
Where is the Best Effort Estimator?

Vincent Rogers
CS, WVU, Morgantown, USA

email@email.com

William Sica
CS, WVU, Morgantown, USA

filler@filler.fill

ABSTRACT
BACKGROUND: Despite decades of research, there is no agree-
ment on what is the “best” software effort estimator.
AIM: We seek stable conclusions about the “best” effort estimator.
METHOD: 10 learners and 9 data preprocessors, combined into 90
effort estimators, were applied to twenty datasets. Performance was
assessed using AR, MRE, MER, MdMRE, MMRE, PRED(25),
MIBRE and compared using a Wilcoxon test (95%).
RESULTS: Some datasets are stronger/weaker at distinguishing es-
timation performance and, hence, are better/worse at finding the
“best” estimators.
CONCLUSIONS: We recommend regression trees or analogy meth-
ods (and recommend against neural nets or simple linear regres-
sion). We caution that prior work has not taken proper account of
the data used to evaluate the effort estimator. Future work should
take greater care to explore the data and its preprocessing (and not
just the learner). Furthermore, that future work should justify its
conclusions using the stronger datasets.

Categories and Subject Descriptors
Software Engineering [Software Metrics]: Data Mining

General Terms
Software effort Estimation, Linear Regression, Regression Trees,
Neural Nets, Analogy, MMRE, Evaluation Criteria

Keywords
Software Effort Estimation, MMRE, Evaluation Criteria

1. INTRODUCTION
For decades, researchers have been seeking the “best” software

development effort estimator. To date, no such “best” estimator has
been found. The usual conclusion is that effort estimation suffers
from a conclusion instability problem; i.e. different researchers
offer conflicting rankings as to what is “best” [?, ?].

This is an open and urgent issue since accurate effort estimation
is vital to Software Engineering, and is often a challenging task

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE 2011 Waikiki, Honolulu, Hawaii USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

for many software project managers. Both overestimating and un-
derestimating would result unfavorable impacts to the business’s
competitiveness and project resource planning.

Effort estimation research focuses on the learner used to gener-
ate the estimate (e.g. linear regression, neural nets, etc) in many
cases, overlooking the importance of the quality and characteristics
of the data being used in the estimation process. We will argue
that this approach is somewhat misguided since, as shown below,
learner performance is greatly influenced by the data preprocessing
and the datasets being used to evaluate the learner.

This paper shows that many datasets used by prior publications
are very weak at distinguishing between different learners. All the
results based on these weak datasets (including many results by the
authors of this papers) must hence be revisited.

The good news is that there are strong datasets that clearly illus-
trate the value of any estimator. In all, this study applies 90 estima-
tors to 20 datasets and measures their performance in terms of seven
different performance criteria. To the best of our knowledge, this
is the largest effort estimation study yet reported in the literature.
One result of exploring such a large space of data and algorithms is
that we can report stable conclusions (while prior studies have not).

This paper is structured as follows. Related work discusses effort
estimation and the prior reports on conclusion instability. Those
reports used a dataset to seed the generation of artificial data. Our
results section shows that if we extend the experiments to a broader
set of project data, we are able to discover stable conclusions such
as that some datasets are weak; and that the strong datasets show
which estimators are consistently better than others. Based on those
results, our conclusion will list best (and worst) effort estimators.

2. RELATED WORK
This section reviewed the effort estimation literature with regards

to (a) the major estimation techniques used by empirical research
studies on cost estimation within the last 15 years and (b) the con-
clusion instability problem.

2.1 Algorithmic Methods
There are many algorithmic effort estimators. For example, if we

restrict ourselves to just instance-based algorithms, Figure 1 shows
that there are thousands of options just in that one sub-field.

As to non-instance methods, that are many proposed in the lit-
erature including various kinds of regression (simple, partial least
square, stepwise, regression trees), and neural networks just to name
a few. For notes on these non-instance methods, see §3.3.

Note that instance & non-instance-based methods can be com-
bined to create even more algorithms. For example, once an instance-
based method finds its nearest neighbors, those neighbors might be
summarized with regression or neural nets [?].

Instances-based learners draw conclusions from instances near the test instance. Mendes et al. [?] discuss various near-ness measures.

M1 : A simple Euclidean measure;
M2 : A “maximum distance” measure that that focuses on the single feature that maximizes inter-project distance.
M3 : More elaborate kernel estimation methods.

Once the nearest neighbors are found, they must be used to generate an effort estimate via...

R1 : Reporting the median effort value of the analogies;
R2 : Reporting the mean dependent value;
R3 : Reporting a weighted mean where the nearer analogies are weighted higher than those further away [?];

Prior to running an instance-based learning, it is sometimes recommended to handle anomalous rows by:

N1 : Doing nothing at all;
N2 : Using outlier removal [?];
N3 : Prototype generation; i.e. replace the data set with a smaller set of most representative examples [?].

When computing distances between pairs, some feature weighting scheme is often applied:

W1 : All features have uniform weights;
W2..W9 : Some pre-processing scores the relative value of the features using various methods [?, ?, ?]. The pre-processors may require discretization.

Discretization breaks up continuous ranges at points b1, b2, ..., each containing counts of c1, c2, ... of numbers [?]. Discretization methods include:

D1 : Equal-frequency, where ci = cj ;
D2 : Equal-width, where bi+1 − bi is a constant;
D3 : Entropy [?];
D4 : PKID [?];
D5 : Do nothing at all.

Finally, there is the issue of how many k neighbors should be used:

K1 : k = 1 is used by Lipowezky et al. [?] and Walkerden & Jeffery [?];
K2 : k = 2 is used by Kirsopp & Shepperd [?]
K3 : k = 1, 2, 3 is used by Mendes el al. [?]
K4 : Li et al. use k = 5 [?];
K5 : Baker tuned k to a particular training set using an experimental method [?].

Figure 1: Each combination of the above N×W×D×M×R×K techniques is one algorithm for instance-based effort estimation.
This figure shows 3× 3× 3× 9× 5× 5 > 6, 000 algorithms for effort estimation. Some of these ways can be ruled out, straight away.
For example, at k = 1, then all the adaptation mechanisms return the same result. Also, not all the feature weighting techniques
require discretization, decreasing the space of options by a factor of five. However, even after discarding some combinations, there
are still hundreds to thousands of algorithms to explore.

2.2 Non-Algorithmic Methods
An alternative approach to algorithmic approaches (e.g. the instance-

based methods of Figure 1) is to utilize the best knowledge of an ex-
perienced expert. Expert based estimation [?] is a human intensive
approach that is most commonly adopted in practice. Estimates are
usually produced by a domain expert rather than an estimation ex-
pert based on their very own personal experience and recollection
of similar past projects in the organization. It is flexible and intu-
itive in a sense that it can be applied in a variety of circumstances
where other estimating techniques do not work (for example when
there is a lack of historical data). Furthermore in many cases re-
quirements are simply unavailable at the bidding stage of a project
where a rough estimate is required in a very short period of time.

Jorgensen [?] provides guidelines for producing realistic soft-
ware development effort estimates derived from industrial experi-
ence and empirical studies. One important finding concluded was
that the combine estimation method in expert based estimation of-
fers the most robust and accurate combination method, as combin-
ing estimates captures a broader range of information that is rele-
vant to the target problem, for example combining estimates with
analogy based with expert based method. Data and knowledge rel-
evance to the project’s context and characteristics will more likely
to influence the prediction accuracy.

Although widely used in industry, there are no standard meth-
ods for expert based estimation. Shepperd et al. [?] do not consider
expert based estimation an empirical method because the means of

deriving an estimate are not explicit and therefore not repeatable,
nor easily transferable to other staff. In addition, knowledge rele-
vancy is also a problem, as an expert may not be able to justify es-
timates for a new application domain as well as its validity. Hence,
the rest of this paper does not consider non-algorithmic methods.

2.3 Conclusion Instability
To derive stable conclusions about which estimator is “best”,

there have been attempts in trying to compare model prediction
performance of different effort estimation approaches. For exam-
ple, Shepperd and Kododa [?] compared regression, rule induction,
nearest neighbor and neural nets, in an attempt to explore the re-
lationship between accuracy, choice of prediction system, and dif-
ferent dataset characteristic by using a simulation study based on
artificial datasets. They also reported a number of conflicting re-
sults exist in the literature as to which method provides better pre-
diction accuracy, and offers possible explanations including the use
of an evaluation criteria such as MMRE and the underlying charac-
teristics of the problem dataset being used will have a strong influ-
ence upon the relative effectiveness of different prediction models.
Their work as a simulation study that took a single dataset, then
generated very large artificial datasets using the distributions seen
on that data. They concluded that:

• None of these existing estimators were consistently “best”;
• The accuracy of an estimate depends on the dataset charac-

teristic and a suitable prediction model for the dataset.

Historical Effort Data
Dataset Features Size Description Units Min Median Mean Max Skewness
cocomo81 17 63 NASA projects months 6 98 683 11400 4.4

cocomo81e 17 28 Cocomo81 embedded projects months 9 354 1153 11400 3.4
cocomo81o 17 24 Cocomo81 organic projects months 6 46 60 240 1.7
cocomo81s 17 11 Cocomo81 semi-detached projects months 5.9 156 849.65 6400 2.64

nasa93 17 93 NASA projects months 8 252 624 8211 4.2
nasa93_center_1 17 12 Nasa93 projects from center 1 months 24 66 139.92 360 0.86
nasa93_center_2 17 37 Nasa93 projects from center 2 months 8 82 223 1350 2.4
nasa93_center_5 17 40 Nasa93 projects from center 5 months 72 571 1011 8211 3.4

desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
desharnaisL1 11 46 Projects in Desharnais that are developed with Language1 hours 805 4035.5 5738.9 23940 2.09
desharnaisL2 11 25 Projects in Desharnais that are developed with Language2 hours 1155 3472 5116.7 14973 1.16
desharnaisL3 11 10 Projects in Desharnais that are developed with Language3 hours 546 1123.5 1684.5 5880 1.86

sdr 22 24 Turkish software projects months 2 12 32 342 3.9
albrecht 7 24 Projects from IBM months 1 12 22 105 2.2
finnish 8 38 Software projects developed in Finland hours 460 5430 7678.3 26670 0.95
kemerer 7 15 Large business applications months 23.2 130.3 219.24 1107.3 2.76
maxwell 27 62 Projects from commercial banks in Finland hours 583 5189.5 8223.2 63694 3.26
miyazaki94 8 48 Japanese software projects developed in COBOL months 5.6 38.1 87.47 1586 6.06
telecom 3 18 Maintenance projects for telecom companies months 23.54 222.53 284.33 1115.5 1.78
china 18 499 Projects from Chines software companies hours 26 1829 3921 54620 3.92

Total: 1198

Figure 2: The 1198 projects used in this study come from 20 data sets. Indentation in column one denotes a dataset that is a subset
of another dataset. For notes on this datasets, see the appendix.

They conclude that it is generally infeasible to determine which
prediction technique is "best".

Recent results suggest that it is appropriate to revisit the con-
clusion instability hypothesis. Menzies et al. [?] applied 158 esti-
mators to various subsets of two COCOMO datasets. In a result
consistent with Shepperd and Kododa, they found the precise rank-
ing of the 158 estimators changed according to the random number
seeds used to generate train/test sets; the performance evaluation
criteria used; and which subset of the data was used. However, they
also found that four methods consistently out-performed the other
154 across all datasets, across 5 different random number seeds,
and across three different evaluation criteria.

Also, there are now many more public domain datasets, read-
ily available for stability studies. Figure 2 lists 20 datasets which
have become available in the last year at the PROMISE repository
of reusable SE data1. Given the availability of this data, it is no
longer necessary to work on simulated data (as done by Shepperd
and Kadoda [?]) or to study merely two datasets (as done by Men-
zies et al. [?]). The rest of this paper explores conclusion stability
over 20 datasets given in Figure 2.

3. EXPERIMENT DESIGN
In our experiments, numerous performance measures were col-

lected after various algorithms (combinations of preprocessors and
learners) were applied to the data of Figure 2. This section de-
scribes those performance measures, preprocessors, and learners.

Since it is impractical to explore (say) the thousands of options
described in Figure 1, we elected to explore variants commonly
used in the literature. For example, we explore neural nets, re-
gression, and analogy because those methods were explored by
Shepherd and Kododa [?]. Nevertheless, it is important to note that
our conclusions come only from the estimators/performance crite-
ria/datasets used in this study. Further work is required to confirm
our findings on other estimators/performance criteria/datasets.

3.1 Performance Measures
Performance measures comment on the success of a prediction.

For example, the absolute residual (AR) is the difference between

1http://promisedata.org/data

the predicted and the actual:

ARi = xi − x̂i (1)

(where xi, x̂i are the actual and predicted value for test instance i).
The Magnitude of Relative Error measure a.k.a. MRE is a very

widely used evaluation criterion for selecting the best effort estima-
tor from a number of competing software prediction models [?] [?].
MRE measures the error ratio between the actual effort and the pre-
dicted effort and can be expressed as the following equation:

MREi =
| xi − x̂i |

xi
=
| ARi |

xi
(2)

A related measure is MER (Magnitude of Error Relative to the
estimate [?]):

MERi =
| xi − x̂i |

x̂i
=
| ARi |

x̂i
(3)

The overall average error of MRE can be derived as the Mean or
Median Magnitude of Relative Error measure (MMRE, or MdMRE
respectively), can be calculated as:

MMRE =

∑n
i=1 MREi

n
(4)

MdMRE = median(allMREi) (5)

A common alternative to MMRE is PRED(25), and defined as
the percentage of predictions failing within 25% of the actual val-
ues, and can be expressed as:

PRED(25) =
100

N

N∑
i=1

{
1 if MREi ≤ 25

100
0 otherwise

(6)

For example, PRED(25)=50% implies that half of the estimates
are failing within 25% of the actual values [?].

There are many other performance measures including the Mean
Inverted Balanced Relative Error (MIBRE) studied by Foss et al. [?]:

MIBREi =
x̂i − xi

max(x̂i, xi)
(7)

3.2 Ten Pre-processors
In this study, we investigate:

• Three simple preprocessors: none, norm, and log;
• One feature synthesis methods called PCA;
• Two feature selection methods: SFS (sequential forward se-

lection) and SWreg;
• Four discretization methods: divided on equal frequency/width.

None is the simplest preprocessor- all values are unchanged.
With the norm preprocessor, numeric values are normalized to

a 0-1 interval using Equation 8. Normalization means that no vari-
able has a greater influence that any other.

normalizedV alue =
(actualV alue−min(allV alues))

(max(allV alues)−min(allV alues))
(8)

With the log preprocessor, all numerics are replaced with their
logarithm. This logging procedure minimizes the effects of the oc-
casional very large numeric value.

Principal component analysis [?], or PCA, is a feature synthe-
sis preprocessor that converts a number of possibly correlated vari-
ables into a smaller number of uncorrelated variables called compo-
nents. The first component accounts for as much of the variability
in the data as possible, and each succeeding component accounts
for as much of the remaining variability as possible.

Some of the preprocessors aim at finding a subset of all features
according to certain criteria such as SFS (sequential forward se-
lection) and SWR (stepwise regression). SFS adds features into
an initially empty set until no improvement is possible with the
addition of another feature. When ever the selected feature set is
enlarged, some oracle is called to assess the value of that set of
features. In this study, we used the MATLAB, objective function
(which reports the the mean-squared-error of a simple linear re-
gression on the training set). One caution to be made here is that
exhaustive search algorithms over all features can be very time con-
suming (2n combinations in an n-feature dataset), therefore SFS
works only in forward direction (no backtracking).

SWR adds and removes features from a multilinear model. Ad-
dition and removal is controlled by the p-value in an F-Statistic. At
each step, the F-statistics for two models (models with/out one fea-
ture) are calculated. Provided that the feature was not in the model,
the null hypothesis is: “Feature would have a zero coefficient in the
model, when it is added”. If the null hypothesis can be rejected,
then the feature is added to the model. As for the other scenario
(i.e. feature is already in the model), the null hypothesis is: “Fea-
ture has a zero coefficient”. If we fail to reject the null hypothesis,
then the term is removed.

Discretizers are pre-processors that maps every numeric value in
a column of data into a small number of discrete values:

• width3bin: This procedure clumps the data features into 3
bins, depending on equal width of all bins see Equation 9.

binWidth = ceiling

(
max(allV alues)−min(allV alues)

n

)
(9)

• width5bin: Same as width3bin except we use 5 bins.
• freq3bin: Generates 3 bins of equal population size;
• freq5bin: Same as freq3bin, only this time we have 5 bins.

3.3 Nine Learners
Based on our reading of the effort estimation literature, we iden-

tified nine commonly used learners that divide into

• Two instance-based learners: ABE0-1NN, ABE0-5NN;

• Two iterative dichotomizers: CART(yes),CART(no);
• A neural net: NNet;
• Four regression methods: LReg, PCR, PLSR, SWReg.

Instance-based learning can be used for analog-based estimation.
A large class of ABE algorithms was described in Figure 1. Since
it is not practical to experiment with the 6000 options defined in
Figure 1, we focus on two standard variants. ABE0 is our name for
a very basic type of ABE that we derived from various ABE stud-
ies [?, ?, ?]. In ABE0-xNN, features are firstly normalized to 0-1
interval, then the distance between test and train instances is mea-
sured according to Euclidean distance function, x nearest neighbors
are chosen from training set and finally for finding estimated value
(a.k.a adaptation procedure) the median of x nearest neighbors is
calculated. We explored two different x:

• ABE0-1NN: Only the closest analogy is used. Since the me-
dian of a single value is itself, the estimated value in ABE0-
1NN is the actual effort value of the closest analogy.
• ABE0-5NN: The 5 closest analogies are used for adaptation.

Iterative Dichotomizers seek the best attribute value splitter that
most simplifies the data that fall into the different splits. Each such
splitter becomes a root of a tree. Sub-trees are generated by call-
ing iterative dichotomization recursively on each of the splits. The
CART iterative dichotomizer [?] is defined for continuous target
concepts and its splitters strive to reduce the GINI index of the
data that falls into each split. In this study, we use two variants:

• CART (yes): This version prunes the generated tree using
cross-validation. For each cross-val, an internal nodes is
made into a leaf (thus pruning its sub-nodes). The sub-tree
that resulted in the lowest error rate is returned.
• CART (no): Uses the full tree (no pruning).

In Neural Nets, or NNet, an input layer of project details is
connected to zero or more “hidden” layers which then connect to an
output node (the effort prediction). The connections are weighted.
If the signal arriving to a node sums to more than some threshold,
the node “fires” and a weight is propagated across the network.
Learning in a neural net compares the output value to the expected
value, then applies some correction method to improve the edge
weights (e.g. back propagation). Our NNet uses three layers.

This study also uses four regression methods. LReg is a sim-
ple linear regression algorithm. Given the dependent variables, this
learner calculates the coefficient estimates of the independent vari-
ables. SWreg is the stepwise regression discussed above. Whereas
above, SWreg was used to select features for other learners, here
we use SWreg as a learner (that is, the predicted value is a regres-
sion result using the features selected by the last step of SWreg).
Partial Least Squares Regression (PLSR) as well as Principal Com-
ponents Regression (PCR) are algorithms that are used to model a
dependent variable. While modeling an independent variable, they
both construct new independent variables as linear combinations of
original independent variables. However, the ways they construct
the new independent variables are different. PCR generates new
independent variables to explain the observed variability in the ac-
tual ones. While generating new variables the dependent variable
is not considered at all. In that respect, PCR is similar to selection
of n-many components via PCA (the default value of components
to select is 2, so we used it that way) and applying linear regres-
sion. PLSR, on the other hand, considers the independent variable
and picks up the n-many of the new components (again with a de-
fault value of 2) that yield lowest error rate. Due to this particular
property of PLSR, it usually results in a better fitting.

3.4 Experimental Rig
This study copied the experimental rig of a recent prominent

study [?]. In their leave-one-out experiment, given T projects, then
∀t ∈ T , t is the test and the remaining T − 1 projects are used for
training. The resulting T − 1 predictions are then used to compute
our seven evaluation criteria given in Section 3.1.

To compare the performance of one algorithm versus the rest, we
used a Wilcoxon non-parametric statistical hypothesis test. Wilcoxon
is more robust than the Student’s t-test as it compares the sums of
ranks, unlike Student’s t-test which may introduce spurious find-
ings as a result of presence of outliers may be existed in the given
datasets. Ranked statistical tests like the Wilcoxon are also useful
if it is not clear that the underlying distributions are Gaussian [?].

Using the Wilcoxon test, for each dataset, the performance mea-
sures collected from each of our 90 algorithms was compared to
the 89 others. This allowed us to collect win-tie-loss statistics us-
ing the algorithm of Figure 3. First, we first to check if two dis-
tributions i, j are statistically different according to the Wilcoxon
test (95% confident); otherwise we increment tiei and tiej . If the
distributions are statistically different, we update wini, winj and
lossi, lossj after comparing their median values.

if WILCOXON(Pi, Pj , 95) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if better(median(Pi), median(Pj)) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Figure 3: Comparing algorithms (i,j) on performance (Pi,Pj).
The “better” predicate changes according to P . For error mea-
sures like MRE, “better” means lower medians. However, for
PRED(25), “better” means higher medians.

4. RESULTS
After applying leave-one-out to all 20 data sets, the procedure

of Figure 3 was repeated seven times (once for AR, MRE, MER,
MdMRE, MMRE, PRED(25), and MIBRE). Our ninety algorithms
were then sorted by their total number of losses over all datasets.
The resulting sort order is shown in Figure 4. The algorithm, with
fewest losses (norm/CART(yes)) was ranked #1 and the algorithm
with the most losses (PCA/LReg) was ranked #90.

Given 89 comparisons and seven performance measures and 20
datasets, the maximum number of losses for any algorithm was
89 × 7 × 20 = 12, 460. Figure 5 sorts all 90 algorithms ac-
cording to their total losses seen in all seven performance criteria
(expressed as a percentage of 12,460). The x-index of that figure
corresponds to the ranks of Figure 4; e.g. the top ranked method of
norm/CART(yes) lost in nearly zero percent of our experiments.

Similarly, the maximum number of losses for any dataset over
ninety algorithms is 89 × 7 × 90 = 56, 070. Figure 6 sorts all
20 data sets by their total losses in all seven performance criteria
(expressed as a ratio of 50,070). For example, with the TELECOM
dataset, all 90 methods rarely lost.

Figure 7 and Figure 8 test the stability of the algorithms and data
sets offered above. In those plots, we check if the sort orders are
changed by different performance criteria:

rank pre-processor learner rank pre-processor learner
1 norm CART (yes) 46 PCA NNet
2 norm CART (no) 47 width3bin ABE0-5NN
3 none CART (yes) 48 none NNet
4 none CART (no) 49 width5bin SWR
5 log CART (yes) 50 width5bin ABE0-1NN
6 log CART (no) 51 none LReg
7 SWR CART (yes) 52 width5bin ABE0-5NN
8 SWR CART (no) 53 SFS NNet
9 SFS CART (yes) 54 norm PLSR
10 SFS CART (no) 55 freq5bin ABE0-1NN
11 SWR ABE0-1NN 56 SWR NNet
12 log ABE0-1NN 57 SWR LReg
13 SWR ABE0-5NN 58 norm LReg
14 SFS ABE0-5NN 59 freq3bin ABE0-1NN
15 PCA PLSR 60 freq3bin CART (yes)
16 SWR PCR 61 freq3bin CART (no)
17 none PLSR 62 PCA ABE0-1NN
18 SFS ABE0-1NN 63 width3bin SWR
19 PCA PCR 64 width5bin PLSR
20 none PCR 65 log SWR
21 PCA CART (yes) 66 log PCR
22 PCA CART (no) 67 log PLSR
23 freq5bin ABE0-5NN 68 width3bin PLSR
24 SWR PLSR 69 width3bin ABE0-1NN
25 SFS LReg 70 width5bin PCR
26 norm ABE0-1NN 71 norm PCR
27 none ABE0-1NN 72 width3bin PCR
28 SFS PCR 73 freq5bin PCR
29 SFS PLSR 74 freq5bin SWR
30 freq5bin CART (yes) 75 width3bin LReg
31 freq5bin CART (no) 76 freq3bin PCR
32 width5bin CART (yes) 77 width5bin LReg
33 width5bin CART (no) 78 freq3bin PLSR
34 norm ABE0-5NN 79 freq5bin PLSR
35 PCA SWR 80 log LReg
36 none ABE0-5NN 81 freq3bin SWR
37 SWR SWR 82 freq5bin LReg
38 SFS SWR 83 width5bin NNet
39 log ABE0-5NN 84 norm NNet
40 norm SWR 85 width3bin NNet
41 none SWR 86 log NNet
42 freq3bin ABE0-5NN 87 freq3bin NNet
43 PCA ABE0-5NN 88 freq5bin NNet
44 width3bin CART (yes) 89 freq3bin LReg
45 width3bin CART (no) 90 PCA LReg

Figure 4: Detailed algorithm combinations, sorted by the sum
of their losses seen in all performance measures and all data
sets. The algorithm with fewest losses is ranked #1 and is
norm/CART(yes). At the other end of the scale, the algorithm
with the most losses is ranked #90 and is PCA/LReg.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

pe
rc

en
ta

ge
 o

f l
os

se
s

methods, sorted by number of losses

Figure 5: The ninety algorithms of Figure 4, sorted by their
percentage of maximum possible losses (so 100% = 12,460).

• In Figure 7, we report percentage of wins, instead of the
losses reported above.
• In Figure 8, we report percentage of wins seen with a single

criteria, PRED(25), instead of the seven criteria used above.

The sort order on the x-axes of Figure 7 and Figure 8 was kept the
same as the before. If focusing on wins, or just PRED(25), did not
change the sort orders, then we would see a smooth plot running
left to right. In a result consistent with prior reports on conclu-
sion instability, the plots are not exactly smooth. However, they do
closely follow the same general trends as Figure 5 and Figure 6.

Since the sort orders seen using (a) the number of losses over
(b) seven performance criteria are mostly stable, we use them to
draw Figure 9. In that figure, each x,y position shows the results
of 623 comparisons (each algorithm compared to 89 others using
seven performance measures; 89× 7 = 623). The y-axis of that
figure shows the 90 algorithms sorted in the rank order of Figure 4.
For example, the top-ranked algorithm norm/CART(yes) appears
at y=1; the log/ABE0-1NN result appears at y=12; the log/LReg
results appear at y=80; and the worst-ranked algorithm PCA/LReg
appears at y=90.

In order to discuss which learners/preprocessors are “best”, we
divide Figure 9 into 5 bands. We reserve the lowest band (con-
taining the “best” estimators) for the region where all algorithms
always lose less than 1

8
th of the time (i.e. the rows y = 1 to y = 8

that are completely yellow in Figure 9). In the other bands (bound-
aried at y = 30, 50, 70, 90), algorithms loss more frequently.

Figure 10 shows the spectrum of PRED(25) values across the 5
bands. As might be expect, the y-axis sort order of Figure 9 pre-
dicts for estimation accuracy. As we move over the five bands from
worst to best, the PRED(25) values double (approximately), thus
confirming the unique performance of algorithms in each band.

Figure 11 shows the frequency counts of preprocessors and learn-
ers grouped into the five bands:

• A “good” preprocessor/learner appears often in the lower
bands. In Figure 11, CART is an example of a “good” learner.
• A “poor” preprocessor/learner appears more frequently in the

higher bands. In Figure 11, all the discretization preproces-
sors (e.g. freq3bin) are “poor”.
• The gray rows of Figure 11 shows preprocessor/learner that

are neither “good” nor “poor” (since they are found in low,
medium and high bands); e.g. see the log preprocessor.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

telecom
kem

erer
cocom

o81o
desharnaisL1

cocom
o81s

desharnaisL3

albrecht
cocom

o81e
nasa93

center5

desharnaaisL2

desharnais
m

axw
ell

sdr
nasa93

center1

m
iyazaki94

nasa93
center2

finnish
cocom

o81
nasa93
china

pe
rc

en
ta

ge
 o

f l
os

se
s

Figure 6: Total losses seen in 20 datasets, expressed as a per-
centage of the maximum number of possible losses seen for one
datasets (so 100%=50,070).

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90

pe
rc

en
ta

ge
 o

f w
in

s

algorithms, sorted as per Figure 5

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

telecom
kem

erer
cocom

o81o
desharnaisL1

cocom
o81s

desharnaisL3

albrecht
cocom

o81e
nasa93

center5

desharnaaisL2

desharnais
m

axw
ell

sdr
nasa93

center1

m
iyazaki94

nasa93
center2

finnish
cocom

o81
nasa93
china

pe
rc

en
ta

ge
 o

f w
in

s

Figure 7: Algorithms and datasets, sorted as per but this time
showing their percentage of maximum wins over all perfor-
mance measures.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90

pe
rc

en
ta

ge
 o

f w
in

s

algorithms, sorted as per Figure 5

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

telecom
kem

erer
cocom

o81o
desharnaisL1

cocom
o81s

desharnaisL3

albrecht
cocom

o81e
nasa93

center5

desharnaaisL2

desharnais
m

axw
ell

sdr
nasa93

center1

m
iyazaki94

nasa93
center2

finnish
cocom

o81
nasa93
china

pe
rc

en
ta

ge
 o

f w
in

s

Figure 8: Algorithms and datasets, sorted as per Figure 5 and
Figure 6, but this time showing their percentage of maximum
wins over just the PRED(25) performance measures.

 8

 30

 50

 70

90

telecom
kem

erer
cocom

o81o
desharnaisL1

cocom
o81s

desharnaisL3

albrecht
cocom

o81e
nasa93

center5

desharnaaisL2

desharnais
m

axw
ell

sdr
nasa93

center1

m
iyazaki94

nasa93
center2

finnish
cocom

o81
nasa93
china

90
 a

lg
or

ith
m

s,
 s

or
te

d
by

 lo
ss

es
 in

 a
ll

da
ta

 s
et

s

log
LReg

log ABE0
1NN

< 12.5% losses
< 25.0% losses
< 50.0% losses

>= 50.0% losses

Figure 9: Number of losses seen in 90 methods and 20 datasets.
expressed as a percentage of the maximum losses possible
for one method in one dataset (so 100% =623; 50%=311;
25%=156; 12.5%=78). The algorithms on the y-axis are sorted
according to Figure 5.

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90

P
R

E
D

(2
5)

all preds, sorted

Performance, grouped by algorithms

algorithms 1..8
algorithms 9..30

algorithms 31..50
algorithms 51..70
algorithms 71..90

Figure 10: Spectrum of Pred(25) across the bands

Frequency of algorithms in the five bands
band 1 band 2 band 3 band 4 band 5

y = 1..8 9..30 31..50 51..70 71..90

L
ea

rn
er

s

CART (yes) 4 2 3 1
CART (no) 4 2 3 1

ABE0-5NN 3 6 1
ABE0-1NN 5 5

PCR 4 1 5
PLSR 4 4 2
LReg 1 3 6
SWR 6 2 2
NNet 2 2 6

Pr
e-

Pr
oc

es
so

rs

SWR 2 4 1 2
SFS 7 1 1

none 2 3 3 1
log 2 1 1 3 2

norm 2 1 2 2 2
PCA 4 3 1 1

freq5bin 1 2 1 5
width2bin 3 3 3
width5bin 3 3 3

freq3bin 1 3 5

Figure 11: Frequencies counts of preprocessor and learners in
the five bands of Figure 9.

5. DISCUSSION

5.1 Findings
Based on these figures and results, we summarize our findings as

follows.
Result1: Observe how the majority of the squares on the left-

hand-side of Figure 9 are yellow. In that mostly-yellow region,
algorithms loss vary rarely against other algorithms (in less that
1
8

th of all comparisons). For the purposes of finding the best effort
estimator, the data sets on the left-hand-side are weak since they
hardly distinguish the performance of different algorithms.

Using engineering judgement, we use 15% losses to divide the
“weak” and “strong” (and acknowledge that this rule is somewhat
subjective). The dashed lines of Figure 6, Figure 7, and Figure 8,
shows that this 15% rule selects ten “strong” data sets (DESHAR-
NAIS, MAXWELL, SDR, NASA93center1,2, MIYAZEKI94,
FINNISH, COCOMO81, NASA93, and CHINA) and excludes widely-
used datasets such as ALBRECHT, KERMERER and TELECOM.
Note that while a data set may be “strong”, it may contain “weak”
subsets. For example, all subsets of DESHARNAIS are “weak”.

In our opinion, future research in effort estimation should use
the stronger data sets and avoid the weaker ones. Also, we need
to revisit all conclusions in prior publications that are based on the

Dataset Used by us Used by others
telecom [?] [?]
kemerer [?] [?, ?]

cocomo81o [?, ?, ?]
desharnaisL1 [?]

weaker cocomo81s [?, ?, ?]
data desharnaisL3 [?]
sets albrecht [?], [?, ?, ?, ?, ?]

cocomo81e [?, ?, ?]
nasa93_center_5 [?, ?, ?]

desharnaisL2 [?]
desharnais [?, ?, ?, ?] [?, ?, ?, ?, ?, ?]

maxwell [?, ?]
sdr [?, ?]

nasa93_center_1 [?, ?, ?]
stronger miyazaki94 [?]
data nasa93_center_2 [?, ?, ?]
sets finnish [?, ?]

cocomo81 [?, ?, ?] [?],
nasa93 [?, ?, ?]

china this study

Figure 12: A sample of effort estimation papers that use the
data sets explored in this paper. The rows of this table are
sorted according to Figure 6. The top/bottom rows show data
sets that are weakest/strongest at distinguishing different algo-
rithms. The horizontal line divides the data according the 15%
rule, proposed in the text.

weaker data sets. As shown in Figure 12, there are many such
publications (including several written by the authors of this paper).

Result2: Observing the small amounts of “jitter” in Figure 7 and
Figure 8, we see that our results are not 100% stable, they are suf-
ficiently stable to make external valid conclusions. We conjecture
that prior reports on conclusion instability resulted from using too
few data sets, or too many weak data sets.

Result3: Observe how, in Figure 4, learners found at one rank
with a one preprocessor, can jump to a very different rank if the
different preprocessor is changed. For example, the top-ranked
method that uses CART(yes), is driven down to rank 60 if the
preprocessor is changed from norm to freq3bin. Clearly, the ef-
fectiveness of a learner can be significantly altered by seemingly
trial details relating to data preprocessing. Hence, in future, re-
searchers should explore learners and the preprocessors, as they
are both equally important.

Result4: Observe in Figure 11 how SWR, LReg and NNet are
stand-out learners in that fall entirely into the worst three bands.
Proponents of these learners need to defend their value for the pur-
poses of effort estimation.

The relatively poor performance of simple linear regression is a
highly significant result. LReg, with a log preprocessor, is the core
technology of many prior publications; e.g. the entire COCOMO
project [?]. Yet as shown in Figure 9, log/LReg ranks very poorly
(position 80 out of a maximum of 90 algorithms).

Result5: While SWR falls into the worst three bands of the
learners, it is most commonly found in the best two bands of the
preprocessors. That is, stepwise regression is a poor learner but a
good preprocessor. Hence, in future, the fate of SWR might be as
an assistant to other algorithms.

Result6: While simple regression methods like LReg are depre-
ciated by this study, more intricate regression methods like regres-
sion trees (CART) and partial linear regression PLR are found in
the better bands. Hence, in future, proponents of regression for
effort estimation might elect to explore more intricate forms of re-
gression than just simple LReg.

Result7: The top-ranked algorithm was norm/CART.
Result8: Simple methods (e.g. K=1 nearest neighbor on the log

of the numerics) perform nearly as well as the top-ranked algo-
rithm. Figure 13 compares the PRED(25) results between rank=12
and rank=1. The strong data sets in that figure are sorted by the dif-
ference between the top-ranked and the twelfth-ranked algorithm.
In most of the ten strong data sets, the difference in PRED(25) val-
ues is either slightly negative, or positive. That is, even though the
rank=1 algorithm is relatively “best” (measured according to our
comparative Wilcoxon tests), when measured in an absolute sense,
it is not impressively better than simpler alternatives.

Result8 is an important result, for three reasons. Firstly, there are
many claims in the literature that software project follows a partic-
ular parametric form. For example, in the COCOMO project, that
form is effort ∝ KLOCx) The fact that non-parametric instance
methods perform nearly as well as our best method suggests that
debates about the parametric form of effort estimation is misguided.
Also, it means that the value of certain commercial estimation tools
based on a particular parametric form may not be much more than
simple instance-based learners.

Secondly, analogy-based estimation methods are widely used [?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Result8 says that while this approach may
not be 100% optimal in all cases, compared to our best estimator
found by this study, there is very little lost if estimates are generated
by analogy. Prior to this publication, we are unaware of a large
comparative study relating to this matter.

Thirdly it is easier to teach and experiment with simpler algo-
rithms (like the log/ABE0-1NN algorithm at rank=12) than more
complex algorithms (like the norm/CART algorithm at rank=1).
For example, recently we have been experimenting with a very sim-
ple variant of ABE0-1NN that is useful as a learner to find software
process change [?]. Such experimentation would have been hin-
dered if we tried to modify the more complex CART algorithm
(particularly if we included sub-tree pruning).

5.2 Validity
Construct validity (i.e. face validity) assures that we are mea-

suring what we actually intended to measure [?]. Previous studies
have concerned themselves with the construct validity of different
performance measures for effort estimation (e.g. [?]). While, in
theory, these performance measures have an impact on the rank-
ings of effort estimation algorithms, we have found that other fac-
tors dominate. In particular, Figure 9 showed that features of the
data set (whether or not it is “weak”) have a major impact on what
could be concluded after studying a particular estimator on a par-
ticular data set. We also show empirically the surprising result that
our results are stable across a range of performance criteria.

External validity is the ability to generalize results outside the
specifications of that study [?]. To ensure external validity, this
paper has studied a large number of projects. Our data sets are di-
verse, measured in terms of their sources, their domains and the

norm/CART(yes) log/ABE0-1NN difference
china 95 43 -52

sdr 42 17 -25
desharnaisL2 48 32 -16

nasa93_center_1 58 42 -16
maxwell 32 31 -1

miyazaki94 40 40 0
finnish 61 66 5

cocomo81 13 22 9
nasa93 29 41 12

nasa93_center_2 43 59 16

Figure 13: Using the strong data sets to compare the Pred(25)
of norm/CART (rank=1) and log/ABE0-1NN (rank=12).

time they were developed in. We use datasets composed of soft-
ware development projects from different organizations around the
world to generalize our results [?]. Our reading of the literature is
that this study uses more data, from more sources, than numerous
other papers. For example, Table 4 of [?] list the total number of
projects used by a sample of other studies. The median value of
that sample is 186; i.e. one-sixth of the 1198 projects used here.

As to the external validity of our choice of algorithms, recalling
Figure 1, it is clear that this study has not explored the full range
of effort estimation algorithms. Clearly, future work is required to
repeat this study using the “best of breed” found here (e.g. bands
one and two of Figure 11 as well as other algorithms).

Having cast doubts on our selection of algorithms, we hasten to
add that this paper has focused on algorithms that have been exten-
sively studied in the literature [?] as well as the commonly available
datasets (that is, the ones available in the PROMISE repository of
reusable SE data). That is, we assert that these results should apply
to much to current published literature on effort estimation.

6. CONCLUSION
In this study, ten learners and nine data preprocessors were com-

bined into 90 effort estimation algorithms. These were applied to
twenty datasets. Performance was measured using seven perfor-
mance indicators (AR, MRE, MER, MdMRE, MMRE, PRED(25),
MBIRE). Performances were compared using a Wilcoxon ranked
test (95%). To the best of our knowledge, this is the largest and
most comprehensive effort estimation study yet reported in the lit-
erature. Eight results are noteworthy:

1. Our datasets could be sorted according to how well they can
distinguish between effort estimators; specifically, eleven datasets
(in common use in the effort estimation literature) are weak;
i.e. poorly distinguish the behavior of different estimators.

2. Prior reports of conclusion instability about effort estimation
may have been overly pessimistic. Given the large number
of publicly available effort estimation datasets, it is now pos-
sible to make stable conclusions about the relative value of
different effort estimators.

3. The effectiveness of a learner used for effort estimation (e.g.
regression or analogy methods) can be significantly altered
by data preprocessing (e.g. logging all numbers or normaliz-
ing them zero to one).

4. Neural nets and simple linear regression perform much worse
than other learners such as analogy learners.

5. Stepwise regression was a very useful preprocessor, but sur-
prisingly a poor learner.

6. Non-simple regression methods such as regression trees and
partial linear regression are relatively strong performers.

7. Regression trees that use tree pruning performed best of all in
this study (with a preprocessor that normalized the numerics
into the range zero to one).

8. Very simple methods (e.g. K=1 nearest neighbor on the log
of the numerics) performed nearly as well as regression trees.

Based on these results, our general conclusions are:

• Prior papers on effort estimation have not taken proper ac-
count of the data used to evaluate the effort estimator.
• Conversely, future publications in effort estimation should

take greater consideration to explore the characteristics of
data and data preprocessing mechanisms (and not just the
learner).
• Researchers need to revisit prior publications that used the

weaker datasets (including numerous papers by the authors
of this paper - see Figure 12).

As to the more specific conclusions:

• We recommend effort estimation using regression trees or
analogy methods.
• We recommend against effort estimation based on neural nets

or simple linear regression.

These recommendations are based only on the selected algorithms
studied in this paper and should be assessed using other algorithms.
That assessment should be based on the strong datasets identified in
this study (DESHARNAIS, MAXWELL, SDR, NASA93center1,
NASA93center2, MIYAZEKI94, FINNISH, COCOMO81, NASA93,
and CHINA).

Lastly, this is an empirical paper that reports, but does not ex-
plain, the rankings of data sets and algorithms seen in Figure 9. An
open question raised by this work is what features of our algorithms
and datasets resulted in their rankings. While we have no current
theory on what explains the algorithm ordering, we speculate that
the dataset ordering might be explained by the regions of local high
variance in their internal structure. However, at the time of this
writing, we have no convincing evidence for that speculation.

Given the significance of this study, an important goal for future
work would be to determine the reason for the algorithm / data
ranking seen in this study.

7. REFERENCES
[1] E. Alpaydin. Introduction to Machine Learning. MIT Press,

2004.
[2] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and

S. Biffl. Optimal project feature weights in analogy-based
cost estimation: Improvement and limitations. IEEE
Transactions on Software Engineering, 32:83–92, 2006.

[3] D. Baker. A hybrid approach to expert and model-based
effort estimation. Master’s thesis, Lane Department of
Computer Science and Electrical Engineering, West Virginia
University, 2007. Available from https://eidr.wvu.
edu/etd/documentdata.eTD?documentid=5443.

[4] A. Bakir, B. Turhan, and A. Bener. A new perspective on
data homogeneity in software cost estimation: A study in the
embedded systems domain. Software Quality Journal, 2009.

[5] B. W. Boehm. Software Engineering Economics. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

[6] A. Brady and T. Menzies. Case-based reasoning vs
parametric models for software quality optimization. In
International Conference on Predictive Models in Software
Engineering PROMISE’10. IEEE, Sept. 2010.

[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and Brooks,
Monterey, CA, 1984.

[8] L. C. Briand, K. El Emam, D. Surmann, I. Wieczorek, and
K. D. Maxwell. An assessment and comparison of common
software cost estimation modeling techniques. In ICSE ’99:
Proceedings of the 21st international conference on Software
engineering, pages 313–322, New York, NY, USA, 1999.
ACM.

[9] C. Chang. Finding prototypes for nearest neighbor classifiers.
IEEE Trans. on Computers, pages 1179–1185, 1974.

[10] U. M. Fayyad and I. H. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In
Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence, pages 1022–1027, 1993.

[11] G. R. Finnie, G. E. Wittig, and J.-M. Desharnais. A
comparison of software effort estimation techniques: Using

function points with neural networks, case-based reasoning
and regression models. Journal of Systems and Software,
39(3):281 – 289, 1997.

[12] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A
simulation study of the model evaluation criterion mmre.
IEEE Transactions on Software Engineering, 2003.

[13] J. Gama and C. Pinto. Discretization from data streams:
applications to histograms and data mining. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied
computing, pages 662–667, New York, NY, USA, 2006.
ACM Press. Available from http://www.liacc.up.
pt/~jgama/IWKDDS/Papers/p6.pdf.

[14] M. Hall and G. Holmes. Benchmarking attribute selection
techniques for discrete class data mining. IEEE Transactions
On Knowledge And Data Engineering, 15(6):1437–1447,
2003.

[15] M. Jørgensen. A review of studies on expert estimation of
software development effort. Journal of Systems and
Software, 70(1-2):37–60, 2004.

[16] M. Jorgensen. Practical guidelines for
expert-judgment-based software effort estimation. Software,
IEEE, 22(3):57–63, 2005. 0740-7459.

[17] G. Kadoda, M. Cartwright, and M. Shepperd. On configuring
a case-based reasoning software project prediction system.
UK CBR Workshop, Cambridge, UK, pages 1–10, 2000.

[18] J. Keung. Empirical evaluation of analogy-x for software
cost estimation. In ESEM ’08: Proceedings of the Second
ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 294–296, New York,
NY, USA, 2008. ACM.

[19] J. Keung. Theoretical maximum prediction accuracy for
analogy-based software cost estimation. In Software
Engineering Conference, 2008. APSEC ’08. 15th
Asia-Pacific, pages 495 –502, 3-5 2008.

[20] J. Keung and B. Kitchenham. Experiments with analogy-x
for software cost estimation. In Software Engineering, 2008.
ASWEC 2008. 19th Australian Conference on, pages 229
–238, 26-28 2008.

[21] J. Keung and B. Kitchenham. Experiments with analogy-x
for software cost estimation. In ASWEC ’08: Proceedings of
the 19th Australian Conference on Software Engineering,
pages 229–238, Washington, DC, USA, 2008. IEEE
Computer Society.

[22] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery.
Analogy-x: Providing statistical inference to analogy-based
software cost estimation. IEEE Trans. Softw. Eng.,
34(4):471–484, 2008.

[23] C. Kirsopp and M. Shepperd. Making inferences with small
numbers of training sets. IEEE Proc., 149, 2002.

[24] C. Kirsopp, M. Shepperd, and R. Premrag. Case and feature
subset selection in case-based software project effort
prediction. Research and development in intelligent systems
XIX: proceedings of ES2002, the twenty-second SGAI
International Conference on Knowledge Based Systems and
Applied Artificial Intelligence, page 61, 2003.

[25] B. Kitchenham, E. Mendes, and G. H. Travassos. Cross
versus within-company cost estimation studies: A systematic
review. IEEE Trans. Softw. Eng., 33(5):316–329, 2007.
Member-Kitchenham, Barbara A.

[26] J. Kliijnen. Sensitivity analysis and related analyses: a
survey of statistical techniques. Journal Statistical
Computation and Simulation, 57(1–4):111–142, 1997.

[27] E. Kocaguneli, G. Gay, Y. Yang, T. Menzies, and J. Keung.
When to use data from other projects for effort estimation. In
ASE ’10: To Appear In the Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, New York, NY, USA, 2010.

[28] Y. Kultur, B. Turhan, and A. B. Bener. ENNA: software
effort estimation using ensemble of neural networks with
associative memory. In SIGSOFT ’08/FSE-16: Proceedings
of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, pages 330–338, New
York, NY, USA, 2008.

[29] J. Li and G. Ruhe. A comparative study of attribute
weighting heuristics for effort estimation by analogy.
Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, page 74,
2006.

[30] J. Li and G. Ruhe. Decision support analysis for software
effort estimation by analogy. In International Conference on
Predictive Models in Software Engineering PROMISE’07,
May 2007.

[31] J. Li and G. Ruhe. Analysis of attribute weighting heuristics
for analogy-based software effort estimation method
AQUA+. Empirical Software Engineering, 13(1):63–96,
2008.

[32] Y. Li, M. Xie, and T. Goh. A study of project selection and
feature weighting for analogy based software cost estimation.
Journal of Systems and Software, 82:241–252, 2009.

[33] Y. Li, M. Xie, and G. T. A study of the non-linear adjustment
for analogy based software cost estimation. Empirical
Software Engineering, pages 603–643, 2009.

[34] U. Lipowezky. Selection of the optimal prototype subset for
1-nn classification. Pattern Recognition Letters, 19:907–918,
1998.

[35] K. Lum, T. Menzies, and D. Baker. 2cee, a twenty first
century effort estimation methodology. In International
Society of Parametric Analysis Conference (ISPA / SCEA),
May 2008.

[36] E. Mendes, I. D. Watson, C. Triggs, N. Mosley, and
S. Counsell. A comparative study of cost estimation models
for web hypermedia applications. Empirical Software
Engineering, 8(2):163–196, 2003.

[37] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting best
practices for effort estimation. IEEE Transactions on
Software Engineering, 32:883–895, 2006.

[38] T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum. Stable
rankings for different effort models. Automated Software
Engineering, 17:409–437, 2010.

[39] D. Milic and C. Wohlin. Distribution patterns of effort
estimations. In Euromicro, 2004.

[40] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki. Robust
regression for developing software estimation models. J.
Syst. Softw., 27(1):3–16, 1994.

[41] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and
validity in comparative studies of software prediction
models. Software Engineering, IEEE Transactions on,
31(5):380 – 391, may 2005.

[42] C. Robson. Real world research: a resource for social
scientists and practitioner-researchers. Blackwell Publisher
Ltd, 2002.

[43] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris. Software
productivity and effort prediction with ordinal regression.

Information and Software Technology, 47(1):17 – 29, 2005.
[44] M. Shepperd and G. Kadoda. Comparing software prediction

techniques using simulation. Software Engineering, IEEE
Transactions on, 27(11):1014 –1022, nov 2001.

[45] M. Shepperd and C. Schofield. Estimating software project
effort using analogies. Software Engineering, IEEE
Transactions on, 23(11):736 –743, nov 1997.

[46] M. Shepperd, C. Schofield, and B. Kitchenham. Effort
estimation using analogy. In Software Engineering, 1996.,
Proceedings of the 18th International Conference on, pages
170 –178, 25-29 1996.

[47] B. Turhan, O. Kutlubay, and A. Bener. Evaluation of feature
extraction methods on software cost estimation. In Empirical
Software Engineering and Measurement, 2007. ESEM 2007.
First International Symposium on, pages 497 –497, 20-21
2007.

[48] F. Walkerden and R. Jeffery. An empirical study of
analogy-based software effort estimation. Empirical Softw.
Engg., 4(2):135–158, 1999.

[49] Y. Yang and G. I. Webb. A comparative study of
discretization methods fornaive-bayes classifiers. In
Proceedings of PKAW 2002: The 2002 Pacific Rim
Knowledge Acquisition Workshop, pages 159–173, 2002.

APPENDIX
With the exception of SDR, all the data used in this study is avail-
able at http://promisedata.org/data or from the authors.
Our data sets are very heterogenous (observer their 60-fold vari-
ation in the skewness from 0.86 to 6.6). As shown in Figure 2,
our data includes projects from (a) various geographical locations
(Canada, China, Finland, Japan, Turkey, USA etc.); (b) datasets
with various instance (from 11 instances to 499 instances) and fea-
ture (from 3 features to 27 features) sizes; and (c) datasets with high
divergence in terms of features describing the software projects.
For example, the COCOMO* and NASA* data sets all use the
features defined by Boehm [?]; e.g. analyst capability, required
software reliability, memory constraints, and use of software tools.
The other data sets use a wide variety of features including, number
of entities in the data model, number of basic logical transactions,
query count, number of distinct business units serviced etc.

As to other details about our data:

• COCOMO81 and NASA93 are standard COCOMO data sets
and the indented datasets starting with COCOMO and NASA
(COCOMO*, NASA*) are their subsets. Criterion for subsets
in NASA93 is the development centers (center_1, center_2
and center_5) and in COCOMO81 it is the development mode
(embedded, organic and semi-detached).
• DESHARNAIS contains projects from Canadian software house

(and project size is measured in function points). Subsets of
DESHARNAIS contain projects developed in different lan-
guages.
• SDR is a dataset that is includes projects of various soft-

ware companies from Turkey and is collected by Softlab, the
Bogazici University Software Engineering Research Labora-
tory repository [?];
• MIYAZAKI94 [?] contains projects developed by companies

in Japan is recently donated to PROMISE repository and made
available to public access.
• The CHINA dataset is one of the largest publicly available

datasets with 499 instances. It includes software projects de-
veloped in China by various software companies in multiple
business domains.

