
The Rise of Potential Fields in Real Time Strategy Bots

Johan Hagelbäck and Stefan J. Johansson
Department of Software and Systems Engineering

Blekinge Institute of Technology
Box 520, SE-372 25, Ronneby, Sweden
email: sja@bth.se, jhg@bth.se

Abstract

Bots for Real Time Strategy (RTS) games are challenging to
implement. A bot controls a number of units that may have
to navigate in a partially unknown environment, while at the
same time search for enemies and coordinate attacks to fight
them down. Potential fields is a technique originating from
the area of robotics where it is used in controlling the navi-
gation of robots in dynamic environments. We show that the
use of potential fields for implementing a bot for a real time
strategy game gives us a very competitive, configurable, and
non-conventional solution.

Keywords
Agents:Swarm Intelligence and Emergent Behavior, Multi-
disciplinary Topics and Applications:Computer Games

Introduction
A Real-time Strategy (RTS) game is a game in which the
players use resource gathering, base building, technological
development and unit control in order to defeat their oppo-
nents, typically in some kind of war setting. The RTS game
is not turn-based in contrast to board games such as Risk
and Diplomacy. Instead, all decisions by all players have to
be made in real-time. Generally the player has a top-down
perspective on the battlefield although some 3D RTS games
allow different camera angles. The real-time aspect makes
the RTS genre suitable for multiplayer games since it allows
players to interact with the game independently of each other
and does not let them wait for someone else to finish a turn.

In 1985 Ossama Khatib introduced a new concept while
he was looking for a real-time obstacle avoidance approach
for manipulators and mobile robots. The technique which
he called Artificial Potential Fields moves a manipulator in
a field of forces. The position to be reached is an attrac-
tive pole for the end effector (e.g. a robot) and obstacles are
repulsive surfaces for the manipulator parts (Khatib 1986).
Later on Arkin (Arkin 1987) updated the knowledge by cre-
ating another technique using superposition of spatial vector
fields in order to generate behaviours in his so called motor
schema concept.

Many studies concerning potential fields are related to
spatial navigation and obstacle avoidance, see e.g. (Boren-
stein & Koren 1991; Massari, Giardini, & Bernelli-Zazzera
2004). The technique is really helpful for the avoidance
of simple obstacles even though they are numerous. Com-
bined with an autonomous navigation approach, the result is
even better, being able to surpass highly complicated obsta-
cles (Borenstein & Koren 1989).

Lately some other interesting applications for potential
fields have been presented. The use of potential fields in
architectures of multi agent systems is giving quite good re-
sults defining the way of how the agents interact. Howard
et al. developed a mobile sensor network deployment using
potential fields (Howard, Matarić, & Sukhatme 2002), and
potential fields have been used in robot soccer (Johansson
& Saffiotti 2002; Röfer et al. 2004). Thurau et al. (Thu-
rau, Bauckhage, & Sagerer 2004b) has developed a game
bot which learns reactive behaviours (or potential fields) for
actions in the First-Person Shooter (FPS) game Quake II
through imitation.

First we describe the domain followed by a description of
our basic MAPF player. That solution is refined stepwise in
a number of ways and for each and one of them we present
the improvement shown in the results of the experiments.
We then discuss the solution and conclude and show some
directions of future work. We have previously reported on
the details of our methodology, and made a comparison of
the computational costs of the bots, thus we refer to that
study for these results (Hagelbäck & Johansson 2008).

ORTS
Open Real Time Strategy (ORTS) (Buro 2007) is a real-time
strategy game engine developed as a tool for researchers
within artificial intelligence (AI) in general and game AI
in particular. ORTS uses a client-server architecture with
a game server and players connected as clients. Each time-
frame clients receive a data structure from the server con-
taining the current game state. Clients can then issue com-
mands for their units. Commands such as move unit A to
(x, y) or attack opponent unit X with unit A. All client com-
mands are executed in random order by the server.

Users can define different type of games in scripts where
units, structures and their interactions are described. All
type of games from resource gathering to full real time strat-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

42

egy (RTS) games are supported. We focus here on one type
of two-player game, Tankbattle, which was one of the 2007
ORTS competitions (Buro 2007). In Tankbattle each player
has 50 tanks and five bases. The goal is to destroy the bases
of the opponent. Tanks are heavy units with long fire range
and devastating firepower but a long cool-down period, i.e.
the time after an attack before the unit is ready to attack
again. Bases can take a lot of damage before they are de-
stroyed, but they have no defence mechanism of their own
so it may be important to defend own bases with tanks. The
map in a tankbattle game has randomly generated terrain
with passable lowland and impassable cliffs.

The game contains a number of neutral units (sheep).
These are small indestructible units moving randomly
around the map making pathfinding and collision detection
more complex.

The Tankbattle competition of 2007
For comparison, the results from our original bot against
the four top teams were reconstructed through running the
matches again (see Table 1). To get a more detailed com-
parison than the win/lose ratio used in the tournament we
introduce a game score. This score does not take wins or
losses into consideration, instead it counts units and bases
left after a game. The score for a game is calculated as:

score =5(ownBasesLeft − oppBasesLeft)+ (1)
ownUnitsLeft − oppUnitsLeft

Opponent descriptions
The team NUS uses finite state machines and influence maps
in high-order planning on group level. The units in a group
spread out on a line and surround the opponent units at Max-
imum Shooting Distance (MSD). Units use the cool-down
period to keep out of MSD. Pathfinding and a flocking algo-
rithm are used to avoid collisions.

UBC gathers units in squads of 10 tanks. Squads can be
merged with other squads or split into two during the game.
Pathfinding is combined with force fields to avoid obstacles
and a bit-mask for collision avoidance. Units spread out at
MSD when attacking. Weaker squads are assigned to weak
spots or corners of the opponent unit cluster. If an own base
is attacked, it may decide to try to defend the base.

WarsawB uses pathfinding with an additional dynamic
graph for moving objects. The units use repelling force field
collision avoidance. Units are gathered in one large squad.
When the squad attacks, its units spread out on a line at MSD
and attack the weakest opponent unit in range.

Uofa06 Unfortunately, we have no description of how this
bot works, more than that it was the winner of the 2006 year
ORTS competition. Since we failed in getting the 2007 ver-
sion of the UofA bot to run without stability problems under
the latest update of the ORTS environment, we omitted it
from our experiments.

MAPF in ORTS, V.1
We have implemented an ORTS client for playing Tankbattle
based on Multi-agent Potential Fields (MAPF) following the

Team Win % Wins/games Avg units Avg bases Avg score
NUS 0% (0/100) 0.01 0.00 -46.99
WarsawB 0% (0/100) 1.05 0.01 -42.56
UBC 24% (24/100) 4.66 0.92 -17.41
Uofa.06 32% (32/100) 4.20 1.45 -16.34
Average 14% (14/100) 2.48 0.60 -30.83

Table 1: Replication of the results of our bot in the ORTS
tournament 2007 using the latest version of the ORTS server.

Figure 1: Part of the map during a tankbattle game. The
upper picture shows our agents (light-grey circles), an op-
ponent unit (white circle) and three sheep (small dark-grey
circles). The lower picture shows the total potential field for
the same area. Light areas has high potential and dark areas
low potential.

proposed methodology of Hagelbäck and Johansson (Hagel-
bäck & Johansson 2008). It includes the following six steps:

1. Identifying the objects
2. Identifying the fields
3. Assigning the charges
4. Deciding on the granularities
5. Agentifying the core objects
6. Construct the MAS architecture
Below we will describe the creation of our MAPF solution.

Identifying objects
We identify the following objects in our applications: Cliffs,
Sheep, and own (and opponent) tanks, and base stations.

Identifying fields
We identified four tasks in ORTS Tankbattle: Avoid colliding
with moving objects, Hunt down the enemy’s forces, Avoid

43

colliding with cliffs, and Defend the bases. This leads us to
three types of potential fields: Field of Navigation, Strategic
Field, and Tactical field.

The field of navigation is generated by repelling static ter-
rain and may be pre-calculated in the initialisation phase.
We would like agents to avoid getting too close to objects
where they may get stuck, but instead smoothly pass around
them.

The strategic field is an attracting field. It makes agents go
towards the opponents and place themselves at appropriate
distances from where they can fight the enemies.

Our own units, own bases and sheep generate small re-
pelling fields. The purpose is that we would like our agents
to avoid colliding with each other or bases as well as avoid-
ing the sheep.

Assigning charges
Each unit (own or enemy), base, sheep and cliff have a set
of charges which generate a potential field around the object.
All fields generated by objects are weighted and summed to
form a total field which is used by agents when selecting ac-
tions. The initial set of charges were found using trial and
error. However, the order of importance between the objects
simplifies the process of finding good values and the method
seems robust enough to allow the bot to work good anyhow.
We have tried to use traditional AI methods such as genetic
algorithms to tune the parameters of the bot, but without suc-
cess. The results of these studies are still unpublished. We
used the following charges in the V.1 bot:1

The opponent units

p(d) =






k1d, if d ∈ [0, MSD − a[
c1 − d, if d ∈ [MSD − a, MSD]
c2 − k2d, if d ∈]MSD, MDR]

(2)

Unit k1 k2 c1 c2 MSD a MDR
Tank 2 0.22 24.1 15 7 2 68
Base 3 0.255 49.1 15 12 2 130

Table 2: The parameters used for the generic p(d)-function
of Equation 2.

Own bases Own bases generate a repelling field for obsta-
cle avoidance. Below in Equation 3 is the function for cal-
culating the potential pownB(d) at distance d (in tiles) from
the center of the base.

pownB(d) =






5.25 · d − 37.5 if d <= 4
3.5 · d − 25 if d ∈]4, 7.14]
0 if d > 7.14

(3)

1I = [a, b[denote the half-open interval where a ∈ I , but b /∈ I

The own tanks The potential pownU (d) at distance d (in
tiles) from the center of an own tank is calculated as:

pownU (d) =






−20 if d <= 0.875
3.2d − 10.8 if d ∈]0.875, l],
0 if d >= l

(4)

Sheep Sheep generate a small repelling field for obstacle
avoidance. The potential psheep(d) at distance d (in tiles)
from the center of a sheep is calculated as:

psheep(d) =






−10 if d <= 1
−1 if d ∈]1, 2]
0 if d > 2

(5)

Figure 1 shows an example of a part of the map during
a Tankbattle game. The screen shot are from the 2D GUI
available in the ORTS server, and from our own interface
for showing the potential fields. The light ring around the
opponent unit, located at maximum shooting distance of our
tanks, is the distance our agents prefer to attack opponent
units from. The picture also shows the small repelling fields
generated by our own units and the sheep.

Granularity
We believed that tiles of 8*8 positions was a good balance
between performance on the one hand, and the time it would
take to make the calculations, on the other.

Agentifying and the construction of the MAS
We put one agent in each unit, and added a coordinator that
took care of the coordination of fire. For details on the
implementation description we have followed, we refer to
Hagelbäck and Johansson (Hagelbäck & Johansson 2008).

Weaknesses and counter-strategies
To improve the performance of our bot we observed how it
behaved against the top teams from the 2007 years’ ORTS
tournament. From the observations we have defined a num-
ber of weaknesses of our bot and proposed solutions to these.
For each improvement we have run 100 games against each
of the teams NUS, WarsawB, UBC and Uofa.06. A short
description of the opponent bots can be found below. The
experiments are started with a randomly generated seed and
then two games, one where our bot is team 0 and one where
our bot is team 1, are played. For the next two games the
seed is incremented by 1, and the experiments continues in
this fashion until 100 games are played.

By studying the matches, we identified four problems
with our solution:

1. Some of our units got stuck in the terrain due to problems
finding their way through narrow passages.

2. Our units exposed themselves to hostile fire during the
cool down phase.

3. Some of the units were not able to get out of local minima
created by the potential field.

44

4. Our units came too close to the nearest opponents if the
opponent units were gathered in large groups.

We will now describe four different ways to address the
identified problems by adjusting the original bot V.1 de-
scribed earlier (Hagelbäck & Johansson 2008). The mod-
ifications are listed in Table 3.

Increasing the granularity, V.2
In the original ORTS bot we used 128x128 tiles for the po-
tential field, where each tile was 8x8 positions in the game
world. The potential field generated from a game object,
for example own tanks, was pre-calculated in 2-dimensional
arrays and simple copied at runtime into the total potential
field. This resolution proved not to be detailed enough. In
the tournament our units often got stuck in terrain or other
obstacles such as our own bases. This became a problem,
since isolated units are easy targets for groups of attacking
units.

The proposed solution is to increase the resolution to 1x1
positions per tile. To reduce the memory requirements we do
not pre-calculate the game object potential fields, instead the
potentials are calculated at runtime by passing the distance
between an own unit and each object to a mathematical for-
mula. To reduce computation time we only calculate the po-
tentials in the positions around each own unit, not the whole
total potential field as in the original bot. Note that the static
terrain is still pre-calculated and constructed using 8x8 po-
sitions tiles. Below is a description and formulas for each of
the fields. In the experiments we use weight 1/7 ≈ 0.1429
for each of the weights w1 to w7. The weight w7 is used to
weight the terrain field which, except for the weight, is iden-
tical to the terrain field used in the original bot. The results
from the experiments are presented in Table 4. Below is a
detailed description of the fields.

The opponent units and bases. All opponent units and
bases generate symmetric surrounding fields where the high-
est potentials surround the objects at radius D, the MSD, R
refers to the Maximum Detection Range, the distance from
which an agent starts to detect the opponent unit. The po-
tentials poppU (d) and poppB(d) at distance d from the center
of an agent are calculated as:

poppU (d) = w1 ·






240/d(D − 2), if d ∈ [0, D − 2[
240, if d ∈ [D − 2, D]
240 − 0.24(d − D) if d ∈]D,R]

(6)

Properties V.1 V.2 V.3 V.4 V.5
Full resolution

√ √ √ √

Defensive field
√ √ √

Charged pheromones
√ √

Max. potential strategy
√

Table 3: The implemented properties in the different exper-
iments using version 1–5 of the bot.

Team Win % Wins/games Avg units Avg bases Avg score
NUS 9% (9/100) 1.18 0.57 -32.89
WarsawB 0% (0/100) 3.03 0.12 -36.71
UBC 24% (24/100) 16.11 0.94 0.46
Uofa.06 42% (42/100) 10.86 2.74 0.30
Average 18.75% (18.75/100) 7.80 1.09 -17.21

Table 4: Experiment results from increasing the granularity.

poppB(d) = w6·






360/(D − 2) · d, if d ∈ [0, D − 2[
360, if d ∈ [D − 2, D]
360 − (d − D) · 0.32 if d ∈]D,R]

(7)
Own units — tanks. Own units generate repelling fields

for obstacle avoidance. The potential pownU (d) at distance
d from the center of a unit is calculated as:

pownU (d) = w3 ·
{
−20 if d <= 14
32 − 2 · d if d ∈]14, 16]

(8)

Own bases. Own bases also generate repelling fields for
obstacle avoidance. Below is the function for calculating the
potential pownB(d) at distance d from the center of the base.

pownB(d) = w4 ·
{

6 · d − 258 if d <= 43
0 if d > 43

(9)

Sheep. Sheep generate a small repelling field for obstacle
avoidance. The potential psheep(d) at distance d from the
center of a sheep is calculated as:

psheep(d) = w5 ·
{
−20 if d <= 8
2 · d − 25 if d ∈]8, 12.5]

(10)

Adding a defensive potential field, V.3
After a unit has fired its weapon the unit has a cooldown
period when it cannot attack. In the original bot our agents
was, as long as there were enemies within MSD (D), sta-
tionary until they were ready to fire again. The cooldown
period can instead be used for something more useful and
we propose the use of a defensive field. This field makes
the units retreat when they cannot attack, and advance when
they are ready to attack once again. With this enhancement
our agents always aim to be at D of the closest opponent unit
or base and surround the opponent unit cluster at D. The po-
tential pdef (d) at distance d from the center of an agent is
calculated using the formula in Equation 11. The results
from the experiments are presented in Table 5.

pdef (d) = w2 ·
{

w2 · (−800 + 6.4 · d) if d <= 125
0 if d > 125

(11)

45

Team Win % Wins/games Avg units Avg bases Avg score
NUS 64% (64/100) 22.95 3.13 28.28
WarsawB 48% (48/100) 18.32 1.98 15.31
UBC 57% (57/100) 30.48 1.71 29.90
Uofa.06 88% (88/100) 29.69 4.00 40.49
Average 64.25% (64.25/100) 25.36 2.71 28.50

Table 5: Experiment results from adding a defensive field.

Team Win % Wins/games Avg units Avg bases Avg score
NUS 73% (73/100) 23.12 3.26 32.06
WarsawB 71% (71/100) 23.81 2.11 27.91
UBC 69% (69/100) 30.71 1.72 31.59
Uofa.06 93% (93/100) 30.81 4.13 46.97
Average 76.5% (76.5/100) 27.11 2.81 34.63

Table 6: Experiment results from adding charged
pheromones.

Adding charged pheromones, V.4
The local optima problem is well known in general when
using PF. Local optima are positions in the potential field
that has higher potential than all its neighbouring positions.
A unit positioned at a local optimum will therefore get stuck
even if the position is not the final destination for the unit.
In the original bot agents that had been idle for some time
moved in a random direction for some frames. This is not a
very reliable solution to the local optima problem since there
is not guarantee that the agent has moved out of, or will not
directly return to, the local optima.

Thurau et al. (Thurau, Bauckhage, & Sagerer 2004a) de-
scribed a solution to the local optima problem called avoid-
past potential field forces. In this solution each agent gen-
erates a trail of negative potentials on previous visited po-
sitions, similar to a pheromone trail used by ants. The trail
pushes the agent forward if it reaches a local optima.

We have introduced a trail that adds a negative potential
to the last 20 positions of each agent. Note that an agent is
not effected by the trails of other own agents. The negative
potential for the trail was set to -0.5 and the results from the
experiments are presented in Table 6.

Using maximum potentials, V.5
In the original bot all potential fields generated from oppo-
nent units were weighted and summed to form the total po-
tential field which is used for navigation by our agents. The
effect of summing the potential fields generated by opponent
units is that the highest potentials are generated from the
centre of the opponent unit cluster. This makes our agents
attack the centre of the enemy force instead of keeping the
MSD to the closest enemy. The proposed solution to this
issue is that, instead of summing the potentials generated
by opponent units and bases, we add the highest potential
any opponent unit or base generates. The effect of this is
that our agents engage the closest enemy unit at maximum
shooting distance instead of moving towards the centre of
the opponent unit cluster. The results from the experiments
are presented in Table 7.

Team Win % Wins/games Avg units Avg bases Avg score
NUS 100% (100/100) 28.05 3.62 46.14
WarsawB 99% (99/100) 31.82 3.21 47.59
UBC 98% (98/100) 33.19 2.84 46.46
Uofa.06 100% (100/100) 33.19 4.22 54.26
Average 99.25% (99.25/100) 31.56 3.47 48.61

Table 7: Experiment results from using maximum potential,
instead of summing the potentials.

Discussion
The results clearly show that the improvements we suggest
increases the performance of our solution dramatically. We
will now discuss these improvements from a wider perspec-
tive, asking ourselves if it would be easy to achieve the same
results without using potential fields.

Using full resolution
We believed that the PF based solution would suffer from
being slow. Because of that, we did not initially use the full
resolution of the map. However, we do so now, and by only
calculating the potentials in a number of move candidates for
each unit (rather than all positions of the map), we have no
problems at all to let the units move in full resolution. This
also solved our problems with units getting stuck at various
objects and having problems to go through narrow passages.

Avoiding the obstacles
The problems with local optima are well documented for
potential fields. It is a result of the lack of planning. Instead,
a one step look-ahead is used in a reactive manner. This is of
course problematic in the sense that the unit is not equipped
to plan its way out of a sub-optimal position. It will have to
rely on other mechanisms. The pheromone trail is one such
solution that we successfully applied to avoid the problem.

On the other hand, there are also advantages of avoiding
to plan, especially in a dynamically changing environment
where long term planning is hard.

Avoiding opponent fire
The trick to avoid opponent fire by adding a defensive po-
tential field during the cool-down phase is not hard to im-
plement in a traditional solution. By adding a state of cool-
down, which implements a flee behaviour, that makes the
unit run away from the enemies, that could be achieved. The
potential problem here is that it may be hard to coordinate
such a movement with other units trying to get to the front,
so some sort of coordinating mechanism may be needed.
While this mechanism is implicit in the PF case (through
the use of small repulsive forces between the own units), it
will have to be taken care of explicitly in the planning case.

Staying at maximum shooting distance
The problem we had, to keep the units at the MSD from the
nearest opponent, was easily solved by letting that opponent
be the one setting the potential in the opponent field, rather
than the gravity of the whole opponent group (as in the case

46

Team Total win % Blekinge Lidia NUS
Blekinge 98 — 96 100
Lidia 43 4 — 82
NUS 9 0 18 —

Table 8: Results from the ORTS Tankbattle 2008 competi-
tion.

of summing all potentials). As for the case of bots using
planning, we can not see that this really is a problem for
them.

On the methodology
We have used the newer version of the ORTS server for the
experiments. On the one hand, it allows us to use the latest
version of our bot, which of course is implemented to work
with the new server. On the other hand, we could not get one
of the last years’ participants to work with the new server.
Since games like these are not transitive in the sense that if
player A wins over player B, and player B wins over player
C, then player A will not be guaranteed to win over player
C, there is a risk that the bot that was left out of these exper-
iments would have been better than our solution. However,
the point is that we have shown that a potential field-based
player is able to play significantly better than a number of
planning-based counterparts. Although we have no reason
to believe that the UofA07 bot would be an exception, we
do not have the results to back it up.

The order of the different versions used was determined
after running a small series of matches with different combi-
nations of improvements added. We then picked them in the
order that best illustrated the effects of the improvements.

However, our results were further validated in the 2008
ORTS tournament, where our PF based bots won the three
competitions that we participated in (Collaborative Pathfind-
ing, Tankbattle, and Complete RTS). In the Tankbattle com-
petition, we won all 100 games against NUS, the winner of
last year, and only lost four of 100 games to Lidia (see Ta-
ble 8).

Conclusions and Future Work
We have presented a five step improvement of a potential
field based bot that plays the Strategic Combat game in
ORTS. By the full improvement we managed to raise the
performance from winning less than 7 per cent to winning
more than 99 per cent of the games against four of the top
five teams at the ORTS tournament 2007. Our bot did also
quite easily win the 2008 tournament.

We believe that potential fields is a successful option to
the more conventional planning-based solutions that uses
e.g. A* in Real Time Strategy games.

In the future, we will report on the application of the
methodology described in (Hagelbäck & Johansson 2008)
to a number of other ORTS games. We will also set up a new
series of experiments where we adjust the ability/efficiency
trade-off of the bot in real time to increase the player expe-
rience.

Acknowledgements
We would like to thank Blekinge Institute of Technology for
supporting our research, the reviewers for their constructive
comments, and the organisers of ORTS for providing us with
an interesting application.

References
Arkin, R. C. 1987. Motor schema based navigation for
a mobile robot. In Proceedings of the IEEE International
Conference on Robotics and Automation, 264–271.
Borenstein, J., and Koren, Y. 1989. Real-time obstacle
avoidance for fast mobile robots. IEEE Transactions on
Systems, Man, and Cybernetics 19:1179–1187.
Borenstein, J., and Koren, Y. 1991. The vector field his-
togram: fast obstacle avoidance for mobile robots. IEEE
Journal of Robotics and Automation 7(3):278–288.
Buro, M. 2007. ORTS — A Free Software RTS Game
Engine. http://www.cs.ualberta.ca/∼mburo/orts/ URL last
visited on 2008-06-16.
Hagelbäck, J., and Johansson, S. J. 2008. Using multi-
agent potential fields in real-time strategy games. In
Padgham, L., and Parkes, D., eds., Proceedings of the Sev-
enth International Conference on Autonomous Agents and
Multi-agent Systems (AAMAS).
Howard, A.; Matarić, M.; and Sukhatme, G. 2002. Mo-
bile sensor network deployment using potential fields: A
distributed, scalable solution to the area coverage problem.
In Proceedings of the 6th International Symposium on Dis-
tributed Autonomous Robotics Systems (DARS02).
Johansson, S., and Saffiotti, A. 2002. An electric field ap-
proach to autonomous robot control. In RoboCup 2001,
number 2752 in Lecture notes in artificial intelligence.
Springer Verlag.
Khatib, O. 1986. Real-time obstacle avoidance for ma-
nipulators and mobile robots. The International Journal of
Robotics Research 5(1):90–98.
Massari, M.; Giardini, G.; and Bernelli-Zazzera, F. 2004.
Autonomous navigation system for planetary exploration
rover based on artificial potential fields. In Proceedings of
Dynamics and Control of Systems and Structures in Space
(DCSSS) 6th Conference.
Röfer, T.; Brunn, R.; Dahm, I.; Hebbel, M.; Homann,
J.; Jüngel, M.; Laue, T.; Lötzsch, M.; Nistico, W.; and
Spranger, M. 2004. GermanTeam 2004 - the german na-
tional Robocup team.
Thurau, C.; Bauckhage, C.; and Sagerer, G. 2004a. Im-
itation learning at all levels of game-ai. In Proceedings
of the International Conference on Computer Games, Ar-
tificial Intelligence, Design and Education. University of
Wolverhampton. 402–408.
Thurau, C.; Bauckhage, C.; and Sagerer, G. 2004b. Learn-
ing human-like movement behavior for computer games.
In Proc. 8th Int. Conf. on the Simulation of Adaptive Be-
havior (SAB’04).

47

