Prog ra m m i n g ROBERTO IERUSALIMSCHY
in
Lua

2nd

edition

Programming in Lua

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

Programming in Lua
Second Edition

Roberto lerusalimschy
PUC-Rio, Brazil

Lua.org

Rio de Janeiro

Property of lan Bloss <ianlinkcd@gmail.com>

Programming in Lua, Second Edition
by Roberto Ierusalimschy

ISBN 85-903798-2-5
Copyright © 2006, 2003 by Roberto Ierusalimschy. All rights reserved.
The author can be contacted at roberto@lua.org.

Book cover and illustrations by Dimaquina. Lua logo design by Alexandre Nako.
Typesetting by the author using IATEX.

Although the author used his best efforts preparing this book, he assumes no
responsibility for errors or omissions, or for any damage that may result from
the use of the information presented here. All product names mentioned in this
book are trademarks of their respective owners.

CIP - Biblioteca do Departamento de Informatica, PUC-Rio

Ierusalimschy, Roberto

122 Programming in Lua / Roberto Ierusalimschy. — 2nd ed.
— Rio de Janeiro, 2006.

xviii, 308 p. : 25 cm.

Includes index.

ISBN 85-903798-2-5

1. Lua (Programming language). 1. Title.
005.133 — dc20

Property of lan Bloss <ianlinkcd@gmail.com>

to Ida, Noemi, and Ana Lucia

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

Contents

Preface xiii

The Language 1

Getting Started 3

1.1 Chunks 4

1.2 Some Lexical Conventions 5
1.3 Global Variables 6

1.4 The Stand-Alone Interpreter 7

Types and Values 9

21 Nil 10

2.2 Booleans 10

2.3 Numbers 10

2.4 Strings 11

25 Tables 13

2.6 Functions 17

2.7 Userdata and Threads 17

Expressions 19

3.1 Arithmetic Operators 19
3.2 Relational Operators 20
3.3 Logical Operators 21
3.4 Concatenation 22

3.5 Precedence 22

3.6 Table Constructors 22

Property of lan Bloss <ianlinkcd@gmail.com>

vii

viii

Contents

10

11

Statements 27

4.1 Assignment 27

4.2 Local Variables and Blocks 28
4.3 Control Structures 30

4.4 break and return 34

Functions 35

5.1 Multiple Results 36

5.2 Variable Number of Arguments 39
5.3 Named Arguments 42

More About Functions 45
6.1 Closures 47

6.2 Non-Global Functions 50
6.3 Proper Tail Calls 52

Iterators and the Generic for 55

7.1 lterators and Closures 55

7.2 The Semantics of the Generic for 57
7.3 Stateless lterators 58

7.4 lterators with Complex State 60

7.5 True lterators 61

Compilation, Execution, and Errors 63
8.1 Compilation 63

8.2 CCode 67

8.3 Errors 67

8.4 Error Handling and Exceptions 69
8.5 Error Messages and Tracebacks 70

Coroutines 73

9.1 Coroutine Basics 73

9.2 Pipes and Filters 76

9.3 Coroutines as lterators 79

9.4 Non-Preemptive Multithreading 81

Complete Examples 87

10.1 Data Description 87
10.2 Markov Chain Algorithm 91

Tables and Objects 95

Data Structures 97
11.1 Arrays 97

Property of lan Bloss <ianlinkcd@gmail.com>

12

13

14

15

16

17

18

11.2 Matrices and Multi-Dimensional Arrays 98
11.3 Linked Lists 100

11.4 Queues and Double Queues 100

11.5 Sets and Bags 101

11.6 String Buffers 103

11.7 Graphs 104

Data Files and Persistence 107

12.1 Data Files 107
12.2 Serialization 109

Metatables and Metamethods 117

13.1 Arithmetic Metamethods 118

13.2 Relational Metamethods 120

13.3 Library-Defined Metamethods 122
13.4 Table-Access Metamethods 122

The Environment 129

14.1 Global Variables with Dynamic Names 129
14.2 Global-Variable Declarations 131

14.3 Non-Global Environments 132

Modules and Packages 137
15.1 The require Function 138

15.2 The Basic Approach for Writing Modules 141

15.3 Using Environments 143
15.4 The module Function 144
15.5 Submodules and Packages 145

Object-Oriented Programming 149
16.1 Classes 151

16.2 Inheritance 152

16.3 Multiple Inheritance 154

16.4 Privacy 156

16.5 The Single-Method Approach 158

Weak Tables 161

17.1 Memoize Functions 163
17.2 Object Attributes 164
17.3 Revisiting Tables with Default Values 165

The Standard Libraries 167

The Mathematical Library 169

Property of lan Bloss <ianlinkcd@gmail.com>

Contents

19

20

21

22

23

\

24

25

26

The Table Library 171

19.1 Insert and Remove 171
19.2 Sort 172

19.3 Concatenation 173

The String Library 175

20.1 Basic String Functions 175
20.2 Pattern-Matching Functions 177
20.3 Patterns 180

20.4 Captures 183

20.5 Replacements 185

20.6 Tricks of the Trade 189

The I/O Library 193

21.1 The Simple I/O Model 193
21.2 The Complete I/O Model 196
21.3 Other Operations on Files 199

The Operating System Library 201
22.1 Date and Time 201
22.2 Other System Calls 203

The Debug Library 205

23.1 Introspective Facilities 205
23.2 Hooks 210

23.3 Profiles 211

The C APl 215

An Overview of the C APl 217

24.1 A First Example 218

24.2 The Stack 221

24.3 Error Handling with the C APl 225

Extending Your Application 229
25.1 The Basics 229

25.2 Table Manipulation 231

25.3 Calling Lua Functions 235
25.4 A Generic Call Function 236

Calling C from Lua 241

26.1 C Functions 241
26.2 C Modules 244

Property of lan Bloss <ianlinkcd@gmail.com>

Xi

27

28

29

30

Techniques for Writing C Functions 247
27.1 Array Manipulation 247

27.2 String Manipulation 249

27.3 Storing State in C Functions 251

User-Defined Types inC 259
28.1 Userdata 260

28.2 Metatables 262

28.3 Object-Oriented Access 265
28.4 Array Access 267

28.5 Light Userdata 268

Managing Resources 269

29.1 A Directory lterator 269
29.2 An XML Parser 271

Threads and States 281
30.1 Multiple Threads 281
30.2 Lua States 285

31 Memory Management 293
31.1 The Allocation Function 293
31.2 The Garbage Collector 295
Index 299

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

Preface

When Waldemar, Luiz, and I started the development of Lua, back in 1993, we
could hardly imagine that it would spread as it did. Started as an in-house
language for two specific projects, currently Lua is widely used in all areas that
can benefit from a simple, extensible, portable, and efficient scripting language,
such as embedded systems, mobile devices, web servers, and, of course, games.

We designed Lua, from the beginning, to be integrated with software written
in C and other conventional languages. This integration brings many benefits.
Lua is a tiny and simple language, partly because it does not try to do what C is
already good for, such as sheer performance, low-level operations, and interface
with third-party software. Lua relies on C for these tasks. What Lua does
offer is what C is not good for: a good distance from the hardware, dynamic
structures, no redundancies, ease of testing and debugging. For this, Lua has
a safe environment, automatic memory management, and good facilities for
handling strings and other kinds of data with dynamic size.

A great part of the power of Lua comes from its libraries. This is not by
chance. After all, one of the main strengths of Lua is its extensibility. Many fea-
tures contribute to this strength. Dynamic typing allows a great degree of poly-
morphism. Automatic memory management simplifies interfaces, because there
is no need to decide who is responsible for allocating and deallocating memory,
or how to handle overflows. Higher-order functions and anonymous functions
allow a high degree of parameterization, making functions more versatile.

More than an extensible language, Lua is also a glue language. Lua sup-
ports a component-based approach to software development, where we create
an application by gluing together existing high-level components. These com-
ponents are written in a compiled, statically typed language, such as C or C++;
Lua is the glue that we use to compose and connect these components. Usually,
the components (or objects) represent more concrete, low-level concepts (such as
widgets and data structures) that are not subject to many changes during pro-
gram development, and that take the bulk of the CPU time of the final program.
Lua gives the final shape of the application, which will probably change a lot
during the life cycle of the product. However, unlike other glue technologies,
Lua is a full-fledged language as well. Therefore, we can use Lua not only to

xiii

Property of lan Bloss <ianlinkcd@gmail.com>

Xiv Preface

glue components, but also to adapt and reshape them, and to create whole new
components.

Of course, Lua is not the only scripting language around. There are other
languages that you can use for more or less the same purposes. But Lua offers
a set of features that makes it your best choice for many tasks and gives it a
unique profile:

Extensibility: Lua’s extensibility is so remarkable that many people regard Lua
not as a language, but as a kit for building domain-specific languages. Lua
has been designed from scratch to be extended, both through Lua code and
through external C code. As a proof of concept, Lua implements most of
its own basic functionality through external libraries. It is really easy to
interface Lua with C/C++, and Lua has been used integrated with several
other languages as well, such as Fortran, Java, Smalltalk, Ada, C#, and
even with other scripting languages, such as Perl and Ruby.

Simplicity: Lua is a simple and small language. It has few (but powerful)
concepts. This simplicity makes Lua easy to learn and contributes to its
small size. Its complete distribution (source code, manual, plus binaries
for some platforms) fits comfortably in a floppy disk.

Efficiency: Lua has a quite efficient implementation. Independent benchmarks
show Lua as one of the fastest languages in the realm of scripting (inter-
preted) languages.

Portability: When we talk about portability, we are not talking about running
Lua both on Windows and on Unix platforms. We are talking about run-
ning Lua on all platforms we have ever heard about: PlayStation, XBox,
Mac OS-9 and OS X, BeOS, QUALCOMM Brew, MS-DOS, IBM main-
frames, RISC OS, Symbian OS, PalmOS, ARM processors, Rabbit proces-
sors, plus of course all flavors of Unix and Windows. The source code for
each of these platforms is virtually the same. Lua does not use conditional
compilation to adapt its code to different machines; instead, it sticks to
the standard ANSI (ISO) C. This way, you do not usually need to adapt it
to a new environment: if you have an ANSI C compiler, you just have to
compile Lua, out of the box.

Audience

Lua users typically fall into three broad groups: those that use Lua already
embedded in an application program, those that use Lua stand alone, and those
that use Lua and C together.

Many people use Lua embedded in an application program, such as CGILua
(for building dynamic Web pages) or a game. These applications use the Lua—
C API to register new functions, to create new types, and to change the behavior
of some language operations, configuring Lua for their specific domains. Fre-
quently, the users of such applications do not even know that Lua is an inde-
pendent language adapted for a particular domain; for instance, CGILua users

Property of lan Bloss <ianlinkcd@gmail.com>

XV

tend to think of Lua as a language specifically designed for the Web; players of
a specific game may regard Lua as a language exclusive to that game.

Lua is useful also as a stand-alone language, not only for text-processing
and one-shot little programs, but increasingly for medium-to-large projects, too.
For such uses, the main functionality of Lua comes from libraries. The stan-
dard libraries offer pattern matching and other functions for string handling.
(We may regard the stand-alone language as the embedding of Lua into the
domain of string and text-file manipulation.) As Lua improves its support for li-
braries, there has been a proliferation of external packages. The Kepler project
(http://www.keplerproject.org), for instance, is a Web development platform
for Lua that offers packages for page generation, database access, LDAP, XML,
and SOAP. The LuaForge site (http://www.luaforge.net) offers a focal point
for many Lua packages.

Finally, there are those programmers that work on the other side of the
bench, writing applications that use Lua as a C library. Those people will
program more in C than in Lua, although they need a good understanding of
Lua to create interfaces that are simple, easy to use, and well integrated with
the language.

This book has much to offer to all these people. The first part covers the
language itself, showing how we can explore all its potential. We focus on
different language constructs and use numerous examples to show how to use
them for practical tasks. Some chapters in this part cover basic concepts, such
as control structures, but there are also advanced topics, such as iterators and
coroutines.

The second part is entirely devoted to tables, the sole data structure in Lua.
Its chapters discuss data structures, persistence, packages, and object-oriented
programming. There we will unveil the real power of the language.

The third part presents the standard libraries. This part is particularly
useful for those that use Lua as a stand-alone language, although many other
applications also incorporate all or part of the standard libraries. This part
devotes one chapter to each standard library: the mathematical library, the table
library, the string library, the I/O library, the operating system library, and the
debug library.

Finally, the last part of the book covers the API between Lua and C, for those
that use C to get the full power of Lua. This part necessarily has a flavor quite
different from the rest of the book. There we will be programming in C, not
in Lua; therefore, we will be wearing a different hat. For some readers, the
discussion of the C API may be of marginal interest; for others, it may be the
most relevant part of this book.

About the Second Edition

This book is an updated and expanded version of the first edition of Program-
ming in Lua (also known as the PiL book). Although the book structure is virtu-
ally the same, this new edition has substantial new material.

Property of lan Bloss <ianlinkcd@gmail.com>

xvi Preface

First, I have updated the whole book to Lua 5.1. Of particular relevance is
the chapter about modules and packages, which was mostly rewritten. I also
rewrote several examples to show how to benefit from the new features offered
by Lua 5.1. Nevertheless, I clearly marked features absent from Lua 5.0, so you
can use the book for that version too.

Second, there are several new examples. These examples cover graph rep-
resentation, tab expansion and compression, an implementation for tuples, and
more.

Third, there are two complete new chapters. One is about how to use multiple
states and multiple threads from C; it includes a nice example of how to imple-
ment a multi-process facility for Lua. The other is about memory management
and how to interact with memory allocation and garbage collection.

After the release of the first edition of Programming in Lua, several publish-
ers contacted us showing interest in a second edition. In the end, however, we
decided to self publish this second edition, as we did with the first one. Despite
the limited marketing, this avenue brings several benefits: we have total con-
trol over the book contents, we have freedom to choose when to release another
edition, we can ensure that the book does not go out of print, and we keep the
full rights to offer the book in other forms.

Other Resources

The reference manual is a must for anyone who wants to really learn a language.
This book does not replace the Lua reference manual. Quite the opposite, they
complement each other. The manual only describes Lua. It shows neither
examples nor a rationale for the constructs of the language. On the other hand,
it describes the whole language; this book skips over seldom-used dark corners of
Lua. Moreover, the manual is the authoritative document about Lua. Wherever
this book disagrees with the manual, trust the manual. To get the manual and
more information about Lua, visit the Lua site at http://www.lua.org.

You can also find useful information at the Lua users site, kept by the
community of users at http://lua-users.org. Among other resources, it offers
a tutorial, a list of third-party packages and documentation, and an archive of
the official Lua mailing list. You should check also the book’s web page:

http://www.inf.puc-rio.br/ roberto/pil2/

There you can find updated errata, code for some of the examples presented in
the book, and some extra material.

This book describes Lua 5.1, although most of its contents also apply to
Lua 5.0. The few differences between Lua 5.1 and Lua 5.0 are clearly marked in
the text. If you are using a more recent version, check the corresponding manual
for occasional differences between versions. If you are using a version older than
5.0, this is a good time to upgrade.

Property of lan Bloss <ianlinkcd@gmail.com>

Xvii

A Few Typographical Conventions

The book encloses “literal strings” between double quotes and single charac-
ters, like ‘a’, between single quotes. Strings that are used as patterns are also
enclosed between single quotes, like ‘[%w_]1*". The book uses a typewriter font
both for little chunks of code and for identifiers. Larger chunks of code are
shown in display style:

—-- program "Hello World"
print ("Hello World") --> Hello World

The notation --> shows the output of a statement or, occasionally, the result of
an expression:

print (10) --> 10
13 + 3 --> 16

Because a double hyphen (--) starts a comment in Lua, there is no problem
if you include these annotations in your programs. Finally, the book uses the
notation <--> to indicate that something is equivalent to something else:

this <-=> that

That is, it makes no difference to Lua whether you write this or that.

Acknowledgments

This book would be impossible without the help of several friends and institu-
tions. As always, Luiz Henrique de Figueiredo and Waldemar Celes, Lua co-
developers, offered all kinds of help.

Gavin Wraith, André Carregal, Asko Kauppi, Brett Kapilik, John D. Rams-
dell, and Edwin Moragas reviewed drafts of this book and provided invaluable
suggestions.

Lightning Source, Inc. proved a reliable and efficient option for printing and
distributing the book. Without them, the option of self-publishing the book
would probably not be an option.

Antonio Pedro, from Dimaquina, patiently endured my shifting opinions and
produced the right cover design.

Norman Ramsey kindly provided useful insights about the best way to pub-
lish this book.

I also would like to thank PUC-Rio and CNPq for their continuous support
to my work.

Finally, I must express my deep gratitude to Noemi Rodriguez, for illumining
my life.

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

Part |
The Language

Property of lan Bloss <ianlinkcd@gmail.com>

Getting Started

To keep with the tradition, our first program in Lua just prints “Hello World™:
print ("Hello World")

If you are using the stand-alone Lua interpreter, all you have to do to run your
first program is to call the interpreter —usually named 1ua— with the name of
the text file that contains your program. If you write the above program in a file
hello.lua, the following command should run it:

% lua hello.lua

As a more complex example, the next program defines a function to compute
the factorial of a given number, then asks the user for a number and prints its
factorial:

-— defines a factorial function
function fact (n)
if n == 0 then
return 1
else
return n * fact(n-1)
end
end

print("enter a number:")
a = io.read("*number") -- read a number
print(fact(a))

Property of lan Bloss <ianlinkcd@gmail.com>

4 Chapter 1 Getting Started

If you are using Lua embedded in an application, such as CGILua or IUPLua,
you may need to refer to the application manual (or to a “local guru”) to learn
how to run your programs. Nevertheless, Lua is still the same language; most
things that we will see here are valid regardless of how you are using Lua. I rec-
ommend that you start your study of Lua by using the stand-alone interpreter
(1ua) to run your first examples and experiments.

1.1 Chunks

Each piece of code that Lua executes, such as a file or a single line in interac-
tive mode, is called a chunk. A chunk is simply a sequence of commands (or
statements).

Lua needs no separator between consecutive statements, but you can use
a semicolon if you wish. My personal convention is to use semicolons only to
separate two or more statements written in the same line. Line breaks play no
role in Lua’s syntax; for instance, the following four chunks are all valid and
equivalent:

a=1
b = ax2
a=1;
b = ax2;

a=1; b= ax2

I
e
o

a = ax2 -- ugly, but valid

A chunk may be as simple as a single statement, such as in the “Hello World”
example, or it may be composed of a mix of statements and function definitions
(which are actually assignments, as we will see later), such as the factorial
example. A chunk may be as large as you wish. Because Lua is used also as a
data-description language, chunks with several megabytes are not uncommon.
The Lua interpreter has no problems at all with large chunks.

Instead of writing your program to a file, you may run the stand-alone
interpreter in interactive mode. If you call 1lua without any arguments, you
will get its prompt:

Lua 5.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio
>

Thereafter, each command that you type (such as print "Hello World") executes
immediately after you enter it. To exit the interactive mode and the inter-
preter, just type the end-of-file control character (ctrl-D in Unix, ctrl-Z in
DOS/Windows), or call the exit function, from the Operating System library —
you have to type os.exit ().

In interactive mode, Lua usually interprets each line that you type as a
complete chunk. However, if it detects that the line does not form a complete

Property of lan Bloss <ianlinkcd@gmail.com>

1.2 Some Lexical Conventions 5

chunk, it waits for more input, until it has a complete chunk. This way you
can enter a multi-line definition, such as the factorial function, directly in
interactive mode. However, it is usually more convenient to put such definitions
in a file, and then call Lua to run this file.

You may use the -i option to instruct Lua to start an interactive session after
running the given chunk. A command line like

% lua -i prog

will run the chunk in file prog and then prompt you for interaction. This is
especially useful for debugging and manual testing. At the end of this chapter
we will see other options for the stand-alone interpreter.

Another way to run chunks is with the dofile function, which immediately
executes a file. For instance, suppose you have a file 1ib1.1ua with the following
code:

function norm (x, y)
return (x"2 + y~2)70.5
end

function twice (x)
return 2%*x
end

Then, in interactive mode, you can type

> dofile("1libl.lua") —-- load your library
> n = norm(3.4, 1.0)
> print (twice(n)) --> 7.0880180586677

The dofile function is useful also when you are testing a piece of code. You
may work with two windows: one is a text editor with your program (in a file
prog.lua, say) and the other is a console running Lua in interactive mode. After
saving a modification in your program, you execute dofile("prog.lua") in the
Lua console to load the new code; then you can exercise the new code, calling its
functions and printing the results.

1.2 Some Lexical Conventions

Identifiers in Lua can be any string of letters, digits, and underscores, not
beginning with a digit; for instance

i j i10 _ij

aSomewhatLongName _INPUT
You should avoid identifiers starting with an underscore followed by one or more
upper-case letters (e.g., _VERSION); they are reserved for special uses in Lua.
Usually, I reserve the identifier _ (a single underscore) for dummy variables.

In Lua, the concept of what a letter is dependents on the locale. With a proper
locale, you can use variable names such as indice or agdo. However, such names

Property of lan Bloss <ianlinkcd@gmail.com>

6 Chapter 1 Getting Started

will make your program unsuitable to run in systems that do not support that
locale.
The following words are reserved; we cannot use them as identifiers:

and break do else elseif
end false for function if

in local nil not or
repeat return then true until
while

Lua is case-sensitive: and is a reserved word, but And and AND are two other
different identifiers.

A comment starts anywhere with a double hyphen (--) and runs until the
end of the line. Lua also offers block comments, which start with --[[and run
until the next]J].! A common trick, when we want to comment out a piece of
code, is to enclose the code between --[[and --11], like here:

--[L

print (10) -- no action (comment)

--11]
To reactivate the code, we add a single hyphen to the first line:

-—-[L
print (10) --> 10
--11

In the first example, the —- in the last line is still inside the block comment. In
the second example, the sequence --- [[starts an ordinary, single-line comment,
instead of a block comment. So, the first and the last lines become independent
comments. In this case, the print is outside comments.

1.3 Global Variables

Global variables do not need declarations. You simply assign a value to a global
variable to create it. It is not an error to access a non-initialized variable; you
just get the special value nil as the result:

print(b) --> nil

b =10

print(b) --> 10

Usually, you do not need to delete global variables; if your variable is going

to have a short life, you should use a local variable. But, if you need to delete a
global variable, just assign nil to it:

b = nil

print(b) --> nil

After this assignment, Lua behaves as if the variable had never been used. In
other words, a global variable is existent if (and only if) it has a non-nil value.

I Actually, block comments can be more complex than that, as we will see in Section 2.4.

Property of lan Bloss <ianlinkcd@gmail.com>

1.4 The Stand-Alone Interpreter 7

1.4 The Stand-Alone Interpreter

The stand-alone interpreter (also called lua.c due to its source file, or simply
lua due to its executable) is a small program that allows the direct use of Lua.
This section presents its main options.

When the interpreter loads a file, it ignores its first line if this line starts with
a number sign (‘#). This feature allows the use of Lua as a script interpreter in
Unix systems. If you start your script with something like

#!/usr/local/bin/lua
(assuming that the stand-alone interpreter is located at /usr/local/bin), or

#!/usr/bin/env lua

then you can call the script directly, without explicitly calling the Lua inter-
preter.
The usage of 1lua is

lua [options] [script [args]]

Everything is optional. As we have seen already, when we call 1ua without
arguments the interpreter enters in interactive mode.

The -e option allows us to enter code directly into the command line, like
here:

% lua -e "print(math.sin(12))" --> -0.53657291800043

(Unix needs the double quotes to stop the shell from interpreting the parenthe-
ses.)

The -1 option loads a library. As we saw previously, -i enters interactive
mode after running the other arguments. So, for instance, the call

% lua -i -1 a -e "x = 10"

will load the a library, then execute the assignment x=10, and finally present a
prompt for interaction.

Whenever the global variable _PROMPT is defined, 1ua uses its value as the
prompt when interacting. So, you can change the prompt with a call like this:

% lua -i -e "_PROMPT=’ lua> "
lua>

We are assuming that “}” is the shell’s prompt. In the example, the outer quotes
stop the shell from interpreting the inner quotes, which are interpreted by Lua.
More exactly, Lua receives the following command to run:

_PROMPT=’ 1lua> °’

This assigns the string “ 1ua> ” to the global variable _PROMPT.

Property of lan Bloss <ianlinkcd@gmail.com>

8 Chapter 1 Getting Started

In interactive mode, you can print the value of any expression by writing a
line that starts with an equal sign followed by the expression:

> = math.sin(3) --> 0.14112000805987
> a = 30
> = a --> 30

This feature helps to use Lua as a calculator.

Before running its arguments, 1ua looks for an environment variable named
LUA_INIT. If there is such a variable and its content is @filename, then 1lua runs
the given file. If LUA_INIT is defined but does not start with ‘@’, then 1ua assumes
that it contains Lua code and runs it. LUA_INIT gives us great power when
configuring the stand-alone interpreter, because we have the full power of Lua
in the configuration. We can pre-load packages, change the prompt and the path,
define our own functions, rename or delete functions, and so on.

A script can retrieve its arguments in the global variable arg. In a call like

% lua script a b ¢

lua creates the table arg with all the command-line arguments, before running
the script. The script name goes into index 0; its first argument (“a” in the
example), goes to index 1, and so on. Preceding options go to negative indices,
as they appear before the script. For instance, in the call

% lua -e "sin=math.sin" script a b

lua collects the arguments as follows:

arg[-3] = "lua"

arg[-2] = "-e"

arg[-1] = "sin=math.sin"
arg[0] = "script"

arg[1] = "a"

arg[2] = "b"

More often than not, the script uses only the positive indices (arg[1] and arg[2],
in the example).

In Lua 5.1, a script can also retrieve its arguments through the vararg
syntax. In the main body of a script, the expression ... (three dots) results
in the arguments to the script. We will discuss the vararg syntax in Section 5.2.

Property of lan Bloss <ianlinkcd@gmail.com>

Types and Values

Lua is a dynamically typed language. There are no type definitions in the
language; each value carries its own type.

There are eight basic types in Lua: nil, boolean, number, string, userdata,
function, thread, and table. The type function gives the type name of a given
value:

print (type("Hello world")) --> string

print (type(10.4%3)) -=> number
print (type(print)) --> function
print (type(type)) --> function
print (type(true)) --> boolean
print (type(nil)) --> nil
print (type (type(X))) --> string

The last line will result in “string” no matter the value of X, because the result
of type is always a string.

Variables have no predefined types; any variable may contain values of any
type:

print(type(a)) --> nil (’a’ is not initialized)
a =10

print(type(a)) --> number

a = "a string!!"

print(type(a)) --> string

a = print -- yes, this is valid!

a(type(a)) --> function

Property of lan Bloss <ianlinkcd@gmail.com>

10 Chapter 2 Types and Values

Notice the last two lines: functions are first-class values in Lua; so, we can
manipulate them like any other value. (More about this facility in Chapter 6.)

Usually, when you use a single variable for different types, the result is
messy code. However, sometimes the judicious use of this facility is helpful,
for instance in the use of nil to differentiate a normal return value from an
abnormal condition.

2.1 Nil

Nil is a type with a single value, nil, whose main property is to be different from
any other value. As we have seen, a global variable has a nil value by default,
before its first assignment, and you can assign nil to a global variable to delete
it. Lua uses nil as a kind of non-value, to represent the absence of a useful
value.

2.2 Booleans

The boolean type has two values, false and true, which represent the tradi-
tional boolean values. However, booleans do not hold a monopoly of condition
values: in Lua, any value may represent a condition. Conditionals (such as the
ones in control structures) consider both false and nil as false and anything else
as true. Beware that, unlike some other scripting languages, Lua considers both
zero and the empty string as true in conditional tests.

2.3 Numbers

The number type represents real (double-precision floating-point) numbers. Lua
has no integer type, as it does not need it. There is a widespread misconception
about floating-point arithmetic errors; some people fear that even a simple
increment can go weird with floating-point numbers. The fact is that, when you
use a double to represent an integer, there is no rounding error at all (unless
the number is greater than 10'*). Specifically, a Lua number can represent
any 32-bit integer without rounding problems. Moreover, most modern CPUs
do floating-point arithmetic as fast as (or even faster than) integer arithmetic.

Nevertheless, it is easy to compile Lua so that it uses another type for
numbers, such as longs or single-precision floats. This is particularly useful
for platforms without hardware support for floating point. See file 1uaconf.h in
the distribution for detailed instructions.

We can write numeric constants with an optional decimal part, plus an
optional decimal exponent. Examples of valid numeric constants are:

4 0.4 4.57e-3 0.3e12 5e+20

Property of lan Bloss <ianlinkcd@gmail.com>

2.4 Strings 11

2.4 Strings

Strings in Lua have the usual meaning: a sequence of characters. Lua is
eight-bit clean and its strings may contain characters with any numeric code,
including embedded zeros. This means that you can store any binary data into
a string.

Strings in Lua are immutable values. You cannot change a character inside
a string, as you may in C; instead, you create a new string with the desired
modifications, as in the next example:

a = "one string"

b = string.gsub(a, "one", "another") -- change string parts
print(a) --> one string

print(b) --> another string

Strings in Lua are subject to automatic memory management, like all other
Lua objects (tables, functions, etc.). This means that you do not have to worry
about allocation and deallocation of strings; Lua handles this for you. A string
may contain a single letter or an entire book. Lua handles long strings quite
efficiently. Programs that manipulate strings with 100K or 1M characters are
not unusual in Lua.

We can delimit literal strings by matching single or double quotes:

a = "a line"
b = ’another line’

As a matter of style, you should use always the same kind of quotes (single or
double) in a program, unless the string itself has quotes; then you use the other
quote, or escape these quotes with backslashes. Strings in Lua can contain the
following C-like escape sequences:

\a bell

\b back space

\f form feed

\n newline

\r carriage return
\t horizontal tab
\v vertical tab

\\ Dbackslash

\" double quote
\’ single quote

The following examples illustrate their use:

> print("one line\nnext line\n\"in quotes\", ’in quotes’")
one line

next line

"in quotes", ’in quotes’

> print(’a backslash inside quotes: \’\\\’’)
a backslash inside quotes: ’\’

Property of lan Bloss <ianlinkcd@gmail.com>

12 Chapter 2 Types and Values

> print("a simpler way: ’\\’")
a simpler way: ’\’

We can specify a character in a string also by its numeric value through
the escape sequence \ddd, where ddd is a sequence of up to three decimal
digits. As a somewhat complex example, the two literals "alo\n123\"" and
’\9710\10\04923"’ have the same value, in a system using ASCII: 97 is the
ASCII code for ‘a’, 10 is the code for newline, and 49 is the code for the digit
‘1. (In this example we must write 49 with three digits, as \049, because it is
followed by another digit; otherwise Lua would read the number as 492.)

We can delimit literal strings also by matching double square brackets, as
we do with long comments. Literals in this bracketed form may run for several
lines and do not interpret escape sequences. Moreover, this form ignores the first
character of the string when this character is a newline. This form is especially
convenient for writing strings that contain program pieces, as in the following
example:

page = [[
<html>
<head>
<title>An HTML Page</title>
</head>
<body>
Lua
</body>
</html>
1]

write(page)

Sometimes, you may want to enclose a piece of code containing something
like a=b[c[i]] (notice the 1] in this code). Or you may need to enclose some
code that already has some code commented out. To handle such cases, you can
add any number of equal signs between the two open brackets, as in [===[.2
After this change, the literal string ends only at the next closing brackets with
the same number of equal signs in between (]===], in our example). Pairs
of brackets with a different number of equal signs are simply ignored. By
choosing an appropriate number of signs, you can enclose any literal string
without having to add escapes into it.

This same facility is valid for comments, too. For instance, if you start a long
comment with -- [=[, it extends until the next 1=]. This facility allows you easily
to comment out a piece of code that contains parts already commented out.

Lua provides automatic conversions between numbers and strings at run
time. Any numeric operation applied to a string tries to convert the string to a
number:

2This facility is new in Lua 5.1.

Property of lan Bloss <ianlinkcd@gmail.com>

2.5 Tables 13

print("10" + 1) --> 11

print("10 + 1") --=> 10 + 1

print("-5.3e-10"*"2") --> -1.06e-09

print ("hello" + 1) -- ERROR (cannot convert "hello")

Lua applies such coercions not only in arithmetic operators, but also in other
places that expect a number.

Conversely, whenever Lua finds a number where it expects a string, it con-
verts the number to a string:

print (10 .. 20) --> 1020

(The .. is the string concatenation operator in Lua. When you write it right
after a numeral, you must separate them with a space; otherwise, Lua thinks
that the first dot is a decimal point.)

Today we are not sure that these automatic coercions were a good idea in the
design of Lua. As a rule, it is better not to count on them. They are handy in
a few places, but add complexity to the language and sometimes to programs
that use them. After all, strings and numbers are different things, despite these
conversions. A comparison like 10=="10" is false, because 10 is a number and
“10” is a string. If you need to convert a string to a number explicitly, you can use
the function tonumber, which returns nil if the string does not denote a proper
number:

line = io.read() -- read a line
n = tonumber(line) -- try to convert it to a number
if n == nil then
error(line .. " is not a valid number")
else
print (n*2)
end

To convert a number to a string, you can call the function tostring, or
concatenate the number with the empty string:

print(tostring(10) == "10") --> true
print(10 .. "" == "10") -=> true

Such conversions are always valid.
In Lua 5.1, you can get the length of a string using the prefix operator #
(called the length operator):

a = "hello"
print (#a) --> 5
print (#"good\Obye") --> 8

2.5 Tables

The table type implements associative arrays. An associative array is an array
that can be indexed not only with numbers, but also with strings or any other

Property of lan Bloss <ianlinkcd@gmail.com>

14 Chapter 2 Types and Values

value of the language, except nil. Moreover, tables have no fixed size; you can
add as many elements as you want to a table dynamically. Tables are the main
(in fact, the only) data structuring mechanism in Lua, and a powerful one. We
use tables to represent ordinary arrays, symbol tables, sets, records, queues, and
other data structures, in a simple, uniform, and efficient way. Lua uses tables to
represent modules, packages, and objects as well. When we write io.read, we
mean “the read function from the io module”. For Lua, this means “index the
table io using the string “read” as the key”.

Tables in Lua are neither values nor variables; they are objects. If you are
familiar with arrays in Java or Scheme, then you have a fair idea of what I
mean. You may think of a table as a dynamically allocated object; your program
manipulates only references (or pointers) to them. There are no hidden copies or
creation of new tables behind the scenes. Moreover, you do not have to declare a
table in Lua; in fact, there is no way to declare one. You create tables by means
of a constructor expression, which in its simplest form is written as {}:

a={} -- create a table and store its reference in ’a’
k= "x"

alk] = 10 -- new entry, with key="x" and value=10

a[20] = "great" -- new entry, with key=20 and value="great"
print(a["x"]) --> 10

k=20

print(alk]) --> "great"

al"x"] = a["x"] + 1 -- increments entry "x"

print(a["x"]) -—> 11

A table is always anonymous. There is no fixed relationship between a variable
that holds a table and the table itself:

a={}

a["x"] = 10

b =a -- b’ refers to the same table as ’a’
print(b["x"]) -=> 10

b["x"] = 20

print(al["x"]1) -—> 20

a = nil -- only ’b’ still refers to the table
b = nil -- no references left to the table

When a program has no references to a table left, Lua’s garbage collector will
eventually delete the table and reuse its memory.
Each table may store values with different types of indices, and it grows as

needed to accommodate new entries:

a={} -- empty table

—-- create 1000 new entries

for i=1,1000 do a[i] = i*2 end

print(al[9]) --> 18

al"x"] = 10

print(al["x"]) --> 10

print(al["y"]) --> nil

Property of lan Bloss <ianlinkcd@gmail.com>

2.5 Tables 15

Notice the last line: like global variables, table fields evaluate to nil when they
are not initialized. Also like global variables, you can assign nil to a table field
to delete it. This is not a coincidence: Lua stores global variables in ordinary
tables. We will discuss this subject further in Chapter 14.

To represent records, you use the field name as an index. Lua supports this
representation by providing a.name as syntactic sugar for a["name"]. So, we
could write the last lines of the previous example in a cleaner manner as follows:

a.x = 10 -- same as a["x"] = 10
print(a.x) -- same as print(a["x"])
print(a.y) -- same as print(a["y"])

For Lua, the two forms are equivalent and can be intermixed freely; for a human
reader, each form may signal a different intention. The dot notation clearly
shows that we are using the table as a record, where we have some set of fixed,
pre-defined keys. The string notation gives the idea that the table may have any
string as a key, and that for some reason we are manipulating that specific key.

A common mistake for beginners is to confuse a.x with a[x]. The first form

represents a["x"], that is, a table indexed by the string “x”. The second form is
a table indexed by the value of the variable x. See the difference:

a={}

x = "y"

alx] = 10 -- put 10 in field "y"
print(alx]) --> 10 —-- value of field "y"

print(a.x) -=> nil -- value of field "x" (undefined)
print(a.y) --> 10 -- value of field "y"

To represent a conventional array or a list, you simply use a table with
integer keys. There is neither a way nor a need to declare a size; you just
initialize the elements you need:

-- read 10 lines storing them in a table
a={}
for i=1,10 do
ali] = io.read()
end

Since you can index a table with any value, you can start the indices of an
array with any number that pleases you. However, it is customary in Lua to
start arrays with 1 (and not with 0, as in C) and several facilities stick to this
convention.

In Lua 5.1, the length operator ‘4’ returns the last index (or the size) of an
array or list.®> For instance, you could print the lines read in the last example
with the following code:

3Lua 5.0 did not support the length operator. You can get a somewhat similar result with the
function table.getn.

Property of lan Bloss <ianlinkcd@gmail.com>

16 Chapter 2 Types and Values

—-- print the lines

for i=1, #a do
print(alil)

end

The length operator provides several common Lua idioms:

print(al#al) -— prints the last value of list ’a’
a[#al] = nil -- removes this last value
al#a+1l] = v -— appends ’v’ to the end of the list

As an example, the following code shows an alternative way to read the first 10
lines of a file:

a={}
for i=1,10 do

a[#a+1] = io.read()
end

Because an array is actually a table, the concept of its “size” can be somewhat
fuzzy. For instance, what should be the size of the following array?

a={}
a[10000] =1

Remember that any non-initialized index results in nil; Lua uses this value as
a sentinel to find the end of the array. When the array has holes —nil elements
inside it —the length operator may assume any of these nil elements as the end
marker. Of course, this unpredictability is hardly what you want. Therefore,
you should avoid using the length operator on arrays that may contain holes.
Most arrays cannot contain holes (e.g., in our previous example a file line cannot
be nil) and, therefore, most of the time the use of the length operator is safe. If
you really need to handle arrays with holes up to their last index, you can use
the function table.maxn,* which returns the largest numerical positive index of
a table:

a={}
a[10000] =1
print(table.maxn(a)) --> 10000

Because we can index a table with any type, when indexing a table we
have the same subtleties that arise in equality. Although we can index a
table both with the number 0 and with the string “0”, these two values are
different (according to equality) and therefore denote different entries in a table.
Similarly, the strings “+1”, “01”, and “1” all denote different entries. When in
doubt about the actual types of your indices, use an explicit conversion to be
sure:

4This function is new in Lua 5.1.

Property of lan Bloss <ianlinkcd@gmail.com>

2.6 Functions 17

i=10; j = "10"; k = "+10"

a =1}

ali]l = "one value"

alj] = "another value"

alk] = "yet another value"

print(aljl) --> another value
print (alk]) --> yet another value
print(altonumber(j)]) --> one value

print (a[tonumber(k)]) --> one value

You can introduce subtle bugs in your program if you do not pay attention to this
point.

2.6 Functions

Functions are first-class values in Lua. This means that functions can be
stored in variables, passed as arguments to other functions, and returned as
results. Such facilities give great flexibility to the language: a program may
redefine a function to add new functionality, or simply erase a function to create
a secure environment when running a piece of untrusted code (such as code
received through a network). Moreover, Lua offers good support for functional
programming, including nested functions with proper lexical scoping; just wait
until Chapter 6. Finally, first-class functions play a key role in Lua’s object-
oriented facilities, as we will see in Chapter 16.

Lua can call functions written in Lua and functions written in C. All the
standard libraries in Lua are written in C. They comprise functions for string
manipulation, table manipulation, I/O, access to basic operating system facili-
ties, mathematical functions, and debugging. Application programs may define
other functions in C.

We will discuss Lua functions in Chapter 5 and C functions in Chapter 26.

2.7 Userdata and Threads

The userdata type allows arbitrary C data to be stored in Lua variables. It has
no predefined operations in Lua, except assignment and equality test. Userdata
are used to represent new types created by an application program or a library
written in C; for instance, the standard I/O library uses them to represent files.
We will discuss more about userdata later, when we get to the C APL.

We will explain the thread type in Chapter 9, where we discuss coroutines.

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

Expressions

Expressions denote values. Expressions in Lua include the numeric constants
and string literals, variables, unary and binary operations, and function calls.
Expressions include also the unconventional function definitions and table con-
structors.

3.1 Arithmetic Operators

Lua supports the usual arithmetic operators: the binary ‘+’ (addition), ‘-’ (sub-
traction), ‘¥’ (multiplication), ‘/’ (division), ‘>’ (exponentiation), 4’ (modulo),® and
the unary ‘-’ (negation). All of them operate on real numbers. For instance,
x~0.5 computes the square root of x, while x~(-1/3) computes the inverse of its
cubic root.

The modulo operator is defined by the following rule:

a % b ==a - floor(a/b)*b

For integer arguments, it has the usual meaning, with the result always having
the same sign as the second argument. For real arguments, it has some extra
uses. For instance, x%1 is the fractional part of x, and so x-x%1 is its integer
part. Similarly, x-x7%0.01 is x with exactly two decimal digits:

X = math.pi
print(x - x%0.01) --> 3.14

5The modulo operation is new in Lua 5.1.

19

Property of lan Bloss <ianlinkcd@gmail.com>

20 Chapter 3 Expressions

As another example of the use of the modulo operator, suppose you want to
check whether a vehicle turning a given angle will start to backtrack. If the
angle is given in degrees, you can use the following formula:

local tolerance = 10
function isturnback (angle)

angle = angle % 360

return (math.abs(angle - 180) < tolerance)
end

This definition works even for negative angles:
print (isturnback(-180)) --> true

If we want to work with radians instead of degrees, we simply change the
constants in our function:

local tolerance = 0.17
function isturnback (angle)

angle = angle J (2*math.pi)

return (math.abs(angle - math.pi) < tolerance)
end

The operation angle?, (2*math.pi) is all we need to normalize any angle to a
value in the interval [0, 27).

3.2 Relational Operators

Lua provides the following relational operators:
< > K= >= == “~=

All these operators always result in true or false.

The operator == tests for equality; the operator ~=is the negation of equality.
We can apply both operators to any two values. If the values have different
types, Lua considers them not equal. Otherwise, Lua compares them according
to their types. Specifically, nil is equal only to itself.

Lua compares tables, userdata, and functions by reference, that is, two such
values are considered equal only if they are the very same object. For instance,
after the code

a=1{}; ax=1; ay=0
b=A{} b.x=1; b.y =0
c=a

you have that a==c but a~=b.

We can apply the order operators only to two numbers or to two strings. Lua
compares strings in alphabetical order, which follows the locale set for Lua. For
instance, with the European Latin-1 locale, we have "acai"<"agai"<"acorde".
Values other than numbers and strings can be compared only for equality (and
inequality).

Property of lan Bloss <ianlinkcd@gmail.com>

3.3 Logical Operators 21

When comparing values with different types, you must be careful: remember
that "0" is different from 0. Moreover, 2<15 is obviously true, but "2"<"15"
is false (alphabetical order). To avoid inconsistent results, Lua raises an error
when you mix strings and numbers in an order comparison, such as 2<"15".

3.3 Logical Operators

The logical operators are and, or, and not. Like control structures, all logical
operators consider both false and nil as false, and anything else as true. The
operator and returns its first argument if it is false; otherwise, it returns its
second argument. The operator or returns its first argument if it is not false;
otherwise, it returns its second argument:

print(4 and 5) -—> 5
print(nil and 13) -=> nil
print(false and 13) --> false
print(4 or 5) --> 4
print(false or 5) -->5

Both and and or use short-cut evaluation, that is, they evaluate their second
operand only when necessary. Short-cut evaluation ensures that expressions
like (type(v)=="table"and v.tag=="h1") do not cause run-time errors. (Lua
will not try to evaluate v.tag when v is not a table.)

A useful Lua idiom is x=x or v, which is equivalent to

if not x then x = v end

That is, it sets x to a default value v when x is not set (provided that x is not set
to false).

Another useful idiom is (a and b) or c (or simply a and b or c, because and
has a higher precedence than or), which is equivalent to the C expressiona?b: c,
provided that b is not false. For instance, we can select the maximum of two
numbers x and y with a statement like

max = (x > y) and x or y

When x>y, the first expression of the and is true, so the and results in its second

expression (x), which is always true (because it is a number), and then the or

expression results in the value of its first expression, x. When x>y is false, the

and expression is false and so the or results in its second expression, which is y.
The operator not always returns true or false:

print(not nil) -=> true
print(not false) -=> true
print(not 0) --> false
print(not not nil) --> false

Property of lan Bloss <ianlinkcd@gmail.com>

22 Chapter 3 Expressions

3.4 Concatenation

Lua denotes the string concatenation operator by .. (two dots). If any of its
operands is a number, Lua converts this number to a string:

print("Hello " .. "World") --> Hello World
print(0 .. 1) --> 01

Remember that strings in Lua are immutable values. The concatenation opera-
tor always creates a new string, without any modification to its operands:

a = "Hello"
print(a .. " World") --> Hello World
print(a) --> Hello

3.5 Precedence

Operator precedence in Lua follows the table below, from the higher to the lower
priority:

not # - (unary)

* / h

+ -

< > <= >= "= ==
and

or

J

All binary operators are left associative, except for ‘~’ (exponentiation) and °. .
(concatenation), which are right associative. Therefore, the following expres-
sions on the left are equivalent to those on the right:

ati < b/2+1 <==> (a+i) < ((b/2)+1)
5+x"2%8 <> 5+((x~2)*8)
a<yandy<=z <-=> (a < y) and (y <= z)
-x"2 <-=> -(x"2)

X"y z <-=> x"(y~2)

When in doubt, always use explicit parentheses. It is easier than looking it up
in the manual, and you will probably have the same doubt when you read the
code again.

3.6 Table Constructors

Constructors are expressions that create and initialize tables. They are a dis-
tinctive feature of Lua and one of its most useful and versatile mechanisms.

The simplest constructor is the empty constructor, {}, which creates an
empty table; we have seen it before. Constructors also initialize arrays (called
also sequences or lists). For instance, the statement

Property of lan Bloss <ianlinkcd@gmail.com>

3.6 Table Constructors 23

days = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"}

will initialize days[1] with the string “Sunday” (the first element of the construc-
tor has index 1, not 0), days[2] with “Monday”, and so on:

print(days[4]) --> Wednesday

Lua also offers a special syntax to initialize a table record-like, as in the next
example:

a = {x=10, y=20}
This previous line is equivalent to these commands:
a = {}; a.x=10; a.y=20

No matter what constructor we use to create a table, we can always add fields
to and remove fields from the result:
w = {x=0, y=0, label="console"}
x = {math.sin(0), math.sin(1), math.sin(2)}

w[1] = "another field" -- add key 1 to table ’w’
x.f=w -- add key "f" to table ’x’
print (w["x"]) -—> 0

print(w[1]) --> another field
print(x.£f[1]) --> another field

w.x = nil -- remove field "x"

That is, all tables are created equal; constructors affect only their initialization.
Every time Lua evaluates a constructor, it creates and initializes a new table.

So, we can use tables to implement linked lists:

list = nil

for line in io.lines() do

list = {next=list, value=line}

end
This code reads lines from the standard input and stores them in a linked list,
in reverse order. Each node in the list is a table with two fields: value, with the
line contents, and next, with a reference to the next node. The following code
traverses the list and prints its contents:

local 1 = list
while 1 do
print(1l.value)
1 = 1l.next
end
(Because we implemented our list as a stack, the lines will be printed in reverse
order.) Although instructive, we seldom use the above implementation in real
Lua programs; lists are better implemented as arrays, as we will see in Chap-
ter 11.
We can mix record-style and list-style initializations in the same constructor:

Property of lan Bloss <ianlinkcd@gmail.com>

24 Chapter 3 Expressions

polyline = {color="blue", thickness=2, npoints=4,

{x=0, y=03%,
{x=-10, y=0},
{x=-10, y=1},
{x=0, y=1}

}

The above example also illustrates how we can nest constructors to represent
more complex data structures. Each of the elements polyline[i] is a table
representing a record:

print(polyline[2].x) --> -10
print(polyline[4].y) -=>1

Those two constructor forms have their limitations. For instance, you cannot
initialize fields with negative indices, nor with string indices that are not proper
identifiers. For such needs, there is another, more general, format. In this
format, we explicitly write the index to be initialized as an expression, between
square brackets:

opnames = {[n+||] = "add", [u_n] = "S'le",
[u*u] = "mul", [u/u] = "diV"}

i=20;8="-"
{[i+0] = s, [i+1] = s..s, [i+2] = s..s..s}

print (opnames [s]) -=> sub
print(a[22]) -—> ——

This syntax is more cumbersome, but more flexible too: both the list-style and
the record-style forms are special cases of this more general syntax. The con-
structor {x=0, y=0} is equivalent to {["x"]1=0, ["y"]1=0}, and the constructor
{"r","g", "b"} is equivalent to {[1] ="r", [2] ="g", [3]="D"}.

For those that really want their arrays starting at 0, it is not too difficult to
write the following:

days = {[0]="Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"}

Now, the first value, “Sunday”, is at index 0. This zero does not affect the other
fields; “Monday” naturally goes to index 1, because it is the first list value in the
constructor; the other values follow it. Despite this facility, I do not recommend
the use of arrays starting at 0 in Lua. Most built-in functions assume that arrays
start at index 1, and therefore they will not handle such arrays correctly.

You can always put a comma after the last entry. These trailing commas are
optional, but are always valid:

a = {[1]="red", [2]="green", [3]="blue",}

Property of lan Bloss <ianlinkcd@gmail.com>

3.6 Table Constructors 25

With such flexibility, programs that generate Lua tables do not need to handle
the last element as a special case.

Finally, you can always use a semicolon instead of a comma in a constructor.
I usually reserve semicolons to delimit different sections in a constructor, for
instance to separate its list part from its record part:

{x=10, y=45; "one", "two", "three"}

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

Statements

Lua supports an almost conventional set of statements, similar to those in C
or Pascal. The conventional statements include assignment, control structures,
and procedure calls. Lua also supports some not so conventional statements,
such as multiple assignments and local variable declarations.

4.1 Assignment
Assignment is the basic means of changing the value of a variable or a table
field:

a = "hello" .. "world"
t.n=t.n + 1

Lua allows multiple assignment, where a list of values is assigned to a list of
variables in one step. Both lists have their elements separated by commas. For
instance, in the assignment

a, b =10, 2xx

the variable a gets the value 10 and b gets 2*x.

In a multiple assignment, Lua first evaluates all values and only then exe-
cutes the assignments. Therefore, we can use a multiple assignment to swap
two values, as in

X, Y=Y, X -- swap ’x’ for ’y’
alil, aljl = aljl, alil -- swap ’alil’ for ’alj]’

27

Property of lan Bloss <ianlinkcd@gmail.com>

28 Chapter 4 Statements

Lua always adjusts the number of values to the number of variables: when
the list of values is shorter than the list of variables, the extra variables receive
nil as their values; when the list of values is longer, the extra values are silently
discarded:

a, b, c=0, 1

print(a, b, c) --> 0 1 nil

a, b = a+l, b+1l, b+2 -- value of b+2 is ignored
print(a, b) -—>1 2

a, b, c=0

print(a, b, c) --> 0 nil nil

The last assignment in the above example shows a common mistake. To initial-
ize a set of variables, you must provide a value for each one:

a, b, c=0, 0,0
print(a, b, c) -->0 0 O

Actually, most of the previous examples are somewhat artificial. I seldom use
multiple assignment simply to write several unrelated assignments in one line.
A multiple assignment is not faster than its equivalent single assignments. But
often we really need multiple assignment. We already saw an example, to swap
two values. A more frequent use is to collect multiple returns from function
calls. As we will discuss in detail in Section 5.1, a function call can return
multiple values. In such cases, a single expression can supply the values for
several variables. For instance, in the assignment a, b=f () the call to f returns
two results: a gets the first and b gets the second.

4.2 Local Variables and Blocks

Besides global variables, Lua supports local variables. We create local variables
with the local statement:

j =10 -- global variable
local i =1 —-- local variable

Unlike global variables, local variables have their scope limited to the block
where they are declared. A block is the body of a control structure, the body of a
function, or a chunk (the file or string where the variable is declared):

x = 10
local i =1 -- local to the chunk

while i <= x do

local x = i*2 -- local to the while body
print(x) --> 2, 4, 6, 8,
i=1+1

end

Property of lan Bloss <ianlinkcd@gmail.com>

4.2 Local Variables and Blocks 29

if i > 20 then

local x -- local to the "then" body

x =20

print(x + 2) -- (would print 22 if test succeeded)
else

print (x) --> 10 (the global one)
end
print(x) --> 10 (the global one)

Beware that this example will not work as expected if you enter it in interactive
mode. In interactive mode, each line is a chunk by itself (unless it is not
a complete command). As soon as you enter the second line of the example
(local i=1), Lua runs it and starts a new chunk in the next line. By then, the
local declaration is already out of scope. To solve this problem, we can delimit
the whole block explicitly, bracketing it with the keywords do—end. Once you
enter the do, the command completes only at the corresponding end, so Lua
does not execute each line by itself.

These do blocks are useful also when you need finer control over the scope of
some local variables:

do

local a2 = 2x*a

local d = (b~2 - 4xa*c)"(1/2)

x1 = (-b + d)/a2

x2 = (-b - d)/a2
end -- scope of ’a2’ and ’d’ ends here
print(x1l, x2)

It is good programming style to use local variables whenever possible. Local
variables help you avoid cluttering the global environment with unnecessary
names. Moreover, the access to local variables is faster than to global ones.
Finally, a local variable usually vanishes as soon as its scope ends, allowing its
value to be freed by the garbage collector.

Lua handles local-variable declarations as statements. As such, you can
write local declarations anywhere you can write a statement. The scope of the
declared variables begins after the declaration and goes until the end of the
block. Each declaration may include an initial assignment, which works the
same way as a conventional assignment: extra values are thrown away; extra
variables get nil. If a declaration has no initial assignment, it initializes all its
variables with nil:

local a, b =1, 10
if a < b then

print(a) -->1
local a -- ’=nil’ is implicit
print(a) --> nil
end -- ends the block started at ’then’

print(a, b) -->1 10

Property of lan Bloss <ianlinkcd@gmail.com>

30 Chapter 4 Statements

A common idiom in Lua is

local foo = foo

This code creates a local variable, foo, and initializes it with the value of the
global variable foo. (The local foo becomes visible only after its declaration.)
This idiom is useful when the chunk needs to preserve the original value of foo
even if later some other function changes the value of the global foo; it also
speeds up the access to foo.

Because many languages force you to declare all local variables at the be-
ginning of a block (or a procedure), some people think it is a bad practice to
use declarations in the middle of a block. Quite the opposite: by declaring a
variable only when you need it, you seldom need to declare it without an initial
value (and therefore you seldom forget to initialize it). Moreover, you shorten
the scope of the variable, which increases readability.

4.3 Control Structures

Lua provides a small and conventional set of control structures, with if for condi-
tional execution and while, repeat, and for for iteration. All control structures
have an explicit terminator: end terminates if, for and while structures; and
until terminates repeat structures.

The condition expression of a control structure may result in any value. Lua
treats as true all values different from false and nil. (In particular, Lua treats
both that 0 and the empty string as true.)

if then else

An if statement tests its condition and executes its then-part or its else-part
accordingly. The else-part is optional.

if a < 0 then a = 0 end

if a < b then return a else return b end

if line > MAXLINES then

showpage ()
line = 0
end

To write nested ifs you can use elseif. It is similar to an else followed by an if,
but it avoids the need for multiple ends:

Property of lan Bloss <ianlinkcd@gmail.com>

4.3 Control Structures 31

if op == "+" then
r=a+b

elseif op == "-" then
r=a-b

elseif op == "*" then
r = axb

elseif op
r = a/b

else

- I / n then

error("invalid operation")
end

Because Lua has no switch statement, such chains are common.

while

As usual, Lua first tests the while condition; if the condition is false, then the
loop ends; otherwise, Lua executes the body of the loop and repeats the process.

local i =1
while a[i] do
print(alil)
i=1i+1
end

repeat

As the name implies, a repeat—until statement repeats its body until its con-
dition is true. The test is done after the body, so the body is always executed at
least once.

-- print the first non-empty input line
repeat
line = os.read()
until line "= ""
print(line)

Unlike in most other languages, in Lua the scope of a local variable declared
inside the loop includes the condition:®

local sqr = x/2
repeat
sqr = (sqr + x/sqr)/2
local error = math.abs(sqr"2 - x)
until error < x/10000 -- ’error’ still visible here

8This facility is new in Lua 5.1.

Property of lan Bloss <ianlinkcd@gmail.com>

32 Chapter 4 Statements

Numeric for

The for statement has two variants: the numeric for and the generic for.
A numeric for has the following syntax:

for var=expl,exp2,exp3 do
<something>
end

This loop will execute something for each value of var from expl to exp2, using
exp3 as the step to increment var. This third expression is optional; when
absent, Lua assumes 1 as the step value. As typical examples of such loops,
we have

for i=1,f(x) do print(i) end
for i=10,1,-1 do print(i) end

If you want a loop without an upper limit, you can use the constant math.huge:

for i=1,math.huge do
if (0.3*i"3 - 20%i"2 - 500 >= 0) then
print (i)
break
end
end

The for loop has some subtleties that you should learn in order to make good
use of it. First, all three expressions are evaluated once, before the loop starts.
For instance, in our previous example, f(x) is called only once. Second, the
control variable is a local variable automatically declared by the for statement
and is visible only inside the loop. A typical mistake is to assume that the
variable still exists after the loop ends:

for i=1,10 do print(i) end
max = i -- probably wrong! ’i’ here is global

If you need the value of the control variable after the loop (usually when you
break the loop), you must save its value into another variable:

-— find a value in a list
local found = nil
for i=1,#a do
if a[i] < O then
found = i -- save value of ’i’
break
end
end
print (found)

Third, you should never change the value of the control variable: the effect of
such changes is unpredictable. If you want to end a for loop before its normal
termination, use break (as we did in the previous example).

Property of lan Bloss <ianlinkcd@gmail.com>

4.3 Control Structures 33

Generic for

The generic for loop traverses all values returned by an iterator function:

—-- print all values of array ’a’
for i,v in ipairs(a) do print(v) end

The basic Lua library provides ipairs, a handy iterator function to traverse
an array. For each step in that loop, i gets an index, while v gets the value
associated with this index. A similar example shows how we traverse all keys of
a table:

-- print all keys of table ’t’

for k in pairs(t) do print(k) end

Despite its apparent simplicity, the generic for is powerful. With proper iter-
ators, we can traverse almost anything in a readable fashion. The standard
libraries provide several iterators, which allow us to iterate over the lines of a
file (io.lines), the pairs of a table (pairs), the entries of an array (ipairs), the
words of a string (string.gmatch), and so on. Of course, we can write our own
iterators. Although the use of the generic for is easy, the task of writing iterator
functions has its subtleties. We will cover this topic later, in Chapter 7.

The generic loop shares two properties with the numeric loop: the loop
variables are local to the loop body and you should never assign any value to
them.

Let us see a more concrete example of the use of a generic for. Suppose you
have a table with the names of the days of the week:

days = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"}

Now you want to translate a name into its position in the week. You can search
the table, looking for the given name. Frequently, however, a more efficient
approach in Lua is to build a reverse table, say revDays, that has the names as
indices and the numbers as values. This table would look like this:
revDays = {["Sunday"] = 1, ["Monday"] = 2,

["Tuesday"] = 3, ["Wednesday"] = 4,

["Thursday"] = 5, ["Friday"] = 6,

["Saturday"] = 7}

Then, all you have to do to find the order of a name is to index this reverse table:

x = "Tuesday"
print (revDays [x]) --> 3

Of course, we do not need to declare the reverse table manually. We can build it
automatically from the original one:

revDays = {}

for k,v in pairs(days) do
revDays([v] = k

end

Property of lan Bloss <ianlinkcd@gmail.com>

34 Chapter 4 Statements

The loop will do the assignment for each element of days, with the variable k

» K&

getting the key (1, 2, ...) and v the value (“Sunday”, “Monday”, ...).

4.4 break and return

The break and return statements allow us to jump out of a block.

We use the break statement to finish a loop. This statement breaks the inner
loop (for, repeat, or while) that contains it; it cannot be used outside a loop.
After the break, the program continues running from the point immediately
after the broken loop.

A return statement returns occasional results from a function or simply
finishes a function. There is an implicit return at the end of any function, so
you do not need to use one if your function ends naturally, without returning
any value.

For syntactic reasons, a break or return can appear only as the last state-
ment of a block; in other words, as the last statement in your chunk or just
before an end, an else, or an until. For instance, in the next example, break is
the last statement of the then block.

local i =1
while al[i] do

if a[i] == v then break end
i=1i+1
end

Usually, these are the places where we use these statements, because any other
statement following them would be unreachable. Sometimes, however, it may be
useful to write a return or a break in the middle of a block; for instance, you
may be debugging a function and want to avoid its execution. In such cases, you
can use an explicit do block around the statement:

function foo ()

return -—<< SYNTAX ERROR
—- ’return’ is the last statement in the next block
do return end -- 0K
<other statements>
end

Property of lan Bloss <ianlinkcd@gmail.com>

Functions

Functions are the main mechanism for abstraction of statements and expres-
sions in Lua. Functions can both carry out a specific task (what is sometimes
called procedure or subroutine in other languages) or compute and return val-
ues. In the first case, we use a function call as a statement; in the second case,
we use it as an expression:

print (8*9, 9/8)
a = math.sin(3) + math.cos(10)
print(os.date())

In both cases, we write a list of arguments enclosed in parentheses. If the
function call has no arguments, we still must write an empty list () to indicate
the call. There is a special case to this rule: if the function has one single
argument and that argument is either a literal string or a table constructor,
then the parentheses are optional:

print "Hello World" <==> print("Hello World")
dofile ’a.lua’ <-=> dofile (’a.lua’)
print [[a multi-line <-=> print([[a multi-line
message]] message]])

£{x=10, y=20} <==> f({x=10, y=20})
type{} <==> type ({})

Lua also offers a special syntax for object-oriented calls, the colon operator.
An expression like o:foo(x) is just another way to write o.foo (o, x), that is, to
call o.foo adding o as a first extra argument. In Chapter 16, we will discuss
such calls (and object-oriented programming) in more detail.

A Lua program can use functions defined both in Lua and in C (or in any
other language used by the host application). For instance, all functions from

35

Property of lan Bloss <ianlinkcd@gmail.com>

36 Chapter 5 Functions

the standard Lua library are written in C. But this fact has no relevance to Lua
programmers: when calling a function, there is no difference between functions
defined in Lua and functions defined in C.

As we have seen in other examples, a function definition has a conventional
syntax, like here:

function add (a)
local sum = 0
for i,v in ipairs(a) do
sum = sum + vV
end
return sum
end
In this syntax, a function definition has a name (add, in the previous example),
a list of parameters, and a body, which is a list of statements.

Parameters work exactly as local variables, initialized with the values of the
arguments passed in the function call. You can call a function with a number
of arguments different from its number of parameters. Lua adjusts the number
of arguments to the number of parameters, as it does in a multiple assignment:
extra arguments are thrown away; extra parameters get nil. For instance, if we
have a function like

function f(a, b) return a or b end

we will have the following mapping from arguments to parameters:

CALL PARAMETERS

£(3) a=3, b=nil

£(3, 4) a=3, b=4

£(3, 4, 5) a=3, b=4 (5 is discarded)

Although this behavior can lead to programming errors (easily spotted at run
time), it is also useful, especially for default arguments. For instance, consider
the following function, to increment a global counter:

function incCount (n)
n=nor 1
count = count + n
end

This function has 1 as its default argument; that is, the call incCount (), without
arguments, increments count by one. When you call incCount(), Lua first
initializes n with nil; the or results in its second operand and, as a result, Lua
assigns a default 1 to n.

5.1 Multiple Results

An unconventional, but quite convenient feature of Lua is that functions may
return multiple results. Several predefined functions in Lua return multiple

Property of lan Bloss <ianlinkcd@gmail.com>

5.1 Multiple Results 37

values. An example is the string.find function, which locates a pattern in a
string. This function returns two indices when it finds the pattern: the index
of the character where the pattern match starts and the one where it ends. A
multiple assignment allows the program to get both results:

s, e = string.find("hello Lua users", "Lua")
print(s, e) -—> 7 9

Functions written in Lua also can return multiple results, by listing them
all after the return keyword. For instance, a function to find the maximum
element in an array can return both the maximum value and its location:

function maximum (a)
local mi =1 —-- index of the maximum value
local m = a[mi] -- maximum value
for i,val in ipairs(a) do
if val > m then
mi = i; m = val

end
end
return m, mi
end
print (maximum({8,10,23,12,5})) --> 23 3

Lua always adjusts the number of results from a function to the circum-
stances of the call. When we call a function as a statement, Lua discards all
results from the function. When we use a call as an expression, Lua keeps only
the first result. We get all results only when the call is the last (or the only)
expression in a list of expressions. These lists appear in four constructions in
Lua: multiple assignments, arguments to function calls, table constructors, and
return statements. To illustrate all these cases, we will assume the following
definitions for the next examples:

function foo0 () end -- returns no results
function fool () return "a" end -- returns 1 result
function foo2 () return "a","b" end -- returns 2 results

In a multiple assignment, a function call as the last (or only) expression
produces as many results as needed to match the variables:

X,y = f002() -- x="a", y="b"
x = foo02() -- x="a", "b" is discarded
Xx,y,z = 10,0020 -- x=10, y="a", z="b"

If a function has no results, or not as many results as we need, Lua produces
nils for the missing values:

x,y = foo0() -- x=nil, y=nil
x,y = fool() -- x="a", y=nil
x,y,z = fo02Q) -- x="a", y="b", z=nil

Property of lan Bloss <ianlinkcd@gmail.com>

38 Chapter 5 Functions

A function call that is not the last element in the list always produces exactly
one result:

x,y = foo2(), 20 -- x="a", y=20

x,y = foo0(), 20, 30 -- x=nil, y=20, 30 is discarded

When a function call is the last (or the only) argument to another call, all
results from the first call go as arguments. We have seen examples of this
construction already, with print:

print (f000()) -—>

print (fool()) -=> a

print (foo2()) -->a b

print(foo2(), 1) -—>a 1

print(foo2() .. "x") --> ax (see next)

When the call to foo2 appears inside an expression, Lua adjusts the number of
results to one; so, in the last line, only the “a” is used in the concatenation.

The print function may receive a variable number of arguments. If we write
f(g()) and f has a fixed number of arguments, Lua adjusts the number of
results of g to the number of parameters of £, as we saw previously.

A constructor collects all results from a call, without any adjustments:

t = {foo00} --t = {} (an empty table)
t = {foo1 ()} — t = {"a"}
t = {foo20)%} — t = {"a", "p"}

As always, this behavior happens only when the call is the last in the list; calls
in any other position produce exactly one result:

t = {foo0(), foo2(), 4} -- t[1] = nil, t[2] = "a", t[3] = 4
Finally, a statement like return £ () returns all values returned by £:

function foo (i)
if 1 == 0 then return foo0()

elseif i == 1 then return fool()
elseif i == 2 then return foo2()
end

end

print (foo(1)) -—> a

print (foo(2)) -—>a b

print (f00(0)) -- (no results)

print (foo(3)) -- (no results)

You can force a call to return exactly one result by enclosing it in an extra
pair of parentheses:

print ((f000())) --> nil
print ((foo1())) --> a
print ((foo02())) --> a

Property of lan Bloss <ianlinkcd@gmail.com>

5.2 Variable Number of Arguments 39

Beware that a return statement does not need parentheses around the returned
value; any pair of parentheses placed there counts as an extra pair. So, a
statement like return (f (x)) always returns one single value, no matter how
many values f returns. Maybe this is what you want, maybe not.

A special function with multiple returns is unpack. It receives an array and
returns as results all elements from the array, starting from index 1:

print (unpack{10,20,303}) --> 10 20 30
a,b = unpack{10,20,30} -- a=10, b=20, 30 is discarded

An important use for unpack is in a generic call mechanism. A generic call
mechanism allows you to call any function, with any arguments, dynamically.
In ANSI C, for instance, there is no way to code a generic call. You can declare a
function that receives a variable number of arguments (with stdarg.h) and you
can call a variable function, using pointers to functions. However, you cannot
call a function with a variable number of arguments: each call you write in C
has a fixed number of arguments, and each argument has a fixed type. In Lua,
if you want to call a variable function £ with variable arguments in an array a,
you simply write this:

f (unpack(a))

The call to unpack returns all values in a, which become the arguments to £. For
instance, if we execute

f
a

string.find
{"hello" s ||11|v}

then the call £ (unpack(a)) returns 3 and 4, the same results as returned by the
static call string.find("hello", "11").

Although the predefined unpack function is written in C, we could write it
also in Lua, using recursion:

function unpack (t, i)
i=1ior1
if t[i] then
return t[i], unpack(t, i + 1)
end
end

The first time we call it, with a single argument, i gets 1. Then the function
returns t[1] followed by all results from unpack(t, 2), which in turn returns
t[2] followed by all results from unpack(t, 3), and so on, until the last non-nil
element.

5.2 Variable Number of Arguments

Some functions in Lua receive a variable number of arguments. For instance,
we have already called print with one, two, and more arguments. Although

Property of lan Bloss <ianlinkcd@gmail.com>

40 Chapter 5 Functions

print is defined in C, we can define functions that accept a variable number of
arguments in Lua, too.

As a simple example, the following function returns the summation of all its
arguments:

function add (...)
local s =0
for i, v in ipairs{...} do
s =8 +vV
end
return s
end

print(add(3, 4, 10, 25, 12)) --> 54

The three dots (...) in the parameter list indicate that the function accepts a
variable number of arguments. When this function is called, all its arguments
are collected internally; we call these collected arguments the varargs (variable
arguments) of the function. A function can access its varargs using again the
three dots, now as an expression. In our example, the expression {. ..} results
in an array with all collected arguments. The function then traverses the array
to add its elements.

The expression ... behaves like a multiple return function returning all
varargs of the current function. For instance, the command

local a, b = ...

creates two local variables with the values of the first two optional arguments
(or nil if there are no such arguments). Actually, we can emulate the usual
parameter-passing mechanism of Lua translating

function foo (a, b, c)

to

function foo (...)
local a, b, c = ...

Those who like Perl’s parameter-passing mechanism may enjoy this second form.
A function like the following one

function id (...) return ... end

simply returns all arguments in its call: it is a multi-value identity function.
The next function behaves exactly like another function foo, except that before
the call it prints a message with its arguments:

function fool (...)
print("calling foo:", ...)
return foo(...)

end

Property of lan Bloss <ianlinkcd@gmail.com>

5.2 Variable Number of Arguments 41

This is a useful trick for tracing calls to a specific function.

Let us see another useful example. Lua provides separate functions for for-
matting text (string.format) and for writing text (io.write). It is straightfor-
ward to combine both functions into a single one:

function fwrite (fmt, ...)
return io.write(string.format(fmt, ...))
end

Notice the presence of a fixed parameter fmt before the dots. Vararg functions
may have any number of fixed parameters before the vararg part. Lua assigns
the first arguments to these parameters and only the extra arguments (if any)
go to the varargs. Below we show some examples of calls and the corresponding
parameter values:

CALL PARAMETERS

fwrite() fmt = nil, no varargs
furite("a") fmt = "a", no varargs
furite("%d%d", 4, 5) fmt = "%d%d", varargs = 4 and 5

To iterate over its variable arguments, a function may use the expression
{...} to collect them all in a table, as we did in our definition of add. In the rare
occasions when the vararg list may contain valid nils, we can use the select
function. A call to select has always one fixed argument, the selector, plus
a variable number of extra arguments. If the selector is a number n, select
returns its n-th extra argument; otherwise, the selector should be the string "#",
so that select returns the total number of extra arguments. The following loop
shows how we can use select to iterate over all vararg parameters of a function:

for i=1, select(’#’, ...) do
local arg = select(i, ...) -- get i-th parameter
<loop body>
end
Specifically, the call select ("#", ...) returns the exact number of extra param-

eters, including nils.

Lua 5.0 had a different mechanism for variable number of arguments. The
syntax for declaring a vararg function was the same, with three dots as the last
parameter. However, Lua 5.0 did not have the . .. expression. Instead, a vararg
function had a hidden local variable, called arg, that received a table with the
varargs. This table also got an n field with the total number of extra arguments.
We can simulate this old behavior as follows:

function foo (a, b, ...)
local arg = {...}; arg.n = select("#", ...)
<function body>

end

The drawback of the old mechanism is that it creates a new table each time
the program calls a vararg function. With the new mechanism, we can create a
table to collect varargs only when needed.

Property of lan Bloss <ianlinkcd@gmail.com>

42 Chapter 5 Functions

5.3 Named Arguments

The parameter passing mechanism in Lua is positional: when we call a function,
arguments match parameters by their positions. The first argument gives the
value to the first parameter, and so on. Sometimes, however, it is useful to
specify the arguments by name. To illustrate this point, let us consider the
function os.rename (from the os library), which renames a file. Quite often, we
forget which name comes first, the new or the old; therefore, we may want to
redefine this function to receive two named arguments:

—-- invalid code
rename (0ld="temp.lua", new="templ.lua")

Lua has no direct support for this syntax, but we can have the same final effect,
with a small syntax change. The idea here is to pack all arguments into a table
and use this table as the only argument to the function. The special syntax that
Lua provides for function calls, with just one table constructor as argument,
helps the trick:

rename{old="temp.lua", new="templ.lua"}

Accordingly, we define rename with only one parameter and get the actual argu-
ments from this parameter:

function rename (arg)
return os.rename(arg.old, arg.new)
end

This style of parameter passing is especially helpful when the function has
many parameters, and most of them are optional. For instance, a function that
creates a new window in a GUI library may have dozens of arguments, most of
them optional, which are best specified by names:

w = Window{ x=0, y=0, width=300, height=200,
title = "Lua", background="blue",
border = true

}

The Window function then has the freedom to check for mandatory arguments,
add default values, and the like. Assuming a primitive _Window function that
actually creates the new window (and that needs all arguments in a proper
order), we could define Window as in Listing 5.1.

Property of lan Bloss <ianlinkcd@gmail.com>

5.3 Named Arguments 43

Listing 5.1. A function with named optional parameters:

function Window (options)
—-- check mandatory options

if type(options.title) ~= "string" then
error("no title")

elseif type(options.width) ~= "number" then
error("no width")

elseif type(options.height) ~“= "number" then
error("no height")

end

-- everything else is optional
_Window(options.title,

options.x or O, -- default value
options.y or O, -- default value
options.width, options.height,
options.background or "white", -- default
options.border -- default is false (nil)
)

end

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

More About Functions

Functions in Lua are first-class values with proper lexical scoping.

What does it mean for functions to be “first-class values”? It means that,
in Lua, a function is a value with the same rights as conventional values like
numbers and strings. Functions can be stored in variables (both global and
local) and in tables, can be passed as arguments, and can be returned by other
functions.

What does it mean for functions to have “lexical scoping”? It means that
functions can access variables of their enclosing functions. (It also means that
Lua properly contains the lambda calculus.) As we will see in this chapter, this
apparently innocuous property brings great power to the language, because it
allows us to apply in Lua many powerful programming techniques from the
functional-language world. Even if you have no interest at all in functional
programming, it is worth learning a little about how to explore these techniques,
because they can make your programs smaller and simpler.

A somewhat confusing notion in Lua is that functions, like all other values,
are anonymous; they do not have names. When we talk about a function
name, such as print, we are actually talking about a variable that holds that
function. Like any other variable holding any other value, we can manipulate
such variables in many ways. The following example, although a little silly,
shows the point:

a = {p = print}

a.p("Hello World") --> Hello World

print = math.sin -- ’print’ now refers to the sine function
a.p(print (1)) --> 0.841470

sin = a.p -- ’sin’ now refers to the print function
sin(10, 20) --> 10 20

45

Property of lan Bloss <ianlinkcd@gmail.com>

46 Chapter 6 More About Functions

(Later we will see more useful applications for this facility.)
If functions are values, are there expressions that create functions? Yes. In
fact, the usual way to write a function in Lua, such as

function foo (x) return 2*x end

is just an instance of what we call syntactic sugar; in other words, it is simply a
pretty way to write the following code:

foo = function (x) return 2*x end

So, a function definition is in fact a statement (an assignment, more specifically)
that creates a value of type “function” and assigns it to a variable. We can see
the expression function (x) bodyend as a function constructor, just as {} is a
table constructor. We call the result of such function constructors an anonymous
function. Although we often assign functions to global variables, giving them
something like a name, there are several occasions when functions remain
anonymous. Let us see some examples.

The table library provides a function table.sort, which receives a table and
sorts its elements. Such a function must allow unlimited variations in the sort
order: ascending or descending, numeric or alphabetical, tables sorted by a key,
and so on. Instead of trying to provide all kinds of options, sort provides a
single optional parameter, which is the order function: a function that receives
two elements and returns whether the first must come before the second in the
sorted list. For instance, suppose we have a table of records like this:

network = {
{name = "grauna", IP = "210.26.30.34"},
{name = "arraial", IP = "210.26.30.23"},
2"}
o"}

{name = "lua", IP = "210.26.23.12"
"210.26.23.2

B
n

{name = "derain", IP

>

3

If we want to sort the table by the field name, in reverse alphabetical order, we
just write this:

table.sort (network, function (a,b) return (a.name > b.name) end)

See how handy the anonymous function is in this statement.

A function that gets another function as an argument, such as sort, is
what we call a higher-order function. Higher-order functions are a powerful
programming mechanism, and the use of anonymous functions to create their
function arguments is a great source of flexibility. But remember that higher-
order functions have no special rights; they are a direct consequence of the
ability of Lua to handle functions as first-class values.

To further illustrate the use of higher-order functions, we will write a naive
implementation of a common higher-order function, the derivative. In an in-
formal definition, the derivative of a function f in a point x is the value of
(f(x +d) — f(x))/d when d becomes infinitesimally small. We can compute an
approximation of the derivative as follows:

Property of lan Bloss <ianlinkcd@gmail.com>

6.1 Closures 47

function derivative (f, delta)
delta = delta or le-4
return function (x)
return (f(x + delta) - f(x))/delta
end
end
Given a function f, the call derivative(f) returns (an approximation of) its
derivative, which is another function:

¢ = derivative(math.sin)
print (math.cos(10), c(10))
-—> -0.83907152907645 -0.83904432662041
Because functions are first-class values in Lua, we can store them not only
in global variables, but also in local variables and in table fields. As we will see
later, the use of functions in table fields is a key ingredient for some advanced
uses of Lua, such as modules and object-oriented programming.

6.1 Closures

When a function is written enclosed in another function, it has full access to
local variables from the enclosing function; this feature is called lexical scoping.
Although this visibility rule may sound obvious, it is not. Lexical scoping, plus
first-class functions, is a powerful concept in a programming language, but few
languages support it.

Let us start with a simple example. Suppose you have a list of student names
and a table that associates names to grades; you want to sort the list of names
according to their grades (higher grades first). You can do this task as follows:

names = {"Peter", "Paul", "Mary"}
grades = {Mary = 10, Paul = 7, Peter = 8}
table.sort(names, function (nl, n2)
return grades[nl] > grades[n2] -- compare the grades
end)

Now, suppose you want to create a function to do this task:

function sortbygrade (names, grades)
table.sort(names, function (nl, n2)
return grades[nl] > grades[n2] -- compare the grades
end)
end
The interesting point in the example is that the anonymous function given to
sort accesses the parameter grades, which is local to the enclosing function
sortbygrade. Inside this anonymous function, grades is neither a global vari-
able nor a local variable, but what we call a non-local variable. (For historical
reasons, non-local variables are also called upvalues in Lua.)
Why is this point so interesting? Because functions are first-class values.
Consider the following code:

Property of lan Bloss <ianlinkcd@gmail.com>

48 Chapter 6 More About Functions

function newCounter ()

local i =0
return function () -- anonymous function
i=1i+1
return i
end
end

cl = newCounter ()
print(c1()) -->1
print(c1()) --> 2

In this code, the anonymous function refers to a non-local variable, i, to keep
its counter. However, by the time we call the anonymous function, i is already
out of scope, because the function that created this variable (newCounter) has
returned. Nevertheless, Lua handles this situation correctly, using the concept
of closure. Simply put, a closure is a function plus all it needs to access non-
local variables correctly. If we call newCounter again, it will create a new local
variable i, so we will get a new closure, acting over this new variable:

c2 = newCounter ()

print(c2(Q)) -->1
print(c1()) -->3
print(c2(Q)) --> 2

So, c1 and c2 are different closures over the same function, and each acts upon
an independent instantiation of the local variable i.

Technically speaking, what is a value in Lua is the closure, not the function.
The function itselfis just a prototype for closures. Nevertheless, we will continue
to use the term “function” to refer to a closure whenever there is no possibility
of confusion.

Closures provide a valuable tool in many contexts. As we have seen, they are
useful as arguments to higher-order functions such as sort. Closures are valu-
able for functions that build other functions too, like our newCounter example;
this mechanism allows Lua programs to incorporate sophisticated programming
techniques from the functional world. Closures are useful for callback functions,
too. A typical example here occurs when you create buttons in a conventional
GUI toolkit. Each button has a callback function to be called when the user
presses the button; you want different buttons to do slightly different things
when pressed. For instance, a digital calculator needs ten similar buttons, one
for each digit. You can create each of them with a function like this:

function digitButton (digit)
return Button{ label = tostring(digit),
action = function ()
add_to_display(digit)
end

end

Property of lan Bloss <ianlinkcd@gmail.com>

6.1 Closures 49

In this example, we assume that Button is a toolkit function that creates new
buttons; label is the button label; and action is the callback closure to be
called when the button is pressed. The callback can be called a long time after
digitButton did its task and after the local variable digit went out of scope, but
it can still access this variable.

Closures are valuable also in a quite different context. Because functions
are stored in regular variables, we can easily redefine functions in Lua, even
predefined functions. This facility is one of the reasons why Lua is so flexible.
Frequently, when you redefine a function you need the original function in the
new implementation. For instance, suppose you want to redefine the function
sin to operate in degrees instead of radians. This new function must convert its
argument and then call the original sin function to do the real work. Your code
could look like this:

0ldSin = math.sin

math.sin = function (x)
return 0ldSin(x*math.pi/180)

end

A cleaner way to do this redefinition is as follows:

do
local 0ldSin = math.sin
local k = math.pi/180
math.sin = function (x)
return o0ldSin(xx*k)
end
end

Now, we keep the old version in a private variable; the only way to access it is
through the new version.

You can use this same technique to create secure environments, also called
sandboxes. Secure environments are essential when running untrusted code,
such as code received through the Internet by a server. For instance, to restrict
the files a program can access, we can redefine the io.open function using
closures:

do
local oldOpen = io.open
local access_0OK = function (filename, mode)
<check access>
end
io.open = function (filename, mode)
if access_0OK(filename, mode) then
return oldOpen(filename, mode)
else
return nil, "access denied"
end
end
end

Property of lan Bloss <ianlinkcd@gmail.com>

50 Chapter 6 More About Functions

What makes this example nice is that, after this redefinition, there is no way for
the program to call the unrestricted open function except through the new, re-
stricted version. It keeps the insecure version as a private variable in a closure,
inaccessible from the outside. With this technique, you can build Lua sandboxes
in Lua itself, with the usual benefits: simplicity and flexibility. Instead of a one-
size-fits-all solution, Lua offers you a meta-mechanism, so that you can tailor
your environment for your specific security needs.

6.2 Non-Global Functions

An obvious consequence of first-class functions is that we can store functions not
only in global variables, but also in table fields and in local variables.

We have already seen several examples of functions in table fields: most Lua
libraries use this mechanism (e.g., io.read, math.sin). To create such functions
in Lua, we only have to put together the regular syntax for functions and for
tables:

Lib = {}
Lib.foo = function (x,y) return x + y end
Lib.goo = function (x,y) return x - y end

Of course, we can also use constructors:

Lib = {
foo = function (x,y) return x + y end,
goo = function (x,y) return x - y end

}

Moreover, Lua offers yet another syntax to define such functions:

Lib = {}
function Lib.foo (x,y) return x + y end
function Lib.goo (x,y) return x - y end

When we store a function into a local variable, we get a local function, that
is, a function that is restricted to a given scope. Such definitions are particularly
useful for packages: because Lua handles each chunk as a function, a chunk may
declare local functions, which are visible only inside the chunk. Lexical scoping
ensures that other functions in the package can use these local functions:

local f = function (<params>)
<body>
end

local g = function (<params>)
<some code>
0O -- ’f’ is visible here
<some code>

end

Property of lan Bloss <ianlinkcd@gmail.com>

6.2 Non-Global Functions 51

Lua supports such uses of local functions with a syntactic sugar for them:

local function f (<params>)
<body>
end

A subtle point arises in the definition of recursive local functions. The naive
approach does not work here:

local fact = function (n)

if n == 0 then return 1
else return n*fact(n-1) -- buggy
end

end

When Lua compiles the call fact (n-1) in the function body, the local fact is not
yet defined. Therefore, this expression calls a global fact, not the local one. To
solve this problem, we must first define the local variable and then define the
function:

local fact

fact = function (n)
if n == O then return 1
else return n*fact(n-1)
end

end

Now the fact inside the function refers to the local variable. Its value when
the function is defined does not matter; by the time the function executes, fact
already has the right value.

When Lua expands its syntactic sugar for local functions, it does not use the
naive definition. Instead, a definition like

local function foo (<params>) <body> end

expands to

local foo
foo = function (<params>) <body> end

So, we can use this syntax for recursive functions without worrying:

local function fact (n)

if n == 0 then return 1
else return n*xfact(n-1)
end

end

Of course, this trick does not work if you have indirect recursive functions.
In such cases, you must use the equivalent of an explicit forward declaration:

local £, g -- ’forward’ declarations

Property of lan Bloss <ianlinkcd@gmail.com>

52 Chapter 6 More About Functions

function g ()
<some code> f£() <some code>
end

function £ ()
<some code> g() <some code>
end

Beware not to write local function f in the last definition. Otherwise, Lua
would create a fresh local variable f, leaving the original f (the one that g is
bound to) undefined.

6.3 Proper Tail Calls

Another interesting feature of functions in Lua is that Lua does tail-call elim-
ination. (This means that Lua is properly tail recursive, although the concept
does not involve recursion directly.)

A tail call is a goto dressed as a call. A tail call happens when a function
calls another as its last action, so it has nothing else to do. For instance, in the
following code, the call to g is a tail call:

function f (x) return g(x) end

After £ calls g, it has nothing else to do. In such situations, the program does not
need to return to the calling function when the called function ends. Therefore,
after the tail call, the program does not need to keep any information about the
calling function in the stack. When g returns, control can return directly to the
point where f was called. Some language implementations, such as the Lua
interpreter, take advantage of this fact and actually do not use any extra stack
space when doing a tail call. We say that these implementations do tail-call
elimination.

Because tail calls use no stack space, there is no limit on the number of
nested tail calls that a program can make. For instance, we can call the following
function passing any number as argument; it will never overflow the stack:

function foo (n)
if n > 0 then return foo(n - 1) end
end

A subtle point when we assume tail-call elimination is what is a tail call.
Some apparently obvious candidates fail the criterion that the calling function
has nothing else to do after the call. For instance, in the following code, the call
to g is not a tail call:

function f (x) g(x) end

The problem in this example is that, after calling g, £ still has to discard
occasional results from g before returning. Similarly, all the following calls fail
the criterion:

Property of lan Bloss <ianlinkcd@gmail.com>

6.3 Proper Tail Calls 53

return g(x) + 1 -- must do the addition
return x or g(x) -- must adjust to 1 result
return (g(x)) -- must adjust to 1 result

In Lua, only a call with the form returnfunc(args) is a tail call. However, both
func and its arguments can be complex expressions, because Lua evaluates them
before the call. For instance, the next call is a tail call:

return x[i].foo(x[j] + a*b, i + j)

As I said earlier, a tail call is a goto. As such, a quite useful application of tail
calls in Lua is for programming state machines. Such applications can represent
each state by a function; to change state is to go to (or to call) a specific function.
As an example, let us consider a simple maze game. The maze has several
rooms, each with up to four doors: north, south, east, and west. At each step,
the user enters a movement direction. If there is a door in this direction, the
user goes to the corresponding room; otherwise, the program prints a warning.
The goal is to go from an initial room to a final room.

This game is a typical state machine, where the current room is the state.
We can implement this maze with one function for each room. We use tail calls
to move from one room to another. Listing 6.1 shows how we could write a small
maze with four rooms.

We start the game with a call to the initial room:

rooml ()

Without tail-call elimination, each user move would create a new stack level.
After some number of moves, there would be a stack overflow. With tail-call
elimination, there is no limit to the number of moves that a user can make, be-
cause each move actually performs a goto to another function, not a conventional
call.

For this simple game, you may find that a data-driven program, where you
describe the rooms and movements with tables, is a better design. However, if
the game has several special situations in each room, then this state-machine
design is quite appropriate.

Property of lan Bloss <ianlinkcd@gmail.com>

54 Chapter 6 More About Functions

Listing 6.1. A maze game:

function rooml ()
local move = io.read()
if move == "south" then return room3()
elseif move == "east" then return room2()
else
print("invalid move")
return rooml1() -- stay in the same room
end
end

function room2 ()
local move = io.read()

if move == "south" then return room4()
elseif move == "west" then return rooml()
else

print("invalid move")
return room2()
end
end

function room3 ()
local move = io.read()

if move == "north" then return roomil()
elseif move == "east" then return room4()
else

print("invalid move")
return room3()
end
end

function room4 ()
print ("congratulations!")
end

Property of lan Bloss <ianlinkcd@gmail.com>

lterators and the Generic for

In this chapter, we cover how to write iterators for the generic for. Starting
with simple iterators, we will learn how to use all the power of the generic for
to write simpler and more efficient iterators.

7.1 Ilterators and Closures

An iterator is any construction that allows you to iterate over the elements of a
collection. In Lua, we typically represent iterators by functions: each time we
call the function, it returns the “next” element from the collection.

Every iterator needs to keep some state between successive calls, so that it
knows where it is and how to proceed from there. Closures provide an excellent
mechanism for this task. Remember that a closure is a function that accesses
one or more local variables from its enclosing environment. These variables
keep their values across successive calls to the closure, allowing the closure
to remember where it is along a traversal. Of course, to create a new closure
we must also create its non-local variables. Therefore, a closure construction
typically involves two functions: the closure itself and a factory, the function
that creates the closure.

As an example, let us write a simple iterator for a list. Unlike ipairs, this
iterator does not return the index of each element, only its value:

function values (t)

local i = 0
return function () i =i + 1; return t[i] end
end

55

Property of lan Bloss <ianlinkcd@gmail.com>

56 Chapter 7 lterators and the Generic for

In this example, values is the factory. Each time we call this factory, it creates
a new closure (the iterator itself). This closure keeps its state in its external
variables t and i. Each time we call the iterator, it returns a next value from
the list t. After the last element the iterator returns nil, which signals the end
of the iteration.

We can use this iterator in a while loop:

t = {10, 20, 30}

iter = values(t) -- creates the iterator
while true do
local element = iter() -- calls the iterator

if element == nil then break end
print(element)
end
However, it is easier to use the generic for. After all, it was designed for this
kind of iteration:
t = {10, 20, 30}
for element in values(t) do
print(element)
end
The generic for does all the bookkeeping for an iteration loop: it keeps the
iterator function internally, so we do not need the iter variable; it calls the
iterator on each new iteration; and it stops the loop when the iterator returns
nil. (In the next section we will see that the generic for does even more than
that.)

As a more advanced example, Listing 7.1 shows an iterator to traverse all the
words from the current input file. To do this traversal, we keep two values: the
current line (variable 1line) and where we are on this line (variable pos). With
this data, we can always generate the next word. The main part of the iterator
function is the call to string.find. This call searches for a word in the current
line, starting at the current position. It describes a “word” using the pattern
“%w+, which matches one or more alphanumeric characters. If it finds the word,
the function updates the current position to the first character after the word
and returns this word.” Otherwise, the iterator reads a new line and repeats
the search. If there are no more lines, it returns nil to signal the end of the
iteration.

Despite its complexity, the use of allwords is straightforward:

for word in allwords() do
print (word)
end
This is a common situation with iterators: they may not be easy to write, but
are easy to use. This is not a big problem; more often than not, end users
programming in Lua do not define iterators, but just use those provided by the
application.

"The string.sub call extracts a substring from line between the given positions; we will see it
in more detail in Section 20.2.

Property of lan Bloss <ianlinkcd@gmail.com>

7.2 The Semantics of the Generic for 57

Listing 7.1. Ilterator to traverse all words from the input file:

function allwords ()

local line = io.read() -- current line
local pos =1 —-- current position in the line
return function () -- iterator function
while line do -— repeat while there are lines
local s, e = string.find(line, "Y%w+", pos)
if s then -- found a word?
pos = e + 1 —-- next position is after this word
return string.sub(line, s, e) -- return the word
else
line = io.read() -- word not found; try next line
pos =1 -- restart from first position
end
end
return nil —-- no more lines: end of traversal
end
end

7.2 The Semantics of the Generic for

One drawback of those previous iterators is that we need to create a new closure
to initialize each new loop. For most situations, this is not a real problem.
For instance, in the allwords iterator, the cost of creating one single closure
is negligible compared to the cost of reading a whole file. However, in some
situations this overhead can be inconvenient. In such cases, we can use the
generic for itself to keep the iteration state. In this section we will see the
facilities that the generic for offers to hold state.

We saw that the generic for keeps the iterator function internally, during the
loop. Actually, it keeps three values: the iterator function, an invariant state,
and a control variable. Let us see the details now.

The syntax for the generic for is as follows:

for <wvar-list> in <exp-list> do
<body>
end

Here, var-list is a list of one or more variable names, separated by commas, and
exp-list is a list of one or more expressions, also separated by commas. More
often than not, the expression list has only one element, a call to an iterator
factory. For instance, in the code

for k, v in pairs(t) do print(k, v) end

the list of variables is k,v and the list of expressions has the single element

Property of lan Bloss <ianlinkcd@gmail.com>

58 Chapter 7 lterators and the Generic for

pairs(t). Often the list of variables has only one variable too, as in the next
loop:
for line in io.lines() do
io.write(line, "\n")
end
We call the first variable in the list the control variable. Its value is never nil
during the loop, because when it becomes nil the loop ends.

The first thing the for does is to evaluate the expressions after the in. These
expressions should result in the three values kept by the for: the iterator
function, the invariant state, and the initial value for the control variable. Like
in a multiple assignment, only the last (or the only) element of the list can result
in more than one value; and the number of values is adjusted to three, extra
values being discarded or nils added as needed. (When we use simple iterators,
the factory returns only the iterator function, so the invariant state and the
control variable get nil.)

After this initialization step, the for calls the iterator function with two
arguments: the invariant state and the control variable. (From the standpoint
of the for construct, the invariant state has no meaning at all. The for only
passes the state value from the initialization step to the calls to the iterator
function.) Then the for assigns the values returned by the iterator function to
the variables declared by its variable list. If the first value returned (the one
assigned to the control variable) is nil, the loop terminates. Otherwise, the for
executes its body and calls the iteration function again, repeating the process.

More precisely, a construction like

for var_1, ..., var_n in <explist> do <block> end

is equivalent to the following code:
do
local _f, _s, _var = <explist>
while true do

local var_1, ... , var_n = _f(_s, _var)
_var = var_1
if _var == nil then break end
<block>
end
end

So, if our iterator function is f, the invariant state is s, and the initial value
for the control variable is ag, the control variable will loop over the values
a1 = f(s,a0), az = f(s,a1), and so on, until a; is nil. If the for has other
variables, they simply get the extra values returned by each call to f.

7.3 Stateless lterators

As the name implies, a stateless iterator is an iterator that does not keep any
state by itself. Therefore, we may use the same stateless iterator in multiple

Property of lan Bloss <ianlinkcd@gmail.com>

7.3 Stateless lterators 59

loops, avoiding the cost of creating new closures.

For each iteration, the for loop calls its iterator function with two arguments:
the invariant state and the control variable. A stateless iterator generates the
next element for the iteration using only these two values. A typical example of
this kind of iterator is ipairs, which iterates over all elements of an array:

a = {"one", "two", "three"}
for i, v in ipairs(a) do
print(i, v)
end
The state of the iteration is the table being traversed (that is the invariant
state, which does not change during the loop), plus the current index (the control

variable). Both ipairs (the factory) and the iterator are quite simple; we could
write them in Lua as follows:

local function iter (a, i)

i=1i+1
local v = a[i]
if v then
return i, v
end
end

function ipairs (a)
return iter, a, O
end

When Lua calls ipairs(a) in a for loop, it gets three values: the iter function as
the iterator, a as the invariant state, and zero as the initial value for the control
variable. Then, Lua calls iter(a, 0), which results in 1,a[1] (unless a[1] is
already nil). In the second iteration, it calls iter(a, 1), which results in 2,a[2],
and so on, until the first nil element.

The pairs function, which iterates over all elements of a table, is similar,
except that the iterator function is the next function, which is a primitive
function in Lua:

function pairs (t)
return next, t, nil
end

The call next (t, k), where k is a key of the table t, returns a next key in the
table, in an arbitrary order, plus the value associated with this key as a second
return value. The call next (t,nil) returns a first pair. When there are no more
pairs, next returns nil.

Some people prefer to use next directly, without calling pairs:

for k, v in next, t do
<loop body>
end

Property of lan Bloss <ianlinkcd@gmail.com>

60 Chapter 7 lterators and the Generic for

Remember that the expression list of the for loop is adjusted to three results, so
Lua gets next, t, and nil, which is exactly what it gets when it calls pairs(t).

An iterator to traverse a linked list is another interesting example of a
stateless iterator. (As we already mentioned, linked lists are not frequent in
Lua, but sometimes we need them.)

local function getnext (list, node)
return not node and list or node.next
end

function traverse (list) return getnext, list, nil end

The trick here is to use the list main node as the invariant state (the second
value returned by traverse) and the current node as the control variable. The
first time the iterator function getnext is called, node will be nil, and so the
function will return 1list as the first node. In subsequent calls node will not be
nil, and so the iterator will return node.next, as expected. As usual, it is trivial
to use the iterator:
list = nil
for line in io.lines() do
list = {val = line, next = list}
end
for node in traverse(list) do
print (node.val)
end

7.4 lterators with Complex State

Frequently, an iterator needs to keep more state than fits into a single invariant
state and a control variable. The simplest solution is to use closures. An
alternative solution is to pack all it needs into a table and use this table as
the invariant state for the iteration. Using a table, an iterator can keep as much
data as it needs along the loop. Moreover, it can change this data as it goes.
Although the state is always the same table (and therefore invariant), the table
contents change along the loop. Because such iterators have all their data in
the state, they typically ignore the second argument provided by the generic for
(the iterator variable).

As an example of this technique, we will rewrite the iterator allwords, which
traverses all the words from the current input file. This time, we will keep its
state using a table with two fields: 1ine and pos.

The function that starts the iteration is simple. It must return the iterator
function and the initial state:

local iterator -— to be defined later

function allwords ()
local state = {line = io.read(), pos = 1}
return iterator, state

end

Property of lan Bloss <ianlinkcd@gmail.com>

7.5 True lterators 61

The iterator function does the real work:
function iterator (state)
while state.line do -— repeat while there are lines

-- search for next word

local s, e = string.find(state.line, "%w+", state.pos)

if s then -- found a word?
-- update next position (after this word)
state.pos = e + 1
return string.sub(state.line, s, e)

else -- word not found
state.line = io.read() -- try next line...
state.pos =1 -- ... from first position
end
end
return nil -- no more lines: end loop
end

Whenever possible, you should try to write stateless iterators, those that
keep all their state in the for variables. With them, you do not create new
objects when you start a loop. If you cannot fit your iteration into this model,
then you should try closures. Besides being more elegant, typically a closure
is more efficient than an iterator using tables is: first, it is cheaper to create a
closure than a table; second, access to non-local variables is faster than access to
table fields. Later we will see yet another way to write iterators, with coroutines.
This is the most powerful solution, but a little more expensive.

7.5 True lterators

The name “iterator” is a little misleading, because our iterators do not iterate:
what iterates is the for loop. Iterators only provide the successive values for the
iteration. Maybe a better name would be “generator”, but “iterator” is already
well established in other languages, such as Java.

However, there is another way to build iterators wherein iterators actually
do the iteration. When we use such iterators, we do not write a loop; instead,
we simply call the iterator with an argument that describes what the iterator
must do at each iteration. More specifically, the iterator receives as argument a
function that it calls inside its loop.

As a concrete example, let us rewrite once more the allwords iterator using
this style:

function allwords (f)
for line in io.lines() do
for word in string.gmatch(line, "%w+") do
f (word) -- call the function
end
end
end

Property of lan Bloss <ianlinkcd@gmail.com>

62 Chapter 7 lterators and the Generic for

To use this iterator, we must supply the loop body as a function. If we want only
to print each word, we simply use print:

allwords (print)

Often, we use an anonymous function as the body. For instance, the next code
fragment counts how many times the word “hello” appears in the input file:

local count = 0
allwords (function (w)
if w == "hello" then count = count + 1 end
end)
print (count)

The same task, written with the previous iterator style, is not very different:

local count = 0
for w in allwords() do
if w == "hello" then count = count + 1 end
end
print (count)

True iterators were popular in older versions of Lua, when the language
did not have the for statement. How do they compare with generator-style
iterators? Both styles have approximately the same overhead: one function
call per iteration. On the one hand, it is easier to write the iterator with
true iterators (although we can recover this easiness with coroutines). On the
other hand, the generator style is more flexible. First, it allows two or more
parallel iterations. (For instance, consider the problem of iterating over two
files comparing them word by word.) Second, it allows the use of break and
return inside the iterator body. With a true iterator, a return returns from
the anonymous function, not from the function doing the iteration. Overall, 1
usually prefer generators.

Property of lan Bloss <ianlinkcd@gmail.com>

Compilation, Execution, and
Errors

Although we refer to Lua as an interpreted language, Lua always precompiles
source code to an intermediate form before running it. (This is not a big deal:
many interpreted languages do the same.) The presence of a compilation phase
may sound out of place in an interpreted language like Lua. However, the dis-
tinguishing feature of interpreted languages is not that they are not compiled,
but that the compiler is part of the language runtime and that, therefore, it is
possible (and easy) to execute code generated on the fly We may say that the
presence of a function like dofile is what allows Lua to be called an interpreted
language.

8.1 Compilation

Previously, we introduced dofile as a kind of primitive operation to run chunks
of Lua code, but dofile is actually an auxiliary function: loadfile does the
hard work. Like dofile, loadfile loads a Lua chunk from a file, but it does not
run the chunk. Instead, it only compiles the chunk and returns the compiled
chunk as a function. Moreover, unlike dofile, loadfile does not raise errors,
but instead returns error codes, so that we can handle the error. We could define
dofile as follows:

function dofile (filename)
local f = assert(loadfile(filename))
return f()

end

63

Property of lan Bloss <ianlinkcd@gmail.com>

64 Chapter 8 Compilation, Execution, and Errors

Note the use of assert to raise an error if loadfile fails.

For simple tasks, dofile is handy, because it does the complete job in one
call. However, loadfile is more flexible. In case of error, loadfile returns nil
plus the error message, which allows us to handle the error in customized ways.
Moreover, if we need to run a file several times, we can call loadfile once and
call its result several times. This is much cheaper than several calls to dofile,
because the file is compiled only once.

The loadstring function is similar to loadfile, except that it reads its chunk
from a string, not from a file. For instance, after the code

f = loadstring("i = i + 1")

f will be a function that, when invoked, executes i=i+1:

i=0
£f(O; print(i) -->1
£(); print(i) -—> 2

The loadstring function is powerful; we should use it with care. It is also an
expensive function (when compared to some alternatives) and may result in
incomprehensible code. Before you use it, make sure that there is no simpler
way to solve the problem at hand.

If you want to do a quick-and-dirty dostring (i.e., to load and run a chunk),
you may call the result from loadstring directly:

loadstring(s) O

However, if there is any syntax error, loadstring will return nil and the final
error message will be something like “attempt to call a nil value”. For clearer
error messages, use assert:

assert (loadstring(s)) ()

Usually, it does not make sense to use loadstring on a literal string. For
instance, the code

f = loadstring("i = i + 1")
is roughly equivalent to
f = function () 1 =i + 1 end

but the second code is much faster, because it is compiled only once, when its
enclosing chunk is compiled. In the first code, each call to loadstring involves a
new compilation.

Because loadstring does not compile with lexical scoping, the two codes in
the previous example are not equivalent. To see the difference, let us change the
example a little:

Property of lan Bloss <ianlinkcd@gmail.com>

8.1 Compilation 65

i=232

local i = 0

f = loadstring("i = i + 1; print(i)")

g = function () i = i + 1; print(i) end
£0O --> 33

g0 -—>1

The g function manipulates the local i, as expected, but £ manipulates a global i,
because loadstring always compiles its strings in the global environment.

The most typical use of loadstring is to run external code, that is, pieces
of code that come from outside your program. For instance, you may want
to plot a function defined by the user; the user enters the function code and
then you use loadstring to evaluate it. Note that loadstring expects a chunk,
that is, statements. If you want to evaluate an expression, you must prefix it
with return, so that you get a statement that returns the value of the given
expression. See the example:

print "enter your expression:"

local 1 = io.read()

local func = assert(loadstring("return " .. 1))
print("the value of your expression is " .. func())

Because the function returned by loadstring is a regular function, you can
call it several times:

print "enter function to be plotted (with variable ’x’):"
local 1 = io.read()

local f = assert(loadstring("return " .. 1))

for i=1,20 do
x =1 -- global ’x’ (to be visible from the chunk)
print(string.rep("*", £()))

end

(The string.rep function replicates a string a given number of times.)

If we go deeper, we find out that the real primitive in Lua is neither loadfile
nor loadstring, but load. Instead of reading a chunk from a file, like loadfile,
or from a string, like loadstring, load receives a reader function that it calls to
get its chunk. The reader function returns the chunk in parts; 1oad calls it until
it returns nil, which signals the chunk’s end. We seldom use load; its main use
is when the chunk in not in a file (e.g., it is created dynamically or read from
another source) and too big to fit comfortably in memory (otherwise we could
use loadstring).

Lua treats any independent chunk as the body of an anonymous function
with a variable number of arguments. For instance, loadstring("a = 1") re-
turns the equivalent of the following expression:

function (...) a = 1 end

Like any other function, chunks can declare local variables:

Property of lan Bloss <ianlinkcd@gmail.com>

66 Chapter 8 Compilation, Execution, and Errors

f = loadstring("local a = 10; print(a + 20)")
£0O --> 30

Using these features, we can rewrite our plot example to avoid the use of a global
variable x:

print "enter function to be plotted (with variable ’x’):"
local 1 = io.read()
local f = assert(loadstring("local x = ...; return " .. 1))
for i=1,20 do

print(string.rep("*", £(i)))
end

»

We append the declaration “local x = ...” in the beginning of the chunk to
declare x as a local variable. We then call £ with an argument i that becomes
the value of the vararg expression (. . .).

The load functions never raise errors. In case of any kind of error, they return
nil plus an error message:

print (loadstring("i i"))
--> nil [string "i i"]:1: ’=’ expected near ’i’

Moreover, these functions never have any kind of side effect. They only compile
the chunk to an internal representation and return the result, as an anonymous
function. A common mistake is to assume that loading a chunk defines func-
tions. In Lua, function definitions are assignments; as such, they are made at
runtime, not at compile time. For instance, suppose we have a file foo.1lua like
this:

function foo (x)
print (x)
end

We then run the command

f = loadfile("foo.lua")

After this command, foo is compiled, but it is not defined yet. To define it, you
must run the chunk:

print(foo) --> nil
£0) -- defines ’foo’
foo("ok") --> ok

In a production-quality program that needs to run external code, you should
handle any errors reported when loading a chunk. Moreover, if the code cannot
be trusted, you may want to run the new chunk in a protected environment, to
avoid unpleasant side effects when running the code.

Property of lan Bloss <ianlinkcd@gmail.com>

8.2 C Code 67

8.2 C Code

Unlike code written in Lua, C code needs to be linked with an application before
use. In most popular systems, the easiest way to do this link is with a dynamic
linking facility. However, this facility is not part of the ANSI C specification;
that is, there is no portable way to implement it.

Normally, Lua does not include any facility that cannot be implemented in
ANSI C. However, dynamic linking is different. We can view it as the mother of
all other facilities: once we have it, we can dynamically load any other facility
that is not in Lua. Therefore, in this particular case, Lua breaks its portability
rules and implements a dynamic linking facility for several platforms. The
standard implementation offers this support for Windows, Mac OS X, Linux,
FreeBSD, Solaris, and some other Unix implementations. It should not be
difficult to extend this facility to other platforms; check your distribution. (To
check it, run print (package.loadlib("a", "b")) from the Lua prompt and see
the result. If it complains about a non-existent file, then you have dynamic
linking facility. Otherwise, the error message indicates that this facility is not
supported or not installed.)

Lua provides all the functionality of dynamic linking in a single function,
called package.loadlib. It has two string arguments: the complete path of the
library and the name of a function. So, a typical call to it looks like the next
fragment:

local path = "/usr/local/lib/lua/5.1/socket.so"
local f = package.loadlib(path, "luaopen_socket")

The loadlib function loads the given library and links Lua to it. However, it
does not call the function. Instead, it returns the C function as a Lua function.
If there is any error loading the library or finding the initialization function,
loadlib returns nil plus an error message.

The 1loadlib function is a very low level function. We must provide the full
path of the library and the correct name for the function (including occasional
leading underscores included by the compiler). Usually, we load C libraries using
require. This function searches for the library and uses loadlib to load an
initialization function for the library. Once called, this initialization function
registers in Lua the functions from that library, much as a typical Lua chunk
defines other functions. We will discuss require in Section 15.1, and more
details about C libraries in Section 26.2.

8.3 Errors

Errare humanum est. Therefore, we must handle errors the best way we can.
Because Lua is an extension language, frequently embedded in an application,
it cannot simply crash or exit when an error happens. Instead, whenever an
error occurs, Lua ends the current chunk and returns to the application.

Property of lan Bloss <ianlinkcd@gmail.com>

68 Chapter 8 Compilation, Execution, and Errors

Any unexpected condition that Lua encounters raises an error. Errors occur
when you (that is, your program) try to add values that are not numbers, to call
values that are not functions, to index values that are not tables, and so on.®
You can also explicitly raise an error calling the error function with the error
message as an argument. Usually, this function is the appropriate way to handle
errors in your code:

print "enter a number:"
n = io.read("*number")
if not n then error("invalid input") end

Such combination of if notcondition then error end is so common that Lua has
a built-in function just for this job, called assert:

print "enter a number:"
n = assert(io.read("*number"), "invalid input")

The assert function checks whether its first argument is not false and simply
returns this argument; if the argument is false (that is, false or nil), assert
raises an error. Its second argument, the message, is optional. Beware, however,
that assert is a regular function. As such, Lua always evaluates its arguments
before calling the function. Therefore, if you have something like

n = io.read()

assert (tonumber (n), "invalid input: "

. n .. is not a number")

Lua will always do the concatenation, even when n is a number. It may be wiser
to use an explicit test in such cases.

When a function finds an unexpected situation (an exception), it can assume
two basic behaviors: it can return an error code (typically nil) or it can raise an
error, calling the error function. There are no fixed rules for choosing between
these two options, but we can provide a general guideline: an exception that is
easily avoided should raise an error; otherwise, it should return an error code.

For instance, let us consider the sin function. How should it behave when
called on a table? Suppose it returns an error code. If we need to check for
errors, we would have to write something like

local res = math.sin(x)
if not res then -- error?
<error-handling code>

However, we could as easily check this exception before calling the function:

if not tonumber (x) then -- x is not a number?
<error-handling code>

Frequently we check neither the argument nor the result of a call to sin; if the
argument is not a number, it means probably something wrong in our program.
In such situations, to stop the computation and to issue an error message is the
simplest and most practical way to handle the exception.

8You can modify this behavior using metatables, as we will see later.

Property of lan Bloss <ianlinkcd@gmail.com>

8.4 Error Handling and Exceptions 69

On the other hand, let us consider the io.open function, which opens a file.
How should it behave when called to read a file that does not exist? In this case,
there is no simple way to check for the exception before calling the function. In
many systems, the only way of knowing whether a file exists is trying to open it.
Therefore, if io.open cannot open a file because of an external reason (such as
“file does not exist” or “permission denied”), it returns nil, plus a string with
the error message. In this way, you have a chance to handle the situation in an
appropriate way, for instance by asking the user for another file name:

local file, msg
repeat
print "enter a file name:"
local name = io.read()
if not name then return end -- no input
file, msg = io.open(name, "r")
if not file then print(msg) end
until file

If you do not want to handle such situations, but still want to play safe, you
simply use assert to guard the operation:

file = assert(io.open(name, "r"))
This is a typical Lua idiom: if io.open fails, assert will raise an error.

file = assert(io.open("no-file", "r"))
--> stdin:1: no-file: No such file or directory

Notice how the error message, which is the second result from io.open, goes as
the second argument to assert.

8.4 Error Handling and Exceptions

For many applications, you do not need to do any error handling in Lua; the
application program does this handling. All Lua activities start from a call by
the application, usually asking Lua to run a chunk. If there is any error, this
call returns an error code, so that the application can take appropriate actions.
In the case of the stand-alone interpreter, its main loop just prints the error
message and continues showing the prompt and running the commands.

If you need to handle errors in Lua, you must use the pcall function (pro-
tected call) to encapsulate your code.

Suppose you want to run a piece of Lua code and to catch any error raised
while running that code. Your first step is to encapsulate that piece of code in a
function; let us call it foo:

Property of lan Bloss <ianlinkcd@gmail.com>

70 Chapter 8 Compilation, Execution, and Errors

function foo ()
<some code>
if unexpected_condition then error() end
<some code>
print(alil) —-- potential error: ’a’ may not be a table
<some code>
end

Then, you call foo with pcall:

if pcall(foo) then
-- no errors while running ’foo’
<regular code>
else
-- ’foo’ raised an error: take appropriate actions
<error-handling code>
end

Of course, you can call pcall with an anonymous function:

if pcall(function ()
<protected code>
end) then
<regular code>
else
<error-handling code>
end

The pcall function calls its first argument in protected mode, so that it
catches any errors while the function is running. If there are no errors, pcall
returns true, plus any values returned by the call. Otherwise, it returns false,
plus the error message.

Despite its name, the error message does not have to be a string. Any Lua
value that you pass to error will be returned by pcall:

local status, err = pcall(function () error({code=121}) end)
print(err.code) --> 121

These mechanisms provide all we need to do exception handling in Lua. We
throw an exception with error and catch it with pcall. The error message
identifies the kind or error.

8.5 Error Messages and Tracebacks

Although you can use a value of any type as an error message, usually error
messages are strings describing what went wrong. When there is an internal
error (such as an attempt to index a non-table value), Lua generates the error
message; otherwise, the error message is the value passed to the error function.
Whenever the message is a string, Lua tries to add some information about the
location where the error happened:

Property of lan Bloss <ianlinkcd@gmail.com>

8.5 Error Messages and Tracebacks 71

local status, err = pcall(function () a = "a"+1 end)
print (err)
--> stdin:1: attempt to perform arithmetic on a string value

local status, err = pcall(function () error("my error") end)
print (err)
--> stdin:1: my error

The location information gives the file name (stdin, in the example) plus the
line number (1, in the example).

The error function has an additional second parameter, which gives the level
where it should report the error; you can use this parameter to blame someone
else for the error. For instance, suppose you write a function whose first task is
to check whether it was called correctly:

function foo (str)

if type(str) "= "string" then
error("string expected")
end
<regular code>
end

Then, someone calls your function with a wrong argument:
foo({x=1})

As it is, Lua points its finger to your function — after all, it was foo that called
error —and not to the real culprit, the caller. To correct this problem, you
inform error that the error you are reporting occurred on level 2 in the calling
hierarchy (level 1 is your own function):

function foo (str)

if type(str) “= "string" then
error("string expected", 2)
end
<regular code>
end

Frequently, when an error happens, we want more debug information than
only the location where the error occurred. At least, we want a traceback,
showing the complete stack of calls leading to the error. When pcall returns
its error message, it destroys part of the stack (the part that went from it to the
error point). Consequently, if we want a traceback, we must build it before pcall
returns. To do this, Lua provides the xpcall function. Besides the function to
be called, it receives a second argument, an error handler function. In case of
error, Lua calls this error handler before the stack unwinds, so that it can use
the debug library to gather any extra information it wants about the error. Two
common error handlers are debug.debug, which gives you a Lua prompt so that
you can inspect by yourself what was going on when the error happened; and

Property of lan Bloss <ianlinkcd@gmail.com>

72 Chapter 8 Compilation, Execution, and Errors

debug. traceback, which builds an extended error message with a traceback.’
The latter is the function that the stand-alone interpreter uses to build its error
messages. You also can call debug.traceback at any moment to get a traceback
of the current execution:

print(debug.traceback())

9Later we will see more about these functions, when we discuss the debug library.

Property of lan Bloss <ianlinkcd@gmail.com>

Coroutines

A coroutine is similar to a thread (in the sense of multithreading): it is a line
of execution, with its own stack, its own local variables, and its own instruction
pointer; but sharing global variables and mostly anything else with other corou-
tines. The main difference between threads and coroutines is that, conceptually
(or literally, in a multiprocessor machine), a program with threads runs several
threads concurrently. Coroutines, on the other hand, are collaborative: at any
given time, a program with coroutines is running only one of its coroutines, and
this running coroutines suspends its execution only when it explicitly requests
to be suspended.

Coroutine is a powerful concept. As such, several of its main uses are
complex. Do not worry if you do not understand some of the examples in this
chapter on your first reading. You can read the rest of the book and come back
here later. But please come back; it will be time well spent.

9.1 Coroutine Basics

Lua packs all its coroutine-related functions in the coroutine table. The create
function creates new coroutines. It has a single argument, a function with the
code that the coroutine will run. It returns a value of type thread, which repre-
sents the new coroutine. Quite often, the argument to create is an anonymous
function, like here:

co = coroutine.create(function () print("hi") end)

print(co) --> thread: 0x8071d98

73

Property of lan Bloss <ianlinkcd@gmail.com>

74 Chapter 9 Coroutines

A coroutine can be in one of four different states: suspended, running, dead,
and normal. When we create a coroutine, it starts in the suspended state. This
means that a coroutine does not run its body automatically when we create it.
We can check the state of a coroutine with the status function:

print(coroutine.status(co)) --> suspended

The function coroutine.resume (re)starts the execution of a coroutine, changing
its state from suspended to running:

coroutine.resume(co) --> hi

In this example, when the coroutine body runs it simply prints “hi” and termi-
nates, leaving the coroutine in the dead state, from which it does not return:

print(coroutine.status(co)) --> dead

Until now, coroutines look like nothing more than a complicated way to
call functions. The real power of coroutines stems from the yield function,
which allows a running coroutine to suspend its own execution so that it can
be resumed later. Let us see a simple example:

co = coroutine.create(function ()
for i=1,10 do
print("co", i)
coroutine.yield()
end
end)

Now, when we resume this coroutine, it starts its execution and runs until the
first yield:

coroutine.resume(co) -=> co 1

If we check its status, we can see that the coroutine is suspended and therefore
can be resumed again:

print(coroutine.status(co)) --> suspended

From the coroutine’s point of view, all activity that happens while it is suspended
is happening inside its call to yield. When we resume the coroutine, this call
to yield finally returns and the coroutine continues its execution until the next
yield or until its end:

coroutine.resume(co) --> co 2
coroutine.resume(co) --> co 3
coroutine.resume(co) --> co 10
coroutine.resume(co) —-- prints nothing

Property of lan Bloss <ianlinkcd@gmail.com>

9.1 Coroutine Basics 75

During the last call to resume, the coroutine body finished the loop and then
returned, so the coroutine is dead now. If we try to resume it again, resume
returns false plus an error message:

print (coroutine.resume(co))
--> false cannot resume dead coroutine

Note that resume runs in protected mode. Therefore, if there is any error inside
a coroutine, Lua will not show the error message, but instead will return it to
the resume call.

When a coroutine resumes another, it is not suspended; after all, we cannot
resume it. However, it is not running either, because the running coroutine is
the other one. So, its own status is what we call the normal state.

A useful facility in Lua is that a pair resume-yield can exchange data. The
first resume, which has no corresponding yield waiting for it, passes its extra
arguments as arguments to the coroutine main function:

co = coroutine.create(function (a,b,c)
print("co", a,b,c)
end)
coroutine.resume(co, 1, 2, 3) --—>co 1 2 3

A call to resume returns, after the true that signals no errors, any arguments
passed to the corresponding yield:

co = coroutine.create(function (a,b)
coroutine.yield(a + b, a - b)
end)
print(coroutine.resume(co, 20, 10)) --> true 30 10

Symmetrically, yield returns any extra arguments passed to the corresponding
resume:

co = coroutine.create (function ()
print("co", coroutine.yield())
end)
coroutine.resume(co)
coroutine.resume(co, 4, 5) -->co 4 5

Finally, when a coroutine ends, any values returned by its main function go to
the corresponding resume:

co = coroutine.create(function ()
return 6, 7
end)
print(coroutine.resume(co)) --> true 6 7

We seldom use all these facilities in the same coroutine, but all of them have
their uses.

For those that already know something about coroutines, it is important
to clarify some concepts before we go on. Lua offers what I call asymmetric

Property of lan Bloss <ianlinkcd@gmail.com>

76 Chapter 9 Coroutines

coroutines. This means that it has a function to suspend the execution of a
coroutine and a different function to resume a suspended coroutine. Some
other languages offer symmetric coroutines, where there is only one function
to transfer control from any coroutine to another.

Some people call asymmetric coroutine semi-coroutines (being not symmet-
rical, they are not really co). However, other people use the same term semi-
coroutine to denote a restricted implementation of coroutines, where a coroutine
can suspend its execution only when it is not calling any function, that is, when
it has no pending calls in its control stack. In other words, only the main body
of such semi-coroutines can yield. A generator in Python is an example of this
meaning of semi-coroutines.

Unlike the difference between symmetric and asymmetric coroutines, the
difference between coroutines and generators (as presented in Python) is a
deep one; generators are simply not powerful enough to implement several
interesting constructions that we can write with full coroutines. Lua offers full,
asymmetric coroutines. Those that prefer symmetric coroutines can implement
them on top of the asymmetric facilities of Lua. It is an easy task. (Basically,
each transfer does a yield followed by a resume.)

9.2 Pipes and Filters

One of the most paradigmatic examples of coroutines is the producer—consumer
problem. Let us suppose that we have a function that continually produces
values (e.g., reading them from a file) and another function that continually
consumes these values (e.g., writing them to another file). Typically, these two
functions look like this:

function producer ()
while true do

local x = io.read() -- produce new value
send (x) -- send to consumer
end
end

function consumer ()
while true do

local x = receive() -- receive from producer
io.write(x, "\n") -- consume new value
end
end

(In this implementation, both the producer and the consumer run forever. It
is easy to change them to stop when there are no more data to handle.) The
problem here is how to match send with receive. It is a typical instance of
the who-has-the-main-loop problem. Both the producer and the consumer are
active, both have their own main loops, and both assume that the other is a
callable service. For this particular example, it is easy to change the structure of

Property of lan Bloss <ianlinkcd@gmail.com>

9.2 Pipes and Filters 77

one of the functions, unrolling its loop and making it a passive agent. However,
this change of structure may be far from easy in other real scenarios.

Coroutines provide an ideal tool to match producers and consumers, because
a resume-yield pair turns upside-down the typical relationship between caller
and callee. When a coroutine calls yield, it does not enter into a new function;
instead, it returns a pending call (to resume). Similarly, a call to resume does not
start a new function, but returns a call to yield. This property is exactly what
we need to match a send with a receive in such a way that each one acts as if
it were the master and the other the slave. So, receive resumes the producer,
so that it can produce a new value; and send yields the new value back to the
consumer:

function receive ()
local status, value = coroutine.resume(producer)
return value

end

function send (x)
coroutine.yield(x)
end

Of course, the producer must now be a coroutine:

producer = coroutine.create(
function ()
while true do
local x = io.read() -- produce new value
send (x)
end
end)

In this design, the program starts by calling the consumer. When the consumer
needs an item, it resumes the producer, which runs until it has an item to give
to the consumer, and then stops until the consumer resumes it again. Therefore,
we have what we call a consumer-driven design.

We can extend this design with filters, which are tasks that sit between the
producer and the consumer doing some kind of transformation in the data. A
filter is a consumer and a producer at the same time, so it resumes a producer
to get new values and yields the transformed values to a consumer. As a trivial
example, we can add to our previous code a filter that inserts a line number at
the beginning of each line. The code is in Listing 9.1. The final bit simply creates
the components it needs, connects them, and starts the final consumer:

p = producer()
f = filter(p)
consumer (f)

Or better yet:

consumer (filter (producer()))

Property of lan Bloss <ianlinkcd@gmail.com>

78 Chapter 9

Coroutines

Listing 9.1. Producer—consumer with filters:

function receive (prod)
local status, value = coroutine.resume(prod)
return value

end

function send (x)
coroutine.yield(x)
end

function producer ()
return coroutine.create(function ()
while true do
local x = io.read() -- produce new value
send (x)
end
end)
end

function filter (prod)
return coroutine.create(function ()
for line = 1, math.huge do

local x = receive(prod) -- get new value
X = string.format("%5d %s", line, x)
send (x) -- send it to consumer
end
end)

end

function consumer (prod)
while true do

local x = receive(prod) -- get new value
io.write(x, "\n") -— consume new value
end

end

Property of lan Bloss <ianlinkcd@gmail.com>

9.3 Coroutines as lterators 79

Listing 9.2. Function to generate all permutations of the first n elements of a:

function permgen (a, n)

n = n or #a -- default for ’n’ is size of ’a’

if n <=1 then -- nothing to change?
printResult(a)

else

for i=1,n do
-- put i-th element as the last one
aln], ali]l = alil, aln]
-- generate all permutations of the other elements
permgen(a, n - 1)
-- restore i-th element
aln], alil = alil, aln]

end

end
end

If you thought about Unix pipes after reading the previous example, you are
not alone. After all, coroutines are a kind of (non-preemptive) multithreading.
While with pipes each task runs in a separate process, with coroutines each
task runs in a separate coroutine. Pipes provide a buffer between the writer
(producer) and the reader (consumer) so there is some freedom in their relative
speeds. This is important in the context of pipes, because the cost of switching
between processes is high. With coroutines, the cost of switching between tasks
is much smaller (roughly the same as a function call), so the writer and the
reader can run hand in hand.

9.3 Coroutines as lterators

We can see loop iterators as a particular example of the producer—consumer pat-
tern: an iterator produces items to be consumed by the loop body. Therefore, it
seems appropriate to use coroutines to write iterators. Indeed, coroutines pro-
vide a powerful tool for this task. Again, the key feature is their ability to turn
upside-down the relationship between caller and callee. With this feature, we
can write iterators without worrying about how to keep state between successive
calls to the iterator.

To illustrate this kind of use, let us write an iterator to traverse all permuta-
tions of a given array. It is not an easy task to write directly such an iterator, but
it is not so difficult to write a recursive function that generates all these permu-
tations. The idea is simple: put each array element in the last position, in turn,
and recursively generate all permutations of the remaining elements. The code
is in Listing 9.2. To put it to work, we must define an appropriate printResult
function and call permgen with proper arguments:

Property of lan Bloss <ianlinkcd@gmail.com>

80 Chapter 9 Coroutines

function printResult (a)
for i = 1, #a do
io.write(ali], " ")
end
io.write("\n")
end

permgen ({1,2,3,4})
-—-> 2341
-—-> 3241
-->3421

After we have the generator ready, it is an automatic task to convert it to an
iterator. First, we change printResult to yield:

function permgen (a, n)
n =n or #a
if n <=1 then
coroutine.yield(a)
else
<as before>

Then, we define a factory that arranges for the generator to run inside a corou-
tine, and then create the iterator function. The iterator simply resumes the
coroutine to produce the next permutation:

function permutations (a)
local co = coroutine.create(function () permgen(a) end)
return function () -- iterator
local code, res = coroutine.resume(co)
return res
end
end

With this machinery in place, it is trivial to iterate over all permutations of an
array with a for statement:

for p in permutations{"a", "b", "c"} do
printResult (p)
end
-->Dbca
-—>cba
-—>cab
-—>ach
-->bac
-—>abc

Property of lan Bloss <ianlinkcd@gmail.com>

9.4 Non-Preemptive Multithreading 81

The permutations function uses a common pattern in Lua, which packs a
call to resume with its corresponding coroutine inside a function. This pattern
is so common that Lua provides a special function for it: coroutine.wrap. Like
create, wrap creates a new coroutine. Unlike create, wrap does not return the
coroutine itself; instead, it returns a function that, when called, resumes the
coroutine. Unlike the original resume, that function does not return an error
code as its first result; instead, it raises the error in case of error. Using wrap,
we can write permutations as follows:

function permutations (a)
return coroutine.wrap(function () permgen(a) end)
end

Usually, coroutine.wrap is simpler to use than coroutine.create. It gives
us exactly what we need from a coroutine: a function to resume it. However, it
is also less flexible. There is no way to check the status of a coroutine created
with wrap. Moreover, we cannot check for runtime errors.

9.4 Non-Preemptive Multithreading

As we saw earlier, coroutines allow a kind of collaborative multithreading. Each
coroutine is equivalent to a thread. A pair yield—resume switches control from
one thread to another. However, unlike regular multithreading, coroutines are
non preemptive. While a coroutine is running, it cannot be stopped from the
outside. It suspends execution only when it explicitly requests so (through a
call to yield). For several applications this is not a problem, quite the opposite.
Programming is much easier in the absence of preemption. You do not need
to be paranoid about synchronization bugs, because all synchronization among
threads is explicit in the program. You just need to ensure that a coroutine
yields only when it is outside a critical region.

However, with non-preemptive multithreading, whenever any thread calls a
blocking operation, the whole program blocks until the operation completes. For
most applications, this is an unacceptable behavior, which leads many program-
mers to disregard coroutines as a real alternative to conventional multithread-
ing. As we will see here, this problem has an interesting (and obvious, with
hindsight) solution.

Let us assume a typical multithreading situation: we want to download
several remote files through HTTP. Of course, to download several remote files,
we must know how to download one remote file. In this example, we will use the
LuaSocket library, developed by Diego Nehab. To download a file, we must open
a connection to its site, send a request to the file, receive the file (in blocks), and
close the connection. In Lua, we can write this task as follows. First, we load
the LuaSocket library:

require "socket"

Property of lan Bloss <ianlinkcd@gmail.com>

82 Chapter 9 Coroutines

Then, we define the host and the file we want to download. In this example,
we will download the HTML 3.2 Reference Specification from the World Wide
Web Consortium site:

host = "www.w3.org"
file = "/TR/REC-html32.html"

Then, we open a TCP connection to port 80 (the standard port for HTTP
connections) of that site:

c = assert(socket.connect(host, 80))

This operation returns a connection object, which we use to send the file request:

c:send("GET " .. file .. " HTTP/1.0\r\n\r\n")

Next, we read the file in blocks of 1 Kbyte, writing each block to the standard
output:

while true do
local s, status, partial = c:receive(2710)
io.write(s or partial)
if status == "closed" then break end

end

The receive function returns either a string with what it read or nil in case of
error; in the later case it also returns an error code (status) and what it read
until the error (partial). When the host closes the connection we print that
remaining input and break the receive loop.

After downloading the file, we close the connection:

c:close()

Now that we know how to download one file, let us return to the problem of
downloading several files. The trivial approach is to download one at a time.
However, this sequential approach, where we start reading a file only after
finishing the previous one, is too slow. When reading a remote file, a program
spends most of its time waiting for data to arrive. More specifically, it spends
most of its time blocked in the call to receive. So, the program could run
much faster if it downloaded all files concurrently. Then, while a connection
has no data available, the program can read from another connection. Clearly,
coroutines offer a convenient way to structure these simultaneous downloads.
We create a new thread for each download task. When a thread has no data
available, it yields control to a simple dispatcher, which invokes another thread.

To rewrite the program with coroutines, we first rewrite the previous down-
load code as a function. The result is in Listing 9.3. Because we are not inter-
ested in the remote file contents, this function counts and prints the file size,
instead of writing the file to the standard output. (With several threads reading
several files, the output would intermix all files.) In this new code, we use an

Property of lan Bloss <ianlinkcd@gmail.com>

9.4 Non-Preemptive Multithreading 83

Listing 9.3. Function to download a Web page:

function download (host, file)
local c = assert(socket.connect(host, 80))
local count = 0 —-- counts number of bytes read
c:send("GET " .. file .. " HTTP/1.0\r\n\r\n")
while true do
local s, status, partial = receive(c)
count = count + #(s or partial)

if status == "closed" then break end
end
c:close()
print(file, count)

end

auxiliary function (receive) to receive data from the connection. In the sequen-
tial approach, its code would be like this:

function receive (connection)
return connection:receive(2710)
end

For the concurrent implementation, this function must receive data without
blocking. Instead, if there is not enough data available, it yields. The new code
is like this:

function receive (connection)
connection:settimeout (0) -- do not block
local s, status, partial = connection:receive(2710)
if status == "timeout" then

coroutine.yield(connection)

end
return s or partial, status

end

The call to settimeout(0) makes any operation over the connection a non-
blocking operation. When the operation status is “timeout”, it means that the
operation returned without completion. In this case, the thread yields. The
non-false argument passed to yield signals to the dispatcher that the thread is
still performing its task. Notice that, even in case of a timeout, the connection
returns what it read until the timeout, which is in the partial variable.

Listing 9.4 shows the dispatcher plus some auxiliary code. Table threads
keeps a list of all live threads for the dispatcher. Function get ensures that each
download runs in an individual thread. The dispatcher itself is mainly a loop
that goes through all threads, resuming them one by one. It must also remove
from the list the threads that have finished their tasks. It stops the loop when
there are no more threads to run.

Property of lan Bloss <ianlinkcd@gmail.com>

84 Chapter 9 Coroutines

Listing 9.4. The dispatcher:

threads = {} -- list of all live threads

function get (host, file)
-— create coroutine
local co = coroutine.create(function ()
download (host, file)
end)
-— insert it in the 1list
table.insert (threads, co)
end

function dispatch (O

local i =1
while true do
if threads[i] == nil then -- no more threads?
if threads[1] == nil then break end -- list is empty?
i=1 -- restart the loop
end
local status, res = coroutine.resume(threads[i])
if not res then -— thread finished its task?
table.remove(threads, i)
else
i=1i+1
end
end
end

Finally, the main program creates the threads it needs and calls the dis-
patcher. For instance, to download four documents from the W3C site, the main
program could be like this:

host = "www.w3.org"

get (host, "/TR/html401/html40.txt")

get (host, "/TR/2002/REC-xhtm11-20020801/xhtmll.pdf")

get (host, "/TR/REC-html32.html")

get (host, "/TR/2000/REC-DOM-Level-2-Core-20001113/D0OM2-Core.txt")

dispatch() -- main loop

My machine takes six seconds to download these four files using coroutines.
With the sequential implementation, it takes more than twice this time (15 sec-
onds).

Despite the speedup, this last implementation is far from optimal. Every-
thing goes fine while at least one thread has something to read. However, when

Property of lan Bloss <ianlinkcd@gmail.com>

9.4 Non-Preemptive Multithreading 85

Listing 9.5. Dispatcher using select:

function dispatch ()
local i =1
local connections = {}
while true do

if threads[i] == nil then -- no more threads?
if threads[1] == nil then break end
i=1 -- restart the loop
connections = {}

end

local status, res = coroutine.resume(threads[i])

if not res then -- thread finished its task?
table.remove (threads, i)

else -- time out
i=1i+1
connections [#connections + 1] = res
if #connections == #threads then -- all threads blocked?

socket.select (connections)

end

end

end

end

no thread has data to read, the dispatcher does a busy wait, going from thread
to thread only to check that they still have no data. As a result, this coroutine
implementation uses almost 30 times more CPU than the sequential solution.

To avoid this behavior, we can use the select function from LuaSocket.
It allows a program to block while waiting for a status change in a group of
sockets. The changes in our implementation are small. We have to change
only the dispatcher; the new version is in Listing 9.5. Along the loop, this new
dispatcher collects the timed-out connections in table connections. Remember
that receive passes such connections to yield; thus resume returns them. If
all connections time out, the dispatcher calls select to wait for any of these
connections to change status. This final implementation runs as fast as the first
implementation with coroutines. Moreover, as it does no busy waits, it uses just
a little more CPU than the sequential implementation.

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

10

Complete Examples

To end this introduction about the language, we show two complete programs
that illustrate different facilities of Lua. The first example illustrates the use of
Lua as a data description language. The second example is an implementation
of the Markov chain algorithm, described by Kernighan & Pike in their book The
Practice of Programming (Addison-Wesley, 1999).

10.1 Data Description

The Lua web site keeps a database containing a sample of projects around the
world that use Lua. We represent each entry in the database by a constructor in
an auto-documented way, as Listing 10.1 shows. The interesting thing about this
representation is that a file with a sequence of such entries is a Lua program,
which performs a sequence of calls to a function entry, using the tables as
arguments.

Our goal is to write a program that shows those data in HTML, so that the
data becomes the web page http://www.lua.org/uses.html. Because there are
many projects, the final page first shows a list of all project titles, and then
shows the details of each project. Listing 10.2 is a typical output of the program.

To read the data, the program simply gives a proper definition for entry, and
then runs the data file as a program (with dofile). Note that we have to traverse
all the entries twice, first for the title list, and again for the project descriptions.
A first approach would be to collect all entries in an array. However, there is a
second attractive solution: to run the data file twice, each time with a different
definition for entry. We follow this approach in the next program.

87

Property of lan Bloss <ianlinkcd@gmail.com>

88 Chapter 10 Complete Examples

Listing 10.1. A typical database entry:

entryq{

title = "Tecgraf",

org = "Computer Graphics Technology Group, PUC-Rio",

url = "http://www.tecgraf.puc-rio.br/",

contact = "Waldemar Celes",

description = [[
Tecgraf is the result of a partnership between PUC-Rio,
the Pontifical Catholic University of Rio de Janeiro,
and PETROBRAS,
the Brazilian 0il Company.
Tecgraf is Lua’s birthplace,
and the language has been used there since 1993.
Currently, more than thirty programmers in Tecgraf use
Lua regularly; they have written more than two hundred
thousand lines of code, distributed among dozens of
final products.]]

First, we define an auxiliary function for writing formatted text (we already

saw this function in Section 5.2):

function fwrite (fmt, ...)
return io.write(string.format(fmt, ...))
end

The writeheader function simply writes the page header, which is always the

same:

function writeheader()

io.write([[
<html>
<head><title>Projects using Lua</title></head>
<body bgcolor="#FFFFFF">
Here are brief descriptions of some projects around the
world that use Lua.

1D

end

The first definition for entry writes each title project as a list item.

argument o will be the table describing the project:

function entryl (o)
count = count + 1
local title = o.title or ’(no title)’
furite(’<1li>%s\n’, count, title)
end

Property of lan Bloss <ianlinkcd@gmail.com>

The

10.1 Data Description 89

Listing 10.2. A typical HTML page listing Lua projects:

<html>

<head><title>Projects using Lua</title></head>

<body bgcolor="#FFFFFF">

Here are brief descriptions of some projects around the
world that use Lua.

Tecgraf

<1i> <other entries>

<h3>

Tecgraf

<small>Computer Graphics Technology Group,
PUC-Rio</small>

</h3>

Tecgraf is the result of a partnership between

distributed among dozens of final products.<p>
Contact: Waldemar Celes

<hr>

<other entries>

</body></html>

If o.title is nil (that is, the field was not provided), the function uses a fixed
string “(no title)”.

The second definition (Listing 10.3) writes all useful data about a project.
It is a little more complex, because all items are optional. (To avoid conflict
with HTML, which uses double quotes, we have used only single quotes in this
program.)

The last function closes the page:

function writetail ()
fwrite(’</body></html>\n’)
end
The main program is in Listing 10.4. It starts the page, loads the data file,
runs it with the first definition for entry (entry1) to create the list of titles, then
resets the counter and runs the data file again with the second definition for
entry, and finally closes the page.

Property of lan Bloss <ianlinkcd@gmail.com>

90

Chapter 10 Complete Examples

Listing 10.3. Callback function to format a full entry:

function entry2 (o)
count = count + 1
fwrite(’<hr>\n<h3>\n’)

local href = o.url and string.format(’ href="%s"’, o.url) or ’’

local title = o.title or o.org or ’org’

fwrite(’%s\n’, count, href, title)

if o.title and o.org then

furite(’
\n<small>,s</small>’, o.org)

end
furite(’\n</h3>\n’)

if o.description then
furite(’%s<p>\n’,

string.gsub(o.description, ’\n\n+’, ’<p>\n’))

end

if o.email then

furite(’Contact: %s\n’,

o.email, o.contact or o.email)

elseif o.contact then

furite(’Contact: %s\n’, o.contact)

end
end

Listing 10.4. The main program:

local inputfile = ’db.lua’
writeheader ()

count = 0
f = loadfile(inputfile)

entry = entryl
furite(’\n’)
£0O
furite(’\n’)

count = 0
entry = entry2
40)

writetail()

loads data file

defines ’entry’

runs data file

redefines ’entry’
runs data file again

Property of lan Bloss <ianlinkcd@gmail.com>

10.2 Markov Chain Algorithm 91

10.2 Markov Chain Algorithm

Our second example is an implementation of the Markov chain algorithm. The
program generates random text, based on what words may follow a sequence of
n previous words in a base text. For this implementation, we will assume 2 for
the value of n.

The first part of the program reads the base text and builds a table that, for
each prefix of two words, gives a list of the words that follow that prefix in the
text. After building the table, the program uses the table to generate random
text, wherein each word follows two previous words with the same probability as
in the base text. As a result, we have text that is very, but not quite, random. For
instance, when applied to this book, the output of the program has pieces like
“Constructors can also traverse a table constructor, then the parentheses in the
following line does the whole file in a field n to store the contents of each function,
but to show its only argument. If you want to find the maximum element in an
array can return both the maximum value and continues showing the prompt
and running the code. The following words are reserved and cannot be used to
convert between degrees and radians.”

We will code each prefix by its two words concatenated with a space in
between:

function prefix (wl, w2)
return wi .. " " .. w2
end
We use the string NOWORD (“\n”) to initialize the prefix words and to mark the end
of the text. For instance, for the following text

the more we try the more we do

the table of following words would be
{ ["\n \n"] = {"the"},
["\n the"] = {"more"},
["the more"] = {"we", "we"},
["more we"] = {"try", "do"},
["we try"] = {"the"},
["try the"] = {"more"},
["we do"]l = {"\n"},
}
The program keeps its table in the variable statetab. To insert a new word
in a prefix list of this table, we use the following function:

function insert (index, value)
local list = statetab[index]
if list == nil then
statetab[index] = {value}
else
list[#list + 1] = value
end
end

Property of lan Bloss <ianlinkcd@gmail.com>

92 Chapter 10 Complete Examples

It first checks whether that prefix already has a list; if not, it creates a new
one with the new value. Otherwise, it inserts the new value at the end of the
existing list.

To build the statetab table, we keep two variables, wi and w2, with the last
two words read. For each new word read, we add it to the list associated with
wl—w2 and then update w1 and w2.

After building the table, the program starts to generate a text with MAXGEN
words. First, it re-initializes variables w1 and w2. Then, for each prefix, it chooses
a next word randomly from the list of valid next words, prints this word, and
updates w1l and w2. Listing 10.5 and Listing 10.6 show the complete program.

Property of lan Bloss <ianlinkcd@gmail.com>

10.2 Markov Chain Algorithm 93

Listing 10.5. Auxiliary definitions for the Markov program:

function allwords ()

local line = io.read() -- current line
local pos =1 —-- current position in the line
return function () -- iterator function
while line do -- repeat while there are lines
local s, e = string.find(line, "%w+", pos)
if s then -- found a word?
pos = e + 1 -- update next position
return string.sub(line, s, e) -- return the word
else
line = io.read() -- word not found; try next line
pos =1 -- restart from first position
end
end
return nil -- no more lines: end of traversal
end
end

function prefix (wl, w2)
return wi .. " " .. w2
end

local statetab = {}

function insert (index, value)
local list = statetabl[index]
if list == nil then
statetab[index] = {value}
else
list[#list + 1] = value
end
end

Property of lan Bloss <ianlinkcd@gmail.com>

94 Chapter 10 Complete Examples

Listing 10.6. The Markov program:

local N = 2
local MAXGEN 10000
local NOWORD = "\n"

—-- build table
local wl, w2 = NOWORD, NOWORD
for w in allwords() do
insert (prefix(wl, w2), w)
wl = w2; w2 = w;
end
insert (prefix(wl, w2), NOWORD)

-- generate text
wl = NOWORD; w2 = NOWORD -- reinitialize
for i=1, MAXGEN do

local list = statetab[prefix(wl, w2)]

—- choose a random item from list

local r = math.random(#list)

local nextword = list[r]

if nextword == NOWORD then return end

io.write(nextword, " ")
wl = w2; w2 = nextword
end

Property of lan Bloss <ianlinkcd@gmail.com>

Part Il
Tables and
Objects

Property of lan Bloss <ianlinkcd@gmail.com>

11

Data Structures

Tables in Lua are not a data structure; they are the data structure. All struc-
tures that other languages offer — arrays, records, lists, queues, sets—can be
represented with tables in Lua. More to the point, Lua tables implement all
these structures efficiently.

In traditional languages, such as C and Pascal, we implement most data
structures with arrays and lists (where lists = records + pointers). Although we
can implement arrays and lists using Lua tables (and sometimes we do this),
tables are more powerful than arrays and lists; many algorithms are simplified
to the point of triviality with the use of tables. For instance, we seldom write a
search in Lua, because tables offer direct access to any type.

It takes a while to learn how to use tables efficiently. Here, I will show how to
implement typical data structures with tables and will provide some examples
of their use. We will start with arrays and lists, not because we need them for
the other structures, but because most programmers are already familiar with
them. We have already seen the basics of this material in the chapters about
the language, but I will repeat it here for completeness.

11.1 Arrays

We implement arrays in Lua simply by indexing tables with integers. Therefore,
arrays do not have a fixed size, but grow as needed. Usually, when we initialize
the array we define its size indirectly. For instance, after the following code, any
attempt to access a field outside the range 1-1000 will return nil, instead of
Zero:

97

Property of lan Bloss <ianlinkcd@gmail.com>

98 Chapter 11 Data Structures

a={} -- new array
for i=1, 1000 do

alil =0
end

The length operator (‘4’) uses this fact to find the size of an array:
print (#a) --> 1000

You can start an array at index 0, 1, or any other value:

—-- creates an array with indices from -5 to 5

a={}

for i=-5, 5 do

ali] =0

end
However, it is customary in Lua to start arrays with index 1. The Lua libraries
adhere to this convention; so does the length operator. If your arrays do not
start with 1, you will not be able to use these facilities.

We can use a constructor to create and initialize arrays in a single expression:

squares = {1, 4, 9, 16, 25, 36, 49, 64, 81}

Such constructors can be as large as you need (well, up to a few million ele-
ments).

11.2 Matrices and Multi-Dimensional Arrays

There are two main ways to represent matrices in Lua. The first one is to
use an array of arrays, that is, a table wherein each element is another table.
For instance, you can create a matrix of zeros with dimensions N by M with the
following code:

mt = {} -- create the matrix
for i=1,N do
mt[i] = {3 -- create a new row
for j=1,M do
mt[i]1[j] = O
end
end

Because tables are objects in Lua, you have to create each row explicitly to
create a matrix. On the one hand, this is certainly more verbose than simply
declaring a matrix, as you do in C or Pascal. On the other hand, it gives you
more flexibility. For instance, you can create a triangular matrix changing the
loop for j=1,M do. .. end in the previous example to for j=1,i do...end. With
this code, the triangular matrix uses only half the memory of the original one.

Property of lan Bloss <ianlinkcd@gmail.com>

11.2 Matrices and Multi-Dimensional Arrays 99

The second way to represent a matrix in Lua is by composing the two indices
into a single one. If the two indices are integers, you can multiply the first one
by a suitable constant and then add the second index. With this approach, the
following code would create our matrix of zeros with dimensions N by M:

mt = {} -- create the matrix
for i=1,N do
for j=1,M do
mt[(i-1)*M + jl = O
end
end

If the indices are strings, you can create a single index concatenating both in-
dices with a character in between to separate them. For instance, you can index
a matrix m with string indices s and t with the code m[s..":"..t], provided that
both s and t do not contain colons; otherwise, pairs like (“a:”,“b”) and (“a”,“:b”)
would collapse into a single index “a: :b”. When in doubt, you can use a control
character like “\0’ to separate the indices.

Quite often, applications use a sparse matrix, a matrix wherein most ele-
ments are O or nil. For instance, you can represent a graph by its adjacency
matrix, which has the value x in position m,n when the nodes m and n are con-
nected with cost x; when these nodes are not connected, the value in position m,n
is nil. To represent a graph with ten thousand nodes, where each node has about
five neighbors, you will need a matrix with a hundred million entries (a square
matrix with 10000 columns and 10000 rows), but approximately only fifty thou-
sand of them will not be nil (five non-nil columns for each row, corresponding
to the five neighbors of each node). Many books on data structures discuss at
length how to implement such sparse matrices without wasting 400 Mbytes of
memory, but you do not need these techniques when programming in Lua. Be-
cause arrays are represented by tables, they are naturally sparse. With our first
representation (tables of tables), you will need ten thousand tables, each one
with about five elements, with a grand total of fifty thousand entries. With the
second representation, you will have a single table, with fifty thousand entries
in it. Whatever the representation, you need space only for the non-nil elements.

We cannot use the length operator over sparse matrices, because of the holes
(nil values) between active entries. This is not a big loss; even if we could use
it, we should not. For most operations, it would be quite inefficient to traverse
all these empty entries. Instead, we can use pairs to traverse only the non-nil
elements. For instance, to multiply a row by a constant, we can use the following
code:

function mult (a, rowindex, k)
local row = al[rowindex]
for i, v in pairs(row) do
row[i] = v *x k
end
end

Property of lan Bloss <ianlinkcd@gmail.com>

100 Chapter 11 Data Structures

Be aware, however, that keys have no intrinsic order in a table, so the
iteration with pairs does not ensure that we visit the columns in increasing
order. For some tasks (like our previous example), this is not a problem. For
other tasks, you may need an alternative approach, such as linked lists.

11.3 Linked Lists

Because tables are dynamic entities, it is easy to implement linked lists in Lua.
Each node is represented by a table and links are simply table fields that contain
references to other tables. For instance, to implement a basic list, where each
node has two fields, next and value, we create a variable to be the list root:

list = nil
To insert an element at the beginning of the list, with a value v, we do:
list = {next = list, value = v}

To traverse the list, we write:

local 1 = list
while 1 do
<visit L.value>
1l = 1.next
end

Other kinds of lists, such as double-linked lists or circular lists, are also
implemented easily. However, you seldom need those structures in Lua, because
usually there is a simpler way to represent your data without using linked lists.
For instance, we can represent a stack with an (unbounded) array.

11.4 Queues and Double Queues

A simple way to implement queues in Lua is with functions insert and remove
(from the table library). These functions insert and remove elements in any
position of an array, moving other elements to accommodate the operation.
However, these moves can be expensive for large structures. A more efficient
implementation uses two indices, one for the first element and another for the
last:

function ListNew ()
return {first = 0, last = -1}
end

To avoid polluting the global space, we will define all list operations inside a
table, properly called List (that is, we will create a module). Therefore, we
rewrite our last example like this:

Property of lan Bloss <ianlinkcd@gmail.com>

11.5 Sets and Bags 101

List = {}
function List.new ()

return {first = 0, last = -1}
end

Now, we can insert or remove an element at both ends in constant time:

function List.pushfirst (list, value)
local first = list.first - 1
list.first = first
list[first] = value

end

function List.pushlast (list, value)
local last = list.last + 1
list.last = last
list[last] = value

end

function List.popfirst (list)
local first = list.first
if first > list.last then error("list is empty") end
local value = list[first]
list[first] = nil -- to allow garbage collection
list.first = first + 1
return value

end

function List.poplast (list)
local last = list.last
if list.first > last then error("list is empty") end
local value = list[last]
list[last] = nil -- to allow garbage collection
list.last = last - 1
return value

end

If you use this structure in a strict queue discipline, calling only pushlast
and popfirst, both first and last will increase continually. However, because
we represent arrays in Lua with tables, you can index them either from 1
to 20 or from 16777216 to 16777236. Because Lua uses double precision to
represent numbers, your program can run for two hundred years, doing one
million insertions per second, before it has problems with overflows.

11.5 Sets and Bags

Suppose you want to list all identifiers used in a program source; somehow you
need to filter the reserved words out of your listing. Some C programmers could
be tempted to represent the set of reserved words as an array of strings, and

Property of lan Bloss <ianlinkcd@gmail.com>

102 Chapter 11 Data Structures

then to search this array to know whether a given word is in the set. To speed
up the search, they could even use a binary tree to represent the set.

In Lua, an efficient and simple way to represent such sets is to put the set
elements as indices in a table. Then, instead of searching the table for a given
element, you just index the table and test whether the result is nil or not. In
our example, we could write the next code:

reserved = {
["while"] = true, ["end"] = true,
["function"] = true, ["local"] = true,

}

for w in allwords() do
if not reserved[w] then
<do something with 'w’> -- ’w’ is not a reserved word
end
end

(Because these words are reserved in Lua, we cannot use them as identifiers;
for instance, we cannot write while=true. Instead, we use the ["while"] =true
notation.)

You can have a clearer initialization using an auxiliary function to build the
set:

function Set (list)
local set = {}

for _, 1 in ipairs(list) do set[1l] = true end
return set

end

reserved = Set{"while", "end", "function", "local", }

Bags, also called multisets, differ from regular sets in that each element may
appear multiple times. An easy representation for bags in Lua is similar to the
previous representation for sets, but where we associate a counter with each key.
To insert an element we increment its counter:

function insert (bag, element)
bagl[element] = (baglelement] or 0) + 1
end

To remove an element we decrement its counter:

function remove (bag, element)

local count = baglelement]

bagl[element] = (count and count > 1) and count - 1 or nil
end

We only keep the counter if it already exists and it is still greater than zero.

Property of lan Bloss <ianlinkcd@gmail.com>

11.6 String Buffers 103

11.6 String Buffers

Suppose you are building a string piecemeal, for instance reading a file line by
line. Your typical code would look like this:

local buff = ""

for line in io.lines() do
buff = buff .. line .. "\n"

end

Despite its innocent look, this code in Lua can cause a huge performance penalty
for large files: for instance, it takes almost a minute to read a 350 Kbyte file.

Why is that? To understand what happens, let us assume that we are in
the middle of the read loop; each line has 20 bytes and we have already read
some 2500 lines, so buff is a string with 50 Kbytes. When Lua concatenates
buff..line.."\n", it creates a new string with 50020 bytes and copies 50000
bytes from buff into this new string. That is, for each new line, Lua moves
50 Kbytes of memory, and growing. After reading 100 new lines (only 2 Kbytes),
Lua has already moved more than 5 Mbytes of memory. More to the point, the
algorithm is quadratic. When Lua finishes reading 350 Kbytes, it has moved
around more than 50 Gbytes.

This problem is not peculiar to Lua: other languages wherein strings are im-
mutable values present a similar behavior, Java being the most famous example.

Before we continue, we should remark that, despite all I said, this situation
is not a common problem. For small strings, the above loop is fine. To read
an entire file, Lua provides the io.read("*all") option, which reads the file at
once. However, sometimes we must face this problem. Java offers the structure
StringBuffer to ameliorate the problem. In Lua, we can use a table as the string
buffer. The key to this approach is the table. concat function, which returns the
concatenation of all the strings of a given list. Using concat, we can write our
previous loop as follows:

local t = {}

for line in io.lines() do
t[#t + 1] = line .. "\n"

end

local s = table.concat(t)

This algorithm takes less than 0.5 seconds to read the file that took almost a
minute to read with the original code. (Of course, for reading a whole file it is
better to use io.read with the “xall” option.)

We can do even better. The concat function accepts an optional second
argument, which is a separator to be inserted between the strings. Using this
separator, we do not need to insert a newline after each line:

local t = {}
for line in io.lines() do
t[#t + 1] = line
end
s = table.concat(t, "\n") .. "\n"

Property of lan Bloss <ianlinkcd@gmail.com>

104 Chapter 11 Data Structures

Function concat inserts the separator between the strings, but we still have to
add the last newline. This last concatenation duplicates the resulting string,
which can be quite long. There is no option to make concat insert this extra
separator, but we can deceive it, inserting an extra empty string in t:

tl#t + 1] = "
s = table.concat(t, "\n")

The extra newline that concat adds before this empty string is at the end of the
resulting string, as we wanted.

Internally, both concat and io.read("*all") use the same algorithm to
concatenate many small strings. Several other functions from the standard
libraries also use this algorithm to create large strings. Let us have a look at
how it works.

Our original loop took a linear approach to the problem, concatenating small
strings one by one into the accumulator. This new algorithm avoids this, using
a binary approach instead. It concatenates several small strings among them
and, occasionally, it concatenates the resulting large strings into larger ones.
The heart of the algorithm is a stack that keeps the large strings already created
in its bottom, while small strings enter through the top. The main invariant of
this stack is similar to that of the popular (among programmers, at least) Tower
of Hanoi: a string in the stack can never sit over a shorter string. Whenever
a new string is pushed over a shorter one, then (and only then) the algorithm
concatenates both. This concatenation creates a larger string, which now may
be larger than its neighbor in the previous floor. If this happens, they are joined
too. These concatenations go down the stack until the loop reaches a larger
string or the stack bottom.

function addString (stack, s)
stack[#stack + 1] = s -- push ’s’ into the the stack
for i = #stack-1, 1, -1 do
if #stack[i] > #stack[i+1] then

break
end
stack[i] = stack[i] .. stack[i + 1]
stack[i + 1] = nil
end
end

To get the final contents of the buffer, we just concatenate all strings down to
the bottom.

11.7 Graphs

Like any reasonable language, Lua allows multiple implementations for graphs,
each one better adapted to some particular algorithms. Here we will see a simple

Property of lan Bloss <ianlinkcd@gmail.com>

11.7 Graphs 105

Listing 11.1. Reading a graph from a file:

function readgraph ()
local graph = {}
for line in io.lines() do
-— split line in two names
local namefrom, nameto = string.match(line, "(%S+)%s+(%S+)")
-- find corresponding nodes
local from = name2node(graph, namefrom)
local to = name2node(graph, nameto)
-- adds ’to’ to the adjacent set of ’from’
from.adj[to] = true
end
return graph
end

object-oriented implementation, where we represent nodes as objects (actually
tables, of course) and arcs as references between nodes.

We will represent each node as a table with two fields: name, with the node’s
name; and adj, the set of nodes adjacent to this one. Because we will read the
graph from a text file, we need a way to find a node given its name. So, we will
use an extra table mapping names to nodes. Given a name, function name2node
returns the corresponding node:

local function name2node (graph, name)
if not graph[name] then
-- node does not exist; create a new one
graph[name] = {name = name, adj = {}}
end
return graph[name]
end

Listing 11.1 shows the function that builds a graph. It reads a file where
each line has two node names, meaning that there is an arc from the first node
to the second. For each line, it uses string.match to split the line in two names,
finds the nodes corresponding to these names (creating the nodes if needed), and
connects the nodes.

Listing 11.2 illustrates an algorithm using such graphs. Function findpath
searches for a path between two nodes using a depth-first traversal. Its first
parameter is the current node; the second is its goal; the third parameter keeps
the path from the origin to the current node; the last parameter is a set with all
the nodes already visited (to avoid loops). Note how the algorithm manipulates
nodes directly, without using their names. For instance, visited is a set of nodes,
not of node names. Similarly, path is a list of nodes.

Property of lan Bloss <ianlinkcd@gmail.com>

106 Chapter 11 Data Structures

Listing 11.2. Finding a path between two nodes:

function findpath (curr, to, path, visited)
path = path or {}
visited = visited or {}

if visited[curr] then -- node already visited?
return nil -— no path here

end

visited[curr] = true -- mark node as visited

path[#path + 1] = curr -- add it to path

if curr == to then —-- final node?
return path

end

-- try all adjacent nodes
for node in pairs(curr.adj) do
local p = findpath(node, to, path, visited)
if p then return p end
end
path[#path] = nil -- remove node from path
end

To test this code, we add a function to print a path and some code to put it all
to work:

function printpath (path)
for i=1, #path do
print(path[i] .name)
end
end

g = readgraph()

a = name2node(g, "a")

b = name2node(g, "b")

p = findpath(a, b)

if p then printpath(p) end

Property of lan Bloss <ianlinkcd@gmail.com>

12

Data Files and Persistence

When dealing with data files, it is usually much easier to write the data than to
read them back. When we write a file, we have full control of what is going on.
When we read a file, on the other hand, we do not know what to expect. Besides
all kinds of data that a correct file may contain, a robust program should also
handle bad files gracefully. Therefore, coding robust input routines is always
difficult.

In this chapter we will see how we can use Lua to eliminate all code for
reading data from our programs, simply by writing the data in an appropriate
format.

12.1 Data Files

As we saw in the example of Section 10.1, table constructors provide an inter-
esting alternative for file formats. With a little extra work when writing data,
reading becomes trivial. The technique is to write our data file as Lua code
that, when run, builds the data into the program. With table constructors, these
chunks can look remarkably like a plain data file.

As usual, let us see an example to make things clear. If our data file is in
a predefined format, such as CSV (Comma-Separated Values) or XML, we have
little choice. However, if we are going to create the file for our own use, we
can use Lua constructors as our format. In this format, we represent each data
record as a Lua constructor. Instead of writing in our data file something like

Donald E. Knuth,Literate Programming,CSLI, 1992
Jon Bentley,More Programming Pearls,Addison-Wesley, 1990

we write

107

Property of lan Bloss <ianlinkcd@gmail.com>

108 Chapter 12 Data Files and Persistence

Entry{"Donald E. Knuth",
"Literate Programming",
"CSLI",

1992}

Entry{"Jon Bentley",
"More Programming Pearls",
"Addison-Wesley",
1990}

Remember that Entry{code} is the same as Entry({code}), that is, a call to
function Entry with a table as its single argument. So, that previous piece of
data is a Lua program. To read that file, we only need to run it, with a sensible
definition for Entry. For instance, the following program counts the number of
entries in a data file:

local count = 0

function Entry (_) count = count + 1 end
dofile("data")

print ("number of entries: " .. count)

The next program collects in a set the names of all authors found in the file, and
then prints them (not necessarily in the same order as in the file):

local authors = {} -- a set to collect authors
function Entry (b) authors[b[1]] = true end
dofile("data")

for name in pairs(authors) do print(name) end

Notice the event-driven approach in these program fragments: the Entry func-
tion acts as a callback function, which is called during the dofile for each entry
in the data file.

When file size is not a big concern, we can use name-value pairs for our

representation:'?

Entry{
author = "Donald E. Knuth",
title = "Literate Programming",
publisher = "CSLI",
year = 1992

b

Entry{
author = "Jon Bentley",
title = "More Programming Pearls",
year = 1990,
publisher = "Addison-Wesley",

X

10Tf this format reminds you of BibTeX, it is not a coincidence. BibTeX was one of the inspirations
for the constructor syntax in Lua.

Property of lan Bloss <ianlinkcd@gmail.com>

12.2 Serialization 109

This format is what we call a self-describing data format, because each piece of
data has attached to it a short description of its meaning. Self-describing data
are more readable (by humans, at least) than CSV or other compact notations;
they are easy to edit by hand, when necessary; and they allow us to make small
modifications in the basic format without having to change the data file. For
instance, if we add a new field we need only a small change in the reading
program, so that it supplies a default value when the field is absent.
With the name-value format, our program to collect authors becomes

local authors = {} -- a set to collect authors
function Entry (b) authors[b.author] = true end
dofile("data")

for name in pairs(authors) do print(name) end

Now the order of fields is irrelevant. Even if some entries do not have an author,
we have to adapt only the Entry function:

function Entry (b)
if b.author then authors[b.author] = true end
end

Lua not only runs fast, but it also compiles fast. For instance, the above
program for listing authors processes 2 Mbytes of data in less than one second.
This is not by chance. Data description has been one of the main applications of
Lua since its creation and we took great care to make its compiler fast for large
programs.

12.2 Serialization

Frequently we need to serialize some data, that is, to convert the data into a
stream of bytes or characters, so that we can save it into a file or send it through
a network connection. We can represent serialized data as Lua code in such a
way that, when we run the code, it reconstructs the saved values into the reading
program.

Usually, if we want to restore the value of a global variable, our chunk will
be something like varname=exp, where exp is the Lua code to create the value.
The varname is the easy part, so let us see how to write the code that creates a
value. For a numeric value, the task is easy:

function serialize (o)
if type(o) == "number" then
io.write(o)
else <other cases>
end
end

For a string value, a naive approach would be something like this:

if type(o) == "string" then
io.write(""', 0, II)II)

Property of lan Bloss <ianlinkcd@gmail.com>

110 Chapter 12 Data Files and Persistence

However, if the string contains special characters (such as quotes or newlines)
the resulting code will not be a valid Lua program.
You may be tempted to solve this problem changing quotes:

if type(o) == "string" then
io.write("[[", o, "11™)

Beware! If a malicious user manages to direct your program to save something
like “ 1] ..0s.execute("rm *’) .. [[” (for instance, she can supply this string as
her address), your final chunk will be

varname = [[]]..os.execute(C’rm *’)..[[1]

You will have a bad surprise trying to load this “data”.

A simple way to quote a string in a secure way is with the option “/%q” from
the string.format function. It surrounds the string with double quotes and
properly escapes double quotes, newlines, and some other characters inside the
string:

a = ’a "problematic" \\string’
print(string.format("%q", a)) --> "a \"problematic\" \\string"

Using this feature, our serialize function now looks like this:

function serialize (o)

if type(o) == "number" then
io.write(o)
elseif type(o) == "string" then

io.write(string.format("%q", o))
else <other cases>
end
end

Lua 5.1 offers another option to quote arbitrary strings in a secure way,
with the new notation [=[...]=] for long strings. However, this new notation
is mainly intended for hand-written code, where we do not want to change a
literal string in any way. In automatically generated code, it is easier to escape
problematic characters, as the option “/q” from string.format does.

If you nevertheless want to use the long-string notation for automatically
generated code, you must take care of some details. The first one is that you
must choose a proper number of equal signs. A good proper number is one
more than the maximum that appears in the original string. Because strings
containing long sequences of equal signs are not uncommon (e.g., comments
delimiting parts of a source code), we can limit our attention to sequences
of equal signs preceded by a closing square bracket; other sequences cannot
produce an erroneous end-of-string mark. The second detail is that a newline
at the beginning of a long string is always ignored; a simple way to avoid this
problem is to always add a newline to be ignored.

Property of lan Bloss <ianlinkcd@gmail.com>

12.2 Serialization 111

Listing 12.1. Quoting arbitrary literal strings:

function quote (s)
—-- find maximum length of sequences of equal signs
local n = -1
for w in string.gmatch(s, "]=x") do
n = math.max(n, #w - 1)
end

—-- produce a string with ’n’ plus one equal signs

local eq = string.rep("=", n + 1)

-- build quoted string

return string.format(" [%s[\n¥ksl%s] ", eq, s, eq)
end

The quote function (Listing 12.1) is the result of our previous remarks. It
receives an arbitrary string and returns it formatted as a long string. The call
to string.gmatch creates an iterator to traverse all occurrences of the pattern
1=+ (that is, a closing square bracket followed by a sequence of zero or more
equal signs) in the string s.!! For each occurrence, the loop updates n with
the maximum number of equal signs so far. After the loop we use string.rep
to replicate an equal sign n+1 times, which is one more than the maximum
occurring in the string. Finally, string.format encloses s with pairs of brackets
with the correct number of equal signs in between and adds extra spaces around
the quoted string plus a newline at the beginning of the enclosed string.

Saving tables without cycles

Our next (and harder) task is to save tables. There are several ways to save
them, according to what restrictions we assume about the table structure. No
single algorithm is appropriate for all cases. Simple tables not only need simpler
algorithms, but the resulting files can be more aesthetic, too.

Our first attempt is in Listing 12.2. Despite its simplicity, that function does
a reasonable job. It even handles nested tables (that is, tables within other
tables), as long as the table structure is a tree (that is, there are no shared
subtables and no cycles). A small aesthetic improvement would be to indent
occasional nested tables; you can try it as an exercise. (Hint: add an extra
parameter to serialize with the indentation string.)

The previous function assumes that all keys in a table are valid identifiers.
If a table has numeric keys, or string keys which are not syntactic valid Lua
identifiers, we are in trouble. A simple way to solve this difficulty is to change
the line

io.write(" ", k, " =")

11We will discuss pattern matching in Chapter 20.

Property of lan Bloss <ianlinkcd@gmail.com>

112 Chapter 12 Data Files and Persistence

Listing 12.2. Serializing tables without cycles:

function serialize (o)
if type(o) == "number" then
io.write(o)
elseif type(o) == "string" then
io.write(string.format("%q", o))
elseif type(o) == "table" then
io.write("{\n")
for k,v in pairs(o) do
io.write(" ", k, " =")
serialize(v)
io.write(",\n")
end
io.write("}\n")
else
error("cannot serialize a " .. type(o))
end
end

to
io.write(" ["); serialize(k); io.write("] = ")

With this change, we improve the robustness of our function, at the cost of the
aesthetics of the resulting file. The result of

serialize{a=12, b=’Lua’, key=’another "one"’}

with the first version of serialize is this:

a =12,
b = "Lua",
key = "another \"one\"",

Compare it to the second version:

{

[("a"] = 12,

["b"] = "Lua",

["key"] = "another \"one\"",
}

We can improve this result by testing for each case whether it needs the square
brackets; again, we will leave this improvement as an exercise.

Property of lan Bloss <ianlinkcd@gmail.com>

12.2 Serialization 113

Listing 12.3. Saving tables with cycles:

function basicSerialize (o)

if type(o) == "number" then
return tostring(o)
else —-- assume it is a string
return string.format("%q", o)
end
end

function save (name, value, saved)

saved = saved or {} -- initial value
io.write(name, " = ")
if type(value) == "number" or type(value) == "string" then
io.write(basicSerialize(value), "\n")
elseif type(value) == "table" then
if saved[value] then -- value already saved?
io.write(saved[value], "\n") -- use its previous name
else
saved[value] = name -- save name for next time
io.write("{}\n") -- create a new table
for k,v in pairs(value) do -— save its fields

k = basicSerialize(k)
local fname = string.format("%s[%s]", name, k)
save(fname, v, saved)
end
end
else
error ("cannot save a
end
end

. type(value))

Saving tables with cycles

To handle tables with generic topology (i.e., with cycles and shared subtables)
we need a different approach. Constructors cannot represent such tables, so we
will not use them. To represent cycles we need names, so our next function will
get as arguments the value to be saved plus its name. Moreover, we must keep
track of the names of the tables already saved, to reuse them when we detect a
cycle. We will use an extra table for this tracking. This table will have tables as
indices and their names as the associated values.

The resulting code is in Listing 12.3. We keep the restriction that the tables
we want to save have only strings and numbers as keys. The basicSerialize
function serializes these basic types, returning the result. The next function,
save, does the hard work. The saved parameter is the table that keeps track of

Property of lan Bloss <ianlinkcd@gmail.com>

114 Chapter 12 Data Files and Persistence

tables already saved. As an example, if we build a table like

a = {x=1, y=2; {3,4,5}}
al2] = a -- cycle
a.z = a[l] -- shared subtable

then the call save("a", a) will save it as follows:

a={}
al1] = {3
al11[1] =
al1] [2]
al[1] [3]

non
O W

al2] =
a[llyll] 2
a["x"] =1
a["z"] = a[l]

V)

The actual order of these assignments may vary, as it depends on a table traver-
sal. Nevertheless, the algorithm ensures that any previous node needed in a
new definition is already defined.

If we want to save several values with shared parts, we can make the calls to
save using the same saved table. For instance, assume the following two tables:

a
b

{{"OHG", "tWO"}, 3}
{k = al1]}

If we save them independently, the result will not have common parts:

save("a", a)

save("b", b)
-->a =1}
--> a[1] = {}

--> al1][1] = "one"
-=> al[1][2] = "two"

--> al[2] =3

--—>b ={}

-=> b["k"] = {}

—_—> b["k"] [1] = "one"
—_—> b["k"] [2] = "two"

However, if we use the same saved table for both calls to save, then the result
will share common parts:

local t = {}
save("a", a, t)
save("b", b, t)

Property of lan Bloss <ianlinkcd@gmail.com>

12.2 Serialization 115

-—>a={}

-—> al1] = {}

-=> a[1][1] = "one"
-=-> al[1][2] = "two"
--> al[2] = 3

-—> b ={}

-=> b["k"] = al1]

Asis usual in Lua, there are several other alternatives. Among them, we can
save a value without giving it a global name (instead, the chunk builds a local
value and returns it), we can handle functions (by building an auxiliary table
that associates each function to its name), and so on. Lua gives you the power;
you build the mechanisms.

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

13

Metatables and Metamethods

Usually, each value in Lua has a quite predictable set of operations. We can
add numbers, we can concatenate strings, we can insert key—value pairs into
tables, and so on. But we cannot add tables, we cannot compare functions, and
we cannot call a string.

Metatables allow us to change the behavior of a value when confronted with
an undefined operation. For instance, using metatables, we can define how
Lua computes the expression a+b, where a and b are tables. Whenever Lua
tries to add two tables, it checks whether either of them has a metatable and
whether this metatable has an __add field. If Lua finds this field, it calls the
corresponding value — the so-called metamethod, which should be a function —
to compute the sum.

Each value in Lua may have a metatable. Tables and userdata have individ-
ual metatables; values of other types share one single metatable for all values
of that type.!? Lua always creates new tables without metatables:

t = {3}
print(getmetatable(t)) --> nil

We can use setmetatable to set or change the metatable of any table:

t1 = {2}
setmetatable(t, t1)
assert(getmetatable(t) == t1)

12In Lua 5.0, only tables and userdata could have metatables. More often than not, these are the
types that we want to control with metatables.

117

Property of lan Bloss <ianlinkcd@gmail.com>

118 Chapter 13 Metatables and Metamethods

Any table can be the metatable of any value; a group of related tables may
share a common metatable, which describes their common behavior; a table
can be its own metatable, so that it describes its own individual behavior. Any
configuration is valid.

From Lua we can set the metatables only of tables; to manipulate the meta-
tables of values of other types we must use C code. (The main reason for this re-
striction is to curb excessive use of type-wide metatables. Experience with older
versions of Lua has shown that those settings frequently lead to non-reusable
code.) As we will see later, in Chapter 20, the string library sets a metatable for
strings. All other types by default have no metatable:

print (getmetatable("hi")) --> table: 0x80772e0
print (getmetatable(10)) --> nil

13.1 Arithmetic Metamethods

In this section, we will introduce a simple example to explain how to use meta-
tables. Suppose we are using tables to represent sets, with functions to compute
the union of two sets, intersection, and the like. To keep our namespace clean,
we store these functions inside a table called Set:

Set = {}

-- create a new set with the values of the given list
function Set.new (1)
local set = {}

for _, v in ipairs(l) do set([v] = true end
return set
end

function Set.union (a, b)
local res = Set.new{}
for k in pairs(a) do res[k] = true end
for k in pairs(b) do res[k] = true end
return res

end

function Set.intersection (a, b)
local res = Set.new{}
for k in pairs(a) do
res[k] = b[k]
end
return res
end

Property of lan Bloss <ianlinkcd@gmail.com>

13.1 Arithmetic Metamethods 119

To help checking our examples, we also define a function to print sets:

function Set.tostring (set)
local 1 = {} -- list to put all elements from the set
for e in pairs(set) do
1[#1 + 1] = e
end
return "{" .. table.concat(l, ", ") .. "}"
end

function Set.print (s)
print(Set.tostring(s))
end

Now, we want to make the addition operator (‘+’) compute the union of
two sets. For that, we will arrange for all tables representing sets to share a
metatable, which will define how they react to the addition operator. Our first
step is to create a regular table that we will use as the metatable for sets:

local mt = {} -- metatable for sets

The next step is to modify the Set.new function, which creates sets. The new
version has only one extra line, which sets mt as the metatable for the tables
that it creates:

function Set.new (1) -- 2nd version
local set = {}
setmetatable(set, mt)

for _, v in ipairs(l) do set[v] = true end
return set
end

After that, every set we create with Set.new will have that same table as its
metatable:

sl = Set.new{10, 20, 30, 50}

s2 = Set.new{30, 1}

print (getmetatable(sl)) --> table: 00672B60

print (getmetatable(s2)) --> table: 00672B60

Finally, we add to the metatable the metamethod, a field __add that describes
how to perform the addition:

mt.__add = Set.union

After that, whenever Lua tries to add two sets it will call the Set.union function,
with the two operands as arguments.
With the metamethod in place, we can use the addition operator to do set
unions:
s3 = s1 + s2
Set.print(s3) --> {1, 10, 20, 30, 50}

Property of lan Bloss <ianlinkcd@gmail.com>

120 Chapter 13 Metatables and Metamethods

Similarly, we may set the multiplication operator to perform set intersection:

mt.__mul = Set.intersection
Set.print((sl + s2)*s1) --> {10, 20, 30, 50}

For each arithmetic operator there is a corresponding field name in a meta-
table. Besides __add and __mul, there are __sub (for subtraction), __div (for di-
vision), __unm (for negation), __mod (for modulo), and __pow (for exponentiation).
We may define also the field __concat, to describe a behavior for the concatena-
tion operator.

When we add two sets, there is no question about what metatable to use.
However, we may write an expression that mixes two values with different
metatables, for instance like this:

Set.new{1,2,3}
s + 8

When looking for a metamethod, Lua does the following steps: if the first value
has a metatable with an __add field, Lua uses this field as the metamethod, in-
dependently of the second value; otherwise, if the second value has a metatable
with an __add field, Lua uses this field as the metamethod; otherwise, Lua raises
an error. Therefore, the last example will call Set.union, as will the expressions
10+s and "hello" +s.

Lua does not care about these mixed types, but our implementation does. If
we run the s=s+8 example, the error we get will be inside Set.union:

bad argument #1 to ’pairs’ (table expected, got number)

If we want more lucid error messages, we must check the type of the operands
explicitly before attempting to perform the operation:

function Set.union (a, b)
if getmetatable(a) = mt or getmetatable(b) ~= mt then
error("attempt to ’add’ a set with a non-set value", 2)
end
<as before>

Remember that the second argument to error (2, in this example) directs the
error message to where the operation was called.

13.2 Relational Metamethods

Metatables also allow us to give meaning to the relational operators, through
the metamethods __eq (equal to), __1t (less than), and __le (less than or equal
to). There are no separate metamethods for the other three relational operators,
as Lua translates a“=b to not (a==b), a>b to b<a, and a>=b to b<=a.

Until Lua 4.0, all order operators were translated to a single one, by trans-
lating a<=b to not (b<a). However, this translation is incorrect when we have

Property of lan Bloss <ianlinkcd@gmail.com>

13.2 Relational Metamethods 121

a partial order, that is, when not all elements in our type are properly ordered.
For instance, floating-point numbers are not totally ordered in most machines,
because of the value Not a Number (NaN). According to the IEEE 754 standard,
currently adopted by virtually all floating-point hardware, NaN represents un-
defined values, such as the result of 0/0. The standard specifies that any com-
parison that involves NaN should result in false. This means that NaN<=x is
always false, but x<NaN is also false. It also implies that the translation from
a<=b to not (b<a) is not valid in this case.

In our example with sets, we have a similar problem. An obvious (and
useful) meaning for <= in sets is set containment: a<=b means that a is a subset
of b. With this meaning, again it is possible that both a<=b and b<a are false;
therefore, we need separate implementations for __le (less or equal) and __1t
(less than):

mt.__le = function (a, b) -- set containment
for k in pairs(a) do
if not b[k] then return false end
end
return true
end
mt.__1t = function (a, b)
return a <= b and not (b <= a)
end
Finally, we can define set equality through set containment:
mt.__eq = function (a, b)
return a <= b and b <= a
end
After these definitions, we are ready to compare sets:
sl = Set.new{2, 4}
s2 = Set.new{4, 10, 2}

print(sl <= s2) -=> true
print(sl < s2) -=> true
print(sl >= s1) --> true
print(sl > si1) --> false
print(sl == s2 * sl1) --> true

Unlike arithmetic metamethods, relational metamethods cannot be applied
to mixed types. Their behavior for mixed types mimics the common behavior of
these operators in Lua. If you try to compare a string with a number for order,
Lua raises an error. Similarly, if you try to compare two objects with different
metamethods for order, Lua raises an error.

An equality comparison never raises an error, but if two objects have different
metamethods, the equality operation results in false, without even calling any
metamethod. Again, this behavior mimics the common behavior of Lua, which
always classifies strings as different from numbers, regardless of their values.
Lua calls an equality metamethod only when the two objects being compared
share that metamethod.

Property of lan Bloss <ianlinkcd@gmail.com>

122 Chapter 13 Metatables and Metamethods

13.3 Library-Defined Metamethods

It is a common practice for libraries to define their own fields in metatables. So
far, all the metamethods we have seen are for the Lua core. It is the virtual
machine that detects that the values involved in an operation have metatables
and that these metatables define metamethods for that operation. However,
because metatables are regular tables, anyone can use them.

Function tostring provides a typical example. As we saw earlier, tostring
represents tables in a rather simple format:

print ({}) --> table: 0x8062ac0

(Function print always calls tostring to format its output.) However, when
formatting any value, tostring first checks whether the value has a __tostring
metamethod. In this case, tostring calls the metamethod to do its job, passing
the object as an argument. Whatever this metamethod returns is the result of
tostring.

In our example with sets, we have already defined a function to present a set
as a string. So, we need only to set the __tostring field in the metatable:

mt.__tostring = Set.tostring

After that, whenever we call print with a set as its argument, print calls
tostring that calls Set.tostring

sl = Set.new{10, 4, 5}
print(s1) --> {4, 5, 10}

Functions setmetatable and getmetatable also use a metafield, in this case
to protect metatables. Suppose you want to protect your sets, so that users
can neither see nor change their metatables. If you set a __metatable field

in the metatable, getmetatable will return the value of this field, whereas
setmetatable will raise an error:

mt.__metatable = "not your business"

sl = Set.new{}
print (getmetatable(sl)) --> not your business
setmetatable(sl, {})

stdin:1: cannot change protected metatable

13.4 Table-Access Metamethods

The metamethods for arithmetic and relational operators all define behavior for
otherwise erroneous situations. They do not change the normal behavior of the
language. But Lua also offers a way to change the behavior of tables for two
normal situations, the query and modification of absent fields in a table.

Property of lan Bloss <ianlinkcd@gmail.com>

13.4 Table-Access Metamethods 123

The __index metamethod

I said earlier that, when we access an absent field in a table, the result is nil.
This is true, but it is not the whole truth. Actually, such accesses trigger the
interpreter to look for an __index metamethod: if there is no such method, as
usually happens, then the access results in nil; otherwise, the metamethod will
provide the result.

The archetypal example here is inheritance. Suppose we want to create sev-
eral tables describing windows. Each table must describe several window pa-
rameters, such as position, size, color scheme, and the like. All these parame-
ters have default values and so we want to build window objects giving only the
non-default parameters. A first alternative is to provide a constructor that fills
in the absent fields. A second alternative is to arrange for the new windows to
inherit any absent field from a prototype window. First, we declare the prototype
and a constructor function, which creates new windows sharing a metatable:

Window = {} -- create a namespace
-- create the prototype with default values
Window.prototype = {x=0, y=0, width=100, height=100}
Window.mt = {} -- create a metatable
-— declare the constructor function
function Window.new (o)
setmetatable(o, Window.mt)
return o
end

Now, we define the __index metamethod:

Window.mt.__index = function (table, key)
return Window.prototype [key]
end

After this code, we create a new window and query it for an absent field:

w = Window.new{x=10, y=20}
print (w.width) --> 100

When Lua detects that w does not have the requested field, but has a metatable
with an __index field, Lua calls this __index metamethod, with arguments w (the
table) and “width” (the absent key). The metamethod then indexes the prototype
with the given key and returns the result.

The use of the __index metamethod for inheritance is so common that Lua
provides a shortcut. Despite the name, the __index metamethod does not need
to be a function: it can be a table, instead. When it is a function, Lua calls it with
the table and the absent key as its arguments, as we have just seen. When it is
a table, Lua redoes the access in this table. Therefore, in our previous example,
we could declare __index simply like this:

Window.mt.__index = Window.prototype

Property of lan Bloss <ianlinkcd@gmail.com>

124 Chapter 13 Metatables and Metamethods

Now, when Lua looks for the metatable’s __index field, it finds the value of
Window.prototype, which is a table. Consequently, Lua repeats the access in
this table, that is, it executes the equivalent of the following code:

Window.prototype ["width"]

This access then gives the desired result.

The use of a table as an __index metamethod provides a fast and simple
way of implementing single inheritance. A function, although more expensive,
provides more flexibility: we can implement multiple inheritance, caching, and
several other variations. We will discuss these forms of inheritance in Chap-
ter 16.

When we want to access a table without invoking its __index metamethod,
we use the rawget function. The call rawget (t, i) does a raw access to table t,
that is, a primitive access without considering metatables. Doing a raw access
will not speed up your code (the overhead of a function call kills any gain you
could have), but sometimes you need it, as we will see later.

The __newindex metamethod

The __newindex metamethod does for table updates what __index does for table
accesses. When you assign a value to an absent index in a table, the interpreter
looks for a __newindex metamethod: if there is one, the interpreter calls it
instead of making the assignment. Like __index, if the metamethod is a table,
the interpreter does the assignment in this table, instead of in the original one.
Moreover, there is a raw function that allows you to bypass the metamethod:
the call rawset (%, k, v) sets the value v associated with key k in table t without
invoking any metamethod.

The combined use of __index and __newindex metamethods allows several
powerful constructs in Lua, such as read-only tables, tables with default values,
and inheritance for object-oriented programming. In this chapter we will see
some of these uses. Object-oriented programming has its own chapter.

Tables with default values

The default value of any field in a regular table is nil. It is easy to change this
default value with metatables:

function setDefault (t, d)
local mt = {__index = function () return d end}
setmetatable(t, mt)

end

tab = {x=10, y=20}

print(tab.x, tab.z) --> 10 nil
setDefault (tab, 0)
print(tab.x, tab.z) --> 10 0

Property of lan Bloss <ianlinkcd@gmail.com>

13.4 Table-Access Metamethods 125

After the call to setDefault, any access to an absent field in tab calls its __index
metamethod, which returns zero (the value of d for this metamethod).

The setDefault function creates a new metatable for each table that needs
a default value. This may be expensive if we have many tables that need
default values. However, the metatable has the default value d wired into its
metamethod, so the function cannot use a single metatable for all tables. To
allow the use of a single metatable for tables with different default values, we
can store the default value of each table in the table itself, using an exclusive
field. If we are not worried about name clashes, we can use a key like “___" for
our exclusive field:

end}

local mt = {__index = function (t) return t._
function setDefault (t, d)

t.___=4d
setmetatable(t, mt)
end

If we are worried about name clashes, it is easy to ensure the uniqueness of this
special key. All we need is to create a new table and use it as the key:

local key = {} -- unique key
local mt = {__index = function (t) return t[key] end}
function setDefault (t, d)

tlkey]l = 4d
setmetatable(t, mt)
end

An alternative approach for associating each table with its default value is
to use a separate table, where the indices are the tables and the values are their
default values. However, for the correct implementation of this approach we
need a special breed of table, called weak tables, and so we will not use it here;
we will return to the subject in Chapter 17.

Another alternative is to memoize metatables in order to reuse the same
metatable for tables with the same default. However, that needs weak tables
too, so that again we will have to wait until Chapter 17.

Tracking table accesses

Both __index and __newindex are relevant only when the index does not exist in
the table. The only way to catch all accesses to a table is to keep it empty. So,
if we want to monitor all accesses to a table, we should create a proxy for the
real table. This proxy is an empty table, with proper __index and __newindex
metamethods that track all accesses and redirect them to the original table.
Suppose that t is the original table we want to track. We can write something
like this:

t = {} -- original table (created somewhere)

-- keep a private access to the original table
local _t = ¢t

Property of lan Bloss <ianlinkcd@gmail.com>

126 Chapter 13 Metatables and Metamethods

-— create proxy

t ={}

-- create metatable
local mt = {
__index = function (t, k)

print("*access to element " .. tostring(k))
return _t[k] -- access the original table
end,

__newindex = function (t, k, V)

print ("+update of element " .. tostring(k)
" to " .. tostring(v))
_t[k] = v -- update original table
end

}
setmetatable(t, mt)

This code tracks every access to t:

> t[2] = "hello"

*update of element 2 to hello
> print(t[2])

*access to element 2

hello

(Notice that, unfortunately, this scheme does not allow us to traverse tables. The
pairs function will operate on the proxy, not on the original table.)

If we want to monitor several tables, we do not need a different metatable
for each one. Instead, we can somehow associate each proxy to its original table
and share a common metatable for all proxies. This problem is similar to the
problem of associating tables to their default values, which we discussed in the
previous section. For instance, we can keep the original table in a proxy’s field,
using an exclusive key. The result is the following code:

local index = {} -- create private index
local mt = { -- create metatable
__index = function (t, k)
print("*access to element " .. tostring(k))
return t[index] [k] -- access the original table
end,

__newindex = function (t, k, v)

print ("*update of element " .. tostring(k)
" to " .. tostring(v))
t[index] [k] = v -- update original table
end

Property of lan Bloss <ianlinkcd@gmail.com>

13.4 Table-Access Metamethods 127

function track (t)
local proxy = {}
proxylindex] = t
setmetatable (proxy, mt)
return proxy

end

Now, whenever we want to monitor a table t, all we have to do is to execute
t=track(t).

Read-only tables

It is easy to adapt the concept of proxies to implement read-only tables. All
we have to do is to raise an error whenever we track any attempt to update
the table. For the __index metamethod, we can use a table —the original table
itself —instead of a function, as we do not need to track queries; it is simpler
and rather more efficient to redirect all queries to the original table. This
use, however, demands a new metatable for each read-only proxy, with __index
pointing to the original table:

function readOnly (t)
local proxy = {}
local mt = { -— create metatable
__index = t,
__newindex = function (t, k, v)
error("attempt to update a read-only table", 2)
end
}
setmetatable (proxy, mt)
return proxy
end

As an example of use, we can create a read-only table for weekdays:

days = readOnly{"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"}

print (days[1]) --> Sunday
days[2] = "Noday"
stdin:1: attempt to update a read-only table

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

14

The Environment

Lua keeps all its global variables in a regular table, called the environment. (To
be more precise, Lua keeps its “global” variables in several environments, but
we will ignore this multiplicity for a while.) One advantage of this structure is
that it simplifies the internal implementation of Lua, because there is no need
for a different data structure for global variables. The other (actually the main)
advantage is that we can manipulate this table as any other table. To facilitate
such manipulations, Lua stores the environment itself in a global variable _G.
(Yes, _G._G is equal to _G.) For instance, the following code prints the names of
all global variables defined in the current environment:

for n in pairs(_G) do print(n) end

In this chapter, we will see several useful techniques for manipulating the
environment.

14.1 Global Variables with Dynamic Names

Usually, assignment is enough for accessing and setting global variables. How-
ever, often we need some form of meta-programming, such as when we need to
manipulate a global variable whose name is stored in another variable, or some-
how computed at run time. To get the value of this variable, many programmers
are tempted to write something like this:

value = loadstring("return " .. varname) ()

129

Property of lan Bloss <ianlinkcd@gmail.com>

130 Chapter 14 The Environment

If varname is x, for example, the concatenation will result in “return x”, which
when run achieves the desired result. However, this code involves the creation
and compilation of a new chunk. You can accomplish the same effect with the
following code, which is more than an order of magnitude more efficient than
the previous one:

value = _G[varname]

Because the environment is a regular table, you can simply index it with the
desired key (the variable name).

In a similar way, you can assign a value to a global variable whose name
is computed dynamically, writing _G[varname] =value. Beware, however: some
programmers get a little excited with these facilities and end up writing code
like _G["a"]=_G["var1"], which is just a complicated way to write a=var1.

A generalization of the previous problem is to allow fields in the dynamic
name, such as “io.read” or “a.b.c.d”. If we write _G["io.read"], we do not
get the read field from the io table. But we can write a function getfield such
that getfield("io.read") returns the expected result. This function is mainly
a loop, which starts at _G and evolves field by field:

function getfield (f)

local v = _G -- start with the table of globals
for w in string.gmatch(f, "[Jw_]+") do
v = v[w]
end
return v
end

We rely on gmatch, from the string library, to iterate over all words in £ (where
“word” is a sequence of one or more alphanumeric characters and underscores).
The corresponding function to set fields is a little more complex. An assign-
ment like a.b.c.d=v is equivalent to the following code:
local temp = a.b.c
temp.d = v

That is, we must retrieve up to the last name and then handle it separately. The
next setfield function does the task, and also creates intermediate tables in a
path when they do not exist:

function setfield (f, v)

local t = _G -- start with the table of globals
for w, d in string.gmatch(f, "([Jw_1+)(.7)") do
if 4 == "." then -- not last field?
t[w] = t[w] or {} -- create table if absent
t = tlw] -- get the table
else —-— last field
tlw] = v -- do the assignment
end
end
end

Property of lan Bloss <ianlinkcd@gmail.com>

14.2 Global-Variable Declarations 131

This new pattern captures the field name in variable w and an optional following
dot in variable d.1® If a field name is not followed by a dot then it is the last name.
With the previous functions in place, the call

setfield("t.x.y", 10)
creates a global table t, another table t.x, and assigns 10 to t.x.y:

print(t.x.y) --> 10
print(getfield("t.x.y")) --> 10

14.2 Global-Variable Declarations

Global variables in Lua do not need declarations. Although this is handy for
small programs, in larger programs a simple typo can cause bugs that are
difficult to find. However, we can change this behavior if we like. Because Lua
keeps its global variables in a regular table, we can use metatables to change its
behavior when accessing global variables.

A first approach simply detects any access to absent keys in the global table:

setmetatable (_G, {
__newindex = function (_, n)

error("attempt to write to undeclared variable " .. n, 2)
end,
__index = function (_, n)

error("attempt to read undeclared variable " .. n, 2)
end,

b

After this code, any attempt to access a non-existent global variable will trigger
an error:

> print(a)
stdin:1: attempt to read undeclared variable a

But how do we declare new variables? One option is to use rawset, which
bypasses the metamethod:

function declare (name, initval)
rawset (_G, name, initval or false)
end

(The or with false ensures that the new global always gets a value different
from nil.) A simpler way is to allow assignments to global variables in the main
chunk, so that we declare variables as here:

a=1

13We will discuss pattern matching at great length in Chapter 20.

Property of lan Bloss <ianlinkcd@gmail.com>

132 Chapter 14 The Environment

To check whether the assignment is in the main chunk, we can use the debug
library. The call debug.getinfo(2, "S") returns a table whose field what tells
whether the function that called the metamethod is a main chunk, a regular Lua
function, or a C function.' Using this function, we can rewrite the __newindex
metamethod like this:

__newindex = function (t, n, v)
local w = debug.getinfo(2, "S").what

if w "= "main" and w "= "C" then
error("attempt to write to undeclared variable " .. n, 2)
end
rawset(t, n, v)
end

This new version also accepts assignments from C code, as this kind of code
usually knows what it is doing.

To test whether a variable exists, we cannot simply compare it to nil because,
if it is nil, the access will throw an error. Instead, we use rawget, which avoids
the metamethod:

if rawget(_G, var) == nil then
—-— ’var’ is undeclared

end

As it is, our scheme does not allow global variables with nil values, as they
would be automatically considered undeclared. But it is not difficult to correct
this problem. All we need is an auxiliary table that keeps the names of declared
variables. Whenever a metamethod is called, it checks in this table whether the
variable is undeclared or not. The code may be like in Listing 14.1. Now even
an assignment like x=nil is enough to declare a global variable.

For both solutions, the overhead is negligible. With the first solution, the
metamethods are never called during normal operation. In the second, they
may be called, but only when the program accesses a variable holding a nil.

The Lua distribution comes with a module strict.lua that implements a
global-variable check that uses essentially the code we just reviewed. It is a
good habit to use it when developing Lua code.

14.3 Non-Global Environments

One of the problems with the environment is that it is global. Any modification
you do on it affects all parts of your program. For instance, when you install a
metatable to control global access, your whole program must follow the guide-
lines. If you want to use a library that uses global variables without declaring
them, you are in bad luck.

14We will see debug.getinfo in more detail in Chapter 23.

Property of lan Bloss <ianlinkcd@gmail.com>

14.3 Non-Global Environments 133

Listing 14.1. Checking global-variable declaration:

local declaredNames = {}

setmetatable(_G, {
__newindex = function (t, n, v)
if not declaredNames[n] then
local w = debug.getinfo(2, "S").what
if w "= "main" and w "= "C" then
error("attempt to write to undeclared variable "..n, 2)
end
declaredNames [n] = true
end
rawset(t, n, v) -- do the actual set
end,

__index = function (_, n)
if not declaredNames[n] then
error ("attempt to read undeclared variable "..n, 2)
else
return nil
end
end,

1))

Lua 5 ameliorated this problem by allowing each function to have its own
environment, wherein it looks for global variables. This facility may sound
strange at first; after all, the goal of a table of global variables is to be global.
However, in Section 15.3 we will see that this facility allows several interesting
constructions, where global values are still available everywhere.

You can change the environment of a function with the setfenv function
(set function environment). It takes as arguments the function and the new
environment. Instead of the function itself, you can also give a number, meaning
the active function at that given stack level. Number 1 means the current
function, number 2 means the function calling the current function (which is
handy to write auxiliary functions that change the environment of their caller),
and so on.

A naive first attempt to use setfenv fails miserably. The code

a=1 -- create a global variable

-- change current environment to a new empty table
setfenv(l, {})

print(a)

results in

stdin:5: attempt to call global ’print’ (a nil value)

Property of lan Bloss <ianlinkcd@gmail.com>

134 Chapter 14 The Environment

(You must run this code in a single chunk. If you enter it line by line in
interactive mode, each line is a different function and the call to setfenv affects
only its own line.) Once you change your environment, all global accesses
will use the new table. If it is empty, you have lost all your global variables,
even _G. So, you should first populate it with some useful values, such as the old
environment:

a=1 -- create a global variable
setfenv(l, {g = _G}) -- change current environment
g.print(a) --> nil

g.print(g.a) -—> 1

Now, when you access the “global” g, its value is the old environment, wherein
you will find the field print.
We can rewrite the previous example using the name _G instead of g:

setfenv(l, {_G = _G})
_G.print(a) -=> nil
_G.print(_G.a) -1

For Lua, _G is a name like any other. Its only special status happens when Lua
creates the initial global table and assigns this table to the global variable _G.
Lua does not care about the current value of this variable; setfenv does not set
it in new environments. But it is customary to use this same name whenever we
have a reference to the initial global table, as we did in the rewritten example.
Another way to populate your new environment is with inheritance:

a=1

local newgt = {} -- create new environment
setmetatable(newgt, {__index = _G})

setfenv(l, newgt) -- set it

print(a) -—> 1

In this code, the new environment inherits both print and a from the old one.
Nevertheless, any assignment goes to the new table. There is no danger of
changing a really global variable by mistake, although you still can change them
through _G:

-- continuing previous code

a =10

print(a) --> 10
print(_G.a) -—> 1
_G.a = 20

print(_G.a) --> 20

Each function, or more specifically each closure, has an independent environ-
ment. The next chunk illustrates this mechanism:
function factory ()
return function ()
return a -- "global" a
end
end

Property of lan Bloss <ianlinkcd@gmail.com>

14.3 Non-Global Environments 135

a=3

f1 = factory()

£f2 = factory()
print(£1()) -=>3
print (£20)) -—> 3
setfenv(f1, {a = 10})
print(£10)) -=> 10
print (£2()) -—> 3

The factory function creates simple closures that return the value of their
global a. Each call to factory creates a new closure with its own environment.
When you create a new function, it inherits its environment from the function
creating it. So, when created, these closures share the global environment,
where the value of a is 3. The call setfenv(f1, {a=10}) changes the environ-
ment of £1 to a new environment where the value of a is 10, without affecting
the environment of £2.

Because new functions inherit their environments from the function creating
them, if a chunk changes its own environment, all functions it defines afterward
will share this new environment. This is a useful mechanism for creating
namespaces, as we will see in the next chapter.

Property of lan Bloss <ianlinkcd@gmail.com>

Property of lan Bloss <ianlinkcd@gmail.com>

15

Modules and Packages

Usually, Lua does not set policies. Instead, Lua provides mechanisms that are
powerful enough for groups of developers to implement the policies that best
suit them. However, this approach does not work well for modules. One of the
main goals of a module system is to allow different groups to share code. The
lack of a common policy impedes this sharing.

Starting in version 5.1, Lua defines a set of policies for modules and packages
(a package being a collection of modules). These policies do not demand any ex-
tra facility from the language; programmers can implement them using what we
have seen so far: tables, functions, metatables, and environments. However, two
important functions ease the adoption of these policies: require, for using mod-
ules, and module, for building modules. Programmers are free to re-implement
these functions with different policies. Of course, alternative implementations
may lead to programs that cannot use foreign modules and modules that cannot
be used by foreign programs.

From the user point of view, a module is a library that can be loaded through
require and that defines one single global name containing a table. Everything
that the module exports, such as functions and constants, it defines inside this
table, which works as a namespace. A well-behaved module also arranges for
require to return this table.

An obvious benefit of using tables to implement modules is that we can
manipulate modules like any other table and use the whole power of Lua to
create extra facilities. In most languages, modules are not first-class values
(that is, they cannot be stored in variables, passed as arguments to functions,
etc.), so those languages need special mechanisms for each extra facility they
want to offer for modules. In Lua, you get extra facilities for free.

For instance, there are several ways for a user to call a function from a
module. The simplest is this:

137

Property of lan Bloss <ianlinkcd@gmail.com>

138 Chapter 15 Modules and Packages

require "mod"
mod.foo()

If she prefers a shorter name for the module, she can set a local name for it:

local m = require "mod"
m.foo()

She can also rename individual functions:

require "mod"
local £ = mod.foo

£O

The nice thing about these facilities is that they involve no explicit support from
the language. They use what the language already offers.

15.1 The require Function

Lua offers a high-level function to load modules, called require. This function
tries to keep to a minimum its assumptions about what a module is. For require,
a module is just any chunk of code that defines some values (such as functions
or tables containing functions).

To load a module, we simply call require "modname". Typically, this call
returns a table comprising the module functions, and it also defines a global
variable containing this table. However, these actions are done by the module,
not by require, so some modules may choose to return other values or to have
different side effects.

It is a good programming practice always to require the modules you need,
even if you know that they would be already loaded. You may exclude the stan-
dard libraries from this rule, because they are pre-loaded in Lua. Nevertheless,
some people prefer to use an explicit require even for them:

local m = require "io"
m.write("hello world\n")

Listing 15.1 details the behavior of require. Its first step is to check in table
package.loaded whether the module is already loaded. If so, require returns its
corresponding value. Therefore, once a module is loaded, other calls to require
simply return the same value, without loading the module again.

If the module is not loaded yet, require tries to find a loader for this module.
(This step is illustrated by the abstract function findloader in Listing 15.1.) Its
first attempt is to query the given library name in table package.preload. If it
finds a function there, it uses this function as the module loader. This preload
table provides a generic method to handle some non-conventional situations
(e.g., C libraries statically linked to Lua). Usually, this table does not have an
entry for the module, so require will search first for a Lua file and then for a
C library to load the module from.

If require finds a Lua file for the given module, it loads it with loadfile;
otherwise, if it finds a C library, it loads it with loadlib. Remember that both

Property of lan Bloss <ianlinkcd@gmail.com>

15.1 The require Function 139

Listing 15.1. The require function:

function require (name)
if not package.loaded[name] then -- module not loaded yet?
local loader = findloader (name)
if loader == nil then
error("unable to load module
end
package.loaded[name] = true -- mark module as loaded
local res = loader(name) -- initialize module
if res "= nil then
package.loaded [name] = res
end
end
return package.loaded[name]
end

" .. name)

loadfile and loadlib only load some code, without running it. To run the code,
require calls it with a single argument, the module name. If the loader returns
any value, require returns this value and stores it in table package.loaded to
return the same value in future calls for this same library. If the loader returns
no value, require returns whatever value is in table package.loaded. As we will
see later in this chapter, a module can put the value to be returned by require
directly into package.loaded

An important detail of that previous code is that, before calling the loader,
require marks the module as already loaded, assigning true to the respective
field in package.loaded. Therefore, if the module requires another module and
that in turn recursively requires the original module, this last call to require
returns immediately, avoiding an infinite loop.

To force require into loading the same library twice, we simply erase the li-
brary entry from package . loaded. For instance, after a successful require"foo",
package.loaded["foo"] will not be nil. The following code will load the library
again:

package.loaded["foo"] = nil
require "foo"

When searching for a file, require uses a path that is a little different from
typical paths. The path used by most programs is a list of directories wherein to
search for a given file. However, ANSI C (the abstract platform where Lua runs)
does not have the concept of directories. Therefore, the path used by require
is a list of patterns, each of them specifying an alternative way to transform a
module name (the argument to require) into a file name. More specifically, each
component in the path is a file name containing optional question marks. For
each component, require replaces the module name for each ‘?’ and checks
whether there is a file with the resulting name; if not, it goes to the next

Property of lan Bloss <ianlinkcd@gmail.com>

140 Chapter 15 Modules and Packages

component. The components in a path are separated by semicolons (a character
seldom used for file names in most operating systems). For instance, if the path
is

?;7.1ua;c:\windows\7;/usr/local/lua/?/?.1lua

then the call require "sql" will try to open the following files:

sql

sql.lua

c:\windows\sql
/usr/local/lua/sql/sql.lua

The require function assumes only the semicolon (as the component separator)
and the question mark; everything else, such as directory separators or file
extensions, is defined by the path itself.

The path that require uses to search for Lua files is always the current
value of the variable package.path. When Lua starts, it initializes this variable
with the value of the environment variable LUA_PATH or with a compiled-defined
default path, if this environment variable is not defined. When using LUA_PATH,
Lua substitutes the default path for any substring “; ;”. For instance, if you set
LUA_PATH to “mydir/?.1lua;;”, the final path will be the component “mydir/?.1lua”
followed by the default path.

If require cannot find a Lua file compatible with the module name, it looks
for a C library. For this search, it gets the path from variable package.cpath
(instead of package.path). This variable gets its initial value from the environ-
ment variable LUA_CPATH (instead of LUA_PATH). A typical value for this variable
in Unix is like this:

./?.s0;/usr/local/lib/lua/5.1/?.s0

Note that the file extension is defined by the path (e.g., the previous example
uses .so for all templates). In Windows, a typical path is more like this one:

.\7.d11;C:\Program Files\Lua501\d11\7.d11

Once it finds a C library, require loads it with package.loadlib, which we
discussed in Section 8.2. Unlike Lua chunks, C libraries do not define one single
main function. Instead, they can export several C functions. Well-behaved
C libraries should export one function called luaopen_modname, which is the
function that require tries to call after linking the library. In Section 26.2 we
will discuss how to write C libraries.

Usually, we use modules with their original names, but sometimes we must
rename a module to avoid name clashes. A typical situation is when we need to
load different versions of the same module, for instance for testing. For a Lua
module, either it does not have its name fixed internally (as we will see later)
or we can easily edit it to change its name. But we cannot edit a binary module
to correct the name of its luaopen_* function. To allow for such renamings,
require uses a small trick: if the module name contains a hyphen, require

Property of lan Bloss <ianlinkcd@gmail.com>

15.2 The Basic Approach for Writing Modules 141

strips from the name its prefix up to the hyphen when creating the luaopen_x
function name. For instance, if a module is named a-b, require expects its open
function to be named luaopen_b, instead of luaopen_a-b (which would not be a
valid C name anyway). So, if we need to use two modules named mod, we can
rename one of them to vi-mod (or -mod, or anything like that). When we call
ml=require"vl-mod", require will find both the renamed file vi-mod and, inside
this file, the function with the original name luaopen_mod.

15.2 The Basic Approach for Writing Modules

The simplest way to create a module in Lua is really simple: we create a table,
put all functions we want to export inside it, and return this table. Listing 15.2
illustrates this approach. Note how we define inv as a private name simply by
declaring it local to the chunk.

The use of tables for modules does not provide exactly the same functionality
as provided by real modules. First, we must explicitly put the module name
in every function definition. Second, a function that calls another function
inside the same module must qualify the name of the called function. We
can ameliorate these problems using a fixed local name for the module (M,
for instance), and then assigning this local to the final name of the module.
Following this guideline, we would write our previous module like this:

local M = {3}
complex = M -- module name

M.i = {r=0, i=1}
function M.new (r, i) return {r=r, i=i} end

function M.add (ci1, c2)
return M.new(cl.r + c2.r, cl.i + c2.1i)
end

<as before>

Whenever a function calls another function inside the same module (or when-
ever it calls itself recursively), it still needs to prefix the name. At least, the
connection between the two functions does not depend on the module name any-
more. Moreover, there is only one place in the whole module where we write
the module name. Actually, we can avoid writing the module name altogether,
because require passes it as an argument to the module:

local modname = ...
local M = {}
_G[modname] = M

M.i = {r=0, i=1}
<as before>

Property of lan Bloss <ianlinkcd@gmail.com>

142 Chapter 15 Modules and Packages

Listing 15.2. A simple module:

complex = {}

function complex.new (r, i) return {r=r, i=i} end

-- defines a constant ’i’
complex.i = complex.new(0, 1)

function complex.add (cl, c2)
return complex.new(cl.r + c2.r, cl.i + c2.i)
end

function complex.sub (cl, c2)
return complex.new(cl.r - c2.r, cl.i - c2.i)
end

function complex.mul (cl, c2)
return complex.new(cl.rxc2.r - cl.ixc2.1i,
cl.rxc2.i + cl.ixc2.r)
end

local function inv (c)

local n = c.r"2 + c.i"2

return complex.new(c.r/n, -c.i/n)
end

function complex.div (cl, c2)
return complex.mul(cl, inv(c2))
end

return complex

With this change, all we have to do to rename a module is to rename the file that
defines it.

Another small improvement relates to the closing return statement. It would
be nice if we could concentrate all module-related setup tasks at the beginning
of the module. One way of eliminating the need for the return statement is to
assign the module table directly into package.loaded:

local modname = ...

local M = {}

_G[modname] = M

package.loaded [modname] = M
<as before>

With this assignment, we do not need to return M at the end of the module:
remember that, if a module does not return a value, require returns the current

Property of lan Bloss <ianlinkcd@gmail.com>

15.3 Using Environments 143

value of package.loaded [modname].

15.3 Using Environments

A major drawback of that basic method for creating modules is that it calls for
special attention from the programmer. She must qualify names when accessing
other public entities inside the same module. She has to change the calls
whenever she changes the status of a function from private to public (or from
public to private). Moreover, it is all too easy to forget a local in a private
declaration.

Function environments offer an interesting technique for creating modules
that solves all these problems. Once the module main chunk has an exclusive
environment, not only all its functions share this table, but also all its global
variables go to this table. Therefore, we can declare all public functions as globa