
 1

Comments on “Data Mining Static Code Attributes to Learn Defect Predictors”

Hongyu Zhang
School of Software
Tsinghua University

Beijing 100084
China

hongyu@tsinghua.edu.cn

Xiuzhen Zhang
School of Computer Science and

Information Technology
RMIT University, Melbourne 3001

Australia
zhang@cs.rmit.edu.au

Abstract

In this correspondence, we point out some discrepancies in a recent paper “Data Mining Static

Code Attributes to Learn Defect Predictors” that was published in this journal. Because of the

small percentage of defective modules, using pd and pf as accuracy measures may lead to

impractical prediction models.

Keywords: defect prediction, accuracy measures, static code attributes, empirical

1. Introduction

In the January 2007 issue of this journal, a paper entitled “Data Mining Static Code Attributes to

Learn Defect Predictors” [1] was published. In that paper, Probability of Detection (pd) and

Probability of False Alarm (pf) are used to measure the accuracy of a defect prediction model.

Their models generate average results of pd = 71% and pf = 25%. The authors of [1] consider

these results satisfactory and draw their conclusions based on them. This correspondence points

out the limitation of using pd and pf as accuracy measures in imbalanced classification. Using the

Recall/Precision measures, we show that the models built in [1] are not satisfactory for practical

use and should be improved.

2. The Evaluation of Defect Prediction Models

Prediction of defective modules can be cast as a classification problem in machine learning:

given training samples of modules with labels as defective (Positive) or non-defective (Negative),

 2

a classification model can be learnt from the training data. The model is then used to classify

unknown modules. A prediction model has four results: true positives (TP), false positives (FP),

true negatives (TN) and false negatives (FN), as shown in Table 1. The total number of actual

defective modules is denoted as POS and the total number of actual non-defective modules is

denoted as NEG.

 Predicted
 Defective Non-defective
Defective TP FN POS (TP+FN)
Non-defective FP TN NEG (FP+TN)

Table 1: The results of a prediction model

 To evaluate the accuracy of a prediction, [1] uses Receiver-Operator (ROC) curves, which

consists of Probability of Detection (pd) and Probability of False Alarm (pf). A single measure

balance is also defined to balance between pd and pf. These measures are defined as follows:

FNTP
TPpd
!

" ,
TNFP

FPpf
!

" ,
2

)1()0(
1

22 pdpf
balance

#!#
#" (1)

 For evaluating performance of a prediction model, another set of accuracy measures is Recall

and Precision, which is widely used in Information Retrieval area.

FNTP
TPcall
!

"Re ,
FPTP

TPecision
!

"Pr ,
ecisioncall

ecisioncallmeasureF
PrRe

PrRe2
!
$$

"# (2)

Recall is actually the same as pd, which defines the ratio of detected true defective modules in

comparison to the total number of defective modules. The Precision defines the ratio of correctly

detected modules. A good prediction model should achieve high Recall and high Precision. A

single measure, the F-measure, is used to combine Recall and Precision. It is defined as the

harmonic mean of Precision and Recall. The values of Recall, Precision and F-measure are

between 0 and 1, the higher the better.

Based on Equations (1) and (2), we know that:

A
ct

ua
l

 3

PDPOS
PFNEG

TP
FPFPTP

TPecision

$
$

!
"

!
"

!
"

1

1

1

1Pr (3)

Using the data given in Figure 3 and Figure 12 of [1], we calculate the Precision values based

on the Equation (3). The results are shown in Table 2 (the values in Italic are the original data

from [1]).

Data
Set

modules

%
defective

POS
NEG pd

(%)
pf
(%)

balance

Recall
 (%)

Precision
(%)

F-
measure

Expected
pf (for
Precision
= 60%)

CM1 506 9 10.11 71 27 0.72 71 20.64 0.32 4.68

KC3 459 9 10.11 69 28 0.70 69 19.60 0.31 4.55
KC4 126 49 1.04 79 32 0.73 79 70.34 0.74 50.60
MW1 404 7 13.29 52 15 0.64 52 20.69 0.30 2.61
PC1 1108 6 15.67 48 17 0.61 48 15.27 0.23 2.04

PC2 5590 0.4 249.0 72 14 0.78 72 2.02 0.04 0.19
PC3 1564 10 9.00 80 35 0.71 80 20.25 0.32 5.93
PC4 1458 12 7.33 98 29 0.79 98 31.55 0.48 8.91

Table 2. The Prediction Results

We notice that the Precision and F-measure values are very low for all datasets (except the

KC4). For example, for the CM1 dataset, the Precision is 20.64%, which means that if a module

is predicted as defective, the probability of it actually being defective is only 20.64%. For the

PC2 dataset, if the prediction model claims a module defective, the probability of it actually

being defective is only 2.02%. These results are considered unsatisfactory, although the pd

values are high. Therefore, defect prediction through such models would not be very useful in

practice. Applying such models would defeat the very purpose of defect prediction, which is

about allocation of limited QA resources more efficiently (so that efforts can be concentrated on

the potentially problematic modules).

 4

 The models with high pd and low pf do not necessarily lead to accurate models with high

precision. The reason is that the distribution of classes (defective or non-defective) is highly

imbalanced. The number of non-defective modules is much more than the number of defective

modules. As shown in Table 2, the percentage of defective modules in each dataset (except the

KC4 dataset) is very low (ranging from 0.4% to 12%). From the Equation (3) we can see that the

Precision could be low if the NEG/POS ratio is high. The only exception KC4 dataset has the

NEG/POS ratio 1.04 therefore high pd/pf ration leads to high Precision. For all other datasets, the

number of non-defective modules are 7-249 times more than the defective modules, therefore

their Precision is low even their pd is high and pf is low.

Table 2 also gives the expected pf values for each dataset if the Precision reaches 60%. We

can see that in order to achieve Precision 60%, the original pf values shown in Figure 12 of [1]

shall be further improved.

To verify our results, we have also repeated the study described in [1], using the same NASA

datasets, the Naive Bayes (with log-transforms) learner and the WEKA tool. The results confirm

that the prediction models proposed in [1] are impractical for software defect prediction due to

the low precisions.

3. Conclusion

In this correspondence, we have shown that the models built in [1] are not satisfactory for

practical use. We suggest using Recall/Precision, instead of pd/pf, to measure the accuracy of a

software defect prediction model.

References

[1] T. Menzies, J. Greenwald and A. Frank, “Data Mining Static Code Attributes to Learn Defect

Predictors”, IEEE Trans. Software Eng., vol. 32, no. 11, Jan 2007.

