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Cross- vs Within-Company
Defect Prediction Studies

Tim Menzies, Member, IEEE, Burak Turhan, Justin Distefano, and Ayes Bener

Abstract—
OBJECTIVE: The objective of this paper is to determiner under
what circumstances individual organizations would be able to rely
on cross-company (CC) or within-company (WC)-based defect
prediction.

METHOD: Detectors predictors were trained from (a) eleven
sets, then tested on the twelth; or (b) trained and tested on the
same data set; or (c) trained and tested on a decreasing amount
of within-company data.

RESULTS: Using within-company data, adequate defect pred-
itors can be learned from as few as two dozen faulty modules.
However, in 8

12
data sets, large amounts of cross-company data

significantly increased both the median proablities of pd detection
and pf false alarms: pd/pf = 80/26% (WC) and 91/53% (CC).

CONCLUSION: Companies lacking local data can use cross-
company data to predict detects. Given enough cross-company
data, such predictors will have large false alarm rates but a
much larger probability of detection. Cross-company learning
is hence indicated for mission critical software were the extra
costs associated with high false alarm rates are compensated by
the associated increase in software assurance. For other classes
of software, false alarm rates can be decreased using a small
amount of local data. In our experiments, the use of local data
halved the false alarm rate while only decreasing pd by ≈ 10%.

I. INTRODUCTION

Software managers can use predictor of defective modules
to focus the testing on parts of the system that seem defect-
prone. These potential defect-prone trouble spots can then be
examined in more detail by, say, model checking, intensive
testing, etc. Previously we have explored the use of data
miners to learn such predictors from static code attributes. We
found that a large class of predictors proposed in numerous
publications were out-performed by Bayes classifiers that
combined partial evidence from multiple attributes [1].

Kitchenham et.al. would characterize that previous work
as a within-company (WC) study where the data from one
organization is applied to new examples within the same
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organization. They comment that such WC studes have certain
backbacks:

• “The time required to accumulate enough data on past
projects from a single company may be prohibitive.

• “By the time the data set is large enough to be of use,
technologies used by the company may have changed,
and older projects may no longer be representative of
current practices.”

Therefore, companies are tempted to eskew WC studies,
preferring instead to use some cross-company (CC) study
where data from elsewehre is applied locally. The value of
cross- vs within-company studies for effort estimation has
been the subject of much recent work. Kitchenham et.al. [2]
conclude that the value of CC vs WC data is unclear.

Based on our review it is clear that some organisa-
tions would benefit from using models derived from
cross-company benchmarking databases but others
would not. [2].

For example, Mendes et.al. [3] found within-company data that
performed much better than cross-company data for predicting
estimation effort of web-based projects. They only recommend
using cross-company data in the special case when that “data
is obtained using rigorous quality control procedures”.

In the special case of effort prediction from static code
features, some of those quality controls can be automated.
In the following cross- vs within- study, features of code
modules were extracted automatically using the same tool set
(the McCabe HiQ tool1) that is widely used in industry2. We
find that

A. Detector Mathematics

Let {A,B, C, D} denote the true negatives, false negatives,
false positives, and true positives (respectively) found by a
binary detector. Certain standard measures can be computed
from A,B, C, D:

pd = recall = D
B+D

pf = C
A+C

prec = precision = D
D+C

acc = accuracy = A+D
A+B+C+D

selectivity = C+D
A+B+C+D

neg/pos = A+C
B+D

1justin?
2jsutin- can we say that predict is an alternate data collector that HiQ
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The last measure (neg/pos) is quite interesting and can be
used within the above equations as follows:

prec =
D

D + C
=

1
1 + C

D

=
1

1 + neg/pos · pf/recall
(1)

Ideally, our detectors have high precision and high recall
and low false alarm rates. This ideal situation is very hard to
achieve. In practice, detectors must trade-off one goal for the
other.

B. Trade-offs with Recall (pd) and False Alarm Rates (pd)

Detector performance can be assessed via receiver-operator
(ROC) curves. Formally, a defect predictor hunts for a signal
that a software module is defect prone. Signal detection the-
ory [4] offers ROC curves as an analysis method for assessing
different predictors. A typical ROC curve is shown in Figure 1.
The y-axis shows probability of detection (pd) and the x-
axis shows probability of false alarms (pf ). By definition, the
ROC curve must pass through the points pf = pd = 0 and
pf = pd = 1 (a predictor that never triggers never makes false
alarms; a predictor that always triggers always generates false
alarms). Three interesting trajectories connect these points:

1) A straight line from (0,0) to (1,1) is of little interest
since it offers no information: i.e. the probability of a
predictor firing is the same as it being silent.

2) Another trajectory is the negative curve that bends away
from the ideal point. Elsewhere [5], we have found that
if predictors negate their tests, the negative curve will
transpose into a preferred curve.

3) The point (pf = 0, pd = 1) is the ideal position
(a.k.a. “sweet spot”) on a ROC curve. This is where we
recognize all errors and never make mistakes. Preferred
curves bend up towards this ideal point.

In the ideal case, a predictor has a high probability of
detecting a genuine fault (pd) and a very low probability
of false alarm (pf ). This ideal case is very rare. The only
way to achieve high probabilities of detection is to trigger the
predictor more often. This, in turn, incurs the cost of more
false alarms.

In practice, engineers balance between pf and pd. To
operationalize this notion of balance, we define bal to be the
Euclidean distance from the sweet spot pf = 0, pd = 1 to a
pair of < pf, pd >. For convenience, we (a) normalize bal by
the maximum possible distance across the ROC square (

√
2);

(b) subtract this from 1; and (c) express it as a percentage; i.e.

balance = bal = 1−

√
(0− pf)2 + (1− pd)2

√
2

(2)

Hence, better and higher balances fall closer to the desired
sweet spot of pf = 0, pd = 1.

C. Trade-offs with Precision

Note that Equation 1 can be re-expressed as follows:

pf =
pos

neg
· (1− prec)

prec
· recall (3)

That is, in Equation 3, when recall is fixed then false alarm
rate becomes controlled by precision and a fixed constant
determined by the data set being examined; i.e. when (α =
neg/pos) and recall = 1 then:

pf = α · 1− prec

prec
(4)

From Equation 4, it is clear that it is porblematic to de-
mand detectors with high recall and high precision and
low false alarm rates. For example, for any targeted re-
call value, increasing precision requires decreasing false
alarm rates; e.g. for prec ∈ {0.5, 0.70, 0.9, 0.95}, pf becomes
{1, 0.43, 0.11, 0.005}, respectively. The effect is particularly
marked for data sets with large neg/pos ratios.

Many software engineering data sets have extremely large
neg/pos ratios. For example:

• In our previous DMP study [6], the data sets studied had
neg/pos ratios of 1.04, 7.33, 9, 10.11, 13.29, 15.67, and
249.

• Hayes, Dekhtyar and Sundaram [7] use text mining to
find pairs of connected requirements in a corpus of 220
requirements and 235 design elements (the same CM-1
dataset used in [6]). The total number of possible links in
the dataset is 220 · 235 = 51, 700, while the the ground
truth RTM contains 361 links, for the neg/pos ratio of
51, 700/361 = 143.2.

• For an extreme example, Google reports that over 109

web pages contain the phrase “software” but only one
them is the home page of this journal. Hence, neg/pos
for web searching is at least 109.

Figure 2 graphs Equation 1 for the DMP neg/pos ratios.
Figure 3 does the same, but is restricted to zones of higher

precision: only the surface for 0.5 ≤ prec ≤ 1 is shown.
That shadow of the surface on the bottom plane shows that
this zone of high precision, high recall, and large neg/pos.
As neg/pos increases, high recall&precision is only possible
when pf becomes vanishingly small. For example, in the
ranges 0.65 ≤ prec, recall ≤ 0.8, Equation 3 reports that pf
falls into the following ranges:

• 0.023 ≤ pf ≤ 0.062 for neg/pos = 7;
• 0.0108 ≤ pf ≤ 0.0287 for neg/pos = 15;
• 0.007 ≤ pf ≤ 0.0017 for neg/pos = 250;
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Fig. 2. The relationship between pd, prec, recall and neg/pos.

 1
 0

 1

 0

 1

 0.5

 prec

neg/pos = 7

pf
recall

 prec

 1
 0

 1

 0

 1

 0.5

 prec

neg/pos = 1

pf
recall

 prec

 1
 0

 1

 0

 1

 0.5

 prec

neg/pos = 250

pf
recall

 prec

 1
 0

 1

 0

 1

 0.5

 prec

neg/pos = 15

pf
recall

 prec

Fig. 3. Figure 2, cropped to the region where prec > 0.5.

Detectors learned in the domain of software engineering rarely
yield high precision detectors (see Figure 4). Using the above
equations, the reasons for this are very clear:

• Those detectors all try to maximize recall;
• Figure 2 shows that such detectors can only achieve high

precision in the rare case of very low pf .
Not only do our equation explain the Figure 4 results, they

also inform the the instability of precision and the stability of
pf and pd (recall) seen in previous studies [8]”

• Note how, in Figure 2, that at very small pf values, tiny
changes in pf can lead to very large changes in prec
(sudden jumps from zero to one).

• The other measures in Figure 2, on the other hand, change
far more smoothly and slowly.

That is, the mathematics of these detectors explains numerous
prior results such as those shown in Figure 4 (i.e. [6], [7], [9],
[10], [11], [12], [13]).

1) When Low Precision is Useful: Achieving both high
precision& recall & low false alarm rates can be problematic.
Optimizing for one often compromises the other (especially
for data sets with large neg/pos ratios). Fortunately, there
are may industrial situations where low precision and high
recall detectors are useful. For example, one of us (DiStefano)
has used our low-precision detectors to review flight code
developed at the NASA Glenn Research Center (Ohio, USA).

When the results of these detectors were presented to the lead
flight engineer, he confirmed that the identified sections (which
did not have any recorded defects) had been problematic to
maintain, and contained several bugs which had not yet been
entered into the defect system.

For another example, from outside the field of SE, a user of
commercial web search engine like Google can quickly flick
through (say) three pages of results before finding a page of
interest. Google has so many return customers since even with
precisions of (say) 1

30 , the effort involved in looking at a page
is so low that users don’t mind examining 29 false alarms.

More generally, there are several situations where low
precision detectors are useful:

• When the cost of missing the target is prohibitively
expensive. In mission critical or security applications, the
goal of 100% recall may be demanded in all situations,
regardless of the precision.

• When only a small fraction the data is returned. Hayes,
Dekhytar, & Sundaram call this fraction selectivity
and offer an extensive discussion of the merits of this
measure [7].

• When there is little or no cost in checking false alarms.
For example, a detector we have found useful in industrial
settings is to check modules where

lines of comments

lines of code
> 0.25

This detector triggers on complex functions that pro-
grammers comment extensively, instead of splitting up
into smaller, more maintainable, functions. This detector
is imprecise- it often triggers on well-written functions
with detailed comments. However, based on commercial
experience, we assert that it is fast and simple for a human
agent to inspect the identified modules and discern which

• The DMP paper achieved recalls over 70% and minimum
false alarm rates of 15%. Using our equation and data from
DMP, it can be shown that the DMP precisions were quite
low: {min, median, max} = {2%20%, 70%} (the last
number came from a data set with neg/pos ≈ 1).

• Huang et.al. [10] won “best paper” at the 2006 IEEE Re-
quirements Engineering conference with detectors exhibiting
prec ≈ 0.25.

• Without extensive feedback from human experts, the clas-
sifiers used by Hayes, Dekhtyar, and Sundaram exhibited
pf > 0.6 (hence, very low precisions) [7].

• Other such as Antoniol et.al. [11], [12] and Marcus et.al. [13]
researchers into software tracability report that high recall is
achievable only with low precision detectors. Antoniol has
also been exploring bug traces in Mozilla components and
has found the same high-precision, low-recall trade-off.

• After much experiments with linear regression, model tree
learners, Bayes classifiers, decision tree learners, singleton
rule learners, and some home-brew learners [9], the general
trend is very clear. For those learners, executing on the DMP
datasets, pf ≤ pd−0.5; That is, for those learners and those
data sets, obtaining high recall figures of pd > 0.6 implies
pf > 0.1 and, consequently, low precision.

Fig. 4. Some low precisions seen in the SE literature.
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ones were well-written and which were over-commented
to disguise being badly coded. We use this detector to
find code that should be rewritten prior to release.

II. DATA

This section discusses the data used in this study. Each
module of each data sets describes the attributes of that
module, plus the number of defects known for that module.
This data comes from eight sub-systems taken from four sys-
tems. These systems were developed in different geographical
locations across North America. Within a system, the sub-
systems shared some a common code base but did not pass
personnel or code between sub-systems.

Each data set was pre-processed by removing the module
identifier attribute (which is different for each row). Also, the
error count column was converted into a boolean attribute
called defective? as follows: defective? = (error count ≥
1). Finally, the error density column was removed (since it
can be derived from line counts and error count). The pre-
processed data sets had 38 attributes, plus one target attribute
(defective?) shown in Figure 5 and include Halstead, McCabe,
lines of code, and other miscellaneous attributes.

m = Mccabe v(g) cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to clos-
ing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2

V volume: V = N ∗ log2µ
L level: L = V ∗/V where

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L

I content: I = L̂ ∗ V where
L̂ = 2

µ1
∗ µ2

N2
E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

misc = Miscellaneous branch count
call pairs
condition count
decision count
decision density
design density
edge count
global data complexity
global data density
maintenance severity
modified condition count
multiple condition count
node count
normalized cyclomatic complexity
parameter count
pathological complexity
percent comments

Fig. 5. Attributes used in this study.

The Halstead attributes were derived by Maurice Halstead
in 1977. He argued that modules that are hard to read are
more likely to be fault prone [14]. Halstead estimates reading
complexity by counting the number of operators and operands
in a module: see the h attributes of Figure 5. These three raw
h Halstead attributes were then used to compute the H: the
eight derived Halstead attributes using the equations shown in
Figure 5. In between the raw and derived Halstead attributes
are certain intermediaries (which do not appear in the MDP
data sets);

• µ = µ1 + µ2;
• minimum operator count: µ∗

1 = 2;
• µ∗

2 is the minimum operand count and equals the number
of module parameters.

An alternative to the Halstead attributes are the complexity
attributes proposed by Thomas McCabe in 1976. Unlike
Halstead, McCabe argued that the complexity of pathways
between module symbols are more insightful than just a count
of the symbols [15]. The first three lines of Figure 5 shows
McCabe three main attributes for this pathway complexity.
These are defined as follows. A module is said to have a flow
graph; i.e. a directed graph where each node corresponds to a
program statement, and each arc indicates the flow of control
from one statement to another. The cyclomatic complexity of a
module is v(G) = e−n+2 where G is a program’s flow graph,
e is the number of arcs in the flow graph, and n is the number
of nodes in the flow graph [16]. The essential complexity,
(ev(G)) or a module is the extent to which a flow graph can
be “reduced” by decomposing all the subflowgraphs of G that
are D-structured primes (also sometimes referred to as “proper
one-entry one-exit subflowgraphs” [16]). ev(G) = v(G)−m
where m is the number of subflowgraphs of G that are D-
structured primes [16]. Finally, the design complexity (iv(G))
of a module is the cyclomatic complexity of a module’s
reduced flow graph.

At the end of Figure 5 are a set of misc attributes that are
less well-defined than lines of code attributes or the Halstead
and McCabe attributes. The meaning of these attributes is
poorly documented in the MDP database. Indeed, they seem
to be values generated from some unknown tool set that was
available at the time of uploading the data into the MDP. Since
there are difficulties in reproducing these attributes at other
sites, an argument could be made for removing them from this
study. A counter-argument is that if static code attributes are
as weak as suggested by Shepherd, Ince, Fenton and Pfleeger
then we should use all possible attributes in order to make
maximum use of the available information. This study took a
middle ground: all these attributes were passed to the learners
and they determined which ones had most information.

An interesting repeated pattern in our data sets are expo-
nential distributions in the numeric attributes. Elsewhere, we
have conducted limited experiments suggesting that a loga-
rithmic filter on all numeric values might improve predictor
performance [5]. Such a filter replaces all numerics n with
their logarithm. ln(n). The log-filtered values are now more
evenly spread across the y-range, making it easier to reason
about them. To test the value of log-filtering, all the data was
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passed through one of two filters: Hence, all our numerics
were pre-processed as follows:

• logNums; i.e. logarithmic filtering where all numbers n
where replaced with log(n).

• To avoid numerical errors with ln(0), all numbers under
0.000001 are replaced with ln(0.000001).

III. NON-PARAMETRIC ANALYSIS OF RESULTS

A. Quartile Charts of Performance Deltas

The experiment described below explored numerous com-
binations of filters, attributes, and learners all within a (M =
20) ∗ (N = 10)-way cross-evaluation study. Hence, this ex-
periment generated nearly thousands of measuring pd, pf, bal
values from different methods applied to the same test data.

The performance results for each method were sorted and
displayed as quartile charts. To generate these charts, the
performance deltas for some method were sorted to isolate
the median and the lower and upper quartile of numbers.

{
q1︷ ︸︸ ︷

4, 7, 15, 20, 31, 40︸︷︷︸
median

, 52, 64,

q4︷ ︸︸ ︷
70, 81, 90}

In a quartile chart, the upper and lower quartiles are marked
with black lines; the median is marked with a black dot; and
vertical bars are added to mark the zero value. The above
numbers would therefore be drawn as follows:

0% u 100%

We prefer quartile charts of performance deltas to other
summarization methods for M*N studies. Firstly, they offer a
very succinct summary of a large number of experiments. For
example, in the next few pages we will display thousands of
results in very little area. Secondly, they are a non-parametric
display; i.e. they make no assumptions about the underling
distribution. Standard practice in data mining is to compare
the mean performance of different methods using t-test [17].
T-tests are a parametric method that assume that the underling
population distribution is a Gaussian. Recent results suggest
that there are many statistical issues left to explore regarding
how to best to apply those t-tests for summarizing M*N-way
studies [18], [19].

B. Comparison Statistics

The problem of comparatively assessing L learners run on
multiple sub-samples of D data sets has been extensively
studied in the data mining community. T-tests that assume
Gaussian distributions are strongly deprecated. For exam-
ple, Demsar [19] argues that non-Gaussian populations are
common enough to require a methodological change in data
mining.

After reviewing a wide range of comparisons methods3,
Demsar advocates the use of the 1945 Wilcoxon [20] signed-
rank test that compares the ranks for the positive and negative
differences (ignoring the signs). Writing five years early,

3Paired t-tests with and without the use of geometric means of the relative
ratios; binomial tests with the Bonferroni correction; paired t-tests; ANOVA;
Wilcoxon; Friedman

Kitchenham et.al. [21] comment that the Wilcoxon test has its
limitations. Demsar’s report offers the same conclusion, noting
that the Wilcoxon test requires that the sample sizes are the
same. To fix this problem, Demsar augments Wilcoxon with
the Friedman test.

One test not studied by Demsar is Mann and Whitney’s
1947 modification [22] to Wilcoxon rank-sum test (proposed
along with his signed-rank test). We prefer this test since:

• The Mann-Whitney U-test does not require that the
sample sizes are the same. So, in a single U-test, learner
L1 can be compared to all its rivals.

• The U-test does not require any post-processing (such
as the Friedman test) to conclude if the median rank
of one population (say, the L1 results) is greater than,
equal to, or less than the median rank of another (say,
the L2, L3, .., Lx results).

The U-test uses ranks, not precise numeric values. For exam-
ple, if treatment A generates N1 = 5 values {5,7,2,0,4} and
treatment B generates N2 = 6 values {4,8,2,3,6,7}, then these
sort as follows:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8

On ranking, averages are used when values are the same:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8
Ranks 1 2.5 2.5 4 5.5 5.5 7 8 9.5 9.5 11

Note that, when ranked in this manner, the largest value (8)
gets the same rank even if it was ten to a hundred times larger.
That is, such rank tests are less susceptible to large outliers.

Figure 6 shows the U-test for A and B. The test concludes
that these treatments have the same median ranked values (at
the 95% significance level). As defined in Figure 6, this test
counts the wins, ties, and losses for A and B (where A and
B are single or groups of methods). Since we seek methods
that can be rejected, the value of interest to us is how often
methods lose.

IV. INTRA-VS-INTER RESULTS

In this first round of experiments, we explored using data
from local or imported sources. In each case, some data set
was declared “local” and another was declared “import” . A
training set was drawn from “import” and applied to a test
set created from 10% drawn from “local” (using stratified
sampling).

In the “intra” study, the “local” data set was the same as
“import”. That is, in these intra-experiments, detectors were
learned and tested from the same data set.

In the “inter” study, the “local” data set was different to
“import”. To be precise, “import” was all data from all data
set except the “local” data. That is, in these inter-experiments,
detectors were learned from all avilable data, except data from
the test “local” set.

Measured in terms of pd and pf , the main effect seen
in 8 test sets was that importing lots of data (in the inter-
experiment) increased both pd and pf (see group “D”, below).
In three other data sets (see groups “B” and “C”) the changes
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The sum and median of A’s ranks is

sumA = 1 + 2.5 + 5.5 + 7 + 9.5 = 25.5
medianA = 5.5

and the sum and median of B’s ranks is

sumB = 2.5 + 4 + 5.5 + 8 + 9.5 + 11 = 40.5
medianB = 6.75

The U statistic is then calculated where
Ux = sumx − (N1(N2 + 1))/2:

UA = 25.5− 5 ∗ 6/2 = 10.5
UB = 40.5− 6 ∗ 7/2 = 19.5

These can be converted to a Z-curve using:

µ = (N1N2)/2 = 516.4

σ =
√

N1N2(N1+N2+1)
12

= 5.477

ZA = (UA − µ)/σ = −0.82
ZB = (UB − µ)/σ = 0.82

(Note that ZA and ZB have the same absolute value. In all case, these
will be the same, with opposite signs.)
If abs(Z) < 1.96 then the samples A and B have the same median
rankings (at the 95% significance level). In this case, we add one to both
tiesA & tiesB . Otherwise, their median values can be compared, using
some domain knowledge. In this work, lower values are better since we
are comparing relative errors. Hence:

• If medianA < medianB add 1 to both winsA & lossesB .
• Else if medianA > medianB add 1 to both lossesA & winsB .
• Else, add 1 to both tiesA & tiesB .

Fig. 6. An example of the Mann-Whitney U test.

were either statistically insignificant (measured using a Mann-
Whitney U-test) or the false alarm increased in the intra-
experiment.

group pd(inter) pf(inter) data sets n
a decreased decreased PC5 1
b same same KC3 1
c same increased MC1 PC2 2
d increased increased CM1 KC1

KC2 MC2
MW1 PC1
PC3 PC4

8

The size of pd increase was quite remarkable. The following
chart shows that across our 12 data sets, the top quarter of the
pds in the inter-experiemtnt were all in the maximum range
of pd = 100%. As predicted by Figure 1, the price of this
dramatic increase in pd is an near doubling of the median pf :

min q1 median q3 max

pd / inter 50 80 91 100 100 u
pd / intra 17 67 80 88 100 u
pf / inter 4 26 52 73 100 u
pf / intra 0 17 26 33 73 u

The increase in individual data sets was even larger. For
example, in KC2, the median pf rose from 73 to 91% while
the median pf rose from 31% to 64%:

min q1 median q3 max

pd / inter 82 91 91 100 100 u
pd / intra 55 73 73 82 91 u
pf / inter 57 62 64 74 81 u
pf / intra 14 24 31 33 45 u

In one data set, a compeltely opposite effect was observed
to the main effect. In “PC5”, the inter-experiment made the
the pd worse and the pf better:

min q1 median q3 max

pd / inter 69 73 75 77 83 u
pd / intra 81 85 88 90 96 u
pf / inter 4 5 5 5 6 u
pf / intra 11 12 12 12 14 u

V. INCREMENTAL STUDIES

Figure 7 shows the inter-experimental results as the size
of the traiing set increased in size. Note two main visual
patterns:

• Increasing the training set size does little or nothing to
the median balance values.

• In some data sets, increasing the training set size in-
creased the variability (spread) in the balance values.

Mann-Whitney tests were applied to test the first visual pattern.
Detectors learned from just N instances do as well as detectors
learned from any other number of instances.

• N=100 for {CM1,KC2,KC3,MC2,MW1,PC3,PC4}
• N=200 for {KC1}
• N=300 for {PC1}
• N=4,900 for {PC2} (but N=800 only lost 2 out of 53

trials)
• N=8,300 for {MC1} (but N=400 only lost once out of

92 trials)
• N=11,000 for {PC5} (but N=300 only lost twice out of

169 trials)

VI. UNDER-SAMPLING STUDIES

Figure 8 shows the results of an under-sampling stduy where
N ∈ {25, 50, 75, ...} defective modules were selected along
with an equal N number of defect-free modules. Note the same
visual pattern as before: increasing data does not necessarily
improve balance.

Mann-Whitney tests were applied to test this visual pattern.
Detectors learned from just N instances do as well as detectors
learned from any other number of instances:

• N=25 for {CM1,KC2,KC3,MC1,MC2,MW1,PC1,PC2}
• N=75 for {PC3} (and N=25 losses three times out of 11).
• N=200 for {PC4} (but N=25 losses once out of 13 trials)
• N=575 for {KC1} (for N=25 only lost once out of 25

trials)
• N=1025 for {PC5} (but at N=25, the ltest lose only once

our of 25 trials)
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Fig. 7. Incremental Results
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Fig. 8. Under-sampleing results
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