Using Simulation to Investigate Requirements Prioritization Strategies

> Dan Port, Alexy Oklov (UH) Tim Menzies (WVU) ASE'2008

> > 1

This paper

- Specifically:
 - With very little machinery, we can characterize:
 - when PB (plan-based) is better/worse than AG (agile)
 - If PB or AG or XYZ is appropriate for your particular project

More generally:

- Our simulator is so very, very, very simple.
- So, why...
 - Years of grand-standing about polar extremes?
 - Don't we see more automated process debates?

Related work

- COCOMO [Boehm'81&00]: hard-wired into 2 dozen variables
 - What about the concepts not mentioned in COCOMO?
- Search-based SE approach [Harmon'04].
 - optimization techniques from operations research and meta-heuristic search (simulated annealing and genetic algorithms)
 - Seeks near-optimal solutions to:
 - complex over-constrained SE models
 - Or simpler COCOMO-based models (Menzies et.al [ASE'07])
 - SBSE too complex for this requirements study
- Elaborate process simulations (e.g. [Raffo])
 - detailed insight into an organization
 - Hard to tune (e.g. Raffo's Ph.D. model, 2 years tuning effort)
 - Raffo: one large model for all questions
 - Our approach: one very small model per question

Model(λ, σ)

- λ =requirements discovery: rate of new requirements
 - Requirements += $Poisson(\lambda)$
- σ =requirements volatility: rate of requirements changing value
 - Value += $max(0, value + N(0,\sigma))$
- Steps though $2 \le I \le 6$ iterations of requirements review
 - B= base requirements at iteration one (max=25)
 - Early stopping probability of 1/(maxl^0.33) = 55%
 - Requirements unimplemented at each phase: 20%

- Value R_x : min_value(30) … max_value(500)
- Cost R_x: min_cost(1) ... max_cost(100)
 - Assumed to be nonvolatile

No ínterrequírement dependencíes

Menzies

ASE '08

Cao,Ramesh, IEEE software 2008

Page 5 of 17

End development tíme ís unknown

Two kinds of "iterations"

Project iterations

- Every so often, pause to consider what to do next
- At each at pause, deliver Version1, version2, version3,....

Value iterations

- Every so often, the value of our requirements change.
- Assume that after \$N
 - There is a pause, and the value of each requirement is reassigned.
- \$N = (total cost of base reqs) / num_iters
- For three of our simulations (AG, AG2, hybrid)
 - One value iteration for each project iteration
- For conventional plan-based prioritization
 - Only one project iteration
 - But numerous value iterations

Agile Prioritization (AG)

- Requirements are prioritized at the beginning of each iteration
 - Requirements are retired, highest value first
- Many, but not all, requirements discovered at first iteration
 - Selected randomly $B = 30\% \le 40^*N(0,1) \le 70\%$
- Initialization
 - R= Determine num_req
 - B = number "base requirements" (those known in iteration 1)
 - AG_heap = {1,2,...,B, B+1 ,...R}
 - AG_plan = {1,2,...,B}

Cao,Ramesh, IEEE software 2008

- Simulation. For each project iteration.
 - Sort AG_plan on value, implement top 80%
 - AG_plan= remaining 20% of AG_plan + Poiss(λ) items of AG_heap

A local search, so prone to local maxima
Ignores cost

AG2

• Same as AG

– But sort on value / cost

Hybrid Prioritization (HY)

Same as AG2 but....

Sort AG_plan by value/cost,

- Prune those with value/cost < α

• $\alpha = (\sum \text{remaining values}) / (\sum \text{remaining costs})$

 HY is a local search, prone to local maxima

• But α límíts our exploratíon of dead-ends

Plan-based Prioritization (PB)

- Requirements are prioritized <u>before iteration 1</u>
 - Using_highest (value/cost)

See reference 6, 11

- Initialization
 - R= Determine num_req
 - B = number "base requirements" (those known in iteration 1)
 - heap = {1,2,...,B, B+1, ...R} sorted by (value/cost)
 - plan = heap

- PB is a one-time global search
- Ignores any changes due to value volatílíty

- Simulation:
 - Run down entire plan, left to right
 - Pause every value iteration to adjust requirements value

Performance measures

medium dynamism $\lambda = 1.4, \sigma = 15\%$

- Control parameters
 - median new requirements discovered per iteration: $0.001 \le \lambda \le 20$
 - Requirements value volatility: $0.1\% \le \sigma \le 200\%$
- Cumulative
 - Of = Optimal frontier- "after the fact" of ordering of all requirements
 - Note: uses more information that available at any particular iteration
 - Represents maximum possible value.
 - Oi= Optimal initial: ordering the requirements using the initial values
 - Dynamism = Of Oi (low if initial ordering is best requirements prioritization)

One trial results (1 of 3)

medium dynamism λ = 1.4, σ = 15 %

- Extreme strategies (PB,AG) fail for this medium case.
- AG2 and HY perform best

One trial results (2 of 3)

low dynamism λ = 0.001, σ = 0.1 %

- Optimal initial = optimal frontier
- Expect: PB work best, AG worst
- Actual: HY/ PB best, both AGs worse
- And standard AG worst of all

Port, Olkov, Menzies

1000 trial results

- tb= total benefits
- tc = total costs
- Ben = benefit = tb tc
- CB = tb/tc
- Int = integral= area under tb/tc curve
- FR = ratio of final to the optional frontier
- HY dominates for Integral (7/9 experiments)
- PB dominates for cost (8/9 experiments)
- AG2 dominates for high λ and low to medium σ

TABLE IV.AVERAGE RANKS FOR N=1000 TRIALS			
HIGH	Value: AG2 Cost: PB Integral: AG2 Ben: AG2 CB: AG2 FR: AG2	Value: AG2 Cost: PB Integral: AG2 Ben: AG2 CB: AG2 FR: AG2	Value: AG Cost: PB Integral: HY Ben: AG CB:HY, AG FR: HY
λ=20			
MED λ=1.4	Value: HY Cost: PB Integral: HY Ben: HY CB: HY FR: HY Value: HY, PB Cost: PB Integral: HY	Value: HY Cost: PB Integral: HY Ben: HY CB: HY FR: HY Value: HY Cost: PB, AG2 Integral: HY	Value: HY Cost: PB Integral: HY Ben: AG CB: HY FR: HY Value: HY Cost: HY Integral: HY
LOW λ=0	Integral: HY Ben: HY, PB CB: PB FR: HY, PB LOW σ=0% HY: Hybrid, PB: Plan-ba	Integral: HY Ben: HY CB: HY FR: HY MED σ=15% sed, AG: Agile, AG2: Agile c	Integral: HY Ben: HY CB: HY FR: HY HIGH σ=200% ost-benefit

Port, Olkov, Menzies

Conclusion: Agile beats PB?

- That is the wrong question
- Better question(s)
 - What is the rate of new project requirements and value volatility?
 - What does the simulator say is the best combination of strategies for your domain?
- In these studies
 - No strong case for either PB or AG
 - (which may not hold for your next project)
- No more trite answers
 - Tune methods to local environments

Port, Olkov, Menzies

ASE '08

more studie

Challenge

- Is anyone surprised?
 - Hybrid combinations do better than the obsessive application of diametrically opposed extremes.
- How much of our time is spent debating needlessly polarized viewpoints?
 - plan vs agile
 - procedural vs object
 - model checking vs testing
 - etc
- Of course large diverse teams will combine methods
 - We should research those combinations
- More coalition
 - less opposition

Port, Olkov, Menzies

ASE '08

Questions or Comments or ...?

Back up slides

Motivation

- Data drought
 - The COCOMO data ceiling
 - (1997,2008) records = (161,161)
 - NASA's data ceiling: 2005 2007 (+5)
- If we can't reason fully from data,
 - Reason mostly from models
 - Informed, minimally, by current records

• This work:

- model-based reasoning on requirements prioritization strategies
- Study humans like atoms in a crystal
 - Stochastic, but with stable emergent properties
- We have (just) enough data + models to report and exploit regularities in the behavior of humans developers.
- Main result:
 - new prioritization halfway between two polarized positions
 - Not "agile is best"
 - Not "pre-planning is best"
 - But a new hybrid strategy

Port, Olkov, Menzies

The "Separation of Concerns" legacy

- "The notion of 'user' cannot be precisely defined, and therefore has no place in CS or SE."
 - Edsger Dijkstra, ICSE 4, 1979
- "Analysis and allocation of the system requirements is not the responsibility of SE, but a prerequisite for their work."
 - Mark Paulkat al., SEI Software CMM v.1.1, 1993
- Now, after decades of SE...
 - No more separation?
 - Study humans like atoms in a crystal
 - Stochastic, but with stable emergent properties
 - We have (just) enough data + models to report and exploit regularities in the behavior of humans developers.

Cao, L., Ramesh, B., Requirements Engineering Practices: An Empirical Study, IEEE Software, Vol 25, p60-67, 2008 • Data from 16 companies

Port, Olkov, Menzies

ASE '08