
Extracted from:

Seven Languages in Seven Weeks
A Pragmatic Guide to Learning Programming Languages

This PDF file contains pages extracted from Seven Languages in Seven Weeks, published

by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




The question isn’t, “What are we going to do?” The question

is, “What aren’t we going to do?”

Ferris Bueller

Chapter 3

Io
Meet Io. Like Ruby, Io is a rule bender. He’s young, wicked smart, and

easy to understand but hard to predict. Think Ferris Bueller.1 If you

like a good party, you’ll have to let Io show you around the town. He’ll

try anything once. He might give you the ride of your life, wreck your

dad’s car, or both. Either way, you will not be bored. As the quote above

says, you won’t have many rules to hold you back.

3.1 Introducing Io

Steve Dekorte invented the Io language in 2002. It’s always written with

an uppercase I followed by a lowercase o. Io is a prototype language like

Lua or JavaScript, meaning every object is a clone of another.

Written as an exercise to help Steve understand how interpreters work,

Io started as a hobbyist language and remains pretty small today. You

can learn the syntax in about fifteen minutes and the basic mechanics

of the language in thirty. There are no surprises. But the libraries will

take you a little longer. The complexity and the richness comes from

the library design.

Today, most of Io’s community is focused on Io as an embeddable

language with a tiny virtual machine and rich concurrency. The core

strengths are richly customizable syntax and function, as well as a

strong concurrency model. Try to focus on the simplicity of the syntax

and the prototype programming model. I found that after Io, I had a

much stronger understanding of how JavaScript worked.

1. Ferris Bueller’s Day Off. DVD. Directed by John Hughes. 1986; Hollywood, CA:

Paramount, 1999.



DAY 1: SKIPPING SCHOOL, HANGING OUT 63

3.2 Day 1: Skipping School, Hanging Out

Meeting Io is like meeting any language. You’ll have to put in a little key-

board time to get properly acquainted. It will be much easier if we can

interact outside of stifled conversations in the hallway before history

class. Let’s cut school and skip straight to the good stuff.

Names are sometimes deceiving, but you can tell a lot from Io. It’s

simultaneously reckless (ever try Googling for Io?)2 and brilliant. You

get only two letters, both vowels. The language’s syntax is simple and

low-level, like the name. Io syntax simply chains messages together,

with each message returning an object and each message taking op-

tional parameters in parentheses. In Io, everything is a message that

returns another receiver. There are no keywords and only a handful of

characters that behave like keywords.

With Io, you won’t worry about both classes and objects. You’ll deal

exclusively in objects, cloning them as needed. These clones are called

prototypes, and Io is the first and only prototype-based language we’ll

look at. In a prototype language, every object is a clone of an existing

object rather than a class. Io gets you about as close to object-oriented

Lisp as you’re likely to get. It’s too early to tell whether Io will have

lasting impact, but the simplicity of the syntax means it has a fighting

chance. The concurrency libraries that you’ll see in day 3 are well con-

ceived, and the message semantics are elegant and powerful. Reflection

is everywhere.

Breaking the Ice

Let’s crack open the interpreter and start the party. You can find it at

http://iolanguage.com. Download it and install it. Open the interpreter

by typing io, and enter the traditional “Hello, World” program:

Io> "Hi ho, Io" print
Hi ho, Io==> Hi ho, Io

You can tell exactly what’s going on here. You’re sending the print mes-

sage to the string "Hi ho, Io". Receivers go on the left, and messages go on

the right. You won’t find much syntactic sugar at all. You’ll just send

messages to objects.

In Ruby, you created a new object by calling new on some class. You

created a new kind of object by defining a class. Io makes no distinction

2. Try Googling for Io language instead.

CLICK HERE to purchase this book now.

http://iolanguage.com
http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 64

between these two things. You’ll create new objects by cloning existing

ones. The existing object is a prototype:

batate$ io
Io 20090105
Io> Vehicle := Object clone
==> Vehicle_0x1003b61f8:

type = "Vehicle"

Object is the root-level object. We send the clone message, which re-

turns a new object. We assign that object to Vehicle. Here, Vehicle is not

a class. It’s not a template used to create objects. It is an object, based

on the Object prototype. Let’s interact with it:

Io> Vehicle description := "Something to take you places"
==> Something to take you places

Objects have slots. Think of the collection of slots as a hash. You’ll refer

to each slot with a key. You can use := to assign something to a slot. If

the slot doesn’t exist, Io will create it. You can also use = for assignment.

If the slot doesn’t exist, Io throws an exception. We just created a slot

called description.

Io> Vehicle description = "Something to take you far away"
==> Something to take you far away
Io> Vehicle nonexistingSlot = "This won't work."

Exception: Slot nonexistingSlot not found.
Must define slot using := operator before updating.

---------
message 'updateSlot' in 'Command Line' on line 1

You can get the value from a slot by sending the slot’s name to the

object:

Io> Vehicle description
==> Something to take you far away

In fact, an object is little more than a collection of slots. We can look at

the names of all the slots on Vehicle like this:

Io> Vehicle slotNames
==> list("type", "description")

We sent the slotNames method to Vehicle and got a list of slot names

back. There are two slots. You’ve seen the description slot, but we also

have a type slot. Every object supports type:

Io> Vehicle type
==> Vehicle
Io> Object type
==> Object

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 65







 





Figure 3.1: An object-oriented design

We’ll get to types in a few paragraphs. For now, know that type repre-

sents the kind of object you’re dealing with. Keep in mind that a type is

an object, not a class. Here’s what we know so far:

• You make objects by cloning other objects.

• Objects are collections of slots.

• You get a slot’s value by sending the message.

You can already see that Io is simple and fun. But sit back. We’re only

scratching the surface. Let’s move on to inheritance.

Objects, Prototypes, and Inheritance

In this section, we’re going to deal with inheritance. Given a car that’s

also a vehicle, think of how you would model a ferrari object that is an

instance of a car. In an object-oriented language, you’d do something

like Figure 3.1.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 66

Let’s see how you’d solve the same problem in a prototype language.

We’re going to need a few extra objects. Let’s create another:

Io> Car := Vehicle clone
==> Car_0x100473938:

type = "Car"

Io> Car slotNames
==> list("type")
Io> Car type
==> Car

In Io-speak, we created a new object called Car by sending the clone

message to the Vehicle prototype. Let’s send description to Car:

Io> Car description
==> Something to take you far away

There’s no description slot on Car. Io just forwards the description mes-

sage to the prototype and finds the slot in Vehicle. It’s dead simple but

plenty powerful. Let’s create another car, but this time, we’ll assign it

to ferrari:

Io> ferrari := Car clone
==> Car_0x1004f43d0:

Io> ferrari slotNames
==> list()

A-ha! There’s no type slot. By convention, types in Io begin with upper-

case letters. Now, when you invoke the type slot, you’ll get the type of

your prototype:

Io> ferrari type
==> Car

This is how Io’s object model works. Objects are just containers of slots.

Get a slot by sending its name to an object. If the slot isn’t there, Io calls

the parent. That’s all you have to understand. There are no classes

or metaclasses. You don’t have interfaces or modules. You just have

objects, like you see in Figure 3.2, on the next page.

Types in Io are just conveniences. Idiomatically, an object that begins

with an uppercase name is a type, so Io sets the type slot. Any clones of

that type starting with lowercase letters will simply invoke their parents’

type slot. Types are just tools that help Io programmers better organize

code.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 67

















Figure 3.2: Inheritance in Io

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 68

If you wanted ferrari to be a type, you would have it begin with an upper-

case letter, like this:

Io> Ferrari := Car clone
==> Ferrari_0x9d085c8:
type = "Ferrari"

Io> Ferrari type
==> Ferrari

Io> Ferrari slotNames
==> list("type")
Io> ferrari slotNames
==> list()
Io>

Notice that ferrari has no type slot, but Ferrari does. We’re using a simple

coding convention rather than a full language feature to distinguish

between types and instances. In other cases, they behave the same

way.

In Ruby and Java, classes are templates used to create objects. bruce

= Person.new creates a new person object from the Person class. They are

different entities entirely, a class and an object. Not so in Io. bruce :=

Person clone creates a clone called bruce from the prototype called Person.

Both bruce and Person are objects. Person is a type because it has a type

slot. In most other respects, Person is identical to bruce. Let’s move on

to behavior.

Methods

In Io, you can create a method easily, like this:

Io> method("So, you've come for an argument." println)
==> method(

"So, you've come for an argument." println
)

A method is an object, just like any other type of object. You can get its

type:

Io> method() type
==> Block

Since a method is an object, we can assign it to a slot:

Io> Car drive := method("Vroom" println)
==> method(

"Vroom" println
)

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 69

If a slot has a method, invoking the slot invokes the method:

Io> ferrari drive
Vroom
==> Vroom

Believe it or not, you now know the core organizational principles of

Io. Think about it. You know the basic syntax. You can define types

and objects. You can add data and behavior to an object by assigning

contents to its slots. Everything else involves learning the libraries.

Let’s dig a little deeper. You can get the contents of slots, whether they

are variables or methods, like this:

Io> ferrari getSlot("drive")
==> method(

"Vroom" println
)

getSlot will give you your parent’s slot if the slot doesn’t exist:

Io> ferrari getSlot("type")
==> Car

You can get the prototype of a given object:

Io> ferrari proto
==> Car_0x100473938:

drive = method(...)
type = "Car"

Io> Car proto
==> Vehicle_0x1003b61f8:

description = "Something to take you far away"
type = "Vehicle"

These were the prototypes that you used to clone ferrari and Car. You

also see their custom slots for convenience.

There’s a master namespace called Lobby that contains all the named

objects. All of the assignments you’ve done in the console, plus a few

more, are on Lobby. You can see it like this:

Io> Lobby
==> Object_0x1002184e0:

Car = Car_0x100473938
Lobby = Object_0x1002184e0
Protos = Object_0x1002184e0
Vehicle = Vehicle_0x1003b61f8
exit = method(...)
ferrari = Car_0x1004f43d0
forward = method(...)

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 70

You see the exit implementation, forward, Protos, and the stuff we defined.

The prototype programming paradigm seems clear enough. These are

the basic ground rules:

• Every thing is an object.

• Every interaction with an object is a message.

• You don’t instantiate classes; you clone other objects called proto-

types.

• Objects remember their prototypes.

• Objects have slots.

• Slots contain objects, including method objects.

• A message returns the value in a slot or invokes the method in a

slot.

• If an object can’t respond to a message, it sends that message to

its prototype.

And that’s most of it. Since you can see or change any slot or any object,

you can do some pretty sophisticated metaprogramming. But first, you

need to see the next layer of building blocks: collections.

Lists and Maps

Io has a few types of collections. A list is an ordered collection of objects

of any type. List is the prototype for all lists, and Map is the prototype

for key-value pairs, like the Ruby hash. Create a list like this:

Io> toDos := list("find my car", "find Continuum Transfunctioner")
==> list("find my car", "find Continuum Transfunctioner")

Io> toDos size
==> 2

Io> toDos append("Find a present")
==> list("find my car", "find Continuum Transfunctioner", "Find a present")

There’s a shortcut way of representing a list. Object supports the list

method, which wraps the arguments up into a list. Using list, you can

conveniently create a list, like this:

Io> list(1, 2, 3, 4)
==> list(1, 2, 3, 4)

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 71

List also has convenience methods for math and to deal with the list as

other data types, such as stacks:

Io> list(1, 2, 3, 4) average
==> 2.5

Io> list(1, 2, 3, 4) sum
==> 10

Io> list(1, 2, 3) at(1)
==> 2

Io> list(1, 2, 3) append(4)
==> list(1, 2, 3, 4)

Io> list(1, 2, 3) pop
==> 3

Io> list(1, 2, 3) prepend(0)
==> list(0, 1, 2, 3)

Io> list() isEmpty
==> true

The other major collection class in Io is the Map. Io maps are like Ruby

hashes. Since there’s no syntactic sugar, you’ll work with them with an

API that looks like this:

Io> elvis := Map clone
==> Map_0x115f580:

Io> elvis atPut("home", "Graceland")
==> Map_0x115f580:

Io> elvis at("home")
==> Graceland

Io> elvis atPut("style", "rock and roll")
==> Map_0x115f580:

Io> elvis asObject
==> Object_0x11c1d90:

home = "Graceland"
style = "rock and roll"

Io> elvis asList
==> list(list("style", "rock and roll"), list("home", "Graceland"))

Io> elvis keys
==> list("style", "home")

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 72

Io> elvis size
==> 2

When you think about it, a hash is a lot like an Io object in structure

where the keys are slots that are tied to values. The combination of

slots that can be rapidly translated to objects is an interesting one.

Now that you’ve seen the basic collections, you’ll want to use them.

We’ll need to introduce control structures, and those will depend on

boolean values.

true, false, nil, and singletons

Io’s conditions are pretty similar to those of other object-oriented lan-

guages. Here are a few:

Io> 4 < 5
==> true
Io> 4 <= 3
==> false
Io> true and false
==> false
Io> true and true
==> true
Io> true or true
==> true
Io> true or false
==> true
Io> 4 < 5 and 6 > 7
==> false
Io> true and 6
==> true
Io> true and 0
==> true

That’s simple enough. Make a note: 0 is true as in Ruby, not false as in

C. So, what is true?

Io> true proto
==> Object_0x200490:

= Object_()
!= = Object_!=()

...

Io> true clone
==> true
Io> false clone
==> false
Io> nil clone
==> nil

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 73

Now, that’s interesting! true, false, and nil are singletons. Cloning them

just returns the singleton value. You can do the same pretty easily.

Create your own singleton like this:

Io> Highlander := Object clone
==> Highlander_0x378920:

type = "Highlander"

Io> Highlander clone := Highlander
==> Highlander_0x378920:

clone = Highlander_0x378920
type = "Highlander"

We’ve simply redefined the clone method to return Highlander, rather

than letting Io forward requests up the tree, eventually getting to Object.

Now, when you use Highlander, you’ll get this behavior:

Io> Highlander clone
==> Highlander_0x378920:

clone = Highlander_0x378920
type = "Highlander"

Io> fred := Highlander clone
==> Highlander_0x378920:

clone = Highlander_0x378920
type = "Highlander"

Io> mike := Highlander clone
==> Highlander_0x378920:

clone = Highlander_0x378920
type = "Highlander"

Io> fred == mike
==> true

Two clones are equal. That’s not generally true:

Io> one := Object clone
==> Object_0x356d00:

Io> two := Object clone
==> Object_0x31eb60:

Io> one == two
==> false

Now, there can be only one Highlander. Sometimes, Io can trip you up.

This solution is simple and elegant, if a little unexpected. We’ve blasted

through a lot of information, but you know enough to do some pretty

radical things, such as changing an object’s clone method to make a

singleton.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 74

Be careful, though. Love him or hate him, you can’t deny that Io is

interesting. As with Ruby, Io can be a love-hate relationship. You can

change just about any slot on any object, even the ones that define the

language. Here’s one that you may not want to try:

Object clone := "hosed"

Since you overrode the clone method on object, nothing can create

objects anymore. You can’t fix it. You just have to kill the process. But

you can also get some pretty amazing behaviors in a short time. Since

you have complete access to operators and the slots that make up any

object, you can build domain-specific languages with a few short fas-

cinating lines of code. Before we wrap up the day, let’s hear what the

inventor of the language has to say.

An Interview with Steve Dekorte

Steve Dekorte is an independent consultant in the San Francisco area.

He invented Io in 2002. I had the pleasure of interviewing him about

his experiences with creating Io.

Bruce Tate: Why did you write Io?

Steve Dekorte: In 2002, my friend Dru Nelson wrote a language called

Cel (inspired by Self) and was asking for feedback on its implementation.

I didn’t feel I understood how programming languages work well enough

to have anything useful to say, so I started writing a small language to

understand them better. It grew into Io.

Bruce Tate: What is the thing that you like about it the most?

Steve Dekorte: I like the simple and consistent syntax and semantics.

They help with understanding what’s going on. You can quickly learn the

basics. I have a terrible memory. I constantly forget the syntax and weird

semantic rules for C and have to look them up. (ed. Steve implemented Io

in C.) That’s one of the things I don’t want to do when I use Io.

For example, you can see the code, such as people select(age > 20)

map(address) println, and get a pretty good idea of what is going on. You’re

filtering a list of people based on age, getting their addresses, and print-

ing them out.

If you simplify the semantics enough, things become more flexible. You

can start to compose things that you did not understand when you imple-

mented the language. Here’s an example. There are video games that are

puzzle games that assume a solution, and there are more games that are

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 1: SKIPPING SCHOOL, HANGING OUT 75

open-ended. The open-ended ones are fun because you can do things

that the designers of the game never imagined. Io is like that.

Sometimes other languages make syntactic shortcuts. That leads to extra

parsing rules. When you program in a language, you need to have the

parser in your head. The more complicated a language, the more of the

parser you need to have in your head. The more work a parser has to do,

the more work you have to do.

Bruce Tate: What are some limitations of Io?

Steve Dekorte: The cost of Io’s flexibility is that it can be slower for

many common uses. That said, it also has certain advantages (such as

coroutines, async sockets, and SIMD support), which can also make it

much faster than even C apps written with traditional thread per socket

concurrency or non-SIMD vector ops.

I’ve also had some complaints that the lack of syntax can make quick

visual inspection trickier. I’ve had similar problems with Lisp, so I under-

stand. Extra syntax makes for quick reading. New users sometimes say

Io has too little syntax, but they usually warm up to it.

Bruce Tate: Where is the strangest place you’ve seen Io in production?

Steve Dekorte: Over the years, I’ve heard rumors of Io from place to

place like on a satellite, in a router configuration language, and as a

scripting language for video games. Pixar uses it too. They wrote a blog

entry about it.

It was a busy first day, so it’s time to break for a little bit. You can now

pause and put some of what you’ve learned into practice.

What We Learned in Day 1

You’re now through a good chunk of Io. So far, you know a good deal

about the basic character of Io. The prototype language has very simple

syntax that you can use to build new basic elements of the language

itself. Even core elements lack even the simplest syntactic sugar. In

some ways, this minimal approach will make you work a little harder

to read the syntax.

A minimal syntax has some benefits as well. Since there is not much

going on syntactically, you don’t have to learn any special rules or

exceptions to them. Once you know how to read one sentence, you

can read them all. Your learning time can go toward establishing your

vocabulary.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


DAY 2: THE SAUSAGE KING 76

Your job as a new student is greatly simplified:

• Understand a few basic syntactical rules.

• Understand messages.

• Understand prototypes.

• Understand the libraries.

Day 1 Self-Study

When you’re looking for Io background, searching for answers is going

to be a little tougher because Io has so many different meanings. I

recommend Googling for Io language.

Find:

• Some Io example problems

• An Io community that will answer questions

• A style guide with Io idioms

Answer:

• Evaluate 1 + 1 and then 1 + "one". Is Io strongly typed or weakly

typed? Support your answer with code.

• Is 0 true or false? What about the empty string? Is nil true or false?

Support your answer with code.

• How can you tell what slots a prototype supports?

• What is the difference between = (equals), := (colon equals), and ::=

(colon colon equals)? When would you use each one?

Do:

• Run an Io program from a file.

• Execute the code in a slot given its name.

Spend a little time playing with slots and prototypes. Make sure you

understand how prototypes work.

3.3 Day 2: The Sausage King

Think back to Ferris Bueller for a moment. In the movie, the middle-

class high-school student represented himself as the sausage king of

Chicago in a classic bluff. He got a great table in a great restaurant

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/btlang


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for Seven Languages in Seven Weeks

http://pragprog.com/titles/btlang

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/btlang.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com
Non-English Versions: translations@pragprog.com
Pragmatic Teaching: academic@pragprog.com
Author Proposals: proposals@pragprog.com
Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/btlang
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/btlang
www.pragprog.com/catalog

