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A tree rotation is an operation on a binary tree that changes the structure without interfering with the order of
the elements. A tree rotation moves one node up in the tree and one node down. They are used to change the
shape of the tree, and in particular to decrease its height by moving smaller subtrees down and larger subtrees
up, resulting in improved performance of many tree operations.

This article takes the approach of the side where the nodes get shifted is the direction of the rotation.
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Illustration

The right rotation operation as shown in the image above is performed with Q as the root and hence is a right
rotation on, or rooted at, Q. This operation results in a rotation of the tree in the clockwise direction. The
symmetric operation is the left rotation which results in a movement in an counter-clockwise direction (the left
rotation shown above is rooted at P).

Assuming this is a binary search tree, as stated above, the elements must be interpreted as variables and not as
alphabetic characters.



Pictorial description of how
rotations are made.

Detailed Illustration
When a subtree is rotated, the subtree side upon which it is rotated
decreases its height by one node while the other subtree increases its
height. This makes it useful for rebalancing a tree.

Using the terminology of Root for the parent node of the subtrees to
rotate, Pivot for the node which will become the new parent node, RS
for rotation side upon to rotate and OS for opposite side of rotation. In
the above diagram for the root Q, the RS is C and the OS is P. The
pseudo code for the rotation is:

Pivot = Root.OS
Root.OS = Pivot.RS
Pivot.RS = Root
Root = Pivot

This is a constant time operation.

The programmer must also make sure that the root's parent points to
the pivot after the rotation. Also, the programmer should note that this
operation may result in a new root for the entire tree and take care to
update pointers accordingly.

Inorder Invariance
The tree rotation renders the inorder traversal of the binary tree invariant. This implies the order of the elements
are not affected when a rotation is performed in any part of the tree. Here are the inorder traversals of the trees
shown above:

Left tree: ((A, P, B), Q, C)        Right tree: (A, P, (B, Q, C))

Computing one from the other is very simple. The following is example Python code that performs that
computation:

def right_rotation(treenode):
  left, Q, C = treenode
  A, P, B = left
  return (A, P, (B, Q, C))

Another way of looking at it is:

Right Rotation of node Q:

Let P be Q's left child.
Set P to be the new root.
Set Q's left child to be P's right child.
Set P's right child to be Q.



Pictorial description of how
rotations cause rebalancing in an

AVL tree.

Left Rotation of node P:

Let Q be P's right child.
Set Q to be the new root.
Set P's right child to be Q's left child.
Set Q's left child to be P.

All other connections are left as-is.

There are also double rotations, which are combinations of left and right rotations. A double left rotation at X
can be defined to be a right rotation at the right child of X followed by a left rotation at X; similarly, a double
right rotation at X can be defined to be a left rotation at the left child of X followed by a right rotation at X.

Tree rotations are used in a number of tree data structures such as AVL trees, red-black trees, splay trees, and
treaps. They require only constant time because they are local transformations: they only operate on 5 nodes,
and need not examine the rest of the tree.

Rotations for rebalancing
A tree can be rebalanced using rotations. After a rotation, the side of
the rotation increases its height by 1 whilst the side opposite the
rotation decreases its height similarly. Therefore, one can strategically
apply rotations to nodes whose left child and right child differ in
height by more than 1. Self-balancing binary search trees apply this
operation automatically. A type of tree which uses this rebalancing
technique is the AVL tree.

Rotation distance
The rotation distance between any two binary trees with the same
number of nodes is the minimum number of rotations needed to
transform one into the other. With this distance, the set of n-node
binary trees becomes a metric space: the distance is symmetric, positive when given two different trees, and
satisfies the triangle inequality.

It is an open problem whether there exists a polynomial time algorithm for calculating rotation distance.
However, Daniel Sleator, Robert Tarjan and William Thurston showed that the rotation distance between any
two n-node trees (for n ! 11) is at most 2n " 6, and that infinitely many pairs of trees are this far apart.[1]

See also
AVL tree, red-black tree, and splay tree, kinds of binary search tree data structures that use rotations to
maintain balance.
Associativity of a binary operation means that performing a tree rotation on it does not change the final
result.
Tamari lattice, a partially ordered set in which the elements can be defined as binary trees and the
ordering between elements is defined by tree rotation.
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External links
Java applets demonstrating tree rotations (http://www.cs.queensu.ca/home/jstewart/applets/bst/bst-
rotation.html)
The AVL Tree Rotations Tutorial (http://fortheloot.com/public/AVLTreeTutorial.rtf) (RTF) by John
Hargrove
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