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!! One these these things is not like the other 
!! One was generating by selecting “-” or “|” 

at random, 300 times. 

!! Which one? 
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!! A little experiment from http://www.youtube.com/v/
vJG698U2Mvo&hl=en_US&fs=1&rel=0 

!! Rules 

!! No one talks for the next 4 minutes 

!! If you know what is about to happen, see (1) 

!! This is a selective  
attention test 

!! Count the number  
of times the team 
with the white  

shirt passes the ball. 

11 



!! Lesson #1:!
!! Algorithms can be pretty dumb!

!! If they don’t focus on X, they see any Y, at random.!

!! Lesson #2:!
!! Humans can be pretty dumb!

!! If they mono-focus on X, you can miss Y!

!! Maybe, any induction process is a guess!

!! And while guessing can be useful!

!! Guesses can also be wrong!

!! Lets us a create community of agents, "
each with novel insights and limitations!

!! Data miners working with humans!

!! Maybe in combination, we can see more that separately !
12 

Wikipedia: "
List of cognitive biases!
http://en.wikipedia.org/wiki/ 
List_of_cognitive_biases!
• 38 decision making biases"
• 30 biases in probability!
• 18 social biases,!
• 10 memory biases!



!! Effort estimation 
!! Defect prediction 
!! Optimization of discrete systems 
!! Test case generation 
!! Fault localization 
!! Text mining 
!! Temporal sequence mining 
!! Learning software processes 
!! Learning APIs 

!! Etc 
!! Welcome to Empirical SE,  

Version 2.0 

13 



If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = yes
If none of the above then play = yes

These rules are meant to be interpreted in order: the first one, then if it doesn’t
apply the second, and so on. A set of rules that are intended to be interpreted
in sequence is called a decision list. Interpreted as a decision list, the rules 
correctly classify all of the examples in the table, whereas taken individually, out
of context, some of the rules are incorrect. For example, the rule if humidity =
normal then play = yesgets one of the examples wrong (check which one).
The meaning of a set of rules depends on how it is interpreted—not 
surprisingly!

In the slightly more complex form shown in Table 1.3, two of the attributes—
temperature and humidity—have numeric values. This means that any learn-
ing method must create inequalities involving these attributes rather than
simple equality tests, as in the former case. This is called a numeric-attribute
problem—in this case, a mixed-attribute problem because not all attributes are
numeric.

Now the first rule given earlier might take the following form:

If outlook = sunny and humidity > 83 then play = no

A slightly more complex process is required to come up with rules that involve
numeric tests.

1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS 1 1

Table 1.2 The weather data.

Outlook Temperature Humidity Windy Play

sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no
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The rules we have seen so far are classification rules: they predict the classifi-
cation of the example in terms of whether to play or not. It is equally possible
to disregard the classification and just look for any rules that strongly associate
different attribute values. These are called association rules. Many association
rules can be derived from the weather data in Table 1.2. Some good ones are as
follows:

If temperature = cool then humidity = normal
If humidity = normal and windy = false then play = yes
If outlook = sunny and play = no then humidity = high
If windy = false and play = no then outlook = sunny

and humidity = high.

All these rules are 100% correct on the given data; they make no false predic-
tions. The first two apply to four examples in the dataset, the third to three
examples, and the fourth to two examples. There are many other rules: in fact,
nearly 60 association rules can be found that apply to two or more examples of
the weather data and are completely correct on this data. If you look for rules
that are less than 100% correct, then you will find many more. There are so
many because unlike classification rules, association rules can “predict” any of
the attributes, not just a specified class, and can even predict more than one
thing. For example, the fourth rule predicts both that outlook will be sunny and
that humidity will be high.

1 2 CHAPTER 1 | WHAT ’S IT ALL ABOUT?

Table 1.3 Weather data with some numeric attributes.

Outlook Temperature Humidity Windy Play

sunny 85 85 false no
sunny 80 90 true no
overcast 83 86 false yes
rainy 70 96 false yes
rainy 68 80 false yes
rainy 65 70 true no
overcast 64 65 true yes
sunny 72 95 false no
sunny 69 70 false yes
rainy 75 80 false yes
sunny 75 70 true yes
overcast 72 90 true yes
overcast 81 75 false yes
rainy 71 91 true no
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Contact lenses: An idealized problem
The contact lens data introduced earlier tells you the kind of contact lens to pre-
scribe, given certain information about a patient. Note that this example is
intended for illustration only: it grossly oversimplifies the problem and should
certainly not be used for diagnostic purposes!

The first column of Table 1.1 gives the age of the patient. In case you’re won-
dering, presbyopia is a form of longsightedness that accompanies the onset of
middle age. The second gives the spectacle prescription: myope means short-
sighted and hypermetrope means longsighted. The third shows whether the
patient is astigmatic, and the fourth relates to the rate of tear production, which
is important in this context because tears lubricate contact lenses. The final
column shows which kind of lenses to prescribe: hard, soft, or none. All possi-
ble combinations of the attribute values are represented in the table.

A sample set of rules learned from this information is shown in Figure 1.1.
This is a rather large set of rules, but they do correctly classify all the examples.
These rules are complete and deterministic: they give a unique prescription for
every conceivable example. Generally, this is not the case. Sometimes there are
situations in which no rule applies; other times more than one rule may apply,
resulting in conflicting recommendations. Sometimes probabilities or weights

1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS 1 3

If tear production rate = reduced then recommendation = none
If age = young and astigmatic = no and
   tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no and
   tear production rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope and
   astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no and
   tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes and
   tear production rate = normal then recommendation = hard
If age = young and astigmatic = yes and
   tear production rate = normal then recommendation = hard
If age = pre-presbyopic and
   spectacle prescription = hypermetrope and astigmatic = yes
   then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope
   and astigmatic = yes then recommendation = none

Figure 1.1 Rules for the contact lens data.
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may be associated with the rules themselves to indicate that some are more
important, or more reliable, than others.

You might be wondering whether there is a smaller rule set that performs as
well. If so, would you be better off using the smaller rule set and, if so, why?
These are exactly the kinds of questions that will occupy us in this book. Because
the examples form a complete set for the problem space, the rules do no more
than summarize all the information that is given, expressing it in a different and
more concise way. Even though it involves no generalization, this is often a very
useful thing to do! People frequently use machine learning techniques to gain
insight into the structure of their data rather than to make predictions for new
cases. In fact, a prominent and successful line of research in machine learning
began as an attempt to compress a huge database of possible chess endgames
and their outcomes into a data structure of reasonable size. The data structure
chosen for this enterprise was not a set of rules but a decision tree.

Figure 1.2 shows a structural description for the contact lens data in the form
of a decision tree, which for many purposes is a more concise and perspicuous
representation of the rules and has the advantage that it can be visualized more
easily. (However, this decision tree—in contrast to the rule set given in Figure
1.1—classifies two examples incorrectly.) The tree calls first for a test on tear
production rate, and the first two branches correspond to the two possible out-
comes. If tear production rate is reduced (the left branch), the outcome is none.
If it is normal (the right branch), a second test is made, this time on astigma-
tism. Eventually, whatever the outcome of the tests, a leaf of the tree is reached

1 4 CHAPTER 1 | WHAT ’S IT ALL ABOUT?

normal

tear production rate

reduced

hypermetropemyope

none astigmatism

soft

hard none

spectacle prescription

yesno

Figure 1.2 Decision tree for the
contact lens data.
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Figure 1.3(b) is a more complex decision tree that represents the same
dataset. In fact, this is a more accurate representation of the actual dataset that
was used to create the tree. But it is not necessarily a more accurate representa-
tion of the underlying concept of good versus bad contracts. Look down the left
branch. It doesn’t seem to make sense intuitively that, if the working hours
exceed 36, a contract is bad if there is no health-plan contribution or a full
health-plan contribution but is good if there is a half health-plan contribution.
It is certainly reasonable that the health-plan contribution plays a role in the
decision but not if half is good and both full and none are bad. It seems likely
that this is an artifact of the particular values used to create the decision tree
rather than a genuine feature of the good versus bad distinction.

The tree in Figure 1.3(b) is more accurate on the data that was used to train
the classifier but will probably perform less well on an independent set of test
data. It is “overfitted” to the training data—it follows it too slavishly. The tree
in Figure 1.3(a) is obtained from the one in Figure 1.3(b) by a process of
pruning, which we will learn more about in Chapter 6.

Soybean classification: A classic machine learning success
An often-quoted early success story in the application of machine learning to
practical problems is the identification of rules for diagnosing soybean diseases.
The data is taken from questionnaires describing plant diseases. There are about

1 8 CHAPTER 1 | WHAT ’S IT ALL ABOUT?

Table 1.6 The labor negotiations data.

Attribute Type 1 2 3 . . . 40

duration years 1 2 3 2
wage increase 1st year percentage 2% 4% 4.3% 4.5
wage increase 2nd year percentage ? 5% 4.4% 4.0
wage increase 3rd year percentage ? ? ? ?
cost of living adjustment {none, tcf, tc} none tcf ? none
working hours per week hours 28 35 38 40
pension {none, ret-allw, empl-cntr} none ? ? ?
standby pay percentage ? 13% ? ?
shift-work supplement percentage ? 5% 4% 4
education allowance {yes, no} yes ? ? ?
statutory holidays days 11 15 12 12
vacation {below-avg, avg, gen} avg gen gen avg
long-term disability assistance {yes, no} no ? ? yes
dental plan contribution {none, half, full} none ? full full
bereavement assistance {yes, no} no ? ? yes
health plan contribution {none, half, full} none ? full half
acceptability of contract {good, bad} bad good good good
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1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS 1 9
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7 6 CHAPTER 3 | OUTPUT: KNOWLEDGE REPRESENTATION

3.7 Trees for numeric prediction
The kind of decision trees and rules that we have been looking at are designed
for predicting categories rather than numeric quantities. When it comes to pre-
dicting numeric quantities, as with the CPU performance data in Table 1.5, the
same kind of tree or rule representation can be used, but the leaf nodes of the
tree, or the right-hand side of the rules, would contain a numeric value that is
the average of all the training set values to which the leaf, or rule, applies.
Because statisticians use the term regression for the process of computing an
expression that predicts a numeric quantity, decision trees with averaged
numeric values at the leaves are called regression trees.

Figure 3.7(a) shows a regression equation for the CPU performance data, and
Figure 3.7(b) shows a regression tree. The leaves of the tree are numbers that
represent the average outcome for instances that reach the leaf. The tree is much
larger and more complex than the regression equation, and if we calculate the
average of the absolute values of the errors between the predicted and the actual
CPU performance measures, it turns out to be significantly less for the tree than
for the regression equation. The regression tree is more accurate because a
simple linear model poorly represents the data in this problem. However, the
tree is cumbersome and difficult to interpret because of its large size.

It is possible to combine regression equations with regression trees. Figure
3.7(c) is a tree whose leaves contain linear expressions—that is, regression equa-
tions—rather than single predicted values. This is (slightly confusingly) called
a model tree. Figure 3.7(c) contains the six linear models that belong at the six
leaves, labeled LM1 through LM6. The model tree approximates continuous
functions by linear “patches,” a more sophisticated representation than either
linear regression or regression trees. Although the model tree is smaller and
more comprehensible than the regression tree, the average error values on the
training data are lower. (However, we will see in Chapter 5 that calculating the
average error on the training set is not in general a good way of assessing 
the performance of models.)

3.8 Instance-based representation
The simplest form of learning is plain memorization, or rote learning. Once a
set of training instances has been memorized, on encountering a new instance
the memory is searched for the training instance that most strongly resembles
the new one. The only problem is how to interpret “resembles”: we will explain
that shortly. First, however, note that this is a completely different way of rep-
resenting the “knowledge” extracted from a set of instances: just store the
instances themselves and operate by relating new instances whose class is
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LM1 PRP=8.29+0.004 MMAX+2.77 CHMIN
LM2 PRP=20.3+0.004 MMIN-3.99 CHMIN
        +0.946 CHMAX
LM3 PRP=38.1+0.012 MMIN
LM4 PRP=19.5+0.002 MMAX+0.698 CACH
        +0.969 CHMAX
LM5 PRP=285-1.46 MYCT+1.02 CACH
        -9.39 CHMIN
LM6 PRP=-65.8+0.03 MMIN-2.94 CHMIN
        +4.98 CHMAX

PRP =
-56.1
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(a)

Figure 3.7 Models for the CPU performance data: (a) linear regression, (b) regression
tree, and (c) model tree.
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few exemplars are needed inside stable regions. For example, you might expect
the required density of exemplars that lie well inside class boundaries to be
much less than the density that is needed near class boundaries. Deciding which
instances to save and which to discard is another key problem in instance-based
learning.

An apparent drawback to instance-based representations is that they do not
make explicit the structures that are learned. In a sense this violates the notion
of “learning” that we presented at the beginning of this book; instances do not
really “describe” the patterns in data. However, the instances combine with the
distance metric to carve out boundaries in instance space that distinguish one
class from another, and this is a kind of explicit representation of knowledge.
For example, given a single instance of each of two classes, the nearest-neigh-
bor rule effectively splits the instance space along the perpendicular bisector of
the line joining the instances. Given several instances of each class, the space is
divided by a set of lines that represent the perpendicular bisectors of selected
lines joining an instance of one class to one of another class. Figure 3.8(a) illus-
trates a nine-sided polygon that separates the filled-circle class from the open-
circle class. This polygon is implicit in the operation of the nearest-neighbor
rule.

When training instances are discarded, the result is to save just a few proto-
typical examples of each class. Figure 3.8(b) shows as dark circles only the
examples that actually get used in nearest-neighbor decisions: the others (the
light gray ones) can be discarded without affecting the result. These prototypi-
cal examples serve as a kind of explicit knowledge representation.

Some instance-based representations go further and explicitly generalize the
instances. Typically, this is accomplished by creating rectangular regions that
enclose examples of the same class. Figure 3.8(c) shows the rectangular regions
that might be produced. Unknown examples that fall within one of the rectan-
gles will be assigned the corresponding class; ones that fall outside all rectan-
gles will be subject to the usual nearest-neighbor rule. Of course this produces

3.8 INSTANCE-BASED REPRESENTATION 7 9

(a) (b) (c) (d)

Figure 3.8 Different ways of partitioning the instance space.
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3.9 Clusters
When clusters rather than a classifier is learned, the output takes the form of a
diagram that shows how the instances fall into clusters. In the simplest case this
involves associating a cluster number with each instance, which might be
depicted by laying the instances out in two dimensions and partitioning the
space to show each cluster, as illustrated in Figure 3.9(a).

Some clustering algorithms allow one instance to belong to more than one
cluster, so the diagram might lay the instances out in two dimensions and draw
overlapping subsets representing each cluster—a Venn diagram. Some algo-
rithms associate instances with clusters probabilistically rather than categori-
cally. In this case, for every instance there is a probability or degree of
membership with which it belongs to each of the clusters. This is shown in
Figure 3.9(c). This particular association is meant to be a probabilistic one, so
the numbers for each example sum to one—although that is not always the 
case. Other algorithms produce a hierarchical structure of clusters so that at 
the top level the instance space divides into just a few clusters, each of which
divides into its own subclusters at the next level down, and so on. In this case a
diagram such as the one in Figure 3.9(d) is used, in which elements joined
together at lower levels are more tightly clustered than ones joined together at

3.9 CLUSTERS 8 1
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Figure 3.9 Different ways of representing clusters.
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations
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3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints)
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!



contribute independently and equally to the final outcome. A third might have
a simple logical structure, involving just a few attributes that can be captured
by a decision tree. In a fourth, there may be a few independent rules that govern
the assignment of instances to different classes. A fifth might exhibit depend-
encies among different subsets of attributes. A sixth might involve linear
dependence among numeric attributes, where what matters is a weighted sum
of attribute values with appropriately chosen weights. In a seventh, classifica-
tions appropriate to particular regions of instance space might be governed by
the distances between the instances themselves. And in an eighth, it might be
that no class values are provided: the learning is unsupervised.

In the infinite variety of possible datasets there are many different kinds of
structure that can occur, and a data mining tool—no matter how capable—that
is looking for one class of structure may completely miss regularities of a dif-
ferent kind, regardless of how rudimentary those may be. The result is a baroque
and opaque classification structure of one kind instead of a simple, elegant,
immediately comprehensible structure of another.

Each of the eight examples of different kinds of datasets sketched previously
leads to a different machine learning method well suited to discovering it. The
sections of this chapter look at each of these structures in turn.

4.1 Inferring rudimentary rules
Here’s an easy way to find very simple classification rules from a set of instances.
Called 1R for 1-rule, it generates a one-level decision tree expressed in the form
of a set of rules that all test one particular attribute. 1R is a simple, cheap method
that often comes up with quite good rules for characterizing the structure in
data. It turns out that simple rules frequently achieve surprisingly high accu-
racy. Perhaps this is because the structure underlying many real-world datasets
is quite rudimentary, and just one attribute is sufficient to determine the class
of an instance quite accurately. In any event, it is always a good plan to try the
simplest things first.

The idea is this: we make rules that test a single attribute and branch accord-
ingly. Each branch corresponds to a different value of the attribute. It is obvious
what is the best classification to give each branch: use the class that occurs most
often in the training data. Then the error rate of the rules can easily be deter-
mined. Just count the errors that occur on the training data, that is, the number
of instances that do not have the majority class.

Each attribute generates a different set of rules, one rule for every value 
of the attribute. Evaluate the error rate for each attribute’s rule set and choose
the best. It’s that simple! Figure 4.1 shows the algorithm in the form of
pseudocode.

8 4 CHAPTER 4 | ALGORITHMS: THE BASIC METHODS
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To see the 1R method at work, consider the weather data of Table 1.2 (we will
encounter it many times again when looking at how learning algorithms work).
To classify on the final column,play, 1R considers four sets of rules, one for each
attribute. These rules are shown in Table 4.1. An asterisk indicates that a random
choice has been made between two equally likely outcomes. The number of
errors is given for each rule, along with the total number of errors for the rule
set as a whole. 1R chooses the attribute that produces rules with the smallest
number of errors—that is, the first and third rule sets. Arbitrarily breaking the
tie between these two rule sets gives:

outlook: sunny Æ no
overcast Æ yes
rainy Æ yes

4.1 INFERRING RUDIMENTARY RULES 8 5

For each attribute,

  For each value of that attribute, make a rule as follows:

    count how often each class appears

    find the most frequent class

    make the rule assign that class to this attribute-value.

  Calculate the error rate of the rules.

Choose the rules with the smallest error rate.

Figure 4.1 Pseudocode for 1R.

Table 4.1 Evaluating the attributes in the weather data.

Attribute Rules Errors Total errors

1 outlook sunny Æ no 2/5 4/14
overcast Æ yes 0/4
rainy Æ yes 2/5

2 temperature hot Æ no* 2/4 5/14
mild Æ yes 2/6
cool Æ yes 1/4

3 humidity high Æ no 3/7 4/14
normal Æ yes 1/7

4 windy false Æ yes 2/8 5/14
true Æ no* 3/6

* A random choice was made between two equally likely outcomes.
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makes real-life datasets interesting is that the attributes are certainly not equally
important or independent. But it leads to a simple scheme that again works sur-
prisingly well in practice.

Table 4.2 shows a summary of the weather data obtained by counting how
many times each attribute–value pair occurs with each value (yes and no) for
play. For example, you can see from Table 1.2 that outlook is sunny for five exam-
ples, two of which have play = yes and three of which have play = no. The cells
in the first row of the new table simply count these occurrences for all possible
values of each attribute, and the play figure in the final column counts the total
number of occurrences of yes and no. In the lower part of the table, we rewrote
the same information in the form of fractions, or observed probabilities. For
example, of the nine days that play is yes, outlook is sunny for two, yielding a
fraction of 2/9. For play the fractions are different: they are the proportion of
days that play is yes and no, respectively.

Now suppose we encounter a new example with the values that are shown in
Table 4.3. We treat the five features in Table 4.2—outlook, temperature, humid-
ity, windy, and the overall likelihood that play is yes or no—as equally impor-
tant, independent pieces of evidence and multiply the corresponding fractions.
Looking at the outcome yes gives:

The fractions are taken from the yes entries in the table according to the values
of the attributes for the new day, and the final 9/14 is the overall fraction 

likelihood of yes = ¥ ¥ ¥ ¥ =2 9 3 9 3 9 3 9 9 14 0 0053. .

4.2 STATISTICAL MODELING 8 9

Table 4.2 The weather data with counts and probabilities.

Outlook Temperature Humidity Windy Play

yes no yes no yes no yes no yes no

sunny 2 3 hot 2 2 high 3 4 false 6 2 9 5
overcast 4 0 mild 4 2 normal 6 1 true 3 3
rainy 3 2 cool 3 1

sunny 2/9 3/5 hot 2/9 2/5 high 3/9 4/5 false 6/9 2/5 9/14 5/14
overcast 4/9 0/5 mild 4/9 2/5 normal 6/9 1/5 true 3/9 3/5
rainy 3/9 2/5 cool 3/9 1/5

Table 4.3 A new day.

Outlook Temperature Humidity Windy Play

sunny cool high true ?
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representing the proportion of days on which play is yes. A similar calculation
for the outcome no leads to

This indicates that for the new day, no is more likely than yes—four times more
likely. The numbers can be turned into probabilities by normalizing them so
that they sum to 1:

This simple and intuitive method is based on Bayes’s rule of conditional prob-
ability. Bayes’s rule says that if you have a hypothesis H and evidence E that bears
on that hypothesis, then

We use the notation that Pr[A] denotes the probability of an event A and that
Pr[A|B] denotes the probability of A conditional on another event B. The
hypothesis H is that play will be, say, yes, and Pr[H|E] is going to turn out to be
20.5%, just as determined previously. The evidence E is the particular combi-
nation of attribute values for the new day, outlook = sunny, temperature = cool,
humidity = high, and windy = true. Let’s call these four pieces of evidence E1, E2,
E3, and E4, respectively. Assuming that these pieces of evidence are independent
(given the class), their combined probability is obtained by multiplying the
probabilities:

Don’t worry about the denominator: we will ignore it and eliminate it in the
final normalizing step when we make the probabilities of yes and no sum to 1,
just as we did previously. The Pr[yes] at the end is the probability of a yes
outcome without knowing any of the evidence E, that is, without knowing any-
thing about the particular day referenced—it’s called the prior probability of the
hypothesis H. In this case, it’s just 9/14, because 9 of the 14 training examples
had a yes value for play. Substituting the fractions in Table 4.2 for the appro-
priate evidence probabilities leads to

Pr
Pr

yes E
E

[ ] = ¥ ¥ ¥ ¥
[ ]

2 9 3 9 3 9 3 9 9 14
,

Pr 
Pr Pr Pr Pr Pr

Pr
yes E

E yes E yes E yes E yes yes
E

[ ] = [ ] ¥ [ ] ¥ [ ] ¥ [ ] ¥ [ ]
[ ]

1 2 3 4 .

Pr
Pr Pr

Pr
H E

E H H
E

[ ] = [ ] [ ]
[ ]

.

Probability of no =
+

=0 0206
0 0053 0 0206

79 5
.

. .
. %.

Probability of yes =
+

=0 0053
0 0053 0 0206

20 5
.

. .
. %,

likelihood of no = ¥ ¥ ¥ ¥ =3 5 1 5 4 5 3 5 5 14 0 0206. .
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Learning Trees

In this lecture, we discuss "iterative dichotomization"

Split things up
Recurse on each split

How to generate a tree

Given a bag of mixed-up stuff.
Need a measure of "mixed-up"

Split: Find something that divides up the bag in two new sub-bags
And each sub-bag is less mixed-up;
Each split is the root of a sub-tree.

Recurse: repeat for each sub-bag
i.e. on just the data that falls into each part of the split

Need a Stop rule
Condense the instances that fall into each sub-bag

Prune back the generated tree.

Different tree learners result from different selections of

CART: (regression trees)
measure: standard deviation

Three "normal" curves with different standard deviations
Expected values under the normal curve

condense: report the average of the instances in each bag.

M5prime: (model trees)
measure: standard deviation
condense: generate a linear model of the form a+b * x1 +c * x2 + d * x3 +...

J48: (decision trees)
measure: "entropy"



condense: report majority class

Example: C4.5 (a.k.a. J48)

Q: which attribute is the best to split on?

A: the one which will result in the smallest tree:

Heuristic: choose the attribute that produces the "purest" nodes (purity = not-mixed-up)

e.g. Outlook= sunny

info((2,3))= entropy(2/5,3/5) = -2/5 * log(2/5) - 3/5 * log(3/5) = 0.971 bits

Outlook = overcast

info((4,0)) = entropy(1,0) = -1 * log(1) - 0 * log(0) = 0 bits

Outlook = rainy

info((3,2)) = entropy(3/5, 2/5) = -3/5 * log(3/5) - 2/5 * log(2/5) = 0.971 bits

Expected info for Outlook = Weighted sum of the above

info((3,2),(4,0),(3,2)) = 5/14 * 0.971 + 4/14 * 0 + 5/14 * 0.971 = 0.693

Computing the information gain

e.g. information before splitting minus information after splitting
e.g. gain for attributes from weather data:
gain("Outlook") = info(9,5?) - info(2,3?,4,0?,3,2?) = 0.940 - 0.963 = 0.247 bits
gain("Temperature") = 0.247 bits
gain("Humidity") = 0.152 bits
gain("Windy") = 0.048 bits

Problem: Numeric Variables

No problem:

use cliff learning to split the numerics
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NaiveBayes Classifiers 101

Introduction
Example
Bayes' rule

Numerical errors
Missing values
The "low-frequencies problem"

Pseudo-code
Simple version
More Complex

Handling Numerics
Simple Extensions

From Naive Bayes to Hyper Pipes
From to Incremental Learning
From to Anomaly Detection

The Explanation Problem
A Second Look at the Low-Frequency Problem
Not so "Naive" Bayes

Introduction

A Bayes classifier is a simple statistical-based learning scheme.

Advantages:

Tiny memory footprint
Fast training, fast learning
Simplicity
Often works surprisingly well

Assumptions

Learning is done best via statistical modeling
Attributes are

equally important
statistically independent (given the class value)
This means that knowledge about the value of a particular attribute doesn't tell us anything about the
value of another attribute (if the class is known)

Although based on assumptions that are almost never correct, this scheme works well in practice
Domingos97



It has some drawbacks: it can offer conclusions put it is poor at explaining how those conclusions were reached.
But that is something we'll get back to below.

Example

weather.symbolic.arff

outlook  temperature  humidity   windy   play

-------  -----------  --------   -----   ----

rainy    cool         normal     TRUE    no

rainy    mild         high       TRUE    no

sunny    hot          high       FALSE   no

sunny    hot          high       TRUE    no

sunny    mild         high       FALSE   no

overcast cool         normal     TRUE    yes

overcast hot          high       FALSE   yes

overcast hot          normal     FALSE   yes

overcast mild         high       TRUE    yes

rainy    cool         normal     FALSE   yes

rainy    mild         high       FALSE   yes

rainy    mild         normal     FALSE   yes

sunny    cool         normal     FALSE   yes

sunny    mild         normal     TRUE    yes

This data can be summarized as follows:

           Outlook            Temperature           Humidity

====================   =================   =================

          Yes    No            Yes   No            Yes    No

Sunny       2     3     Hot     2     2    High      3     4

Overcast    4     0     Mild    4     2    Normal    6     1

Rainy       3     2     Cool    3     1

          -----------         ---------            ----------



Sunny     2/9   3/5     Hot   2/9   2/5    High    3/9   4/5
Overcast  4/9   0/5     Mild  4/9   2/5    Normal  6/9   1/5
Rainy     3/9   2/5     Cool  3/9   1/5

            Windy        Play
=================    ========
      Yes     No     Yes   No
False 6      2       9     5
True  3      3
      ----------   ----------
False  6/9    2/5   9/14  5/14
True   3/9    3/5

So, what happens on a new day:

Outlook       Temp.         Humidity    Windy         Play
Sunny         Cool          High        True          ?%%

First find the likelihood of the two classes

For "yes" = 2/9 * 3/9 * 3/9 * 3/9 * 9/14 = 0.0053
For "no" = 3/5 * 1/5 * 4/5 * 3/5 * 5/14 = 0.0206
Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205
P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

So, we aren't playing golf today.

Bayes' rule

More generally, the above is just an application of Bayes' Theorem.

Probability of event H given evidence E:

                   Pr(E | H ) * Pr(H)
      Pr(H | E) =  -------------------
                        Pr(E)

A priori probability of H= Pr(H)
Probability of event before evidence has been seen

A posteriori probability of H= Pr[H|E]
Probability of event after evidence has been seen

Classification learning: what's the probability of the class given an instance?
Evidence E = instance
Event H = class value for instance

Naive Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!

                  Pr(E1 | H )* Pr(E2 | H ) * ....  *Pr(En | H ) * Pr(H )
      Pr(H | E) = ---------------------------------------------------
                                     Pr(E)

We used this above. Here's our evidence:

      Outlook       Temp.         Humidity    Windy         Play
      Sunny         Cool          High        True          ?

Here's the probability for "yes":

      Pr( yes | E) = Pr(Outlook     = Sunny | yes) *
                     Pr(Temperature = Cool  | yes) *
                     Pr(Humidity     = High  | yes) * Pr( yes)
                     Pr(Windy       = True  | yes) * Pr(yes) / Pr(E)
                   = (2/9 * 3/9 * 3/9 * 3/9)       * 9/14)   / Pr(E)

Return the classification with highest probability

Probability of the evidence Pr(E)



Constant across all possible classifications;
So, when comparing N classifications, it cancels out

Numerical errors

From multiplication of lots of small numbers

Use the standard fix: don't multiply the numbers, add the logs

Missing values

Missing values are a problem for any learner. Naive Bayes' treatment of missing values is particularly elegant.

During training: instance is not included in frequency count for attribute value-class combination
During classification: attribute will be omitted from calculation

Example: Outlook    Temp.    Humidity    Windy    Play

         ?          Cool     High        True     ?%%

Likelihood of "yes" = 3/9 * 3/9 * 3/9 * 9/14 = 0.0238
Likelihood of "no" = 1/5 * 4/5 * 3/5 * 5/14 = 0.0343
P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%
P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

The "low-frequencies problem"

What if an attribute value doesn't occur with every class value (e.g. "Humidity = high" for class "yes")?

Probability will be zero!
Pr(Humidity = High | yes) = 0
A posteriori probability will also be zero! Pr( yes | E) = 0 (No matter how likely the other values are!)

So use an estimators for low frequency attribute ranges

Add a little "m" to the count for every attribute value-class combination
The Laplace estimator
Result: probabilities will never be zero!

And use an estimator for low frequency classes

Add a little "k" to class counts
The M-estimate

Magic numbers: m=2, k=1

And we'll return to the low frequency problem, below.

Pseudo-code

Here's the pseudo code of the the Naive Bayes classifier preferred by Yang03 (p4).

function train(   i) {

   Instances++

   if (++N[$Klass]==1) Klasses++

   for(i=1;i<=Attr;i++)

     if (i != Klass)

      if ($i !~ /\?/)

         symbol(i,$i,$Klass)

}

function symbol(col,value,klass) {

   Count[klass,col,value]++;

}

When testing, find the likelihood of each hypothetical class and return the one that is most likely.

Simple version



function likelihood(l,         klass,i,inc,temp,prior,what,like) {

   like = -10000000000;    # smaller than any log

   for(klass in N) {

      prior=N[klass] / Instances;

      temp= prior

      for(i=1;i<=Attr;i++) {

         if (i != Klass)

            if ( $i !~ /\?/ )

                temp *= Count[klass,i,$i] / N[klass]

      }

      l[klass]= temp

      if ( temp >= like ) {like = temp; what=klass}

   }

   return what

}

More Complex

More realistic version (handles certain low-frequency cases).

function likelihood(l,         klass,i,inc,temp,prior,what,like) {

   like = -10000000000;    # smaller than any log

   for(klass in N) {

      prior=(N[klass]+K)/(Instances + (K*Klasses));

      temp= log(prior)

      for(i=1;i<=Attr;i++) {

         if (i != Klass)

            if ( $i !~ /\?/ )

                temp += log((Count[klass,i,$i]+M*prior)/(N[klass]+M))

      }

      l[klass]= temp

      if ( temp >= like ) {like = temp; what=klass}

   }

   return what

}

Handling Numerics

The above code assumes that the attributes are discrete. The usual approximation is to assume a "Gaussian" (i.e.
a "normal" or "bell-shaped" curve) for the numerics.

The probability density function for the normal distribution is defined by the mean and standardDev (standard
deviation)

Given:

n: the number of values;
sum: the sum of the values; i.e. sum = sum + value;
sumSq: the sum of the square of the values; i.e. sumSq = sumSq + value*value

Then:

    function mean(sum,n)  {

        return sum/n

    }

    function standardDeviation(sumSq,sum,n)  {

        return sqrt((sumSq-((sum*sum)/n))/(n-1))

    }

    function gaussianPdf(mean,standardDev,x) {

       pi= 1068966896 / 340262731; #: good to 17 decimal places

       return 1/(standardDev*sqrt(2*pi)) ^

                    (-1*(x-mean)^2/(2*standardDev*standardDev))

    }

For example:

outlook  temperature humidity windy play

-------  ----------- -------- ----- ---



sunny    85          85        FALSE no

sunny    80          90        TRUE  no

overcast 83          86        FALSE yes

rainy    70          96        FALSE yes

rainy    68          80        FALSE yes

rainy    65          70        TRUE  no

overcast 64          65        TRUE  yes

sunny    72          95        FALSE no

sunny    69          70        FALSE yes

rainy    75          80        FALSE yes

sunny    75          70        TRUE  yes

overcast 72          90        TRUE  yes

overcast 81          75        FALSE yes

rainy    71          91        TRUE  no

This generates the following statistics:

             Outlook           Temperature               Humidity

=====================    =================      =================

           Yes    No             Yes    No            Yes      No

Sunny       2      3             83     85             86      85

Overcast    4      0             70     80             96      90

Rainy       3      2             68     65             80      70

          -----------            ----------            ----------

Sunny     2/9    3/5    mean     73     74.6  mean     79.1   86.2

Overcast  4/9    0/5    std dev   6.2    7.9  std dev  10.2    9.7

Rainy     3/9    2/5

              Windy            Play

===================     ===========

           Yes   No     Yes     No

False       6     2      9       5

True        3     3

            -------     ----------

False     6/9   2/5     9/14  5/14

True      3/9   3/5

Example density value:

f(temperature=66|yes)= gaussianPdf(73,6.2,66) =0.0340
Classifying a new day:

Outlook    Temp.    Humidity    Windy    Play

Sunny      66       90          true     ?%%

Likelihood of "yes" = 2/9 * 0.0340 * 0.0221 * 3/9 * 9/14 = 0.000036
Likelihood of "no" = 3/5 * 0.0291 * 0.0380 * 3/5 * 5/14 = 0.000136

P("yes") = 0.000036 / (0.000036 + 0. 000136) = 20.9%
P("no") = 0. 000136 / (0.000036 + 0. 000136) = 79.1%

Note: missing values during training: not included in calculation of mean and standard deviation

BTW, an alternative to the above is apply some discretization policy to the data; e.g. Yang03?. Such discretization
is good practice since it can dramatically improve the performance of a Naive Bayes classifier (see Dougherty95?.

Simple Extensions

From Naive Bayes to Hyper Pipes

When NaiveBayes? sees a new value, it increments a count.

When HyperPipes sees a value, it just sets the count for that value to "one".

So NaiveBayes? remembers how often we see "X" in class "C"

While HyperPipes just remembers that at least once, I've seen "X" in class "K"

Also:



!! Occam's Razor - Entia non sunt multiplicanda praeter necessitatem.
( "Entities should not be multiplied more than necessary").  
!! the fewer features used to explain something, the better  

!! Log(OR): 
!! Discrete every feature. For all pairs of target / other of size C1, C2 count 

frequency of range N1, N2 in each class 

!! Log(odds ratio) = log((N1/C1) / (N2/C2)) > 0 if more frequent in target 

!! “Pivots” are the ranges with high Log (OR) 
!! Mo!ina, M., Dem"ar, J., Kattan, M., and Zupan, B. 2004. Nomograms for visualization of naive Bayesian 

classifier. InProceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in 

Databases (Pisa, Italy, September 20 - 24, 2004) 

!! InfoGain: 
!! Use Fayyad Irani trick: assses each column by how well it divides up the data 

!! Takes linear time : O(C) 

!! Wrapper:  
!! Explore 2C subsets of C columns: takes time O(2C) 

!! Call a learner on each subset 

!! Use the columns that maximize learner performance 

!! Not practical for large data sets 
!! For more, see Hall, M. and Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class 

data mining. IEEE Transactions on Knowledge and Data Engineering. 15(3), November/December 2003 112 
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!! Data from Norman 

Fenton’s Bayes Net 

!! Project Data Incorporating 

Qualitative Factors for 
Improved Software Defect 

Prediction Norman Fenton, 
Martin Neil, William Marsh, 
Peter Hearty, Lukasz 

Radlinski and Paul Krause., 
PROMISE 2008 

!! Target class. worse 

defects 

!! Only a few features 

matter 

!! Only a few ranges of 

those features matter 
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!! Data from Norman 

Fenton’s Bayes Net 

!! Project Data Incorporating 

Qualitative Factors for 
Improved Software Defect 

Prediction Norman Fenton, 
Martin Neil, William Marsh, 
Peter Hearty, Lukasz 

Radlinski and Paul Krause., 
PROMISE 2008 

!! Target class. worse 

defects 

!! Only a few features 

matter 

!! Only a few ranges of 

those features matter 

Pivotal if 
Log(OR) >  

0.2 *  max of 
Log(OR) 
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Simpler theories after column selection. 

Work just as well as using everything 



!! Finding the Right Data for 
Software Cost Modeling 
Chen, Menzies, Port,  Boehm, 
IEEE Software Nov/Dec 2005 
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the particulars of that data are not what really matter.

Mozina04 argue that what really matters is the effect of a cell on the output variables. With knowledge of this
goal, it is possible to design a visualization, called a nomogram, of that data. Nomograms do not confuse the user
with needless detail. For example, here's nomogram describing who survived and who died on the Titanic:

Of 2201 passengers on Titanic, 711 (32.3%) survived. To predict who will survive, the contribution of each
attribute is measured as a point score (topmost axis in the nomogram), and the individual point scores are
summed to determine the probability of survival (bottom two axes of the nomogram).

The nomogram shows the case when we know that the passenger is a child; this score is slightly less than 50
points, and increases the posterior probability to about 52%. If we further know that the child traveled in first class
(about 70 points), the points would sum to about 120, with a corresponding probability of survival of about 80%.

It is simple to calculate nomogram values for single ranges. All we want is something that is far more probable in
a goal class than in other classes.

Suppose there is a class you like C and a bunch of others you hate.
Let the bad classes be combined together into a group we'll call notC
Let the frequencies of C and notC be N1 and N2.
Let two attribute range appears with frequency F1 and F2 in C1 and notC.
Then the log(OR) = log ( (N1 / H1) / (N2 / H2) )

We use logs since products can be visualized via simple addition. This addition can be converted back to a
probability as follows. If the sum is "f" and the target class occurs "N" times out of "I" instances, then the
probability of that class is "p=N/I" and and the sum's probability is:

function points2p(f,p) { return 1 / (1 + E^(-1*log(p/(1 - p)) - f )) }

(For the derivation of this expression, see equation 7 of Mozina04. Note that their equation has a one-bracket
typo.)

Besides enabling prediction, the nomogram reveals the structure of the model and the relative influences of
attribute values on the chances of surviving. For the Titanic data set:

Gender is an attribute with the biggest potential influence on the probability of survival: being female
increases the chances of survival the most (100 points), while being male decreases it (about 30 points).
The corresponding line in the nomogram for this attribute is the longest.
Age is apparently the least influential, where being a child increases the probability of survival.
Most lucky were also the passengers of the first class for which, considering the status only, the probability
of survival was much higher than the prior.

Therefore, with nomograms, we can play cost-benefit games. Consider the survival benefits of

sex=female (72%)
sex=female and class=first (92%)
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greatly reduced. In practical implementations, we can use an ad hoc test to guard
against splitting on such a useless attribute.

Unfortunately, in some situations the gain ratio modification overcompen-
sates and can lead to preferring an attribute just because its intrinsic informa-
tion is much lower than that for the other attributes. A standard fix is to choose
the attribute that maximizes the gain ratio, provided that the information gain
for that attribute is at least as great as the average information gain for all the
attributes examined.

Discussion
The divide-and-conquer approach to decision tree induction, sometimes called
top-down induction of decision trees, was developed and refined over many years
by J. Ross Quinlan of the University of Sydney, Australia. Although others have
worked on similar methods, Quinlan’s research has always been at the very fore-
front of decision tree induction. The method that has been described using the
information gain criterion is essentially the same as one known as ID3. The use
of the gain ratio was one of many improvements that were made to ID3 over
several years; Quinlan described it as robust under a wide variety of circum-
stances. Although a robust and practical solution, it sacrifices some of the ele-
gance and clean theoretical motivation of the information gain criterion.

A series of improvements to ID3 culminated in a practical and influential
system for decision tree induction called C4.5. These improvements include
methods for dealing with numeric attributes, missing values, noisy data, and
generating rules from trees, and they are described in Section 6.1.

4.4 Covering algorithms: Constructing rules
As we have seen, decision tree algorithms are based on a divide-and-conquer
approach to the classification problem. They work from the top down, seeking
at each stage an attribute to split on that best separates the classes; then recur-
sively processing the subproblems that result from the split. This strategy 
generates a decision tree, which can if necessary be converted into a set of clas-
sification rules—although if it is to produce effective rules, the conversion is not
trivial.

An alternative approach is to take each class in turn and seek a way of cov-
ering all instances in it, at the same time excluding instances not in the class.
This is called a covering approach because at each stage you identify a rule that
“covers” some of the instances. By its very nature, this covering approach leads
to a set of rules rather than to a decision tree.

The covering method can readily be visualized in a two-dimensional space
of instances as shown in Figure 4.6(a). We first make a rule covering the a’s. For
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the first test in the rule, split the space vertically as shown in the center picture.
This gives the beginnings of a rule:

If x > 1.2 then class = a

However, the rule covers many b’s as well as a’s, so a new test is added to the
rule by further splitting the space horizontally as shown in the third diagram:

If x > 1.2 and y > 2.6 then class = a

This gives a rule covering all but one of the a’s. It’s probably appropriate to leave
it at that, but if it were felt necessary to cover the final a, another rule would be
necessary—perhaps

If x > 1.4 and y < 2.4 then class = a

The same procedure leads to two rules covering the b’s:

If x £ 1.2 then class = b
If x > 1.2 and y £ 2.6 then class = b

1 0 6 CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Figure 4.6 Covering algorithm: (a) covering the instances and (b) the decision tree for
the same problem.

x > 1.2 ?

b

no

y > 2.6 ?

yes

b

no

a

yes

(b)
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Again, one a is erroneously covered by these rules. If it were necessary to exclude
it, more tests would have to be added to the second rule, and additional rules
would need to be introduced to cover the b’s that these new tests exclude.

Rules versus trees
A top-down divide-and-conquer algorithm operates on the same data in a
manner that is, at least superficially, quite similar to a covering algorithm. It
might first split the dataset using the x attribute and would probably end up
splitting it at the same place, x = 1.2. However, whereas the covering algorithm
is concerned only with covering a single class, the division would take both
classes into account, because divide-and-conquer algorithms create a single
concept description that applies to all classes. The second split might also be at
the same place, y = 2.6, leading to the decision tree in Figure 4.6(b). This tree
corresponds exactly to the set of rules, and in this case there is no difference in
effect between the covering and the divide-and-conquer algorithms.

But in many situations there is a difference between rules and trees in terms
of the perspicuity of the representation. For example, when we described the
replicated subtree problem in Section 3.3, we noted that rules can be symmet-
ric whereas trees must select one attribute to split on first, and this can lead to
trees that are much larger than an equivalent set of rules. Another difference is
that, in the multiclass case, a decision tree split takes all classes into account,
trying to maximize the purity of the split, whereas the rule-generating method
concentrates on one class at a time, disregarding what happens to the other
classes.

A simple covering algorithm
Covering algorithms operate by adding tests to the rule that is under construc-
tion, always striving to create a rule with maximum accuracy. In contrast, divide-
and-conquer algorithms operate by adding tests to the tree that is under
construction, always striving to maximize the separation among the classes.
Each of these involves finding an attribute to split on. But the criterion for the
best attribute is different in each case. Whereas divide-and-conquer algorithms
such as ID3 choose an attribute to maximize the information gain, the cover-
ing algorithm we will describe chooses an attribute–value pair to maximize the
probability of the desired classification.

Figure 4.7 gives a picture of the situation, showing the space containing all
the instances, a partially constructed rule, and the same rule after a new term
has been added. The new term restricts the coverage of the rule: the idea is to
include as many instances of the desired class as possible and exclude as many
instances of other classes as possible. Suppose the new rule will cover a total of
t instances, of which p are positive examples of the class and t - p are in other

P088407-Ch004.qxd  4/30/05  11:13 AM  Page 107



classes—that is, they are errors made by the rule. Then choose the new term to
maximize the ratio p/t.

An example will help. For a change, we use the contact lens problem of Table
1.1. We will form rules that cover each of the three classes, hard, soft, and none,
in turn. To begin, we seek a rule:

If ? then recommendation = hard

For the unknown term ?, we have nine choices:

age = young 2/8
age = pre-presbyopic 1/8
age = presbyopic 1/8
spectacle prescription = myope 3/12
spectacle prescription = hypermetrope 1/12
astigmatism = no 0/12
astigmatism = yes 4/12
tear production rate = reduced 0/12
tear production rate = normal 4/12

The numbers on the right show the fraction of “correct” instances in the set
singled out by that choice. In this case,correct means that the recommendation is
hard. For instance, age = young selects eight instances, two of which recommend
hard contact lenses, so the first fraction is 2/8. (To follow this, you will need to
look back at the contact lens data in Table 1.1 on page 6 and count up the entries
in the table.) We select the largest fraction, 4/12, arbitrarily choosing between
the seventh and the last choice in the preceding list, and create the rule:

If astigmatism = yes then recommendation = hard

This rule is an inaccurate one, getting only 4 instances correct out of the 12
that it covers, shown in Table 4.8. So we refine it further:

If astigmatism = yes and ? then recommendation = hard

1 0 8 CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Figure 4.7 The instance space during operation of a covering algorithm.
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Considering the possibilities for the unknown term ? yields the seven choices:

age = young 2/4
age = pre-presbyopic 1/4
age = presbyopic 1/4
spectacle prescription = myope 3/6
spectacle prescription = hypermetrope 1/6
tear production rate = reduced 0/6
tear production rate = normal 4/6

(Again, count the entries in Table 4.8.) The last is a clear winner, getting four
instances correct out of the six that it covers, and corresponds to the rule

If astigmatism = yes and tear production rate = normal
then recommendation = hard

Should we stop here? Perhaps. But let’s say we are going for exact rules, no
matter how complex they become. Table 4.9 shows the cases that are covered by
the rule so far. The possibilities for the next term are now

age = young 2/2
age = pre-presbyopic 1/2
age = presbyopic 1/2
spectacle prescription = myope 3/3
spectacle prescription = hypermetrope 1/3

We need to choose between the first and fourth. So far we have treated the frac-
tions numerically, but although these two are equal (both evaluate to 1), they
have different coverage: one selects just two correct instances and the other

Table 4.8 Part of the contact lens data for which astigmatism = yes.

Age Spectacle Astigmatism Tear production Recommended 
prescription rate lenses

young myope yes reduced none
young myope yes normal hard
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none
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selects three. In the event of a tie, we choose the rule with the greater coverage,
giving the final rule:

If astigmatism = yes and tear production rate = normal
and spectacle prescription = myope then recommendation = hard

This is indeed one of the rules given for the contact lens problem. But it only
covers three of the four hard recommendations. So we delete these three from
the set of instances and start again, looking for another rule of the form:

If ? then recommendation = hard

Following the same process, we will eventually find that age = young is the best
choice for the first term. Its coverage is seven; the reason for the seven is that 3
instances have been removed from the original set, leaving 21 instances alto-
gether. The best choice for the second term is astigmatism = yes, selecting 1/3
(actually, this is a tie); tear production rate = normal is the best for the third,
selecting 1/1.

If age = young and astigmatism = yes and 
tear production rate = normal then recommendation = hard

This rule actually covers three of the original set of instances, two of which are
covered by the previous rule—but that’s all right because the recommendation
is the same for each rule.

Now that all the hard-lens cases are covered, the next step is to proceed with
the soft-lens ones in just the same way. Finally, rules are generated for the none
case—unless we are seeking a rule set with a default rule, in which case explicit
rules for the final outcome are unnecessary.

What we have just described is the PRISM method for constructing rules. It
generates only correct or “perfect” rules. It measures the success of a rule by the
accuracy formula p/t. Any rule with accuracy less than 100% is “incorrect” in

1 1 0 CHAPTER 4 | ALGORITHMS: THE BASIC METHODS

Table 4.9 Part of the contact lens data for which astigmatism = yes and tear 
production rate = normal.

Age Spectacle Astigmatism Tear production Recommended
prescription rate lenses

young myope yes normal hard
young hypermetrope yes normal hard
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope yes normal none
presbyopic myope yes normal hard
presbyopic hypermetrope yes normal none
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that it assigns cases to the class in question that actually do not have that class.
PRISM continues adding clauses to each rule until it is perfect: its accuracy is
100%. Figure 4.8 gives a summary of the algorithm. The outer loop iterates over
the classes, generating rules for each class in turn. Note that we reinitialize to
the full set of examples each time round. Then we create rules for that class and
remove the examples from the set until there are none of that class left. When-
ever we create a rule, start with an empty rule (which covers all the examples),
and then restrict it by adding tests until it covers only examples of the desired
class. At each stage choose the most promising test, that is, the one that maxi-
mizes the accuracy of the rule. Finally, break ties by selecting the test with great-
est coverage.

Rules versus decision lists
Consider the rules produced for a particular class, that is, the algorithm in Figure
4.8 with the outer loop removed. It seems clear from the way that these rules
are produced that they are intended to be interpreted in order, that is, as a deci-
sion list, testing the rules in turn until one applies and then using that. This is
because the instances covered by a new rule are removed from the instance set
as soon as the rule is completed (in the third line from the end of the code in
Figure 4.8): thus subsequent rules are designed for instances that are not covered
by the rule. However, although it appears that we are supposed to check the rules
in turn, we do not have to do so. Consider that any subsequent rules generated
for this class will have the same effect—they all predict the same class. This
means that it does not matter what order they are executed in: either a rule will

For each class C 

  Initialize E to the instance set

  While E contains instances in class C 

    Create a rule R with an empty left-hand side that predicts class C 

    Until R is perfect (or there are no more attributes to use) do

      For each attribute A not mentioned in R, and each value v,

        Consider adding the condition A=v to the LHS of R 

        Select A and v to maximize the accuracy p/t

          (break ties by choosing the condition with the largest p)

      Add A=v to R 

    Remove the instances covered by R from E 

Figure 4.8 Pseudocode for a basic rule learner.
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Feature Subset Selection (FSS)

Occam's Razor - The English philosopher, William of Occam (1300-1349) propounded Occam's Razor:
Entia non sunt multiplicanda praeter necessitatem.
(Latin for "Entities should not be multiplied more than necessary"). That is, the fewer assumptions an
explanation of a phenomenon depends on, the better it is.

(BTW, Occam's razor did not survive into the 21st century.
The data mining community modified it to the Minimum Description Length (MDL) principle.
MDL: the best theory is the smallest BOTH is size AND number of errors).

The case for FSS

Repeated result: throwing out features rarely damages a theory

And, sometimes, feature removal is very useful:

E.g. linear regression on bn.arff yielded:

Defects =     
    82.2602 * S1=L,M,VH +
    158.6082 * S1=M,VH +
    249.407  * S1=VH +
     41.0281 * S2=L,H +



     41.0281 * S2=L,H +
     68.9153 * S2=H +
    151.9207 * S3=M,H +
    125.4786 * S3=H +
    257.8698 * S4=H,M,VL +
    108.1679 * S4=VL +
    134.9064 * S5=L,M +
   -385.7142 * S6=H,M,VH +
    115.5933 * S6=VH +
   -178.9595 * S7=H,L,M,VL +
   ...
   [ 50 lines deleted ]

On a 10-way cross-validation, this correlates 0.45 from predicted to actuals.
10 times, take 90% of the date and run a WRAPPER- a best first search through combinations of attributes.
At each step, linear regression was called to asses a particular combination of attributes. In those ten
experiments, WRAPPER found that adding feature X to features A,B,C,... improved correlation the following
number of times:

number of folds (%)  attribute
           2( 20 %)     1 S1
           0(  0 %)     2 S2
           2( 20 %)     3 S3
           1( 10 %)     4 S4
           0(  0 %)     5 S5
           1( 10 %)     6 S6
           6( 60 %)     7 S7     <==
           1( 10 %)     8 F1
           1( 10 %)     9 F2
           2( 20 %)    10 F3
           2( 20 %)    11 D1
           0(  0 %)    12 D2
           5( 50 %)    13 D3     <==
           0(  0 %)    14 D4
           0(  0 %)    15 T1
           1( 10 %)    16 T2
           1( 10 %)    17 T3
           1( 10 %)    18 T4
           0(  0 %)    19 P1
           1( 10 %)    20 P2
           0(  0 %)    21 P3
           1( 10 %)    22 P4
           6( 60 %)    23 P5     <==
           1( 10 %)    24 P6
           2( 20 %)    25 P7
           1( 10 %)    26 P8
           0(  0 %)    27 P9
           2( 20 %)    28 Hours
           8( 80 %)    29 KLoC   <==
           4( 40 %)    30 Language
           3( 30 %)    32 log(hours)

Four variables appeared in the majority of folds. A second run did a 10-way using just those variables to
yield a smaller model with (much) larger correlation (98\%):

Defects =
    876.3379 * S7=VL +
   -292.9474 * D3=L,M +
    483.6206 * P5=M +
      5.5113 * KLoC +
     95.4278



Excess attributes

Confuse decision tree learners
Too much early splitting of data
Less data available for each sub-tree

Too many things correlated to class?
Dump some of them!

Why FSS?

throw away noisy attributes
throw away redundant attributes
smaller model= better accuracies (often)
smaller model= simpler explanation
smaller model= less variance
smaller model= any downstream processing will thank you

Problem

Exploring all subsets exponential
Need heuristic methods to cull search;

e.g. forward/back select

Forward select:

start with empty set
grow via hill climbing:
repeat

try adding one thing and if that improves things
try again using the remaining attributes

until no improvement after N additions OR nothing to add

Back select

as above but start with all attributes and discard, don't add

Usually, we throw away most attributes:

so forward select often better
exception: J48 exploits interactions more than,say, NB.
so, possibly, back select is better when wrapping j48
so, possibly, forward select is as good as it gets for NB

FSS types:

       



filters vs wrappers:

wrappers: use an actual target learners e.g. WRAPPER
filters: study aspects of the data e.g. the rest
filters are faster!
wrappers exploit bias of target learner so often perform better, when they terminate

don't terminate on large data sets

solo vs combinations:

evaluate solo attributes: e.g. INFO GAIN, RELIEF
evaluate combinations: e.g. PCA, SVD, CFS, CBS, WRAPPER
solos can be faster than combinations

supervised vs unsupervised:

use/ignores class values e.g. PCA/SVD is unsupervised, reset supervised

numeric vs discrete search methods

ranker: for schemes that numerically score attributes e.g. RELIEF, INFO GAIN,

best first: for schemes that do heuristic search e.g. CBS, CFS, WRAPPER

Hall and Holmes:

This paper: pre-discretize numerics using entropy.

Hall & Holmes.

INFO GAIN

often useful in high-dimensional problems
real simple to calculate

attributes scored based on info gain: H(C) - H(C|A)
Sort of like doing decision tree learning, just to one level.

RELIEF

Kononenko97
useful attributes differentiate between instances from other class
randomly pick some instances (here, 250)
find something similar, in an another class
compute distance this one to the other one
Stochastic sampler: scales to large data sets.
Binary RELIEF (two class system) for "n" instances for weights on features "F"

set all weights W[f]=0
for i = 1 to n; do
   randomly select instance R with class C
   find nearest hit H      // closest thing of same class
   find nearest miss M     // closest thing of difference class
   for f = 1 to #features; do
       W[f] = W[f] - diff(f,R,H)/n + diff(f,R,M)/n
   done
done



diff:
discrete differences: 0 if same 1 if not.
continuous: differences absolute differences
normalized to 0:1
When values are missing, see Kononenko97, p4.

N-class RELIEF: not 1 near hit/miss, but k nearest misses for each class C

W[f]= W[f] - !i=1..k diff(f,R, Hi) / (n*k) 

           + !C " class(R) !i=1..k ( 

                                P(C) / ( 1 - P(class(R)))
                                * diff(f,R, Mi(C)) / (n*k)

                               )

The P(C) / (1 - P(class(R)) expression is a normalization function that
demotes the effect of R from rare classes
and rewards the effect of near hits from common classes.

CBS (consistency-based evaluation)

Seek combinations of attributes that divide data containing a strong single class majority.
Kind of like info gain, but emphasis of single winner

Discrete attributes
Forward select to find subsets of attributes

WRAPPER

Forward select attributes
score each combination using a 5-way cross val

When wrapping, best to try different target learners
Check that we aren't over exploiting the learner's bias
e.g. J48 and NB

PRINCIPAL COMPONENTS ANALYSIS (PCA)

(The traditional way to do FSS.)

Only unsupervised method studied here
Transform dimensions
Find covariance matrix C[i,j] is the correlation i to j;

C[i,i]=1;
C[i,j]=C[j,i]

Find eigenvectors



Transform the original space to the eigenvectors
Rank them by the variance in their predictions
Report the top ranked vectors

Makes things easier, right? Well...

if   domain1  <= 0.180 
then NoDefects 
else if domain1 > 0.180 
     then if domain1 <= 0.371 then NoDefects 
     else if domain1 > 0.371 then Defects 

domain1 = 0.241 * loc     + 0.236 * v(g) 
        + 0.222 * ev(g)   + 0.236 * iv(g)     + 0.241 *  n 
        + 0.238 * v       - 0.086 * l         + 0.199  * d 
        + 0.216 * i       + 0.225 * e + 0.236 * b + 0.221  * t 
        + 0.241 * lOCode  + 0.179 * lOComment 
        + 0.221 * lOBlank + 0.158 * lOCodeAndComment 
        + 0.163 * uniqO p + 0.234 * uniqOpnd 
        + 0.241 * totalOp + 0.241 * totalOpnd 
        + 0.236 * branchCount

PCA vs LDA (linear discrminant analysis)

LDA = PCA + class knowledge

(Note: LDA should not be confused with LDA (latent Dirichlet allocation) which currently all the rage in text mining.
And that LDA is not covered in this subject.)



Latent Semantic Indexing

Performing PCA is the equivalent of performing Singular Value Decomposition (SVD) on the data.

Any n * m matrix X (of terms n in documents m) can be rewritten as:

X = To * So * Do'
So is a diagonal matrix scoring attributes, top to bottom, most interesting to least interesting
We can shrink X by dumping the duller (lower) rows of So

Latent Semantic Indexing is a method for selecting informative subspaces of feature spaces.
It was developed for information retrieval to reveal semantic information from document co-occurrences.
Terms that did not appear in a document may still associate with a document.

LSI derives uncorrelated index factors that might be considered artificial concepts.

SVD easy to perform in Matlab

Also, there is some C-code.
Also Java Classes available

class SingularValueDecomposition
Constructor: SingularValueDecomposition(Matrix Arg)
Methods: GetS(); GetU(); GetV(); (U,V correspond to T,D)

Be careful about using these tools blindly
It is no harm to understand what is going on!

The Matrix Cookbook

Note: major win for SVD/LSI: scales very well.

Research possibility: text mining for software engineering
typically very small corpuses
so might we find better FSS for text mining than SVD/LSI

CFS (correlation-based feature selection)

Scores high subsets with strong correlation to class and weak correlation to each other.



Numerator: how predictive
Denominator: how redundant
FIRST ranks correlation of solo attributes
THEN heuristic search to explore subsets

And the winner is:

Wrapper! and it that is too slow...
CFS, Relief are best all round performers

CFS selects fewer features
Phew. Hall invented CFS

Other Methods

Other methods not explored by Hall and Holmes...

Note: the text mining literature has yet to make such an assessment. Usually, SVD rules. But see An
Approach to Classify Software Maintenance Requests, from ICSM 2002, for a nice comparison of nearest
neighbor, CART, Bayes classifiers, and some other information retrieval methods).

Using random forests for feature selection of the mth variable:

randomly permute all values of the mth variable in the oob data
Put these altered oob x-values down the tree and get classifications.
Proceed as though computing a new internal error rate (i.e. run the classifier).
The amount by which this new error exceeds the original test set error is defined as the importance
of the mth variable.

Use the Nomogram scores
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The strangest thing...

“In any field, find the strangest thing, and explore it” – John Wheeler

" Q: How have dummies (like me) managed to gain

(some) control over a (seemingly) complex world?

" A: The world is simpler than we think.

# Models contain clumps

# A few collar variables decide which clumps to use.

" TAR2,TAR3,TAR4:

# Data miners that assume clumps/collars

# Reports effects never seen before

# Finds solutions faster than other methods

# Returns tiniest theories

# Scales to infinite data streams (⇐= new result)

http://menzies.us
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How Complex are our Models?

" COLLARS-

A small number few variables controls

the rest:

# DeKleer [1986]: “Minimal

environments” in the ATMS;

# Menzies and Singh [2003]: “Tiny

minimal environments”;

# Crawford and Baker [1994]:

“Master variables” in scheduling;

# Williams et al. [2003]: ‘Backdoors”

in satisfiability.

" CLUMPS-

# Druzdzel [1994]. Commonly, a few

states; very rarely, most states;

# Pelanek [2004]. “Straight jackets”

in formal models: state spaces

usually sparse, small diameter,

many diamonds.
25,000 states in IEEE1394

http://menzies.us
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Exploiting Simplicity

" If clumps

# most of the action in a small number of states

# effective search space = small

" If collars:

# A few variables that switch you between states

" Treatment learning

# If a few variables control the rest, then..

" All paths inputs → outputs use the collars (by

definition).

# So don’t search for the collars:

" They’ll find you.

" Just sample, and count frequencies F .
# Divide output good and bad

" Focus on ranges Ri with large
F (Ri|good)
F (Ri|bad)

" Great way to learn tiny theories.

http://menzies.us


Introduction

!The strangest thing...

!Complex Models?

!Exploiting Simplicity

!Different learners

!Why Learn Small Theories?

!Definition

In practice...

Scaling Up

Related Work

And so...

Questions? Comments?

Better RX, June 5, 2009 Treatment Learning - p. 5/33

Learns Smaller Theories

find graphics on a page from 11 features find good housing in Boston

34 ≤ height < 86 ∧

3.9 ≤ mean_tr < 9.5

6.7 ≤ RM < 9.8 ∧

12.6 ≤ PTRATION < 15.9

http://menzies.us
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Why Learn Small Theories?

Reduce Uncertainty:

Linear regression: σ2 ∝ |variables| (Miller [2002]);

“Pluralitas non est ponenda sine neccesitate”:

MDL (Wallace and Boulton [1968]); FSS (Hall and Holmes [2003])

Explanation:

Smaller theories are easier to explain (or audit).

Performance:

The simpler the target concept, the faster the learning.

Construction cost:

Need fewer sensors and actuators.

Operations cost:

Less to do: important for manual procedures;

Less to watch: important for data-intensive tasks like security monitoring.

Pruning is good modeling:

Real world data often has noisy, irrelevant, redundant variables.

http://menzies.us
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So What is Treatment Learning?

34 ≤ height < 86 ∧ 3.9 ≤ mean_tr < 9.5

" E: training data with examples of Ri → C
# Ri: attribute ranges

# C: classes with utilities {U1 < U2 < .. < UC}
# F1%, F2%, ..., FC%: frequencies of C in E

" T treatment of size X: {R1 ∧ R2... ∧ RX};
# T ∩ E → e ⊆ E with frequencies f1%, f2%, ...fC%

# seek smallest T with largest lift =
`
P

C UCfC
´

/
`
P

C UCFC
´

" This talk:

# Implementation, examples, a new scale-up method

http://menzies.us
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In practice...
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The TAR3 Treatment Learner

" Assume clumps and collars

# Just thrash around some.

" Build treatments

{R1 ∧ R2... ∧ RX} of size X
# FIRST try X = 1
# THEN use the X = 1 results

to guide the X > 1 search.

" Hu [2002] :: grow treatments

via a stochastic search.

# Discretization: equal

frequency binning

" Empirically:

# Run times linear on treatment

SIZE, number of examples

# Works as well as TAR2’s

complete search

function ONE(x = random(SIZE) )

x timesDo

treatment = treatment + ANYTHING()

return treatment

function ANYTHING()

return a random range from CDF(lift1)

function SOME()

REPEATS timesDo

treatments = treatments + ONE()

sort treatments on lift

return ENOUGH top items

function TAR3(lives = LIVES )

for every range r do lift1[r]= lift(r)

repeat

before = size(temp)

temp = union(temp, SOME())

if (before==size(temp))

then lives--

else lives = LIVES

until lives == 0

sort temp on lift;

return ENOUGH top items

Useful defaults: <SIZE=10, REPEATS=100, ENOUGH=20, LIVES=5>

http://menzies.us
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Saving the World

“Limits to Growth” :: Meadows et al. [1972]

A second look at “Limits to Growth”: Geletko and Menzies [2003]

Vensim’s World-3 (1991): 295 variables

Happily ever after if

" family size ≤ 2, menstruation onset > 18, industrial capital output = [3..5).

" This happy ending is not mentioned in Meadows et al. [1972].

http://menzies.us
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Compared with More Complete Search

" DDP requirements models from deep-space missions (from JPL).

" Iterative learning: simulationi → learn → constrain → simulationi+1

SA =

benefit
maxBenefit +

`

1 − cost
maxCost

´

0

@2 ∗
number of

selected mitigations

1

A + 1

 1000
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 1600

 1800

 2000

 2200

 2400

 2600

 2800
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 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

b
e

n
e

fi
ts

cost

cob

iB(300,50)
SA-reg(3000)

TAR3: 7*300 samples

SA: 9*3000 samples
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•! thanks David Poole  

•! Stochastic sampling    

  for rule generation 

•! Benchmarked against state-of-the-

art  numerical optimizers for GNC 

control 

Still generating tiny rules 

(very easy to read, explain, audit, implement) 
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Scaling Up
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TAR3 is not a Data Miner

The data mining desiderata :: Bradley et al. [1998]:

" Requires one scan, or less of the data

" On-line, anytime algorithm

" Suspend-able, stoppable, resumable

" Efficiently and incrementally add new data to existing models

" Works within the available RAM

TAR3 is not a data miner

" Stores all examples in RAM

" Requires at three scans

1. discretization

2. collect statistics, build treatments

3. rank generated theories

http://menzies.us
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SAWTOOTH is a data miner

SAWTOOTH= incremental NaïveBayes

classifier Menzies and Orrego [2005]

" Exploits the “saturation effect”:

# Learners performance improves and

plateaus, after 100s of examples

# Processes data in chunks (window =

250)

# Disables learning while performance

stable

" One-pass through the data

# Incremental discretization of numeric

data (SPADE)

# Input each example, converted to

frequency counts, then deletes

" Results

# Small memory; scales.

# Recognizes and reacts to concept drift

" Can we model treatment learning as a

NaïveBayes classifier?

learn=off
learn=on

stable=yes
stable=no

100
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50

25

 0

 e d c b a e d c b a
era=100era=50era=1

%
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NaïveBayes classifiers

evidence E, hypothesis H

future=
z }| {

P (H|E) =

now∗
z }| {
 
Y

i

P (Ei|H)

!

∗

past
z }| {

P (H)

P (E)

E1 E2 E3

H = car job suburb wealthy?

ford tailor NW y

ford tailor SE n

ford tinker SE n

bmw tinker NW y

bmw tinker NW y

bmw tailor NW y

P (Ei|H)

P(H) job suburb wealthy?

ford:3=0.5 tinker:1=0.33 NW:1=0.33 y:1=0.33

tailor:2=0.67 SE:2=0.67 n:2=0.67

bmw:3=0.5 tinker:2=0.67 NW:3=1.00 y:3=1.00

tailor:1=0.33 SE:0=0.00 n:0=0.00

" E = job=tailor & suburb=NW

" likelihood = L(bmw|E) =
Q

i P (E|bmw) ∗ P (bmw) =0.33*1.00*0.5 =0.16500

" L(ford|E) =
Q

i P (E|ford) ∗ P (ford) =0.67*0.33*0.5 =0.11055

" Prob(bmw|E) = L(bmw|E)
L(bmw|E)+L(ford|E) = 59.9%

" Prob(ford|E) = L(ford|E)
L(bmw|E)+L(ford|E) = 40.1%

" So our tailor drives a bmw

" Naïve: assumes independence; counts single attribute ranges (not combinations)

# But optimal under the one-zero assumption Domingos and Pazzani [1997].

# Incremental simple, fast learning/classification speed, low storage space.
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CUBE & TAR4

outlook U1 : minimize temperature humidity windy U2 : maximize play upi downi

overcast 64 65 TRUE yes=1 1.00 0

rainy 68 80 FALSE yes=1 0.87 0.13

... ... ... ... ... ... ...

sunny 80 90 TRUE no=0 0.11 0.89

sunny 85 85 FALSE no=0 0.00 1

" Examples are placed in a U -dimensional hypercube (one dimension for each utility):

# apex = best = {1,1,1,1...};

# base = worst = {0,0,0,0,...}

" examplei has distance 0 ≤ Di ≤ 1 from apex (normalized by U0.5)

" Each range Rj ∈ examplei adds

downi = Di and upi = 1 − Di to F (Rj |base) and F (Rj |apex).

P (apex) =
P

i upi/
`P

i upi +
P

i downi
´

P (base) =
P

i downi/
`P

i upi +
P

i downi
´

P (Rj |apex) = F (Rj |apex)/
P

i upi

P (Rj |base) = F (Rj |base)/
P

i downi

L(apex|Rk ∧ Rl ∧ ...) =
Q

x P (Rx|apex) ∗ P (apex)

L(base|Rk ∧ Rl ∧ ...) =
Q

x P (Rx|base) ∗ P (base)

TAR4.0: Bayesian treatment learner = find the smallest treatment T that maximizes:

P (apex|T ) =
L(apex|T )

L(apex|T ) + L(base|T )
; didn’t work: out-performed by TAR3

http://menzies.us
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Why did TAR4.0 fail?

" Hypothesis: muddled-up by dependent attributes;

" “Naïve” Bayes: assume independence, keeps singleton counts.

E1 E2 E3

H = car job suburb wealthy?

ford tailor NW y

ford tailor SE n

ford tinker SE n

bmw tinker NW y

bmw tinker NW y

bmw tailor NW y

E P(bmw|E) P(ford|E)

job = tailor &

suburb = NW

59.9% 40.1%

job = tailor &

suburb = NW &

wealthy = y

81% 19.0%

" Adding redundant information radically changes probabilities? Bad!

" Note: gets class probabilities WRONG, but RANKS classes correctly

Domingos and Pazzani [1997]

" We asked TAR4.0 to do what you must never do:

# compare numeric of probabilities of the same class in NaïveBayes.
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TAR4.1

" Prune treatments with low support in the data.

" What does “support” mean?

# Maximal when includes all examples from a class

# 0 ≤ support ≤ 1
# support = likelihood =

Q

x P (Rx|H) ∗ P (H)

" probability ∗ support = L(apex|E)2

L(apex|E)+L(base|E)

" Worked!

# Much faster, less memory than TAR3:

" No need for a second scan

" No need to hold examples in RAM

# Bayesian guess-timate for support of best class

(almost) the same as TAR3

# No connection treatment size to guess-timate error.

" But why did it work so well?

less memory

faster, less variance

lift errors small

http://menzies.us
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When Won’t Dependencies Confuse TAR4?

" T ′ = T + t where t is an attribute dependent on members of T ;

" TAR4.1 not confused by t when it ignores treatments that use it.

a = L(apex|T ′) =

x
z }| {

P (t|apex) ∗
Q

i P (Ti|apex) ∗ P (apex)

b = L(base|T ′) = P (t|base)
| {z }

y

∗
Q

i P (Ti|base) ∗ P (base)

" Then when is support ∗ probability increased by ignoring x and y?

0

B
B
B
B
B
B
B
@

ignoring x and y
z }| {

(a/x)2

a/x + b/y
>

using x and y
z }| {

a2

a + b

1

C
C
C
C
C
C
C
A

=⇒ y >
bx2

b + a − xa

b=0.1
b=0.00001

 0  0.2  0.4  0.6  0.8  1
x  0

 0.2
 0.4

 0.6
 0.8

 1

a

 0
 0.2
 0.4
 0.6
 0.8

 1

y

" And for TAR4.0:s pre-condition for no confusion:
(a/x)

a/x+b/y > a
a+b
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Typical Values and Constraints::
(a/x)2

a/x+b/y

0 < i ≤ 20 ; treatment size

b < a ; apex is better than base

10−10 < x ≤ y ≤ 0.25 ; see graphs

0 < a ≤ xi ≤ x ≤ 0.25 ; a combines many x-like numbers

0 < b ≤ yi ≤ y ≤ 0.25 ; b combines many y-like numbers

 0.0001

 0.001

 0.01

 0.1

 1

 0  200  400  600  800  1000  1200  1400

P
(E

|H
)

all ’P(E|H)’ values, sorted numerically

three bins

0.25

weather
iris

housing
vowel

kc2

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

P
(E

|H
)

all ’P(E|H)’ values, sorted numerically

bin logging

0.25

weather
iris
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kc2
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TAR4.1 Works

" Pick {a,b,x,y,i} at random within typical values; reject those violate our constraints;

" Check pre-conditions; report rounded log10 values;

" TAR4.0: not confused when
“

(a/x)
a/x+b/y > a

a+b

”

0

25

50

75

100 . . . . . . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

log10(x)

% not confused (in 10,000 runs)

Often confused.

" TAR4.1: not confused when

„

(a/x)2

a/x+b/y > a2

a+b

«

0

25

50

75

100 . . . . . . . . . .

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

log10(x)

% not confused (in 10,000 runs)

Rarely confused.
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So What?

" Mathematically, TAR4.0 will always fails (except for x ! 1);

" TAR4.1 succeeds since pre-condition is usually satisfied

# In 96.52% of our simulations

" So, theoretically and empirically:

# Bayesian treatment learning with CUBE can guess effect of treatments

using frequency counts,

# Does not need a second scan of the data (providing you use

support ∗ probability)
# Now we have a data miner TAR4.1.

" By the way,

# No need for Bayes nets in this domain

# Why doesn’t this mean that treatments will never grow beyond size=1?

http://menzies.us
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But Why Big Treatments?

" When are larger treatments acceptable; i.e.
“

(a/x)2

a/x+b/y < a2

a+b

”

?

" When is y < bx2

b+a−xa .

b=0.1
b=0.00001

 0  0.2  0.4  0.6  0.8  1
x  0

 0.2
 0.4

 0.6
 0.8

 1

a

 0
 0.2
 0.4
 0.6
 0.8

 1

y

" When x is large and y is much smaller than x

" i.e. when some attribute ranges has a high frequency in the apex and a

much lower frequency in the base.

" If collars then such ranges are not common; i.e. dependencies unlikely.
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Success Despite Complexity

" Maybe....

# The world is not as complex as we thing

# Real world models clump, have collars.

# Possible to quickly search, find ways to select for preferred states.

" Ultimately, this is an empirical study.

# Q: When does a clumping/collaring-inspired search engine succeed?

# A: Often

" Reports effects never seen before (limits to growth)

" Finds solutions faster than other methods (JPL).

" Returns tiniest theories (fss)

" Scales to infinite data streams (TAR4.1)

" Many applications. May I try this on your problems?
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A Final Word

" Sometimes the world is complex:

# 2% optimizing air-flow over leading wing in trans-sonic range

# synthesis of optimized code for complex engineering problems

" And sometimes it ain’t.

# Try the simple solution before the more complex.

# Benchmark the complex against the seemingly less sophisticated.

# Warning: your straw man may not burn
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1.! Data mining & SE (overview) 

2.! Data mining tools (guided tour of “WEKA”) 

3.! Data “carving” (core operators of DM) 

4.! Generality (or not) 

5.! Bias (is your friend) 

6.! Evaluation (does it really work?) 
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!! So bias makes us blind (to some things) 

!! But also, it lets us see (the future) 

159 

!! Without  bias  

!! we can’t assess relevance / irrelevance 

!! Without irrelevance,  

!! we can’t prune the data 

!! Without pruning,  

!! we can’t summarize 

!! Without summarization, 

!! we can’t generalize 

!! Without generalizing past experience 

"! we can’t predict the future 



!! Sampling:  

!! what data do you select in the pre-process? 

!! Language 

!! E.g. if propositional, can’t learn linear 

equations 

!! Search 

!! When growing a model, what do you look 
at next? 

!! Over-fitting avoidance 

!! When pruning a model, what is chopped 
first? 

!! Evaluation 

!! Do you seek high accuracy? high support? 
What? 160 

e.g. language bias. Hard 

to describe a  circle if 

your language Is 
restricted to “Z op Value”   



!! 48 learners, 320 
combinations of 
biases 

!! 48/320 = 15% 

!! Separate-and-conquer rule 
learningJ. FurnkranzArtificial 
Intelligence Review, 13, 
pages 3--54, 1999. http://
citeseerx.ist.psu.edu/
viewdoc/summary?
doi=10.1.1.33.4894 
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!! Every data miner has its own bias 

!! Same data, different data miners, different 
conclusions 
!! Changing biases changes what we best believe 

!! So, relativistic soup? 
!!No basis to make policies, to plan for the future? 
!! Data mining is a pack of lies? 
"! No more than any other inductive generalization 

process 

162 



163 

!! Sure, one data set supports many theories. 

!! But there are many many more theories that are 
unsupported. 

!! No model is right, but some things are useful  
"! (perform well on test data)  

"! George Box 

!! And many many many more ideas are useless 
"! Can’t make predictions 

"! Not defined enough to support (possible) refutation 



!!When reporting a conclusion, report the 
biases that generated it. 

!!Make it a first class modeling construct 

!!Example #1: “W” 
!!Recall the sampling bias of “W” 

!!Different biases (the query “q”) lead to 
different conclusions 

!! Case-Based Reasoning vs Parametric Models Software Quality Optimization, Adam 
Brady, Tim Menzies, PROMISE 2010 

!!Example #2:  “WHICH” 
Defect prediction from static code features: current!results, limitations, new approaches. 
Tim Menzies,  Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang and Ay"e Bener 
Automated Software Engineering (2010) 17: 375-407, July 23, 2010. http://menzies.us/pdf/
10which.pdf 
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!!Much research 

!!Little recent 
improvement:  
!! Lessmann, S., Baesens, B., Mues, C., 

Pietsch, S.: Benchmarking classification 
models for software defect 
prediction: a proposed framework 
and novel findings. IEEE Trans. Softw. 
Eng. (2008)  

!!A shallow well?  
!!And we’ve 

reached the 
bottom? 
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!! Inspect fewest LOC to find the most bugs. 

!! Arisholm and Briand[2006] 
!! E. Arisholm and L. Briand. Predicting fault-prone components in a java 

legacy system. In 5th ACM-IEEE International Symposium on Empirical 
Software Engineering (ISESE), Rio de Janeiro, Brazil, September 21-22, 
2006. Available from http://simula.no/research/engineering/
publications/Arisholm.2006.4.   

!! For a budget-conscious team,  
!! if X% of modules predicted to be faulty  
!! But they contain !X% of the defects, 
!! Then that defect predictor is not useful  
!! i.e. their bias is pd>e!ort  

!! Operationalizing their bias: 
!! Find modules triggered by the learner  
!! Sort them in ascending order of size 
!! Assume human inspectors find " of the 

defects in the triggered modules  
!! Use ratoos of  “best” e!ort-vs-pd curve  

"! “best”only triggers on defective modules  
"! Note: " cancels out  
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!!All learners have an search bias S and an 
evaluation bias E .  e.g. C4.5:  

!! S = infogain  

!! E = pd, pf, accuracy, etc  

!!Note: usually, not(S = E) 

!!Question: What if we make S = E ? 

!!  Answer:  “WHICH” 
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!! Fuzzy beam search 

1.! Discretize all numeric features.  

2.! Sort all ranges using E on to a stack  

3.! Pick any 2 items near top-of-stack 

4.! Combine items, score them with E, insert them into the sorted stack.  

5.! Goto 3  

!! Note: no S and  E is customizable 

!! But when to stop? (Use 200 picks) 
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!! 10 sets of static code features from NASA, Turkish whitegoods  
!! “Rank” computed using Mann-Whitney U test (95%)  
!! E = AUC(effort, pd) 
!! Micro20: training on 20 defective + 20 non-defective 

!!  WHICH destroys classic learners 
!! Which were built to optimize accuracy 
!! So bias changes everything 

!! BTW, once again a shallow well 
!! we do not need much data to do it (40 examples).  
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!!Bias changes everything 

!!But this is not a problem 

!! It is a research opportunity 

!!What biases are current in industrial SE? 

!!How do they effect our conclusions? 
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!!Let’s focus on one particular bias 

!! Evaluation 
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