
- Does best at reduction defects or effort or time

More tests

Four data sets, repeat N=20 times

	ranges			fixed settings		
	feature	low	high	feature	setting	
	prec	1	2	data	3	
	flex	2	5	pvol	2	
	resl	1	3	rely	5	
	team	2	3	pcap	3	
	pmat	1	4	plex	3	
	stor	3	5	site	3	
	ruse	2	4			
	docu	2	4			
	acap	2	3			
	pcon	2	3			
• OSP= orbital space plane GNC	apex	2	3			
• $OSP2 = second dependention GNC$	ltex	2	4			
• OSI Z = Second generation GNC	tool	2	3			
 Flight = JPL flight systems 	sced	1	3			
• Ground = IPI around systems	cplx	5	6			
	KSLOC	75	125			

For each data set

- Search N= 20 times (with SEESAW)
- Record how often decisions are found

	Rette	Better faster cheaper			Minimize risk exposure				
Frequency%	Dette				(rushing to market)				
				- /					
of range in				lue /					
20 reneats	Data	Range	B=BFC	X=XPOS	$\frac{B}{B+X}$				
20100000							If high, then		
(ignore all ranges	ground	rely = 4	70	20	77		more in BFC		
found < 50%	-	aa = 6	70	25	73				
100110 < 50%		resl = 6	65	40	61				
		etat = 1	35	65	35		If 50% then same		
		aexp = 5	45	85	34		In BFC and XPOS		
		pr = 1	35	80	30				
		aa = 1	25	60	29				
		data = 2	25	70	26		If low, then		
		rely = 1	15	70	17		usually in XPOS		
	flight	rely = 5	65	25	72				
	_	flex = 6	80	50	61				
		docu = 1	55	85	39				
		site = 6	55	85	39				
		resl = 6	45	70	39				
		pr = 1	45	70	39				
		pvol = 2	45	75	37				
		data = 2	35	60	36				
		cplx = 3	45	90	33				
		rely = 3	15	60	20				
	OSP	pmat = 4	85	45	65				
		resl = 3	45	70	39				
		ruse = 2	40	65	38				
		docu = 2	25	90	21				
	OSP2	sced = 2	100	0	100				
		sced = 4	0	80	0		"Value"		
					- 		 (business context) 		
Mostly: if so	lactad k	NV ONO	raiac	tod by	the of	thor	changes everything		
			, rejec				changes everything		

		Better, faster, cheaper			Minimize risk exposure			
And what of							o market)	
techniques?	Da	ata	Range	B=BFC	X=XPOS	$\frac{B}{B+X}$		
	gr	ound	rely = 4	70	20	77		
Aa = automated analys	sis		aa = 6	70	25	73		
Etat= execution testing	and tools		res1 = 6	65	40	61		
Pr= peer review	y ee		etat = 1	35	65	35		
			aexp = 5	45	85	34		
			pr = 1	35	80	30		
			aa = 1	25	60	29		
			data = 2	25	70	26		
			rely = 1	15	70	17		
	fli	ght	rely = 5	65	25	72		
			flex = 6	80	50	61		
			docu = 1	55	85	39		
			site $= 6$	55	85	39		
			resl = 6	45	70	39		
			pr = 1	45	70	39		
			pvol = 2	45	75	37		
			data = 2	35	60	36		
			cplx = 3	45	90	33		
			rely = 3	15	60	20		
	0	SP	pmat = 4	85	45	65		
			res1 = 3	45	70	39		
			ruse = 2	40	65	38		
			docu = 2	25	90	21		
	0	SP2	sced = 2	100	0	100		
			sced = 4	0	80	0		

Stopping defect introduction is better than defect removal.

Roadmap

- Motivation: generality in SE
- A little primer: DM for SE
- "W": finding contrast sets
- "W": case studies
- "W": drawbacks
- "NOVA": a better "W"
- Conclusions

Certainly, we should always strive for generality

But don't be alarmed if you can't find it

- The experience to date is that,
 - with rare exceptions,
 - W and NOVA do not lead to general theories
- But that's ok
 - Very few others have found general models (in SE)
 - E.g. Turhan, Menzies, Ayse'09
- Anyway
 - If there are few general results, there may be general methods to find local results

Btw, constantly (re)building local models is a general model

Case-based reasoning

- Kolodner's theory of reconstructive memory
- The Yale group
 - Shank & Riesbeck et al.
 - Memory, not models
 - Don't "think", remember

See you at PROMISE'10?

http://promisedata.org/2010