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Example: Inference 

The next three chapters offer examples of substantial Lisp programs. These 

examples were chosen to illustrate the form that longer programs take, and 

also the kinds of problems for which Lisp is especially well-suited. 

In this chapter we will write a program that makes inferences based on a 

collection of if-then rules. This is a classic example—not only in the sense 

that it often appears in textbooks, but also because it reflects the original idea 

of Lisp as a language for "symbolic computation." A lot of the earliest Lisp 

programs had the flavor of the example in this chapter. 

15.1 The Aim 

In this program, we're going to represent information in a familiar form: a list 

consisting of a predicate followed by zero or more arguments. To represent 

the fact that Donald is the parent of Nancy, we might say: 

(parent donald nancy) 

As well as facts, our program is going to represent rules that tell what can be 

inferred from the facts we already have. We will represent such rules as 

(<- head body) 

where head is the then-part and body is the if-part. Within the head and body 

we will represent variables as symbols beginning with question marks. So 

this rule 

(<- (chi ld ?x ?y) (parent ?y ?x)) 
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says that if y is the parent of x, then x is the child of y; or more precisely, that 

we can prove any fact of the form (ch i ld x v) by proving (parent y x). 

It will be possible for the body (if-part) of a rule to be a complex expres-

sion, containing the logical operators and, or, and not. So if we want to 

represent the rule that if JC is the parent of v, and x is male, then x is the father 

of v, we would write: 

(<- (father ?x ?y) (and (parent ?x ?y) (male ?x))) 

Rules may depend on facts implied by other rules. For example, the first 

rule we wrote was for proving facts of the form (chi ld x y). If we defined 

a rule 

(<- (daughter ?x ?y) (and (ch i ld ?x ?y) (female ?x))) 

then using it to prove (daughter x y) might cause the program to use the 

first rule to prove (ch i ld x y). 

The proof of an expression can continue back through any number of 

rules, so long as it eventually ends up on the solid ground of known facts. 

This process is sometimes called backward chaining. The backward comes 

from the fact that this kind of inference first considers the then-part, to see 

if the rule will be useful, before going on to prove the if-part. The chaining 

comes from the way that rules can depend on other rules, forming a chain 

(though in fact it's more like a tree) that leads from what we want to prove 

back to what we already know.
0 

15.2 Matching 

In order to write our backward-chaining program, we are going to need 

a function to do pattern-matching: a function that can compare two lists, 

possibly containing variables, to see if there is some way of assigning values 

to the variables which makes the two equal. For example, if ?x and ?y are 

variables, then the two lists 

(p ?x ?y c ?x) 

(p a b c a) 

match when ?x = a and ?y = b, and the lists 

(p ?x b ?y a) 

(p ?y b c a) 

match when ?x = ?y = c. 

Figure 15.1 contains a function called match. It takes two trees, and if 

they can be made to match, it returns an assoc-list showing how: 
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(defun match (x y feoptional binds) 

(cond 

((eql x y) (values binds t)) 

((assoc x binds) (match (binding x binds) y binds)) 

((assoc y binds) (match x (binding y binds) binds)) 

((var? x) (values (cons (cons x y) binds) t)) 

((var? y) (values (cons (cons y x) binds) t)) 

(t 

(when (and (consp x) (consp y)) 

(multiple-value-bind (b2 yes) 

(match (car x) (car y) binds) 

(and yes (match (cdr x) (cdr y) b2))))))) 

(defun var? (x) 

(and (symbolp x) 

(eql (char (symbol-name x) 0) #\?))) 

(defun binding (x binds) 

(let ((b (assoc x binds))) 

(if b 

(or (binding (cdr b) binds) 

(cdr b))))) 

Figure 15.1: Matching function. 

> (match >(p a b c a) ' ( p ?x ?y c ?x)) 

((?Y . B) (?X . A)) 

T 

> (match ' ( p ?x b ?y a) ' ( p ?y b c a) ) 

((?Y . C) (?X . ?Y)) 

T 

> (match ' ( a b c) ' ( a a a) ) 

NIL 

As match compares its arguments element by element, it builds up assign-

ments of values to variables, called bindings, in the parameter binds. If 

the match is successful, match returns the bindings generated; otherwise, it 

returns n i l . Since not all successful matches generate any bindings, match, 

like gethash, returns a second value to show that the match succeeded: 
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> (match ' (p ?x) »(p ?x)) 

NIL 

T 

When match returns n i l and t as above, it indicates a successful match that 

yielded no bindings. In English, the match algorithm works as follows: 

1. If x and y are eql they match; otherwise, 

2. If x is a variable that has a binding, they match if it matches y; otherwise, 

3. If y is a variable that has a binding, they match if it matches x; otherwise, 

4. If x is a variable (without a binding), they match and thereby establish 

a binding for it; otherwise, 

5. If y is a variable (without a binding), they match and thereby establish 

a binding for it; otherwise, 

6. They match if they are both conses, and the cars match, and the cdrs 

match with the bindings generated thereby. 

Here is an example illustrating, in order, each of the six cases: 

> (match ' ( p ?v b ?x d (?z ?z)) 

' (p a ?w c ?y ( e e) ) 

>((?v . a) (?w . b ) ) ) 

((?Z . E) (?Y . D) (?X . C) (?V . A) (?W . B)) 

T 

To find the value (if there is one) associated with a variable in a list of 

bindings, match calls binding. This function has to be recursive, because 

matching can build up binding lists in which a variable is only indirectly 

associated with its value: ?x might be bound to a in virtue of the list containing 

both (?x . ?y) and (?y . a) . 

> (match
 ; ( ? x a) ' ( ?y ?y)) 

((?Y . A) (?X . ?Y)) 

T 

By matching ?x with ?y and then ?y with a, we establish indirectly that ?x 

must be a. 
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(defvar *rules* (make-hash-table)) 

(defmacro <- (con ̂ optional ant) 
f (length (push (cons (cdr ',con) ',ant) 

(gethash (car ',con) *rules*)))) 

Figure 15.2: Defining rules. 

15.3 Answering Queries 

Now that the concept of bindings has been introduced, we can say more 

precisely what our program will do: it will take an expression, possibly 

containing variables, and return all the bindings that make it true given the 

facts and rules that we have. For example, if we have just the fact 

(parent donald nancy) 

and we ask the program to prove 

(parent ?x ?y) 

it should return something like 

( ( (?x . donald) (?y . nancy))) 

which says that there is exactly one way for the expression to be true: if ?x 

is donald and ?y is nancy. 

Now that we have a matching function we are already a good part of 

the way to our destination. Figure 15.2 contains the code for defining rules. 

The rules are going to be contained in a hash table called *rules*, hashed 

according to the predicate in the head. This imposes the restriction that 

we can't use variables in the predicate position. We could eliminate this 

restriction by keeping all such rules in a separate list, but then to prove 

something we would have to match it against every one. 

We will use the same macro, <-, to define both facts and rules. A fact 

will be represented as a rule with a head but no body. This is consistent with 

our definition of rules. A rule says that you can prove the head by proving 

the body, so a rule with no body means that you don't have to prove anything 

to prove the head. Here are two familiar examples: 

> (<- (parent donald nancy)) 

1 

> (<- (child ?x ?y) (parent ?y ?x)) 

1 
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(defun prove (expr feoptional binds) 

(case (car expr) 

(and (prove-and (reverse (cdr expr)) binds)) 

(or (prove-or (cdr expr) binds)) 

(not (prove-not (cadr expr) binds)) 

(t (prove-simple (car expr) (cdr expr) binds)))) 

(defun prove-simple (pred args binds) 

(mapcan #'(lambda (r) 

(multiple-value-bind (b2 yes) 

(match args (car r) 

binds) 

(when yes 

(if (cdr r) 

(prove (cdr r) b2) 

(list b2))))) 

(mapcar #'change-vars 

(gethash pred *rules*)))) 

(defun change-vars (r) 

(sublis (mapcar #'(lambda (v) (cons v (gensym "?"))) 

(vars-in r)) 

r)) 

(defun vars-in (expr) 

(if (atom expr) 

(if (var? expr) (list expr)) 

(union (vars-in (car expr)) 

(vars-in (cdr expr))))) 

Figure 15.3: Inference. 

Calls to <- return the number of rules now stored under a given predicate; 

wrapping the push in a call to length saves us from seeing a big return value 

at the toplevel. 

Figure 15.3 contains most of the code we need for inference. The function 

prove is the pivot on which inference turns. It takes an expression and an 

optional list of bindings. If the expression doesn't contain logical operators, 

it calls prove-simple, and it is here that chaining takes place. This function 

works by looking at all the rules with the right predicate, and trying to match 

the head of each with the fact it is trying to prove. For each head that matches, 
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it calls prove on the body, with the new bindings generated by the match. 

The lists of bindings returned by each call to prove are then collected by 

mapcan and returned: 

> (prove-simple 'parent
 }(donald nancy) n i l ) 

(NIL) 

> (prove-simple >child ' (?x ?y) n i l ) 

( ( (# :?6 . NANCY) (#:?5 . DONALD) (?Y . #:?5) (?X . # : ?6 ) ) ) 

Both of the return values above indicate that there is one way to prove what we 

asked about. (A failed proof would return n i l . ) The first example generated 

one empty set of bindings, and the second generated one set of bindings in 

which ?x and ?y were (indirectly) bound to nancy and donald. 

Incidentally, we see here a good example of the point made on page 23. 

Because our program is written in a functional style, we can test each function 

interactively. 

What about those gensyms in the second return value? If we are going to 

use rules containing variables, we need to avoid the possibility of two rules 

accidentally containing the same variable. If we define two rules as follows 

(<- (child ?x ?y) (parent ?y ?x)) 

(<- (daughter ?y ?x) (and (child ?y ?x) (female ?y))) 

then we mean that for any x and y, x is the child of y if y is the parent of x, 

and for any x and y, y is the daughter of x if y is the child of x and female. 

The relationship of the variables within each rule is significant, but the fact 

that the two rules happen to use the same variables is entirely coincidental. 

If we used these rules as written, they would not work that way. If we 

tried to prove that a was b's daughter, matching against the head of the second 

rule would leave ?y bound to a and ?x to b. We could not then match the 

head of the first rule with these bindings: 

> (match '(child ?y ?x) 

'(child ?x ?y) 

'((?y . a) (?x . b))) 

NIL 

To ensure that the variables in a rule imply only something about the relations 

of arguments within that rule, we replace all the variables in a rule with 

gensyms. This is the purpose of the function change-vars. A gensym 

could not possibly turn up as a variable in another rule. But because rules can 

be recursive, we also have to guard against the possibility of a rule clashing 

with itself, so change-vars has to be called not just when a rule is defined, 

but each time it is used. 
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(defun prove-and (clauses binds) 

(if (null clauses) 

(list binds) 

(mapcan #'(lambda (b) 

(prove (car clauses) b)) 

(prove-and (cdr clauses) binds)))) 

(defun prove-or (clauses binds) 

(mapcan #'(lambda (c) (prove c binds)) 

clauses)) 

(defun prove-not (clause binds) 

(unless (prove clause binds) 

(list binds))) 

Figure 15.4: Logical operators. 

, (defmacro with-answer (query &body body) 

( l e t ( (binds (gensym))) 
1(dolist ( ,b inds (prove ' , que ry ) ) 

( l e t ,(mapcar #'(lambda (v) 

' ( , v (binding ' , v 

(va r s - i n query)) 

,@body)))) 

Figure 15.5: Interface macro. 

,b inds ) ) ) 

Now all that remains is to define the functions that prove complex expres-

sions. These are shown in Figure 15.4. Handling an or or not expression is 

particularly simple. In the former case we collect all the bindings returned by 

each of the expressions within the or. In the latter case, we return the current 

bindings iff the expression within the not yields none. 

The function prove-and is only a little more complicated. It works 

like a filter, proving the first expression for each set of bindings that can be 

established for the remaining expressions. This would cause the expressions 

within the and to be considered in reverse order, except that the call to 

prove-and within prove reverses them to compensate. 

Now we have a working program, but it's not very user-friendly. It's a 

nuisance to have to decipher the lists of bindings returned by prove—and 
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(with-answer (p ?x ?y) 

(f ?x ?y)) 

is macroexpanded into: 

(do l i s t 

( l e t 

(f 

(# :g l (prove
 ; 

((?x (binding ' 

(?y (binding ' 

?x ?y))) 

Figure 15.6: Exp 

(P 
?x 

?x ?y)) ) 

#:gD) 
# : g l ) ) ) 

ansion of a call to with-answer. 

they only get longer as the rules get more complex. Figure 15.5 contains 

a macro that will make our program more pleasant to use: a with-answer 

expression will take a query (not evaluated) and a body of expressions, and 

will evaluate its body once for each set of bindings generated by the query, 

with each pattern variable bound to the value it has in the bindings. 

> (with-answer (parent ?x ?y) 

(format t "~A i s the parent of ~A.~°/0" ?x ?y)) 

DONALD i s the parent of NANCY. 

NIL 

This macro does the work of deciphering the bindings for us, and gives us 

a convenient way of using prove in programs. Figure 15.6 shows what an 

expansion looks like, and Figure 15.7 shows some examples of it in use. 

15.4 Analysis 

It may seem as if the code we've written in this chapter is simply the natural 

way to implement such a program. In fact it is grossly inefficient. What 

we've done here, essentially, is to write an interpreter. We could implement 

the same program as a compiler. 

Here is a sketch of how it would be done. The basic idea would be to pack 

the whole program into the macros <- and with-answer, and make them do 

at macro-expansion time most of the work the program now does at run-time. 

(The germ of this idea is visible in avg, on page 170.) Instead of representing 

rules as lists, we would represent them as functions, and instead of having 

functions like prove and prove-and to interpret expressions at run-time, 

we would have corresponding functions to transform expressions into code. 

The expressions are available at the time a rule is defined. Why wait until it 
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If we do a (c l rhash *rules*) and then define the following rules and 

facts, 

(<- (parent donald nancy)) 

(<- (parent donald debbie)) 

(<- (male donald)) 

(<- ( fa ther ?x ?y) (and (parent ?x 

(<- (= ?x ?x)) 

(<- ( s i b l i n g ?x ?y) (and (parent ?z 

(parent ?z 

(not (= ?x 

?y) (male ?x)) ) j 

?x) 

?y) 

? y » » 

we will be able to make inferences like the following: 

> (with-answer ( fa ther ?x ?y) 

(format t "~A i s the f a the r of 

DONALD i s the f a the r of DEBBIE. 

DONALD i s the f a the r of NANCY. 

NIL 

> (with-answer ( s i b l i n g ?x ?y) 

(format t "~A i s the s i b l i n g of 

DEBBIE i s the s i b l i n g of NANCY. 

NANCY i s the s i b l i n g of DEBBIE. 

! NIL 

Figure 15.7: The program 

~A.~°/.M ?x 

~k.~V ?x 

in use. 

?y)) 

? y » 

is used in order to analyze them? The same goes for with-answer, which 

would call the same functions as <- to generate its expansion. 

This sounds like it would be a lot more complicated than the program 

we wrote in this chapter, but in fact it would probably only be about two or 

three times as long. Readers who would like to learn about such techniques 

should see On Lisp or Paradigms of Artificial Intelligence Programming, 

which contain several examples of programs written in this style. 


