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Example: Objects 

In this chapter we're going to implement our own object-oriented language 

within Lisp. Such a program is called an embedded language. Embedding 

an object-oriented language in Lisp makes an ideal example. As well as 

being a characteristic use of Lisp, it shows how naturally the abstractions of 

object-oriented programming map onto the fundamental abstractions of Lisp. 

17.1 Inheritance 

Section 11.10 explained how generic functions differ from message-passing. 

In the message-passing model, 

1. objects have properties, 

2. and respond to messages, 

3. and inherit properties and methods from their parents. 

CLOS, of course, uses the generic function model. But in this chapter we are 

interested in writing a minimal object system, not a rival to CLOS, so we will 

use the older model. 

In Lisp, there are already several ways to store collections of properties. 

One way would be to represent objects as hash tables, and store their properties 

as entries within them. We then have access to individual properties through 

gethash: 

(gethash ' co lo r obj) 

269 
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(defun rget (prop obj) 

(multiple-value-bind (val 

(if in 

(values val in) 

(let ((par (gethash 

in) (gethash prop 

:parent obj))) 

(and par (rget prop par)))))) 

(defun tell (obj message &rest args) 

(apply (rget message obj) obj args)) 

Figure 17.1: Inheritance. 

obj) 

Since functions are data objects, we can store them as properties too. This 

means that we can also have methods; to invoke a given method of an object 

is to funcall the property of that name: 

(funcall (gethash 'move obj) obj 10) 

We can define a Smalltalk style message-passing syntax upon this idea, 

(defun tell (obj message &rest args) 

(apply (gethash message obj) obj args)) 

so that to tell obj to move 10, we can say 

( t e l l obj 'move 10) 

In fact, the only ingredient plain Lisp lacks is inheritance. We can 

implement a simple version of that by defining a recursive version of gethash, 

as in Figure 17.1. (The name rge t stands for "recursive get.") Now with 

a total of eight lines of code we have all three of the minimal elements of 

object-oriented programming. 

Let's try out this code on our original example. We create two objects, 

one a child of the other: 

> (setf circle-class (make-hash-table) 

our-circle (make-hash-table) 

(gethash -.parent our-circle) circle-class 

(gethash 'radius our-circle) 2) 

2 

The object c i r c l e - c l a s s will hold the area method for all circles. It will 

be a function of one argument, the object to which the message is originally 

sent: 
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> (setf (gethash 'area circle-class) 

#'(lambda (x) 

(* p i (expt ( rget ' r a d i u s x) 2 ) ) ) ) 

#<Interpreted-Funct ion BF1EF6> 

Now we can ask for the area of o u r - c i r c l e , and its value will be calculated 

according to the method defined for the class. We use rge t to read a property, 

and t e l l to invoke a method: 

> (rget 'radius our-circle) 

2 

T 

> (tell our-circle 'area) 

12.566370614359173 

Before going on to improve this program, it's worth pausing to consider 

what we have done. With eight lines of code we have made plain old pre-CLOS 

Lisp into an object-oriented language. How did we manage to achieve such a 

feat? There must be some sort of trick involved, to implement object-oriented 

programming in eight lines of code. 

There is a trick, but it is not a programming trick. The trick is, Lisp 

already was an object-oriented language, or rather, something more general. 

All we had to do was put a new facade on the abstractions that were already 

there. 

17.2 Multiple Inheritance 

So far we have only single inheritance—an object can only have one 

parent. But we can have multiple inheritance by making the parent property 

a list, and defining rge t as in Figure 17.2. 

With single inheritance, when we wanted to retrieve some property of an 

object, we just searched recursively up its ancestors. If the object itself had 

no information about the property we wanted, we looked at its parent, and so 

on. With multiple inheritance we want to perform the same kind of search, 

but our job is complicated by the fact that an object's ancestors can form a 

graph instead of a simple tree. We can't just search this graph depth-first. 

With multiple parents we can have the hierarchy shown in Figure 17.3: a is 

descended from b and c, which are both descended from d. A depth-first (or 

rather, height-first) traversal would go a, b, d, c, d. If the desired property 

were present in both d and c, we would get the value stored in d, not the 

one stored in c. This would violate the principle that subclasses override the 

default values provided by their parents. 

If we want to implement the usual idea of inheritance, we should never 

examine an object before one of its descendants. In this case, the proper 
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(defun rget (prop obj) 

(dolist (c (precedence 

(multiple-value-bind 

obj)) 

(val in) (gethash prop c) 

1 (if in (return (values val in)))))) 

(defun precedence (obj) 

(labels ((traverse (x) 

(cons x 

(mapcan #'traverse 

(delete-duplicates (1 

Figure 17.2: 

(gethash :parents 

traverse obj)))) 

Multiple inheritance. 

x))))) 

Figure 17.3: Multiple paths to a superclass. 

search order would be a, b, c, d. How can we ensure that the search always 

tries descendants first? The simplest way is to assemble a list of an object 

and all its ancestors in the proper precedence order, then look at each one in 

turn. 

The function precedence returns a list of an object and all its ancestors 

in the correct order. It begins by calling t r a v e r s e to build a list representing 

the objects encountered in a depth-first traversal. If any of the objects share 

parents, there will be duplicates in this list. If we preserve only the last of each 

set of duplicates, we will get a precedence list in the natural order defined by 

CLOS. (Deleting all but the last duplicate corresponds to rule 3 in the algorithm 

described on page 183.) The Common Lisp function de l e t e -dup l i ca t es 

is defined to behave this way, so if we just call it on the result of the depth-first 

traversal, we will get the correct precedence list. Once the precedence list is 

created, rge t searches for the first object with the desired property. 
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By taking advantage of precedence we can say, for example, that a patriotic 

scoundrel is a scoundrel first and a patriot second: 

> (setf scoundrel (make-hash-table) 

patriot (make-hash-table) 

patriotic-scoundrel (make-hash-table) 

(gethash 'serves scoundrel) 'self 

(gethash 'serves patriot) 'country 

(gethash :parents patriotic-scoundrel) 

(list scoundrel patriot)) 

(#<Hash-Table C41C7E> #<Hash-Table C41F0E>) 

> (rget 'serves patriotic-scoundrel) 

SELF 

T 

At this point we have a program that's powerful, but ugly and inefficient. 

In the second stage of the life of a Lisp program, we refine this sketch into 

something usable. 

17.3 Defining Objects 

Among the first improvements we need is a function to create objects. The 

way our program represents objects and their parents need not be visible to 

the user. If we define a function to build objects, users will be able to make 

an object and specify its parents in one step. And we can build an object's 

precedence list at the time it is created, instead of expensively reconstructing 

it every time we need to find a property or a method. 

If we are going to maintain precedence lists instead of constructing them 

as we need them, we have to deal with the possibility of the lists becoming 

outdated. Our strategy will be to keep a list of all existing objects, and 

whenever something's parents are modified, to remake the precedence list of 

every object affected. This is expensive, but since queries are likely to be 

much more common than the redefinition of objects' parents, we will get a 

net saving. Our program will not become any less flexible by this change; we 

just shift costs from a frequent operation to an infrequent one. 

Figure 17.4 contains the new code.
0 The global *objs* will be a list 

of all current objects. The function paren t s retrieves an object's parents; 

its converse (set f paren ts ) not only sets an object's parents, but calls 

make-precedence to rebuild any precedence list that might thereby have 

changed. The lists are built by precedence, as before. 

Now instead of calling make-hash-table to make objects, users will 

call obj, which creates a new object and defines its parents in one step. We 

also redefine rge t to take advantage of stored precedence lists. 



274 EXAMPLE: OBJECTS 

(defvar *objs* n i l ) 

(defun parents (obj) (gethash -.parents obj)) 

(defun (setf parents) (val obj) 

(progl (setf (gethash :parents obj) val) 

(make-precedence obj))) 

(defun make-precedence (obj) 

(setf (gethash ipreclist obj) (precedence obj)) 

(dolist (x *objs*) 

(if (member obj (gethash :preclist x)) 

(setf (gethash ipreclist x) (precedence x))))) 

(defun obj (ferest parents) 

(let ((obj (make-hash-table))) 

(push obj *objs*) 

(setf (parents obj) parents) 

obj)) 

(defun rget (prop obj) 

(dolist (c (gethash ipreclist obj)) 

(multiple-value-bind (val in) (gethash prop c) 

(if in (return (values val in)))))) 

Figure 17.4: Creating objects. 

17.4 Functional Syntax 

Another place for improvement is the syntax of message calls. The t e l l 

itself is unnecessary clutter, and because it makes verbs come third, it means 

that our programs can no longer be read like normal Lisp prefix expressions: 

( t e l l ( t e l l obj ' f ind-owner) 'find-owner) 

We can get rid of the t e l l syntax by defining property names as functions, 

using the macro def prop in Figure 17.5. The optional argument meth?, if 

true, signals that this property should be treated as a method. Otherwise it will 

be treated as a slot, and the value retrieved by rge t will simply be returned. 

Once we have defined the name of either kind of property, 

(defprop find-owner t) 
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(defmacro defprop (name feoptional meth?) 

' (progn 

(defun ,name (obj &rest args) 

, ( i f meth? 

'(run-methods obj ',name args) 

' ( r g e t ',name ob j ) ) ) 

(defun (se t f ,name) (val obj) 

(se t f (gethash ',name obj) v a l ) ) ) ) 

(defun run-methods (obj name args) 

( l e t ((meth ( rget name ob j ) ) ) 

(if meth 

(apply meth obj args) 

(e r ro r "No ~A method for "A." name o b j ) ) ) ) 

Figure 17.5: Functional syntax. 

we can refer to it with a function call, and our code will read like Lisp again: 

(find-owner (find-owner obj)) 

Our previous example now becomes somewhat more readable: 

> (progn 

(setf scoundrel (obj) 

patriot (obj) 

patriotic-scoundrel (obj scoundrel patriot)) 

(defprop serves) 

(setf (serves scoundrel) 'self 

(serves patriot) 'country) 

(serves patriotic-scoundrel)) 

SELF 

T 

17.5 Defining Methods 

So far we define a method by saying something like: 

(defprop area t ) 

(setf circle-class (obj)) 
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(defmacro defmeth (name obj parms &rest 

(let ((gobj (gensym))) 

'(let ((,gobj ,obj)) 

(setf (gethash ',name ,gobj) 

(labels ((next () (get-next 

body) 

,gobj > ,name))) 
! #'(lambda ,parms ,©body)))))) 

(defun get-next (obj name) 

(some #'(lambda (x) (gethash name x)) 

(cdr (gethash ipreclist obj)))) 

Figure 17.6: Defining methods. 

(setf (area circle-class) 

#;(lambda (c) (* pi (expt (radius c) 2)))) 

Within a method we can get the effect of the built-in call-next-method 

by calling the first thing we can find under the same name in the cdr of the 

object's :prec l i s t . So, for example, if we want to define a special circle 

that prints something in the process of returning its area, we say: 

(setf grumpy-circle (obj c i r c l e - c l a s s ) ) 

( setf (area grumpy-circle) 

#'(lambda (c) 

(format t "How dare you stereotype me!""/,") 

(funcall (some #'(lambda (x) (gethash 'area x)) 

(cdr (gethash :prec l i s t c ) ) ) 

c ) ) ) 

The funcall here is equivalent to a call-next-method, but it shows more 

internals than we want to look at. 

The macro defmeth in Figure 17.6 provides a convenient way to define 

methods, and makes it easy to call the next method within them. A call 

to defmeth expands into a setf, but the setf occurs within a labels 

expression that defines next as a function to retrieve the next method. This 

function is like next-met hod-p (page 188), but returns something we can 

call, and so serves the purpose of call-next-method as well.
0
 Now the 

preceding two methods could be defined: 

(defmeth area circle-class (c) 

(* pi (expt (radius c) 2))) 
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(defmeth area grumpy-circle (c) 

(format t "How dare you s te reo type me!~%") 

(funcal l (next) c)) 

Incidentally, notice that the definition of defmeth takes advantage of symbol 

capture. The body of the method is inserted into a context where the function 

next is locally defined. 

17.6 Instances 

So far we have not distinguished between classes and instances. We have 

used a single term, object, to cover both. It is elegant and flexible to treat all 

objects the same, but grossly inefficient. In most object-oriented applications 

the inheritance graph will be bottom-heavy. In a simulation of traffic, for 

example, we might have less than ten objects representing classes of vehicles, 

and hundreds of objects representing particular vehicles. Since the latter will 

all share a few precedence lists, it is a waste of time to create them, and a 

waste of space to store them. 

Figure 17.7 defines a macro ins t , for making instances. Instances are 

like other objects (which now may as well be called classes), but have only 

one parent and do not maintain precedence lists. They are also not included 

in the list *obj s*. In the preceding examples, we could have said: 

(setf grumpy-circle ( i n s t c i r c l e - c l a s s ) ) 

Since some objects will no longer have precedence lists, the functions rge t 

and get -next are now redefined to look at the parents of such objects instead. 

This gain in efficiency has cost us nothing in flexibility. We can do everything 

with an instance that we can do with any other kind of object, including make 

instances of it and redefine its parents. In the latter case, ( se t f paren ts ) 

will effectively convert the object to a "class." 

17.7 New Implementation 

None of the improvements we've made so far have been made at the expense of 

flexibility. In the latter stages of its development, a Lisp program can usually 

benefit from some sacrifice of flexibility, and this case is no exception. So 

far we have been representing all objects as hash tables. This gives us more 

flexibility than we need, at greater cost than we want. In this section we will 

rewrite our program to represent objects as simple vectors. 
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(defun inst (parent) 

(let ((obj (make-hash-table))) 

(setf (gethash -.parents obj) parent) 

obj)) 

(defun rget (prop obj) 

(let ((prec (gethash ipreclist obj))) 

(if prec 

(dolist (c prec) 

(multiple-value-bind (val in) (gethash prop c) 

(if in (return (values val in))))) 

(multiple-value-bind (val in) (gethash prop obj) 

(if in 

(values val in) 

(rget prop (gethash :parents obj))))))) 

(defun get-next (obj name) 

(let ((prec (gethash :preclist obj))) 

(if prec 

(some #'(lambda (x) (gethash name x)) 

(cdr prec)) 

(get-next (gethash obj -.parents) name)))) 

Figure 17.7: Defining instances. 

This change will mean giving up the possibility of defining new properties 

on the fly. So far we can define a property of any object simply by referring 

to it. Now when a class is created, we will have to give a list of the new 

properties it has, and when instances are created, they will have exactly the 

properties they inherit. 

In the previous implementation there was no real division between classes 

and instances. An instance was just a class that happened to have one parent. 

If we modified the parents of an instance, it would become a class. In the new 

implementation there will be a real division between classes and instances; it 

will no longer be possible to convert instances to classes. 

The code in Figures 17.8-17.10 is a complete new implementation. Fig-

ure 17.8 defines the new operators for creating classes and instances. Classes 

and instances are represented as vectors. The first three elements of each will 

contain information used by the program itself, and the first three macros in 

Figure 17.8 are for referring to these elements: 
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(defmacro parents (v) f(svref ,v 0)) 

(defmacro layout (v) '(the simple-vector (svref ,v 1))) 

(defmacro preclist (v) '(svref ,v 2)) 

(defmacro class (feoptional parents &rest props) 

'(class-fn (list ,@parents) ',props)) 

(defun class-fn (parents props) 

(let* ((all (union (inherit-props parents) props)) 

(obj (make-array (+ (length all) 3) 

:initial-element mil))) 

(setf (parents obj) parents 

(layout obj) (coerce all 'simple-vector) 

(preclist obj) (precedence obj)) 

obj)) 

(defun inherit-props (classes) 

(delete-duplicates 

(mapcan #'(lambda (c) 

(nconc (coerce (layout c) 'list) 

(inherit-props (parents c)))) 

classes))) 

(defun precedence (obj) 

(labels ((traverse (x) 

(cons x 

(mapcan #'traverse (parents x))))) 

(delete-duplicates (traverse obj)))) 

(defun inst (parent) 

(let ((obj (copy-seq parent))) 

(setf (parents obj) parent 

(preclist obj) nil) 

(fill obj :nil .-start 3) 

obj)) 

Figure 17.8: Vector implementation: Creation. 
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1. The paren ts field takes the place of the : paren ts hash table entry in 

the old implementation. In a class it will contain a list of parent classes. 

In an instance it will contain a single parent class. 

2. The layout field will contain a vector of property names, indicating 

the layout of the class or instance from the fourth element on. 

3. The p r e c l i s t field takes the place of the : p r e c l i s t hash table entry 

in the old implementation. It will contain the precedence list of a class, 

or n i l in an instance. 

Because these operators are macros, they can all be used in the first argument 

to se t f (Section 10.6). 

The macro c l a s s is for creating classes. It takes an optional list of 

superclasses, followed by zero or more property names. It returns an object 

representing a class. The new class will have the union of its local properties 

(that is, property names) and those inherited from all its superclasses. 

> (se t f *p r in t - a r r ay* n i l 

geom-class ( c l a s s n i l area) 

c i r c l e - c l a s s ( c l a s s (geom-class) r ad ius ) ) 

#<Simple-Vector T 5 C6205E> 

Here we create two classes: geom-class has no superclasses, and only one 

property, area; c i r c l e - c l a s s is a subclass of geom-class, and adds the 

property radius . 1 The layout of c i r c l e - c l a s s 

> (coerce ( layout c i r c l e - c l a s s ) ' l i s t ) 

(AREA RADIUS) 

shows the names of the last two of its five fields.
2 

The c l a s s macro is just an interface to c l a s s - f n, which does the real 

work. It calls i n h e r i t - p r o ps to assemble a list of the properties of all the 

new object's parents, builds a vector of the right length, and sets the first 

three fields appropriately. (The p r e c l i s t is built by precedence, which 

is essentially unchanged.) The remaining fields of the class are set to m i l 

to indicate that they are uninitialized. To examine the area property of 

c i r c l e - c l a s s we could say: 

> (svref c i rc le-class 
(+ (position 'area (layout circle-class)) 3)) 

:NIL 

'When classes are displayed, *p r in t - a r r ay* should be n i l . The first element in the 

p r e c l i s t of any class is the class itself, so trying to display the internal structure of a class 

would cause an infinite loop. 
2The vector is coerced to a list simply to see what's in it. With *pr in t -a r ray* set to n i l , 

the contents of a vector would not be shown. 
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(declaim ( i n l i n e lookup (set f lookup))) 

(defun rge t (prop obj next?) 

( l e t ( (prec ( p r e c l i s t ob j ) ) ) 

( i f prec 

( d o l i s t (c ( if next? (cdr prec) prec) m i l ) 

( l e t ( (va l (lookup prop c ) ) ) 

(unless (eq val m i l ) ( r e tu rn v a l ) ) ) ) 

( l e t ( (va l (lookup prop ob j ) ) ) 

( i f (eq val m i l ) 

( rget prop (parents obj) n i l ) 

v a l ) ) ) ) ) 

(defun lookup (prop obj) 

( l e t ((off (pos i t ion prop (layout obj) : t e s t # ' e q ) ) ) 

( i f off (svref obj (+ off 3)) m i l ) ) ) 

(defun (set f lookup) (val prop obj) 

( l e t ((off (pos i t ion prop (layout obj) : t e s t # ' e q ) ) ) 

( if off 

(se t f (svref obj (+ off 3)) va l ) 

( e r ro r "Can't s e t ~A of ~A." val o b j ) ) ) ) 

Figure 17.9: Vector implementation: Access. 

Later we will define access functions that do this automatically. 

Finally, the function i n s t is used for making instances. It does not have 

to be a macro, because it takes just one argument: 

> (setf o u r - c i r c l e ( i n s t c i r c l e - c l a s s ) ) 

#<Simple-Vector T 5 C6464E> 

It's instructive to compare i n s t to c l a s s - f n, which does something similar. 

Because instances have only one parent, there is no need to determine what 

properties are inherited. The instance can just copy the layout of its parent 

class. Nor is there any need to build a precedence list, because instances 

don't have them. Building instances will thus be much faster than building 

classes—which is as it should be, because creating instances is more common 

than creating classes in most applications. 

Now that we can build a hierarchy of classes and instances we need func-

tions to read and write their properties. The first function in Figure 17.9 is the 
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new definition of rge t . It is similar in shape to the rge t in Figure 17.7. The 

two branches of the conditional deal with classes and instances respectively. 

1. If the object is a class, we traverse its precedence list until we find an 

object in which the value of the desired property is not : n i l . If we 

don't find one we return : n i l . 

2. If the object is an instance, we look for the property locally, and make 

a recursive call to rge t if it isn't there. 

The new third argument to rge t , next?, will be explained later. For now 

suffice it to say that if it is n i l , rge t will behave as usual. 

The function lookup and its inverse play the role that gethash did in the 

old rge t . They use an object's layout to retrieve or set a property with a 

given name. This query duplicates the one we made earlier: 

> (lookup ' a r ea c i r c l e - c l a s s ) 

:NIL 

Since the se t f of lookup is also defined, we could define an area method 

for c i r c l e - c l a s s by saying: 

(setf (lookup 'area circle-class) 

#'(lambda (c) 

(* pi (expt (rget 'radius c nil) 2)))) 

In this program, as in the earlier version, there is no hard distinction between 

slots and methods. A "method" is just a field with a function in it. This will 

soon be hidden by a more convenient front-end. 

Figure 17.10 contains the last of the new implementation. This code 

does not add any power to the program, but makes it easier to use. The 

macro def prop is essentially unchanged; now it just calls lookup instead of 

gethash. As before, it allows us to refer to properties in a functional syntax: 

> (defprop radius) 

(SETF RADIUS) 

> (radius our-circle) 

:NIL 

> (setf (radius our-circle) 2) 

2 

If the optional second argument to defprop is true, it expands into a call to 

run-methods, which is also almost unchanged. 
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(declaim (inline run-methods)) 

(defmacro defprop (name feoptional meth?) 

'(progn 

(defun ,name (obj &rest args) 

,(if meth? 

'(run-methods obj ',name args) 

' (rget ',name obj nil))) 

(defun (setf ,name) (val obj) 

(setf (lookup >,name obj) val)))) 

(defun run-methods (obj name args) 

(let ((meth (rget name obj nil))) 

(if (not (eq meth :nil)) 

(apply meth obj args) 

(error "No ~A method for ~A." name obj)))) 

(defmacro defmeth (name obj parms ferest body) 

(let ((gobj (gensym))) 

'(let ((,gobj ,obj)) 

(defprop ,name t) 

(setf (lookup ',name ,gobj) 

(labels ((next () (rget ,gobj ',name t))) 

#'(lambda ,parms ,@body)))))) 

Figure 17.10: Vector implementation: Interface macros. 

Finally, the function defmeth provides a convenient way to define meth-

ods. There are three things new about this version: it does an implicit 

defprop, it calls lookup instead of gethash, and it calls rge t instead of 

get-next (page 278) to get the next method. Now we see the reason for 

the additional argument to rge t . It is so similar to ge t -nex t that we can 

implement both in one function by adding an extra argument. If this extra 

argument is true, rge t takes the place of ge t -next . 

Now we can achieve the same effect as the preceding method definition 

with something a lot cleaner: 

(defmeth area circle-class (c) 

(* pi (expt (radius c) 2))) 
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Notice that instead of calling rge t we can simply call rad ius , because we 

defined it as a function with def prop. Because of the implicit def prop done 

by def meth, we can likewise call area to get the area of o u r - c i r c l e : 

> (area o u r - c i r c l e ) 

12.5156370614359173 

17.8 Analysis 

We now have an embedded language suitable for writing real object-oriented 

programs. It is simple, but for its size quite powerful. And in typical 

applications it will also be fast. In a typical application, operations on 

instances should be more common than operations on classes. The central 

point of our redesign was to make operations on instances cheap. 

In our program, building classes is slow and generates a lot of garbage. 

But this will be acceptable if classes are not built at times when speed is 

critical. The things that have to be fast are access and instance creation. 

Access in this program will be about as fast as we can expect without compile-

time optimizations.
0 So will instance creation. And neither operation causes 

consing. Except, that is, for the vector that represents the instance itself. 

It seems natural enough that this should be dynamically allocated. But we 

could avoid dynamically allocating even instances, if we used a strategy like 

the one presented in Section 13.4. 

Our embedded language is a characteristic example of Lisp programming. 

The mere fact of being an embedded language makes it one. But also charac-

teristic of Lisp is the way in which it evolved from a small, limited version, 

through a powerful but inefficient version, to a fast but slightly restrictive 

version. 

Lisp's reputation for slowness comes not so much from its own nature 

(Lisp compilers have been able to generate code as fast as compiled C since 

the 1980s) as from the fact that so many programmers stop at the second 

stage. As Richard Gabriel wrote, 

In Lisp, writing programs that perform very poorly is quite easy; 

in C it is almost impossible.0 

This is simply a true statement, but it can be read as either a point for Lisp or 

a point against it: 

1. By trading speed for flexibility, you can write programs very easily in 

Lisp ; in C you don't have this option. 

2. Unless you optimize your Lisp code, it is all too easy to end up with 

slow software. 
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Which interpretation applies to your programs depends entirely on you. But 

at least in Lisp you have the option of trading execution speed for your time, 

in the early stages. 

One thing our example program is not good for is as a model of CLOS 

(except possibly for elucidating the mystery of how cal l -next-method 

works). How much similarity could there be between the elephantine CLOS 

and this 70-line mosquito? Indeed, the contrasts between the two programs 

are more instructive than the similarities. First of all, we see what a wide 

latitude the term "object-oriented" has. Our program is more powerful than 

a lot of things that have been called object-oriented, and yet it has only a 

fraction of the power of CLOS. 

Our program differs from CLOS in that methods are methods of some 

object. This concept of methods makes them equivalent to functions that 

dispatch on their first argument. And when we use the functional syntax 

to invoke them, that's just what our methods look like. A CLOS generic 

function, in contrast, can dispatch on any of its arguments. The components 

of a generic function are called methods, and if you define them so that they 

specialize only their first argument, you can maintain the illusion that they 

are methods of some class or instance. But thinking of CLOS in terms of the 

message-passing model of object-oriented programming will only confuse 

you in the end, because CLOS transcends it. 

One of the disadvantages of CLOS is that it is so large and elaborate that 

it conceals the extent to which object-oriented programming is a paraphrase 

of Lisp. The example in this chapter does at least make that clear. If we 

were content to implement the old message-passing model, we could do it in 

a little over a page of code. Object-oriented programming is one thing Lisp 

can do. A more interesting question is, what else can it do? 


